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Background: Epithelial-to-mesenchymal transition (EMT) is a developmental program that consists of the loss of
epithelial features concomitant with the acquisition of mesenchymal features. Activation of EMT in cancer fa-
cilitates the acquisition of aggressive traits and cancer invasion. EMT plasticity (EMP), the dynamic transition
between multiple hybrid states in which cancer cells display both epithelial and mesenchymal markers, confers
survival advantages for cancer cells in constantly changing environments during metastasis.

Methods: RNAseq analysis was performed to assess genome-wide transcriptional changes in cancer cells depleted
for histone regulators FLASH, NPAT, and SLBP. Quantitative PCR and Western blot were used for the detection of
mRNA and protein levels. Computational analysis was performed on distinct sets of genes to determine the
epithelial and mesenchymal score in cancer cells and to correlate FLASH expression with EMT markers in the
CCLE collection.

Results: We demonstrate that loss of FLASH in cancer cells gives rise to a hybrid E/M phenotype with high
epithelial scores even in the presence of TGFp, as determined by computational methods using expression of
predetermined sets of epithelial and mesenchymal genes. Multiple genes involved in cell-cell junction formation
are similarly specifically upregulated in FLASH-depleted cells, suggesting that FLASH acts as a repressor of the
epithelial phenotype. Further, FLASH expression in cancer lines is inversely correlated with the epithelial score.
Nonetheless, subsets of mesenchymal markers were distinctly up-regulated in FLASH, NPAT, or SLBP-depleted
cells.

Conclusions: The ZEB1°"/SNAIL"8"/E-cadherin™®" phenotype described in FLASH-depleted cancer cells is
driving a hybrid E/M phenotype in which epithelial and mesenchymal markers coexist.

Introduction cancer cells from the primary tumor site into the surrounding tissue and
further to distant locations in the body followed by colonization of the

The most critical step in cancer pathogenesis, the development of secondary  sites is mediated by  activation of the

metastasis, is responsible for the majority of cancer-associated deaths [1,
2]. Cancers with high and early rates of metastasis have a poor prognosis
and are in general less sensitive to therapy. The physical translocation of

epithelial-to-mesenchymal transition (EMT) [3-6]. A fundamental
principle of EMT reprogramming is the acquisition of mesenchymal
phenotype features by the epithelial tumor cells. During EMT
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reprogramming, a series of genetic and physiological changes induce
loss of epithelial cell polarization. This is caused by transcriptional
downregulation of multiple epithelial genes encoding cell-cell junction
proteins required for the maintenance of basal-apical polarity, such as
tight-junction proteins, E-cadherin, epithelial cellular adhesion mole-
cule (EpCAM), desmoplakins, and cytokeratin [3,4,6], or by their
post-translational modifications [7]. Concomitantly with the loss of
epithelial markers, cancer cells increase the expression of mesenchymal
markers such as N-cadherin, vimentin, fibronectins, and matrix metal-
loproteinases (MMPs) [3,4]. Often, these EMT events are driven by one
or more EMT transcription factors (EMT-TFs). The core EMT-TFs,
include zinc-finger E-box-binding homeobox family (ZEB1 and ZEB2),
SNAI family (SNAIL and SLUG), and Twist-related protein (Twistl and
Twist2) [8-10], are often co-expressed in various combinations and
regulate each other to coordinate intricate EMT programs. Expression
and activation of various EMT-TFs occur in response to multiple
signaling pathways mediated by growth factors, cytokines, and cues
from the microenvironment such as TGFp, EGF, FGF, PDGF, and fibro-
nectin [11-16]. EMT-TFs pleiotropic functions are also responsible for
cancer cells’ escape from apoptosis, acquisition of stemness properties,
therapy resistance, and immune evasion [17-19].

EMT plasticity (EMP), a critical ability to adopt hybrid E/M features
and transition between several intermediate EMT states, is believed to
enable cancer cells to adjust to the changing environment during
metastasis [20-24]. How the gradual accumulation of mesenchymal
markers is coupled or uncoupled from the concurrent loss of epithelial
markers and the mechanisms regulating the dynamic switches between
hybrid E/M states are still open questions. Nonetheless, these multiple
intermediate phenotypic states along the E-M axis are believed to be
fluid, interchangeable, and likely to facilitate invasion and resistance to
chemotherapy [24-28]. Indeed, cancer cells in hybrid E/M states are
enriched in populations of circulating tumor cells (CTCs) congruent with
a role in survival in distinct environments and tissue dissemination
[29-32].

FLASH/CASP8AP2 (caspase 8 - associated protein 2) was originally
identified as a pro-apoptotic protein involved in Fas-mediated caspase-8
activation [33]. In acute lymphoblastic leukemia patients, loss of FLASH
expression was correlated with poor treatment response and relapse [34,
35]. However, an anti-apoptotic role for FLASH has been described in
multiple studies showing that FLASH can suppress apoptosis in both
Fas-dependent and -independent manners [36-38]. Recently, a
FLASH/AP-1 axis was identified in mediating lung cancer viability [39].
These studies suggest that FLASH can promote or inhibit apoptosis
depending on the context and cell type involved. FLASH is also an
important component of the complexes involved in the core histones
precursor mRNA expression and processing [37,40-42] together with
NPAT (Nuclear protein of the ATM locus) [43] and SLBP (stem-loop
binding protein) [44]. Loss of FLASH, thus, affects canonical histones
pre-mRNA processing [37,40], dampens core histones biogenesis, and
results in S-phase cell cycle arrest.

