
Perfect Sampling for Hard Spheres from Strong1

Spatial Mixing2

Konrad Anand3

Queen Mary, University of London, UK4

Andreas Göbel5

Hasso Plattner Institute, University of Potsdam, DE6

Marcus Pappik7

Hasso Plattner Institute, University of Potsdam, DE8

Will Perkins9

School of Computer Science, Georgia Institute of Technology, USA10

Abstract11

We provide a perfect sampling algorithm for the hard-sphere model on subsets of Rd with expected12

running time linear in the volume under the assumption of strong spatial mixing. A large number of13

perfect and approximate sampling algorithms have been devised to sample from the hard-sphere14

model, and our perfect sampling algorithm is efficient for a range of parameters for which only15

efficient approximate samplers were previously known and is faster than these known approximate16
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1 Introduction31

Gibbs point processes, or classical gases, are mathematical models of interacting particles. In32

statistical physics they are used to model gases, Ćuids, and crystals, while in other Ąelds they33

are used to model spatial phenomena such as the growth of trees in a forest, the distribution34

of stars in the universe, or the location of cities on a map (see e.g. [68, 59, 73, 12]).35

Perhaps the longest and most intensively studied Gibbs point process is the hard-sphere36

model: a model of a gas in which the only interaction between particles is a hard-core37

exclusion in a given radius around each particle. That is, it is a model of a random packing38

of equal-sized spheres. Despite the simplicity of its deĄnition, the hard-sphere model is39

expected to exhibit the qualitative behavior of a real gas [2], and in particular exhibits40

gas, liquid, and solid phases, thus giving evidence for the hypothesis, dating back to at41

© Konrad Anand, Andreas Göbel, Marcus Pappik and Will Perkins;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2023).
Editors: Nicole Megow and Adam D. Smith; Article No. 38; pp. 38:1Ű38:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl Ű Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany



38:2 Perfect Sampling for Hard Spheres from Strong Spatial Mixing

least Boltzmann, that the macroscopic properties of a gas or Ćuid are determined by its42

microscopic interactions. This rich behavior exhibited by the hard-sphere model is very43

difficult to analyze rigorously, and the most fundamental questions about phase transitions44

in this model are open mathematical problems [68, 50].45

In studying the hard-sphere model (or Gibbs point processes more generally), a funda-46

mental task is to sample from the model. Sampling is used to estimate statistics, observe47

evidence of phase transitions, and perform statistical tests on data. A wide variety of meth-48

ods have been proposed to sample from these distributions; for instance, the Markov chain49

Monte Carlo (MCMC) method was Ąrst proposed by Metropolis, Rosenbluth, Rosenbluth,50

Teller, and Teller [53] to sample from the two-dimensional hard-sphere model. Understand-51

ing sampling methods for point processes in theory and in practice is a major area of52

study [58, 59, 16, 39, 47], and advances in sampling techniques have led to advances in the53

understanding of the physics of these models [53, 2, 50, 7, 6, 16].54

In this paper we will be concerned with provably efficient sampling from the hard-sphere55

model. Rigorous guarantees for sampling algorithms come in several different varieties. One56

question is what notion of Śefficient’ to use; another is what guarantee we insist on for the57

output. In this paper we will provide an efficient sampling algorithm under the strictest58

possible terms with respect to both running time and accuracy of the output: a linear-time,59

perfect sampling algorithm.60

For simplicity we focus on sampling from the hard-sphere model deĄned on Ąnite boxes61

in R
d. For Ąxed parameter values of the model, the typical number of points appearing in62

such a region is linear in the volume, and so any sampling algorithm will require at least this63

much time.64

As for guarantees on the output, there are two main types of guarantees. The Ąrst type is65

an approximate sampler : the output of such an algorithm must be distributed within ε total66

variation distance of the desired target distribution. Perhaps the main approach to efficient67

sampling from distributions normalized by intractable normalizing constants is the MCMC68

method. In this approach, one devises a Markov chain with the target distribution as the69

stationary distribution and runs a given number steps of the chain from a chosen starting70

conĄguration; if the number of steps is at least the ε-mixing time, then the Ąnal state has71

distribution within ε total variation distance of the target [42, 65, 13]. In general, however,72

computing or bounding the mixing time can be a very challenging problem.73

The second type of guarantee is that of a perfect sampler [63]. Such an algorithm has a74

running time that is random, but the distribution of the output is guaranteed to be exactly75

that of the target distribution. The main advantage of perfect sampling algorithms Ű and76

the primary reason they are studied and used in practice Ű is that one need not prove a77

theorem or understand the mixing time of a Markov chain to run the algorithm and get78

an accurate sample; one can simply run the algorithm and know that the output has the79

correct distribution. The drawback is that the running time may be very large, depending on80

the speciĄc algorithm and on the parameter regime. Some naive sampling methods such as81

rejection sampling return perfect samples but are inefficient on large instances (exponential82

expected running time in the volume). The breakthrough of Propp and Wilson in introducing83

