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Abstract—Autonomous marine vehicles face escalating cyber-
security threats as connectivity and automation increase attack
surfaces. Cybercriminals have increased security intrusions tar-
geting the marine industry by 400% during the COVID-19
epidemic. This research is a work-in-progress study investigating
the feasibility of developing a modular battleship simulator and
a simultaneous navigation and security artificial intelligence (AI)
monitoring system with machine learning (ML) technologies. We
used a simple but representative threat model based on GPS
spoofing and integrity attacks against the weapons system and
ICS network operations. Results indicate the feasibility of the
modular battleship simulator and the associated AI monitoring
system. The simulator utilizes maritime vehicle physics, rudimen-
tary weapons systems operations, and ICS network operations.
Most importantly, we demonstrate the ability of AI monitors to
guard against navigation and network operation anomalies that
would jeopardize a ship and/or its associated mission.

Index Terms—Industrial Control Systems (ICS), Autonomous
Navigation, Battleship Simulator (BSS), Autonomy Assurance,
Machine Learning (ML), Artificial Intelligence (AI)

I. INTRODUCTION

Cyberspace is increasingly integrated with terrestrial, mar-
itime, and airborne domains. The convergence phenomenon
boosts human flourishing but poses cyber risks. National
security depends on robust governance structures to enable
autonomous vehicles to function safely, securely, and re-
siliently, alone or in groups. Recent cases have shown au-
tonomous systems’ vulnerability to hackers, data theft, and
ransomware. Malware intrusion detected in global operations
in 2017 caused a financial loss of up to $300 million [1].
Ransomware assaults hit French shipping operator CMA CGM
and Norwegian marine classification group DNV [1]. Internet-
connected sensors, navigation components, and Industrial Con-
trol Systems (ICS) on naval and commercial vessels increase
the assault surface for determined adversaries.

In this study, we simulate and analyze a battleship’s cyber-
physical systems using artificial intelligence (AI) monitors
for navigation and security. To support this simulation, we
developed an open-source Battleship Simulator (BSS), which
models naval surface ships, executes cyber attacks on those
ships, and collects and reports data. It models engines, radar,
weaponry, and low-level control logic as parts of an ICS

network. Using these features, we created AI models to detect
anomalies and influence the navigation systems.

Our key contributions include the feasibility investigation
of a (1) modular and extensible maritime vehicle simulator
and (2) a simultaneous navigation and security AI monitoring
system for maritime vehicles. The maritime vehicle simulator
includes physics and navigation simulation, ICS network sim-
ulation, and anomaly detection for both navigation and ICS
network.

This paper describes Related Works in Section 2 and
analyzes the BSS architecture with the ICS Network and
Weapon System in Section 3. In Section 4, cyber threats and
a Spoofing, Tampering, Repudiation, Information Disclosure,
Denial of Services, and Elevation of Privileges (STRIDE)
threat model for cyber attacks on battleships are briefly dis-
cussed [2]. Sections 5 and 6 cover the AI Navigation Monitor
(AI-NM) and Security Monitor ML (SM-ML) training, feature
engineering, and modeling. Section 7 discusses experimental
evaluation and techniques, Section 8 examines the results
and discussion, and Section 9 discusses limitations. Finally,
Section 10 concludes with a summary and future work.

II. RELATED WORKS

G. Kavallieratos et al. [5] highlighted cyber-attacks on
autonomous ships, including GPS spoofing, Denial of Service
(DOS), and network attacks. Similarly to [3], we modeled
attacks in this research to simulate GPS spoofing by providing
false coordinates and tampering with the BSS location. In our
work, the impact of such attacks is reflected in the system’s
behavior, and the SM-ML module highlights the security
concerns if an attack is detected.

J.M Szatkowski et al. in [4] designed a Software-Defined
Networking to manage the NAVAL Supervisory Control and
Data Acquisition (SCADA) Network to enhance the system’s
scalability and security through a programmable modular gen-
erator. The framework uses a similar modular concept, taking
advantage of the asynchronous message queuing technology to
inform a downstream effect on the ship’s security. We believe
this approach enables faster communication exchange between
components.
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Fig. 1. Battleship Simulation Framework: This diagram illustrates the BSS,
key components, ICS Network, Weapons Network, Battleship Simulator, and
AI Navigation Monitor and Security Monitor Machine Learning module.