We have previously identified FLASH as a novel repressor of E-cad-
herin and other epithelial markers through a conserved mechanism
involving ZEB1 protein degradation [38,45]. Our studies showed that
FLASH protects ZEB1 from proteasomal degradation while at the same
time participating in SNAI EMT-TFs transcriptional regulation [38].
While the loss of FLASH results in decreased ZEB1 expression, it also
induces high levels of SNAIL and SLUG at both the mRNA and protein
levels in multiple cancer cell lines, suggesting a conserved mechanism of
EMT-TFs regulation [38]. Despite expressing high levels of SNAIL and
SLUG and even after TGFp treatment, cells depleted for FLASH maintain
high levels of E-cadherin, display a less invasive phenotype, and increase
apoptosis in response to chemotherapy. Our initial studies uncovered
that the expression of several epithelial genes is repressed by FLASH,
such as EpCAM and MARVELD3, most likely targets of ZEB1 [45-49].
However, other genes were controlled in a ZEB1-independent manner,
highlighting the direct and indirect role of FLASH in transcriptional
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regulation [45]. These original studies support the role of FLASH as a
repressor of the epithelial phenotype and a critical determinant of EMT.

Nonetheless, FLASH is required for core histones biogenesis and S-
phase progression and thus, it could indirectly affect transcription
because of chromatin architecture. S-phase cell cycle arrest alone,
however, did not alter E-cadherin expression. This indicates that FLASH
regulates E-cadherin independent of S-phase arrest caused by decreased
histones biogenesis [38]. To what extent S-phase arrest influences the
EMT landscape therefore remains an open question.

Here, we performed a comprehensive RNAseq analysis in pancreatic
cancer cell line PANC-1 lacking three individual histone biogenesis and
S-phase progression regulators - FLASH, NPAT, and SLBP in order to
distinguish between the role of FLASH in EMT-TFs regulation and its
broader role in cell cycle progression. Recently, transcriptomics-based
scoring, based on established epithelial and mesenchymal markers
expression, was developed to quantify EMT phenotypes in cell lines and
patients [50-54]. We employed EMT scoring methods to the RNAseq
data and uncovered that FLASH plays a unique role in epithelial markers
repression in cancer cells independent of its histone biogenesis function.
In addition to its repression of epithelial markers, we also demonstrated
that FLASH represses a distinct set of mesenchymal markers in cancer
cells. The presence of both epithelial and mesenchymal markers in
FLASH-depleted cells underscores its dual function in EMT plasticity,
likely due to its unique opposing roles in the regulation of ZEB and SNAI
family of EMT-TFs. Finally, analysis of cancer gene expression data sets
such as CCLE (Cancer Cell Line Encyclopedia) reveals a negative cor-
relation between FLASH and the epithelial phenotype, as well as an
inverse correlation with SNAIL and SLUG, once more highlighting its
dual role in EMT. Our results, thus, reveal FLASH as a regulator of EMP
in diverse cancer types and validate previous prediction models of EMT
transition states [55,56].

Results

E-cadherin regulation by FLASH is independent of histone biogenesis and
S-phase arrest

We have previously shown that E-cadherin upregulation following
depletion of FLASH was not the result of S-phase arrest but was most
likely due to decreased ZEB1 levels [38]. Nonetheless, depletion of
FLASH induced upregulation of multiple epithelial markers and several
mesenchymal markers, some of which may be the result of pleiotropic
genetic changes due to the S-phase arrest and changes in chromatin
architecture. Thus, we sought to discriminate between S-phase arrest
effects and the specific role of FLASH in EMT progression. For this, we
performed single knockdowns (KD) of FLASH, NPAT, and SLBP, three
core histones regulators, in PANC-1 pancreatic cancer cells. Loss of any
one of these histone regulators [44] results in cell cycle arrest in S-phase
(Fig. 1A). Importantly, individual depletion of FLASH, NPAT, and SLBP
did not affect the expression of the other two regulators, suggesting that
the subsequent transcriptional changes were specific (Fig. 1B). While
depletion of any of these three factors was accompanied by low levels of
histone H3 and histone H4, two of the nucleosome core components
(Fig. 1C, Hist H3 and H4), depletion of FLASH triggered high expression
of E-cadherin while depletion of SLBP had no effect and depletion of
NPAT had a minimal effect (Fig. 1C, ECAD). Thus, loss of FLASH spe-
cifically, and not S-phase arrest nor loss of histones, causes significant
upregulation of E-cadherin. These results confirmed our previous studies
and showed that FLASH may play a unique role in epithelial phenotype
regulation.

Genome-wide analysis of cancer cells reveals a specific role for FLASH as a
transcriptional repressor

To understand further phenotypic similarities and differences after
loss of FLASH, NPAT, and SLBP in cancer cells, we profiled gene
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Fig. 1. Depletion of histone biogenesis genes regulators triggers S-phase cell cycle arrest in cancer cells. (A) Cell cycle distributions in Mock-transfected
(Mock) and FLASH (FLASH KD), NPAT (NPAT KD), and SLBP-depleted cells (SLBP KD) as measured by flow cytometry after PI staining. (B) FLASH, NPAT, and
SLBP gene expression in Mock-transfected and siRNA-transfected PANC-1 pancreatic cancer cells was evaluated by qPCR. The graphs represent the average of three
independent experiments. The significance of differences was confirmed by Student t-test for silencing efficiency (**, p < 0.01). (C) Core histones H3 (Hist H3), H4
(Hist H4), and E-cadherin (ECAD) protein levels were assessed by Western blot analysis in cells transfected with siRNA duplexes targeting FLASH (FLASH KD), NPAT
(NPAT KD1 and NPAT KD2) and SLBP (SLBP KD1 and SLBP KD2). Actin was used as the loading control.