Ścoupling from the past’ [63, 64] was to devise a procedure for using a Markov chain transition84

matrix to design perfect sampling algorithms which, under some conditions, could run in time85

polylogarithmic in the size of a discrete state space (polynomial-time in the size of the graph86

of a spin system), matching the efficiency of fast mixing Markov chains which only return87

approximate samples (see also [5, 49] for precedents in perfect sampling). The work of Propp88

and Wilson led to numerous constructions of perfect sampling algorithms for problems with89
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both discrete and continuous state spaces including [17, 27, 45, 60, 28, 21, 46, 58, 23]. Notably,90

many of the Ąrst applications of Propp and Wilson’s technique were in designing perfect91

sampling algorithms for Gibbs point processes (though often without rigorous guarantees on92

the efficiency of the algorithms).93

Perfect sampling continues to be a very active area of research today, with a special focus94

on improving the range of parameters for which perfect sampling algorithms can (provably)95

run in expected linear or polynomial time [9, 40, 30]96

In this paper we design a perfect sampling algorithm for the hard-sphere model (and97

Gibbs point processes interacting with a Ąnite-range, repulsive pair potential more generally)98

that is guaranteed to run in linear expected time for activity parameters up to the best99

known bound for efficient approximate sampling via MCMC.100

What is this bound and how do we design the algorithm? One central theme in the101

analysis of discrete spin systems is the relationship between spatial mixing (correlation decay102

properties) and temporal mixing (mixing times of Markov chains) [35, 1, 72, 52, 15]. At103

a high level, these works show that for discrete lattice systems a strong correlation decay104

property (strong spatial mixing) implies a near-optimal convergence rate for local-update105

Markov chains like the Glauber dynamics. Recently it has been showed that strong spatial106

mixing in a discrete lattice model also implies the existence of efficient perfect sampling107

algorithms [18, 4]. In parallel, there has been work establishing the connection between108

strong spatial mixing and optimal temporal mixing for Markov chains in the setting of the109

hard-sphere model and Gibbs point processes [33, 55, 56]. At a high level, our aim is to110

combine these threads to show that strong spatial mixing for Gibbs point processes implies111

the existence of an efficient perfect sampler. One challenge is that the approaches of [18, 4]112

are inherently discrete in that key steps of the algorithms involve enumerating over all113

possible conĄgurations in a subregion, something that is not possible in the continuum. To114

overcome this we make essential use of Bernoulli factories Ű a method for perfect simulation115

of a coin Ćip with a bias f(p) given access to coin Ćips of bias p. Bernoulli factories have116

recently been used in perfect sampling algorithms for solutions to constraint satisfaction117

problems in [31, 32].118

1.1 The hard-sphere model, strong spatial mixing, and perfect sampling119

The hard-sphere model is deĄned on a bounded, measurable subset Λ of Rd with an activity120

parameter λ ≥ 0 that governs the density of the model and a parameter r > 0 that governs121

the range of interaction (though by re-scaling there is really only one meaningful parameter,122

and we could take r = 1 without loss of generality). In words, the hard-sphere model is the123

distribution of Ąnite point sets in Λ obtained by taking a Poisson point process of activity λ124

on Λ and conditioning on the event that all pairs of points are at distance at least r from125

each other; in other words, on the event that spheres of radius r/2 centered at the given126

points form a sphere packing.127

We can equivalently deĄne the model more explicitly, and in doing so, introduce objects128

and notation we work with throughout the paper. To begin, let NΛ be the set of all Ąnite point129

sets in Λ. Each point set η ∈ NΛ represents a particle conĄguration in Λ. Write RΛ ⊆ 2NΛ
130

for the σ-Ąeld generated by the maps
{

NΛ → N0, η 7→ ♣η ∩ B♣
∣

∣ B ⊆ Λ Borel-measurable
}

.131

The hard-sphere model (or in fact any Gibbs point process) is a probability measure µλ on132

the space (NΛ,RΛ).133

DeĄne for every x1, . . . , xk ∈ R
d the indicator that the points are centers of non-134
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38:4 Perfect Sampling for Hard Spheres from Strong Spatial Mixing

overlapping spheres of radius r/2; that is,135

D(x1, . . . , xk) =
∏

¶i,j♢∈([k]
2 )

1dist(xi,xj)≥r .136

137

Then deĄne the partition function138

ZΛ(λ) =
∑

k≥0

λk

k!