Several other works have similar elements to our BSS,
but overall, we believe our approach has advantages in that
it also includes integrated navigation and security monitors
with active capabilities. The works are as follows: (i) The
AIS-driven target ship server developed by Y. Suo et al. [6]
enables realistic traffic simulation in maritime navigation; (ii)
according to Hasegawa et al. [9], an intelligent ship-handling
simulator can avoid collisions, (iii) R. Zaccone and M. Martelli
et al. [10] developed a collision avoidance algorithm for
autonomous ship guiding using a modified Rapidly-exploring
random trees (RRT*) technique, and (iv) the modular sim-
ulation technique in [14] generates scenarios and evaluates
algorithms for cyber-physical security analysis.

Our platform differs from cyber frameworks like [7] and
[8] because it focuses on the complex interactions between
a battleship’s cyber-physical systems. It combines waypoint-
based movement and collision avoidance with AI models
identifying physical or cyber-based threats and informing
navigation components. CyberBattleSim and Cyber Operations
Research Gym examine how AI, and people interact in busi-
ness networks and cyber-adversarial situations [7], [8]. Our
work, on the other hand, looks at the complicated maritime
security scene where cyber and physical domains meet. It can
be used as a research tool to learn about and improve how
well military ships can handle a wide range of threats in a
controlled, simulated setting.

III. BATTLESHIP SIMULATOR

The experimental framework uses Python 3.9+ and third-
party libraries to provide modeling, analysis, and simula-
tion capabilities. The communications architecture described
in Fig. 1 facilitates modularity by employing microservice-
based architecture for various functions such as scenario or-

Fig. 2. BSS Status Panel and Collision Example. (A) The battleship observes
obstacles in radar range (green), but none are close enough to pose an
immediate threat. (B) As the battleship moves towards Waypoint #1, obstacles
come within the ”minimum safe area” and pose an immediate threat. (C) The
battleship collides with an obstacle (red), and the scenario is considered a
failure. The AI monitors are designed to avoid this scenario. (D) The OPC UA
Server Dashboard collects information regarding Speed, Power, Coordinates,
and AI Status.

chestration, environment representation, vehicle control logic,
communications, data logging/transmission, and a command
line/graphical user interaction, where these components are
containerized using Docker-technologies. The Open Platform
Communications Unified Architecture (OPC UA) and Message
Queuing Telemetry Transport (MQTT) Framework facilitate
communication within industrial controls. The machine learn-
ing module incorporates many algorithms, such as decision
trees (DT), random forests (RF), and reinforcement learning,
utilizing the Scikit-Learn and Flask libraries. This modular
simulation, system security, and AI integration facilitate the
research of ensured autonomous marine vehicle operations.

A. Battleship Operation

BattleshipSimulator, an open-source library, models and
predicts battleship threats using machine learning. Fossen [11],
[12] introduced physics-based movement modeling based on
ship motion control concepts. Fig. 2 shows the simulator
autopilot navigating pathways and avoiding collisions.

BSS has collision avoidance, a simple algorithm to turn
away from objects, and waypoint tracking battleship naviga-
tion that can be overridden. Testing settings use procedural
terrain generation with random waypoints and obstacles. BSS
modular ICS network decoupling allows independent physics
modeling. High-fidelity battleship modeling and modular ar-
chitecture enable extensible autonomous marine vehicle secu-
rity evaluation.

B. ICS Network

An ICS network is required to reproduce attacks on the
BSS and improve data authenticity (Fig. 2). An OPC UA
requires ICS data, facilitating the telemetry exchange. In
network-constrained situations, MQTT offers efficient and
lightweight communications. Using Python modules such as
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‘opcua’ for OPC UA server and ‘paho.mqtt’ for MQTT client,
the module seamlessly integrates with BSS. Data is exchanged
and synchronized between the logger function and ZeroMQ
as the MQTT server, guaranteeing simulator integrity and
responsiveness. Dual technology integrates modules into the
BSS system, allowing internal and external communication.
The modular design is tested with a power generation module
in the ICS network.