expression in Mock-transfected and siRNA-transfected PANC-1 cells at
day 4 post-transfection. Differentially expressed genes (DEGs) in two
independent experiments with an FDR < 0.1 were further used for
functional analysis. Transcript levels of thousands of genes were altered
in FLASH, NPAT, and SLBP-depleted conditions (Fig. 2A and Table S1).
Of those significant DEGs, approximately 1250 were commonly regu-
lated by all three histone biogenesis factors (Table S2). Some DEGs were
controlled by FLASH and NPAT only (1371 genes), FLASH and SLBP
only (644 genes), or NPAT and SLBP only (1364 genes). Importantly, a
large number of genes seem to be exclusively affected under the three
siRNA-depleted conditions (Fig. 2A). Thus, 2403 genes were regulated
only under FLASH-depleted conditions (Table S3), 2378 genes under
NPAT-depleted (Table S4), and 1092 under SLBP-depleted conditions
(Table S5). This suggests that while certain genes are most likely
affected because of S-phase arrest, others are not. Of all DEGs in the
three siRNA conditions, only in FLASH-depleted cells were more genes
upregulated than downregulated (Fig. 2B, 3308 genes upregulated vs
2359 genes downregulated, “All differentially expressed genes”). This
difference was more striking when we analyzed genes specifically
controlled by FLASH (1605 upregulated genes vs 798 downregulated),
whereas NPAT or SLBP-depleted cells display a similar number of
upregulated or downregulated genes (Fig. 2B, “Specific differentially
expressed genes”). This is in agreement with the notion that FLASH acts
as a transcriptional repressor.

Further, functional annotation clustering using Database for Anno-
tation, Visualization and Integrated Discovery (DAVID) [57,58]
revealed that genes regulated by all factors are grouped in 15 clusters
with an enrichment score > 1.5 (Table S6), while genes specifically
regulated by FLASH are grouped in 7 clusters with an enrichment score
> 1.5 (Table S7). The top 5 enriched clusters for commonly regulated
and FLASH-specifically regulated genes are presented in Fig. 2C and 2D
(left panels). The majority of DEGs specifically controlled by FLASH
were upregulated in clusters 1-4 (Fig. 2D, left panel). Next, functional

over-representation analysis of the 3 most enriched clusters was per-
formed. The top functional categories for genes controlled by all three
factors were related to “Cell cycle” and “Cell division” as expected
(Fig. 2C, right panel, cluster 1). However, functional over-representation
analysis for genes specifically controlled by FLASH revealed that most
DEGs are enriched in the “Cell junction” and “Cell membrane” cate-
gories (Fig. 2D, right panel, cluster 1). These results clearly delineate a
unique role for FLASH in transcriptional control of genes involved in
cell-cell junction, a role distinct from its role in histone biogenesis and
S-phase progression.

FLASH controls the expression of cell junction genes deregulated in cancer

To confirm the role of FLASH in regulating genes associated with the
epithelial phenotype, we further examined genes over-represented in
the “Cell junction” category and performed a literature review to iden-
tify genes previously documented to play a role in cancer. We assembled
a custom list of genes that function as suppressors or promoters of EMT
and cancer progression (Table S8). Importantly, and consistent with the
idea that FLASH is associated with the loss of genes required for main-
taining the epithelial phenotype, 21 genes previously identified as tumor
and EMT suppressors were upregulated following FLASH depletion
(Table S8, Upregulated). The role of MARVEL domain containing 3
(MARVELD3) protein, a tight junction-associated protein, in inhibition
of migration and EMT in hepatocellular carcinoma and pancreatic
cancer has been described [48,59]. The tumor suppressor CADM3/-
NECL1 (cell adhesion molecule 3) inhibits migration and invasion of
glioma cells [60,61] as well as tumorigenicity of colon cancer cells [62].
The tight junction-associated adaptor CGN (cingulin), inhibits tumori-
genicity in mesothelioma and ovarian cancer [63,64]. Epb41L3)/DAL-1
(erythrocyte membrane protein band 4.1 like 3) attenuates EMT in lung
cancer [65-67], inhibits squamous cell carcinoma invasion [68,69], and
suppresses prostate cancer progression and metastasis [70,71]. The tight
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Fig. 2. Transcriptome analysis of FLASH, NPAT, and SLBP-depleted cancer cells reveals common and specific signatures. (A) Venn diagram showing the
overlap among differentially expressed genes (DEGs) in PANC-1 cells depleted for FLASH, NPAT, or SLBP (FLASH KD, NPAT KD, and SLBP KD). (B) The number of
DEGs between siRNA-transfected and Mock-transfected cells are shown for induced (dark blue) and repressed genes (light blue). Left panel shows all DEGs, right
panel shows DEGs specifically regulated in FLASH, NPAT, and SLBP-depleted cells. (C-D) Functional annotation clustering of DEGs commonly regulated by FLASH,
NPAT, and SLBP (C) or specifically regulated by FLASH (D). Left panel graphs indicate the top five enriched clusters and the number of DEGs in each cluster. Right
panel graphs indicate functional over-representation in the top three clusters. The number of genes enriched in each term is shown on the x-axis. FDR value is shown

for each enriched term.

junction protein CLDN6 (claudin-6) is a tumor suppressor in breast
cancer [72-74] and colon carcinoma [75]. Thus, a significant set of
genes responsible for epithelial junctions are downregulated by FLASH.