∫

Λk

D(x1, . . . , xk) dx1 . . . dxk .139

For an event A ∈ RΛ, the hard-sphere model assigns the probability140

µλ(A) =
1

ZΛ(λ)

∑

k≥0

λk

k!

∫

Λk

1¶x1,...,xk♢∈AD(x1, . . . , xk) dx1 . . . dxk . (1)141

A very useful generalization of this model is to allow for a non-constant (but measurable)142

activity function λλλ : Λ → [0, ∞). Here the model is a Poisson process with inhomogenous143

activity λλλ conditioned on the points forming the centers of a sphere packing; the partition144

function is now145

ZΛ(λλλ) =
∑

k≥0

1

k!

∫

Λk

k
∏

i=1

λλλ(xi)D(x1, . . . , xk) dx1 . . . dxk146

and the measure µλλλ is deĄned analogously to (1). This generalization allows modeling of147

non-homogenous spaces and generalizes the concept of imposing boundary conditions on the148

model. To see this, suppose we Ąx a particle conĄguration η ∈ NΛ as boundary conditions.149

Additional points are forbidden within the balls of radius r around each point x ∈ η; we can150

implement the distribution of additional points by considering the measure µλλλ with λλλ(y) = 0151

if dist(y, x) < r for some x ∈ η; and λλλ(y) = λ otherwise. We denote the resulting activity152

function by λλλ by λη. Further, we can use this generalization to restrict a point process to153

only place points in a subregion Λ′ ⊆ Λ by considering the measure µλ1Λ′ with activity154

function λ1Λ′ : x 7→ λ1x∈Λ′ . Of course the generalization to measurable activity functions is155

much more general than this, and activity functions λλλ need not be realizable by boundary156

conditions or restriction to a subregion, nor take only two values.157

This generalization to activity functions is crucial for deĄning strong spatial mixing, the158

condition under which we can guarantee the efficiency of our perfect sampling algorithm.159

To deĄne the concept of strong spatial mixing we consider projections of the measure µλλλ160

to subregions Λ′ ⊆ Λ. We write µλλλ[Λ′] for the probability measure on (NΛ′ ,RΛ′) induced161

by µλλλ (we make this deĄnition formal in Section 3). We can impose two distinct boundary162

conditions on Λ′ by choosing two different activity functions λλλ,λλλ′. Strong spatial mixing163

asserts that the distributions µλλλ[Λ′], µλλλ′ [Λ′] are close in total variation when λλλ,λλλ′ differ only164

on points far from Λ′; i.e., when dist(Λ′, supp(λλλ − λλλ′)) is large (as supp(λλλ − λλλ′) is the set of165

points at which the two activity functions disagree).166

Writing ♣Λ′♣ for the volume of Λ′, strong spatial mixing with exponential decay is deĄned167

as follows.168

▶ DeĄnition 1.1. Given a, b ∈ R>0, the hard-sphere model on R
d exhibits (a, b)-strong169

spatial mixing up to λ ∈ R>0 if for all bounded measurable Λ ⊂ R
d the following holds: For170

all measurable Λ′ ⊆ Λ and all activity functions λλλ,λλλ′ ≤ λ it holds that171

dT V (µλλλ[Λ′], µλλλ′ [Λ′]) ≤ a♣Λ′♣e−b·dist(Λ′,supp(λλλ−λλλ′)),172

where dT V (·, ·) denotes total variation distance.173
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This deĄnition of strong spatial mixing comes from [56], which in turn adapted similar174

notions from discrete spin systems [15, 74]. Strong spatial mixing has proved to be an175

essential deĄnition in the analysis, both probabilistic and algorithmic, of spin systems on176

graphs, and many recent works are focused on either proving strong spatial mixing for a177

particular model, range of parameters, and class of graphs (e.g. [74, 22, 51, 69, 66, 10]) or178

deriving consequences of strong spatial mixing (e.g. [70, 19, 48, 18, 4]).179

Our main result is a linear expected-time perfect sampling algorithm for the hard-sphere180

model under the assumption of strong spatial mixing.181

▶ Theorem 1.2. There is a perfect sampling algorithm for the hard-sphere model on Ąnite182