BSS uses the ICS power generator module to mimic power
production. This module calculates the battleship power based
on the ship’s speed, drag, and navigation data. The power-
generating computational formula considers drag coefficient,
water density, cross-sectional area, and battleship velocity.
The power calculation utilizes fluid mechanics coefficients to
model naval power dynamics. The model applies a seawater
density of 1,025 kg/m3, a drag coefficient of 0.035, and a
cross-sectional area of 1005 m2 [17].

A Python script calculates the simulated power required for
the battleship’s movement by first computing the drag force
acting on the vessel (1):

forcedrag = 0.5(cd)(ρ)(area)(speed) (1)

where cd represents the drag coefficient, ρ is the density
of seawater, area (m2) is the cross-sectional area facing the
fluid flow, and speed (m/s) is the ship’s speed in meters per
second. Subsequently, the power is determined by multiplying
this drag force by the ship’s speed, providing the power in
watts needed to overcome the drag and maintain the current
speed. This module replicates power output changes and
creates a realistic environment for analyzing and forecasting
the SM-ML features. The SM-ML needs this module to detect
cybersecurity and operational issues that can affect power
emissions in a battleship.

C. Weapon System

The weapons simulator simulates a system that takes manual
commands and decides actions based on certain environment
variables. Just as a Close-In Weapon System (CIWS) used to
defend against anti-ship missiles and other close threats, the
emulated weapon system can decide when to fire based on the
real-time distance between the battleship and the target, based
on the coordinates provided by the navigation system.

The simulation considers weapon range to simulate real-life
systems and arm/disarm/fire based on the change in value of
the range. The distance to the target is calculated by a Python
script that considers the battleship and targets current x and
y coordinates using the formula (2):

distance =
√
(x2 − x1)2 + (y2 − y1)2 (2)

Fig. 3 depicts the logic of actions to take based on the
distance to the target. The module allows user input using an
Application Programming Interface (API), using HTTP POST
requests to update the SM-ML with data from other modules.
This makes it crucial to verify if there is any cybersecurity-
related abnormality and, based on observation, take decisions

Fig. 3. Weapon System Automated Firing Logic Diagram

to change the course of action. This modularity increases the
simplicity of simulating cyber attacks against the weapons
system according to a STRIDE threat model.

IV. THREAT MODEL

Advancements in AI have led to an increasing number
of autonomous systems and controls in many areas. This
paper focuses on autonomous naval vehicles and how these
systems are vulnerable to cyber-attacks. This problem is well
researched, with several threat models and cyber intrusions
performed as in [5].

A. Attack Background

According to the International Association of Classification
Societies (IACS) recommendation on cyber resilience [16],
functional failures related to the control system’s operation,
propulsion, and steering can cause high integrity and availabil-
ity risks. Thus providing the reason that the cybersecurity of
a ship must be considered. There are many attacks against the
cyber systems of naval vessels, including GPS attacks, DoS
attacks, Automatic Identification System (AIS) attacks, and
Electronic Chart Display and Information System (ECDIS)
attacks [3]. While there are many other attacks, this paper
will focus on GPS and firmware-based attacks. These attacks
have proven possible and can be easy to exploit. GPS signals
from orbiting satellites are weak enough for attackers to
interfere or overpower. GPS spoofing will impact navigation
and cause sequence problems, such as late or missed shots
of the weapon system. Firmware-based attacks are typically
performed using malicious programs that manipulate hardware
in an unauthorized manner. The key examples related to this
paper are power control ICS and weapon targeting systems,
which could be spoofed or manipulated with malware.

B. STRIDE Threat Model: Current and Potential Attacks

The STRIDE Threat Modeling risk assessment demonstrates
the modular capabilities implemented in this paper, similar
to [5]. This assessment describes some current and potential
attacks the simulator can model. Table I depicts the STRIDE
Threat Model, showing a variety of potential attacks given a
threat vector.

The actual attacks used in this paper were to spoof the
GPS data for the vessel; this was simulated by changing the
location/speed of the BSS. For the weapon targeting system,
a tampering attack was simulated by altering the parameters
of the weapon system. Finally, another tampering attack was
simulated by altering power ICS data for the power control
ICS.