On the other hand, 8 genes with a described role in promoting EMT
and cancer progression were repressed in FLASH-depleted cells
(Table S8, Downregulated). For example, RUFY3 (RUN and FYVE
domain containing 3), localizes to F-actin-rich invadopodia, promotes
EMT, invasion, and metastasis in colorectal carcinoma, gastric cancer,
and hepatocellular carcinoma [76-80]. Metadherin (MTDH/LYR-
IC/AEG-1) is involved in multiple signaling pathways such as PI3K/AKT,
NF-kB, ERK, and Wnt/B-catenin and subsequently plays key roles in
cancer progression, apoptosis evasion, invasion, and metastasis

[81-84]. EMB (embigin) regulates cell motility and EMT in pancreatic
cancer [85] and promotes prostate cancer progression [86]. PJA2 (praja
ring finger ubiquitin ligase 2) is overexpressed in high-grade glioma
tumors and attenuates Hippo signaling, thus, promoting tumor growth
[87,88]. Consistently, then, FLASH knockdown interferes with many
aspects of the EMT program.

We validated markers in each category at the mRNA and protein
level under four different conditions: FLASH KD, ZEB1 KD, NPAT KD,
and SLBP KD (Fig. 3A and 3D). This allowed us to confirm that epithelial
markers such as MARVELD3 (Fig. 3B and 3D) are regulated by both
FLASH and ZEB1 similarly to CDH [45], whereas CGN, CADM3, and
CLDN6 (Fig. 3B and 3D) are specifically regulated by FLASH.
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Downregulation of EMB, LYRIC, RUFY3, and PJA2 (Fig. 3C and 3D) is
more specifically correlated with loss of FLASH (Fig. 3A-3D, FLASH
KD). NPAT and SLBP do not play a significant role in the regulation of a
majority of these markers (with the exception of RUFY3 and PJA2 which
appear to be controlled post-translationally by SLBP) as evidenced by
mRNA transcription and protein levels analysis (Fig. 3A-3D, NPAT KD
and SLBP KD). Altogether, these results provide evidence that beyond
E-cadherin regulation, FLASH plays a repressor role for several epithelial
phenotype markers, either through ZEB1-dependent (e.g., CDH1 and
MARVELD3) or ZEB1-independent mechanisms (e.g., CGN, CADM3, and
CLDN®6), and an activator role for junctional proteins with a negative
role in EMT and cancer outcome. How FLASH mechanistically regulates
the transcription of some of these genes is still not understood. OVOL1, a
transcription factor with a role in epithelial identity, is upregulated in
FLASH-depleted cells (Fig. S1), possibly due to the loss of ZEB1 and the
release of their reciprocal inhibitory circuit [89,90]. Thus, whether
FLASH is a transcriptional repressor or activator itself, acts as a co-factor
in transcription complexes, or indirectly regulates transcription factors
of the epithelial identity such as OVOL1, remains to be determined.

Loss of FLASH drives a hybrid EMT phenotype with high epithelial scores

Recent studies have indicated that EMT can occur either completely
or partially, the latter giving rise to cell states with mixed transcriptional
and proteomic profiles. Furthermore, the detailed EMT status of cancer
cells, as can be determined by an overall EMT “score”, can be a predictor
of cancer progression, response to therapy, and overall prognosis. Thus,
we sought to evaluate the overall EMT score in cancer cells depleted for
FLASH and the other histones regulators. For this we used two methods
to calculate EMT scores: 76GS method (a 76-gene EMT signature
developed using gene expression in non-small lung cancer cell lines) and
KS method (the two-sample Kolmogorov-Smirnov test) [50-54]. The

, P < 0.01). (D) Western blot analysis of genes tested by qPCR in A-C. Actin was used

76GS method considers 76 pre-determined genes and derives from the
correlation coefficient between a particular gene expression and the
expression of E-cadherin. Therefore, epithelial phenotypes score higher
than mesenchymal phenotypes in the 76GS method. In the KS method,
the scores vary on a scale from —1 to 1, the lower scores corresponding
to the more epithelial phenotypes.

To gain insight into how these cells transition between intermediate
phenotypes, we studied both baseline (untreated) cells and cells stimu-
lated with TGFp. TGFp-induced EMT can occur at late stages of tumor
development because of the activation of multiple signaling pathways
[23,91]. FLASH, NPAT, and SLBP-depleted PANC-1 cells were treated
with TGFp for 48h. First, the 76GS and KS methods calculations showed
a significant negative correlation in our samples analysis (Fig. 4A),
consistent with previous validation [50]. Remarkably, both untreated
and TGFp-treated FLASH KD samples display the highest 76GS scores,
with a shift from negative 76GS score values (mesenchymal) to positive
score values (epithelial) (Fig. 4A, FLASH KD). NPAT-depleted cells also
exhibited a more epithelial score, albeit, much lower than
FLASH-depleted cells (Fig. 4A, NPAT KD). SLBP-depleted cells showed
the least amount of change in the EMT scoring (Fig. 4A, SLBP KD).
Interestingly, although TGFp induced a more mesenchymal phenotype
as evidenced by the lower 76GS and higher KS scores in all treated
samples, FLASH-depleted cells retain a high epithelial score even after
treatment (Fig. 4A, Mock TGFp vs FLASH KD TGFp). This is in agreement
with our previous results, showing that E-cadherin expression in
FLASH-depleted cells remains high despite TGFf treatment [38].
Furthermore, FLASH and ZEB1 expression showed a strong negative
correlation with the 76GS score, whereas CDH1 showed a positive cor-
relation as expected (Fig. 4B, top panels). The same trend was observed
when only expression of the 76GS epithelial genes was taken into ac-
count (Fig. 4B, lower panel).