boxes Λ ⊂ R
d with the property that if the hard-sphere model exhibits (a, b)-strong spatial183

mixing up to λ, then the expected running time of the algorithm at activity λ is O(♣Λ♣), where184

the implied constant is a function of a, b, and λ.185

In particular, one can run the algorithm for any value of λ (without knowing whether186

or not strong spatial mixing holds) and the algorithm will terminate in Ąnite time with an187

output distributed exactly as µλ; under the assumption of strong spatial mixing the expected188

running time is guaranteed to be linear in the volume.189

Using bounds from [56] on strong spatial mixing in the hard-sphere model, we obtain the190

following explicit bounds on the activities for which the algorithm is efficient.191

▶ Corollary 1.3. The above perfect sampling algorithm runs in expected time O(♣Λ♣) when192

λ < e
vd(r) , where vd(r) is the volume of the ball of radius r in R

d.193

In comparison, near-linear time MCMC-based approximate samplers were given in [56]194

for the same range of parameters (following results for more restricted ranges in [43, 33]).195

For perfect sampling from the hard-sphere model, linear expected time algorithms were given196

in [36, 25] for more restrictive ranges of parameters.197

1.2 Gibbs point processes with Ąnite-range repulsive potentials198

We now give a closely related result in the more general setting of Gibbs point processes199

interacting via Ąnite-range, repulsive pair potentials.200

Gibbs point processes are deĄned via a density against an underlying Poisson point201

process. In general, this density is the exponential of (the negative of) an energy function on202

point sets that captures the interactions between points. In many of the most studied cases,203

this energy function takes a special form: it is the sum of potentials over pairs of points in a204

conĄguration.205

A pair potential is a measurable symmetric function ϕ : Rd × R
d → R ∪ ¶∞♢. For a206

bounded, measurable activity function λλλ on Λ the Gibbs point process with pair potential ϕ207

on Λ is deĄned via the partition function208

ZΛ(λλλ) =
∑

k≥0

1

k!

∫

Λk





∏

i∈[k]

λλλ(xi)



e−H(x1,...,xk) dx1 . . . dxk209

where210

H(x1, . . . , xk) =
∑

¶i,j♢∈([k]
2 )

ϕ(xi, xj) .211

Again the corresponding probability measure µλλλ is obtained as in (1). A pair potential212

ϕ is repulsive if ϕ(x, y) ≥ 0 for all x, y. It is of Ąnite-range if there exists r ≥ 0 so that213

APPROX/RANDOM 2023



38:6 Perfect Sampling for Hard Spheres from Strong Spatial Mixing

ϕ(x, y) = 0 whenever dist(x, y) > r. As with the hard-sphere model, we can use the214

activity function to encode the inĆuence of boundary conditions by deĄning the activity215

function λη : y 7→ λe
−

∑

x∈η
ϕ(x,y)

for any activity λ ∈ [0, ∞) and particle conĄguration216

η ∈ NΛ. Moreover, strong spatial mixing for a Gibbs point process is deĄned exactly as in217

DeĄnition 1.1.218

The hard-sphere model is one example of a model interacting via a Ąnite-range, repulsive219

pair potential; it is obtained by letting ϕ(x, y) take the value +∞ if dist(x, y) ≤ r and 0220

otherwise. The Strauss process [71, 44] is another such example.221

Our next result is a near-linear expected time perfect sampling algorithm for Gibbs point222

processes interacting via Ąnite-range, repulsive potentials under the assumption of strong223

spatial mixing.224

▶ Theorem 1.4. Suppose ϕ is a Ąnite-range, repulsive potential on R
d and suppose ϕ exhibits225

(a, b)-strong spatial mixing up to λ for some constants a, b > 0. Then there is a perfect226

sampling algorithm for the Gibbs point process deĄned by ϕ and activity functions bounded227

by λ on boxes Λ in R
d with expected running time O

(

♣Λ♣ logO(1)♣Λ♣


.228

One difference between this algorithm and the hard-sphere algorithm of Theorem 1.2 is229

that this algorithm needs knowledge of the constants a, b in the assumption of strong spatial230

mixing, whereas the hard-sphere algorithm does not.231

Using the results of [56], we can get explicit bounds for the existence of efficient perfect232

sampling algorithms in terms of the temperedness constant of the potential deĄned by233

Cϕ := sup
x∈Rd

∫

Rd

♣1 − e−ϕ(x,y)♣ dy . (2)234

Under the assumption that ϕ is repulsive and of Ąnite range r, we have 0 ≤ Cϕ ≤ vd(r).235