0140
Authorized licensed use limited to: Johns Hopkins University. Downloaded on April 11,2025 at 16:46:34 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I
STRIDE THREAT MODEL

Threat
Category

Security Tenet
Violated Definition

Spoofing Authenticity An adversary capability to mask as
another entity or pass data as authentic

Tampering Integrity An adversaries capability to alter data
inside the system

Repudiation Non-
repudiation

The inability to attribute actions with
evidence

Information
Disclosure Confidentiality Revealing information to those without

proper permissions
Denial of
Service Availability Taking down the system and removing

the availability/operation of the system
Privilege

Escalation Authority Executing unauthorized protocols or
programs

TABLE II
FEATURE DESCRIPTIONS FOR AI NAVIGATION MONITOR

Description of Selected Features

desired heading: Direction battleship is trying to move towards
option port: Difference between current heading and desired heading
out of bounds: Indicates ship movement outside simulation boundary
RadarSonar.collision warning: Warning for potential collisions
RadarSonar.collision event: Indicates collision occurrence
Engine.desired speed: Desired speed of the battleship
Distance to point 1: Distance to waypoint 1
Distance to point 2: Distance to waypoint 2
Distance to point 3: Distance to waypoint 3
Distance to point 4: Distance to waypoint 4
Distance to radar obj 1: Distance to object 1 detected by radar
Distance to radar obj 2: Distance to object 2 detected by radar
Distance to radar obj 3: Distance to object 3 detected by radar
Distance to radar obj 4: Distance to object 4 detected by radar
Direction port: Direction for next move (port)
Direction starboard: Direction for next move (starboard)
Security ML: Security status from SM-ML
Key features selected during the training of the Navigator-ML.

V. AI NAVIGATION MONITOR

The AI-NM utilizes the Navigator-ML and BSS information
to make battleship decisions. Navigator-ML is trained to
predict battleship heading and speed similar to BSS native
navigation and is used by AI-NM to check BSS behavior
continuously.

A. Features and Modeling

Navigator-ML is trained on BSS native navigation and SM-
ML outputs to predict battleship heading and speed. The
datasets from BSS are preprocessed by removing missing
values and dropping columns with high correlation based
on the heatmap we developed. Columns with categorical
and boolean values are converted using one-hot encoding.
Additionally, features are extracted by calculating Euclidean
distance between current battleship coordinates and waypoints.
Final features are listed in Table II.

The dataset is divided into 80% for training and 20% for
testing. The model is trained using three algorithms: DT, RF,
and KNN Regression. All three models’ hyperparameters are
tuned using Grid-Search CV and a cross-validation set of 5.

B. Training

Mean Absolute Error (MAE) is the total of absolute dif-
ferences between expected and actual values divided by ob-
servations. MAE outputs y-units. The regression loss function
uses Mean Square Error (MSE), the most common regression
metric, to calculate the squared error between predicted and
actual values. R2 is the only context-independent model com-
parison metric. Regression models: DT, RF, and K-Nearest
Neighbors predicted Battleship navigation. Performance mea-
surements were MAE, MSE, and R-squared. The DT model
was more accurate and precise, with an MAE of 0.1688 and
an MSE of 0.3578. With 0.9999 R-squared, it accounts for
variance well. The Random Forest model lost effectiveness
as errors rose. MAE and R-squared for KNN matched the
DT, but MSE was greater. The DT model performed better in
navigation challenge accuracy and dependability, indicating its
applicability. The DT was best for the scenario because of its
efficiency without normalizing or scaling.

VI. AI SECURITY MONITOR

The SM-ML Module uses real-time data from components
to monitor their behaviors and functionality. The SM-ML
was inspired by using explainable AI to filter anomalous
system component behavior and take action against it by
classifying those behaviors by quantifying their system impact
and defining their reasoning using these metrics [15]. This
approach aims to be preventive, explainable [13], robust in
spotting new threats and anomalies, and less dependent on
humans. The data is integrated from the ICS Module and
the Weapon System. The information these systems provide is
crucial for the SM-ML due to its criticality to the battleship’s
operational stability.