Finally, we performed hierarchical clustering in our data groups for a
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Fig. 4. EMT phenotype quantification confirms the role of FLASH as an inhibitor of the epithelial phenotype. (A) Left panel: EMT scoring by 76GS and KS
methods in TGFp-treated and untreated Mock, FLASH, NPAT, and SLBT-depleted cells. Two independent experiments were used for the analysis. KS and 76GS
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subset of epithelial genes identified in a pan-cancer analysis from 11
tumor types as being associated with EMT and its clinical relevance [92]
(Table S9). We observed that the majority of these genes were specif-
ically and highly upregulated in FLASH-depleted cancer cells in com-
parison to Mock, NPAT, and SLBP-depleted cells (Fig. 4C, No treatment).

A B
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Their expression remains high even after TGFf treatment, suggesting
that FLASH-depleted cells may be refractory to TGFp treatment (Fig. 4C,
All). However, we cannot exclude the possibility that prolonged TGFp
treatment will cause a more pronounced effect on the downregulation of
epithelial markers as previously demonstrated [91]. Altogether, these
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results support the premise that FLASH acts as a repressor of critical
aspects of the epithelial phenotype and substantiate the EMT scoring
metrics as valuable tools for phenotype quantification.

Loss of FLASH drives activation of certain mesenchymal genes signatures

Contrary to ZEB1 downregulation, the SNAI family of EMT-TFs
(SNAIL and SLUG) were shown to be upregulated in FLASH-depleted
cells [38]. This suggests that FLASH plays dual and opposing roles in
EMT-TFs regulation. SNAIL upregulation strongly correlated with loss of
FLASH, but not cell cycle arrest (Fig. 5A). Importantly, SNAIL/SLUG
regulation by FLASH is conserved in other cancer cell lines, such as
cervical cancer and breast cancer (data not shown). Thus, a
ZEB1'°Y/SNAIL""/E-cadherin"®" cell population emerges in
FLASH-depleted cells (Fig. 5B, left panel). By contrast, ectopic expres-
sion of SNAIL in wild-type cells is sufficient to repress E-cadherin
expression, similar to overexpression of FLASH or ZEB1 alone (Fig. 5B,
right panel). Altogether these results suggest that FLASH may be
required for SNAIL repressor functions during EMT. Nonetheless, in
addition to their transcriptional repressor roles, EMT-TFs can activate
the expression of other EMT-TFs [93] as well as mesenchymal markers
such as metalloproteases and collagens [94,95].

We next investigated if mesenchymal and epithelial markers coexist
in cancer cells under our experimental conditions. First, we observed a
significant positive correlation between the expression of SNAIL and
SLUG and the samples’ mesenchymal score (Fig. 5C) and hallmark EMT
score (Fig. S2). Second, hierarchical clustering of mesenchymal genes
with an identified role in EMT [92] (Table S10) showed that transcript
levels of distinct sets of mesenchymal genes are specifically upregulated
under the three conditions (Fig. 5D, No treatment). This was also true for
TGFp treatment (Fig. 5D, All). We hypothesized that SNAIL and SLUG
upregulation in FLASH-depleted cells is at least partially responsible for
the higher mesenchymal score. To validate this premise, we generated
individual SNAIL and SLUG knock-out lines (Fig. S3, SNAIL KO, and
SLUG KO). Indeed, FLASH depletion in SNAIL KO or SLUG KO cells
(FLASH KD/SNAIL KO and FLASH KD/SLUG KO) showed that upregu-
lation of canonical mesenchymal markers such as alpha-smooth muscle
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actin and periostin is reversed by loss of SNAIL or SLUG (Fig. 5E, ACTA2
and POSTN). These results provide evidence that although FLASH ap-
pears to play a crucial role in inhibiting the epithelial phenotype (Fig. 4),
potentially promoting destabilization of the epithelial cells junctions, it
may promote the generation of hybrid E/M states by also inhibiting
SNAI EMT-TFs expression.

FLASH expression correlation with EMT markers in different cancer cell
lines

To substantiate our findings regarding the role of FLASH in EMT
plasticity, we analyzed the Cancer Cell Line Encyclopedia (CCLE) gene
expression datasets. First, we observed that the 76GS EMT score nega-
tively correlated with FLASH expression (Fig. 6A, FLASH expression/
76GS) across a number of cancers. Given that the 76GS score is higher
for epithelial cells, this suggests that in multiple cancer lines FLASH acts
as an epithelial phenotype repressor. A more in-depth tissue-specific
analysis revealed that certain cancer types such as liver and bone exhibit
a very strong negative correlation (p < - 0.5), whereas lung cancer
exhibited a strong negative correlation (p < - 0.2) between 76GS score
and FLASH expression (Fig. 6B, CCLE: 76GS scores by cancer). As ex-
pected, a negative correlation was identified between CDH1 and FLASH
(Fig. 6A, CDH1 expression/FLASH expression). Notably, bone and liver
cancer displayed the most significant negative correlation (Fig. 6B,
CCLE: CDH1 vs FLASH), suggesting that FLASH may play a major role in
EMT in these cancer types.

Finally, we analyzed the expression of FLASH and the SNAI family of
EMT-TFs in the CCLE collection. Importantly, a negative correlation
between both SNAI family members and FLASH expression was identi-
fied (Fig. 6A, SNAIL expression/FLASH expression and SLUG expres-
sion/FLASH expression). Similarly, a strong negative correlation was
identified between SNAIL/SLUG and FLASH in bone cancer types but
also lung and breast cancer (Fig. 6B, CCLE: SNAIL vs FLASH and CCLE:
SLUG vs FLASH). These inverse correlations of FLASH with both
epithelial markers (CDH1) and EMT-TFs (SNAIL and SLUG) in bone
cancers confirm its complex dual repressor role in EMT. In addition to
SNAIL and SLUG, vimentin (VIM), a mesenchymal marker abundantly
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expressed in sarcomas, also negatively correlates with FLASH in bone
cancers (Fig. S4). Different from epithelial cancers, sarcomas have
mesenchymal origins, although some sarcomas can display “epithelial-
like” features [96]. Interestingly, a phenotypic switch with the acqui-
sition of epithelial markers is beneficial for the clinical outcome in
sarcoma patients [97]. Whether the opposing mechanisms of FLASH
control over ZEB1 and SNAIL/SLUG are conserved in sarcomas or are
selectively activated, remains to be determined.

Discussion

The major challenges in understanding EMP arise from the
complexity of EMT programs and the multiplicity of mechanisms
involved in generating hybrid heterogeneous EMT states. Phenotypic
plasticity may confer advantages during migration and invasion
together with chemotherapy resistance [24-28], yet we do not fully
understand how transitional states are generated or maintained. In
general, EMT programs are executed by core EMT-TFs. Co-regulators of
core EMT-TFs and multiple microRNAs together with long non-coding
RNAs also contribute to the activation of EMT. For the cells to prog-
ress completely through EMT, transcriptional changes in both epithelial
and mesenchymal markers must be triggered, and genes are either
repressed (epithelial markers) or activated (mesenchymal markers).
However, in hybrid EMT states, epithelial and mesenchymal markers
coexist, suggesting that either distinct EMT-TFs control repression of
epithelial genes and activation of mesenchymal genes or that the
repressor/activator functions of the same EMT-TFs are decoupled in
these EMT states.

Here we describe a hybrid EMT phenotype generated by loss of
FLASH in pancreatic cancer cells. Cells depleted for FLASH acquire a
ZEB1'°"/E-cadherin"®? phenotype. Multiple genes involved in cell-cell
junction formation are similarly specifically upregulated in FLASH-
depleted cells (Figs. 2D and 3), suggesting that FLASH acts as a
repressor of the epithelial phenotype. Because loss of FLASH is associ-
ated with decreased ZEB1 expression, we hypothesize that some of the
epithelial markers are de-repressed when this core EMT-TF is lost, such
as CDH1 and MARVELD3 (Fig. 3). However, other epithelial markers are
specifically regulated by FLASH in a ZEB1-independent manner (Fig. 3,
CGN, CADM3, and CLDNG6). This supports the idea that FLASH depletion
is releasing transcriptional repression for other epithelial markers
through a different mechanism. One possibility is that loss of ZEB1 in
FLASH-depleted cells triggers the expression of epithelial lineage tran-
scription factors such as OVOL1 (Fig. S1). This implies that the increase
in OVOL1 expression, controlled by the ZEB1:OVOL1 ratio and their
mutual inhibition [89,90] could promote epithelial cellular identity.
Adding complexity to this mechanism is the fact that other cell mem-
brane proteins with a role in promoting EMT and cancer progression are
downregulated in FLASH-depleted cells (Fig. 3, EMB, LYRIC, RUFY3,
and PJA2). We cannot exclude the possibility that FLASH itself is a
transcriptional repressor/activator for some of these epithelial genes as
FLASH has been shown previously to function as a transcriptional
co-factor [98,99].

EMT scoring using preset lists of genes with an established role as
either epithelial or mesenchymal markers strongly associated loss of
FLASH with a more epithelial phenotype. The high epithelial score is
supported by the heatmap analysis of epithelial genes that underlines
the role of FLASH but not NPAT or SLBP in suppressing most of these
genes (Fig. 4C). Even so, analysis of mesenchymal gene expression
identified distinct sets of genes being upregulated when either FLASH,
NPAT, or SLBP are depleted in cancer cells (Fig. 5D). We hypothesize
that the upregulation of many mesenchymal genes in FLASH-deleted
cells may be the result of SNAI EMT-TFs high expression (Fig. 5A, B).
Consistent with this premise, SNAIL and SLUG KO cells show a decrease
in gene expression for ACTA2 and POSTN, two mesenchymal markers
upregulated in FLASH-depleted cells. Interestingly, as observed, the
knockout of a single SNAI family member is insufficient to block
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completely the expression of ACTA2 or POSTN. This is mostly likely due
to their redundant functions and the fact that FLASH depletion causes
high expression of both SNAIL and SLUG [38]. Experiments targeting
both SNAIL and SLUG to assess mesenchymal genes controlled by the
SNAI family in FLASH-depleted cells are in progress.

Nonetheless, certain mesenchymal genes are activated in NPAT and
SLBP-depleted cells. How NPAT and SLBP are controlling the expression
of these sets of mesenchymal markers is unknown. Because of a certain
degree of specificity, we suspect that different pathways and possibly
EMT-TFs other than the core factors may be involved. It has been shown
that SNAIL itself blocks cell cycle progression and confers resistance to
apoptosis [100]. This is critical for both migratory cells during devel-
opment and cancer invasion. Whether cell cycle arrest by different
mechanisms triggers the expression of subsets of mesenchymal genes is
undetermined. How activation of selected mesenchymal genes during
cell cycle arrest affects EMT plasticity is an interesting area that we are
currently exploring.