A. Features and Modeling

The suggested cybersecurity architecture employs the ’De-
cisionTreeClassifier’ model for training, as it can distinguish
between three system functionality states. All systems operate
optimally in State “1”, or “Go”. State “2” or “Down” implies
the weapon system is non-operational, but the ICS module
works. State “3” indicates a compromise that may affect the
ICS module, weapon system, or both. These states act as a
“Label” column classified as operational (1), compromised (3),
or non-operational (2). Data was generated from compromised
and non-compromised ICS modules and weapon systems for
training purposes and labeled accordingly. The final features
are described in Table III.

Transparency and speed are essential for understanding the
model’s decision-making process in a trustworthy domain in
the context of real-time security, which the DT graph provides
effectively by handling non-linear relationships and complex
feature interactions while being quick to train.

B. Training

Three machine-learning classification models were used to
assess the SM-ML system: DT, Random Forest, and KNN.
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TABLE III
FEATURES FOR SECURITY NAVIGATOR ML

Feature

Power: Power(Watts) measured from ICS Module.
Weapon Range Status:. Weapon’s range status.
Weapon status: Weapon execution posture status.
Msg: Encoded message from Weapon System.

Key features selected during the training of the
SM-ML module.

Each model was thoroughly examined to discover the best fit
for our purpose.

Three machine learning models—Decision Tree, Random
Forest, and K-Nearest Neighbors—are compared in this article.
The efficacy of the models was assessed using various metrics,
including precision, recall, F1 score, and accuracy. Regarding
overall performance, the DT model demonstrated superior pre-
cision, recall, and F1 scores of 1.0 and accuracy of 0.998. This
suggests that the threat detection and classification capabilities
are exact. The Random Forest model performed marginally
inferior. The performance of the KNN model was considerably
inferior across all metrics. The findings indicate that the DT
model exhibited superior performance compared to the other
two models, showcasing the highest levels of accuracy and
dependability in anomaly detection. It validates quantitatively
the DT’s efficacy as a security monitoring model.

VII. EXPERIMENTAL EVALUATION

A. Experimental Setup

The simulator and the ML models were developed on a
Windows-based Operating System with an 11th Gen Intel Core
i5 processor and 16GB RAM and used Python 3.9+. It uses
microservices and third-party libraries for scenario generation,
environment modeling, data transmission, and user interaction.
Arcade, Shapely, PyYAML, Numpy, ZeroMQ, OPC UA, MQTT,
Scikit-Learn, and Flask were used. The modular design allows
simulation, analysis, and data flow orchestration with Docker-
based technologies.

B. Experimental Procedure

We ran three sets of experiments in our study. First, as a
control, we tested the battleship’s ability to avoid obstacles
without supervision from other modules. Next, we tested the
ability of the AI-NM to take over and either avoid collisions
on behalf of the native navigator or stop the ship before a
collision. Finally, we tested the security monitor’s ability to
identify anomalies in the ICS network.

The following logic is implemented for the AI-NM in a
series of steps: (1) the AI-NM continuously compares the
BSS heading to Navigator-ML predictions. It triggers alerts
and halts the ship if the BSS starts heading in a strayed-
off direction, (2) the AI-NM initiates the Collision Avoidance
Supervisor when Collision Avoidance warnings are valid, and
Navigator-ML predicts values consistent with the BSS, and (3)
the AI-NM brings the battleship to speed zero when SM-ML

TABLE IV
BATTLESHIP SCENARIO ANALYSIS

# Native
Navigator

Navigation
AI

Navigation
AI Attacked

1 Collision Avoided Halted
2 Collision Avoided Halted
3 Collision Collision Halted
4 Collision Avoided Halted
5 Collision Avoided Halted
6 Collision Avoided Halted
7 Collision Avoided Halted
8 Collision Avoided Halted
9 Collision Collision Halted

10 Success Success Halted
Table IV illustrates the BSS navigation with the native
algorithm, NM-AI, and under cyber threats through ten
scenarios.

detects an anomaly in battleships location/speed, signaling a
potential security compromise.

1) Native Navigator and AI Navigator Evaluation: To test
the effectiveness of the BSS native navigation and the AI-
NM’s ability to oversee it, 10 scenarios were pseudo-randomly
generated. These scenarios were then run with the native
navigator, and the AI-NM was present to provide a suitable
comparison. The results of these ten scenarios were tabulated
and displayed in the first column in Table IV for the native
navigator alone and in the second column with the AI-NM
included.