The ZEB1'°Y/SNAIL""/E-cadherin"®" phenotype described in our
studies is therefore driving a hybrid E/M phenotype in which epithelial
and mesenchymal markers coexist. This is significant for several reasons.
Our data experimentally supports previous computational models
showing that with variations in ZEB1 and SNAIL expression levels cells
occupy multiple mono or bistable states [55]. Nonetheless, these cells
are susceptible to chemotherapy and are less invasive, as we previously
described [38]. Thus, the expression of multiple epithelial markers may
override the expression of mesenchymal markers and force the hybrid
E/M phenotype into a less invasive and therapy-sensitive state. The
question becomes, which epithelial markers or which combination of
epithelial makers are necessary to maintain the hybrid E/M state in a
less aggressive chemotherapy-sensitive phenotype.

Given that neither loss of ZEB1, nor NPAT or SLBP causes upregu-
lation of SNAI, we infer that FLASH plays a direct role in SNAI EMT-TFs
transcriptional regulation. Indeed, gene expression analysis in CCLE
collection shows that FLASH expression inversely correlated with both
SNAIL and SLUG (Fig. 6). An important finding in our studies is that
overexpression of SNAIL in wild-type PANC-1 cells suppresses E-cad-
herin expression (Fig. 5B, right panel) while the same is not true in
FLASH-depleted cells (Fig. 5B, left panel). Combined with the finding
that the upregulation of several mesenchymal markers is SNAIL/SLUG-
dependent, we propose that the “repressor” functions of SNAIL and
SLUG are inhibited, while the “activator” functions are maintained.
Several considerations could explain this: (i) loss of FLASH affects SNAI
binding to its targets’ promoters or the formation of repressor com-
plexes; (ii) SNAI “repressor” and “activator” functions are decoupled due
to preferential redistribution in transcriptional complexes; (iii) upre-
gulation of epithelial lineage transcription factors such as OVOL1
overrides the EMT-TFs repressor functions; (iv) multiple fully activated
pathways are required for epithelial markers repression. First, very little
is known about the transcriptional activity of FLASH itself, its direct
targets, and potential partition in transcriptional complexes, thus a
direct role of FLASH in the repression of epithelial markers cannot be
excluded. Similarly, loss of FLASH could alter repressor complexes, such
as the SIN3A complex (SIN3A/HDAC), which together with SNAIL is
recruited to the CDHI promoter [101]. Second, while the role of
EMT-TFs as repressors has been extensively investigated, their tran-
scriptional activator roles are still unclear. ZEB1 has been shown to act
not only as a major repressor of epithelial genes but also as an activator
of mesenchymal genes when in complex with YAP1 [102,103]. Less is
known about the “activator” functions of SNAIL/SLUG, although several
mesenchymal targets such as fibronectin, vimentin, SMA, MMP9, COX2,
COL1A1, LEF have been identified [94]. ZEB1 itself is transcriptionally
upregulated by SNAIL in response to TGFp [93,104]. Therefore, func-
tional separation of EMT-TFs roles and preferential recruitment in either
“repressor” or “activator” complexes could explain the generation of
hybrid E/M phenotypes. Third, OVOL TFs overexpression (Fig. S1) could
drive the epithelial phenotype, which is consistent with OVOL acting as
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a “molecular brake on EMT” [105]. Finally, it is possible that, with loss
of ZEB1, FLASH-depleted cells do not reach the tipping point to irre-
versibly generate an aggressive hybrid E/M phenotype despite high
levels of SNAIL and SLUG and expression of multiple mesenchymal
markers.

All these scenarios could explain the distinctive hybrid E/M pheno-
type generated by the loss of FLASH in cancer cells and generate new
avenues of investigation into the repressor and activator functions of
EMT-TFs. Further studies should shed light on the complex role of
FLASH in EMT and its potential as a target for cancer therapy.

Materials and methods
Cell culture conditions

PANC-1 (CRL-1469) cells were obtained from ATCC and grown in
DMEM media (Genesee) supplemented with 10% FBS. Cells were
cultured at 37 °C in a 5% CO2 incubator. The cell lines were authenti-
cated by short tandem repeat (STR) profiling and tested for Mycoplasma
contamination.

RNAIi assays

Cells were reverse transfected with Dharmafect]l (Dharmacon) and a
pool of two individual siRNA silencing duplexes (25 nmol/L each, 50
nmol/L total). All siRNA duplexes were purchased from Horizon/
Dharmacon: FLASH (D-012,413-01-0005 and D-012,413-17-0005),
NPAT (D-019,599-02-0005 and »p-019,599-19-0005), SLBP (D-
012,286-01-0005 and p-012,286-02-0005), ZEB1 (D-
006,564-02-0005 and p-006,564-03-0005). Duplexes used in this study
were validated for KD efficiency among 4 individual duplexes targeting
the same gene. The siRNA transfection was allowed to proceed for 48 h
before treatment with TGFp (100 ng/ml) or control media was added for
another 48 h.

RNA sequencing

RNA-seq was carried out in duplicates for all conditions. RNA was
extracted from cancer cells using the RNeasy Plus Kit from Qiagen. Total
RNA integrity was assessed on Agilent TapeStation 2200. Libraries were
prepared using Illumina’s TruSeq Stranded mRNA Kkit. Libraries were
analyzed on an Agilent TapeStation 2200 D1000 assay to determine
average size and were quantitated using the Quanta PerfeCta NGS qPCR
Quantification Kit. Libraries were normalized to 4 nM, pooled, dena-
tured, and diluted to approximately 1.8 pM. A 1% library of 1.8 pM PhiX
was spiked in as an internal control. The library pool was sequenced on
an Illumina NextSeq 550, with a read length of 2 x 75 base pairs. Two
runs were performed. Base calling and quality scoring were performed
with [llumina Real Time Analysis software (RTA). Analysis: Reads were
aligned to the human genome (GRCh38.p10) using STAR _2.4.2a and
counted using RSEM 1.2.31. Differentially expressed genes were iden-
tified with EBSeq 1.12. and filtered with a 0.1 FDR cutoff. Partek Flow
was used for hierarchical clustering and heatmap construction. Genes
with > 1 transcripts per million (TPM) in at least 1 of 8 conditions
(untreated and TGFp-treated) were included in the analysis. An average
of two independent experiments was used for TPM analysis.

Gene functional analysis

Gene Ontology (GO) analysis associated with the DEGs was per-
formed using the Database for Annotation, Visualization and Integrated
Discovery (DAVID), with a higher enrichment score signifying more
functional enrichment [57,58] (https://david.nciferf.gov). Default
values were used for functional annotation (Count: 2, EASE: 0.1).
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RNA extraction and quantitative PCR

RNA was extracted from cancer cells using the RNeasy Plus Kit from
Qiagen. Total RNA and first-strand cDNA synthesis were performed
using TagMan Gene Expression Cells-To-Ct Kit (ThermoFisher) as pre-
viously described [38,45]. mRNA levels were determined by quantita-
tive real-time PCR using the Universal ProbeLibrary (Roche, Life
Science) and LightCycler 480 Probes Master (Roche, Life Science). For
the LightCycler 480 Probes Master the thermal cycling was carried out
using a LightCycler 96 instrument (Roche Diagnostics) under the
following conditions: 95°C for 5 min and 40 cycles at 95°C for 10 s and
60°C for 25 s. Relative quantification was performed using 2744CT
method. Gene expression was normalized to GAPDH as the reference
gene. A complete list of primers and probes used in the study is pre-
sented in Table S11. All experiments were performed at least three
times. Data are presented as the average of three or four repeats. The
analysis utilized Student’s t-tests to determine significance. Values of P
< 0.05 were considered significant, and values of P < 0.01 were
considered highly significant.

Western blot analysis

PANC-1 cells were lysed in RIPA buffer prior to SDS-PAGE analysis
and immunoblotting. The primary antibodies used were E-cadherin
(Clone 36; BD Transduction Laboratories), Actin (C-2; Santa Cruz),
NPAT (sc-136,007; Santa Cruz), and SLBP (ab181972; Abcam). The
following antibodies were all purchased from Cell Signaling: FLASH
(D3T8Q), ZEB1 (E2G6Y), SNAIL (C15D3), SLUG (C19G7), Claudin-6
(E7U020), LYRIC (D5Y8R), RUFY3 (61460S), PJA2 (40180S), GFP
(D5.1), Myc (9B11), Histone H3 (D1H2) and Histone H4 (D2X4V). The
following antibodies were all purchased from Sigma-Aldrich: MAR-
VELD3 (AV44715), CGN (HPA027657), CADM3 (SAB1411161), EMB
(SAB2700691) and Flag (F3165). Secondary antibodies horseradish
peroxidase (HRP)-anti-mouse and anti-rabbit (1:5000) were from
Jackson Laboratories.

Generation of PANC-1 stable cell lines

SNAIL and SLUG knockout PANC-1 cell lines were generated using
lentiCas9-Blast (Addgene plasmid 52,962) and lentiGuide-Puro (Addg-
ene plasmid 52,963) as previously described [106]. Guide RNAs used in
this study are listed in Table S12.

Cell cycle analysis

Cancer cells transfected with siRNA and control cells were collected
after 72 h, fixed in 70% cold ethanol and incubated for 30 min in a
1xPBS solution with 0.1% Triton X-100, 100 pg/ml RNA-ase and 50 ug/
ml Propidium iodide (PI). Cells were analyzed on Novocyte Quanteon
(Agilent).

EMT score calculation methods

The raw counts obtained from the samples were normalized to their
transcripts per million (TPM) values and log2 transformed before their
EMT scores were calculated. 76GS and KS scores were calculated using
algorithms standardized from microarray scoring metrics to fit RNA-seq
data [107]. 76GS scoring metric, derived from non-small cell lung
cancer (NSCLC), uses 76 genes to calculate the scores of the samples
based on the correlation coefficient of that gene with the CDHI
expression [54]. A higher 76GS score represents a more epithelial
sample. The two-sample Kolmogorov-Smirnov test (KS score) calculates
scores based on several epithelial and mesenchymal genes. A higher KS
score represents the sample’s mesenchymal nature [53]. Single-sample
Gene Set Enrichment Analysis (ssGSEA) [108] was performed using
GSEAPY in Python, and the epithelial and mesenchymal cell line


https://david.ncifcrf.gov

M. Catalanotto et al.

signatures were derived from the KS scoring genes, while the EMT
signature was taken from the hallmark gene sets in the Molecular sig-
natures database (MSigDB) [109].

Pan-cancer samples analyses

The Cancer Cell Line Encyclopedia (CCLE) microarray dataset [110]
was downloaded from the CCLE website (https://sites.broadinstitute.
org/ccle/). Samples were separated according to the cancer type, and
the axes were correlated using Spearman’s correlation. A value of p >
0.2 was considered significantly correlated.

Statistical analysis

Two-tailed two-sample Student’s t-test was calculated between
samples to check for a significant increase or decrease in their respective
scores. A p-value (labeled across samples in boxplots) of < 0.05 was
considered significant. R version 4.1.2 and Python 3.9.7 were used for
all analysis, and package "ggplot2” in R was used for plotting functions.
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