2) AI Navigator and Security Monitor Communications
Evaluation: To test the AI Security Monitor’s ability to detect
spoofed locations/speeds and communicate this to the AI
Navigator, 10 spoofed locations/speed scenarios were pseudo-
randomly generated. The results of these ten scenarios were
tabulated and displayed in the third column in Table IV.

3) Security Monitor ML Evaluation: We ran the trained
’DecisionTreeClassifier’ model against data from a compro-
mised weapon system and ICS network to determine its ability
to identify anomalous behavior. The accuracy of SM-ML’s
prediction is described in the Table V.

VIII. RESULTS AND DISCUSSION

This work demonstrates how our solution can model real-
istic battleship behavior, such as ICS and weapon systems,
communications, and autonomous navigation. The BSS also
includes self-monitoring using two ML-based systems that
actively modify behavior when necessary. The section below
describes the results generated by each element individually.

A. Results of Native Navigation in BSS

As shown in Table IV, the native navigation on the battle-
ship does not show a significant success rate for each scenario.
This native navigation allows some object avoidance, which
is expected considering the simple steering heuristic.

B. AI Navigator Monitor Module

In column 1 of Table IV, scenario 10 shows the Native
Navigator and AI-NM both succeeding or navigating all
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TABLE V
EXPERIMENT RESULT OF COMPROMISED BATTLESHIP SYSTEM

S. No. Case of Compromise Success Failure Total

1 No More Rounds 500 0 500
2 Out of Range 392 0 392
3 Missile Misses 134 0 134
4 Loading 214 38 252
5 Reloading 215 0 215
6 Power 1000 0 1000

Outcomes of various compromise scenarios in a weapon system such as
missile misses, sudden out-of-range status, empty rounds status, or unusual
ICS system power due to compromise.

waypoints, implying a less complex navigation scenario. In
column 2 of Table IV, the AI-NM acts as an oversight system
to catch native navigation failures and thus prevents some
collisions—the results of simulated attacks on a battleship.
’Collision’ indicates a scenario where the ship collided with
an obstacle, ’Success’ denotes successful navigation of all
waypoints, ’Avoided’ indicates the AI-NM prevented a col-
lision, and ’Halted’ indicates SM-ML detected a compromise
and instructed AI-NM to stop the ship. The results show that
the AI Navigator avoided collisions successfully in 7 of 9
cases (77.7%). This demonstrates the improved navigation
capabilities of the AI system compared to the native navigator.
Finally, The AI-NM stopped the battleship when the SM-ML
predicted a compromise.

C. Security Monitor ML Module

The SM-ML successfully predicted over 2000 potential
compromises, such as anomalous power values, false sensor
readings, or inconsistencies in the weapon system firing logic.
Illustrated in Table V is the Security Monitor’s capacity to an-
ticipate Weapon System breach situations. The only exceptions
were the “Loading” cases, which saw 38 failed predictions
out of 252 cases, representing an approximately 15% failed
prediction rate. The overall accuracy of Security AI prediction
stood at approximately 98.5%.

IX. LIMITATIONS

BSS modules are still a work in progress with the po-
tential to simulate threats against semi-autonomous or fully
autonomous naval vehicles. The modules’ capabilities are
expandable and modular but currently limited. The BSS can
simulate additional ships according to [12]; however, this
research is limited to a specific class and type. The native
collision avoidance algorithm is easy to replace but a simple
heuristic prone to failure. This collision avoidance is also a
limiting factor for the AI-NM since the ML is trained on a
simple collision avoidance algorithm. The SM-ML is limited
by the relatively small amount of systems stored in the ICS
network simulation.

X. SUMMARY AND FUTURE WORK

This investigative study demonstrates the feasibility of de-
veloping a modular battleship simulator and an AI navigation
and security monitoring system. Even though our work had

limitations, we have shown that such a feat is feasible.
This work contributes to the literature on maritime vehicle
simulators and maritime systems cybersecurity. Future work
could expand the simulation modules and threat model to focus
on real-world problems in autonomous maritime platforms
and control systems. The collision avoidance algorithm can
be improved in subsequent developments. The emulation can
include additional ICS modules representative of additional
key systems in a platform.
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