▶ Corollary 1.5. The above perfect sampling algorithm runs in expected time O
(

♣Λ♣ logO(1)♣Λ♣


236

when λ < e
Cϕ

.237

▶ Remark 1.6. In fact, using the results of Michelen and Perkins [54], one can push the bound238

for strong spatial mixing up to e/∆ϕ, where ∆ϕ ≤ Cϕ is the potential-weighted connective239

constant deĄned therein; our perfect sampling algorithm is efficient up to that point.240

1.3 Related work and future directions241

Related work242

In recent years there has been a moderate Ćurry of activity around proving rigorous results243

for Gibbs point processes in both the setting of statistical physics and probability theory244

and in the setting of provably efficient sampling algorithms.245

Work on provably efficient approximate sampling methods for the hard-sphere model246

begins with the seminal paper of Kannan, Mahoney, and Montenegro [43], who used techniques247

from the analysis of discrete spin systems to prove mixing time bounds for Markov chains248

for the hard-sphere model. Improvements to the range of parameters for which fast mixing249

holds came in [29, 33], before Michelen and Perkins proved the bound e/vd(r) in [56], which250

we match with a perfect sampling algorithm in Corollary 1.3.251

Perfect sampling algorithms for the hard sphere model have been considered in [27, 46,252

21, 25, 38]. In terms of rigorous guarantees of efficiency, Huber proved a bound of 2/vd(r)253

for a near-linear expected time perfect sampler in [36]. The perfect sampling algorithm of254
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Guo and Jerrum in [25] does not match this bound, but the algorithm, based on Śpartial255

rejection sampling’ [26] is novel and particularly simple. Several of these approaches also256

apply for Ąnite-range, repulsive potentials or can be extended to that setting (e.g. [57]).257

In parallel, there has been much work on proving bounds on the range of activities258

for which no phase transition can occur in the hard-sphere model; and, in recent years in259

particular, the techniques used have close connections to algorithms and the study of Markov260

chains. The classic approach to proving absence of phase transition is by proving convergence261

of the cluster expansion; the original bound here is 1/(evd(r)) due to Groeneveld [24]. In small262

dimensions (most signiĄcantly in dimension 2) improvements to the radius of convergence263

can be obtained [20]. On the other hand, this approach is inherently limited by the presence264

of non-physical singularities on the negative real axis. Alternative approaches avoiding265

this obstruction include using the equivalence of spatial and temporal mixing [33, 56]; or266

disagreement percolation [11, 34, 8]. The best current bound for absence of phase transition267

for the hard-sphere model and for repulsive pair potentials is the bound of e/Cϕ (and e/∆ϕ)268

obtained by Michelen and Perkins [55, 56, 54]. Theorem 1.4 brings the bound for efficient269

perfect sampling up to this bound.270

On a technical level, the most relevant past work is [18], in which the authors prove271

that for discrete spin systems, strong spatial mixing and subexponential volume growth of a272

sequence of graphs imply the existence of an efficient perfect sampling algorithm. We take273

their approach as a starting point but need new ideas to replace their exhaustive enumeration274

of conĄgurations.275

A key step in our algorithm is the use of a Bernoulli factory to implement a Bayes276

Ąlter. Bernoulli factories are algorithms by which a Bernoulli random variable with success277

probability f(p) can be simulated (perfectly) by an algorithm with access to independent278

Bernoulli p random variables, where the algorithm does not know the value p. Whether a279

Bernoulli factory exists (and how efficient it can be) depends on the function f(·) and a280

priori bounds on the possible values p. Bernoulli factories have been studied in [61, 37, 14]281

and recently used in the design of perfect sampling algorithms for CSP solutions in [31, 32].282

Future directions283

There are a number of extensions and improvements to these results one could pursue.284

Perhaps most straightforward would be to relax the notion of strong spatial mixing from285

exponential decay to decay faster than the volume growth of Rd and to extend the results286

to repulsive potentials of unbounded range but Ąnite temperedness constant Cϕ. Moreover,287

it would be nice to upgrade the guarantees of the algorithm in Theorem 1.4 to that of288

Theorem 1.2: that the algorithm does not need prior knowledge of the strong spatial mixing289

constants a, b to run correctly.290

An ambitious and exciting direction would be to remove the assumption of a repulsive291

potential and Ąnd efficient perfect sampling algorithms for the class of stable potentials (see292

e.g. [62, 67, 68] for a deĄnition). A stable potential is repulsive at short ranges but can293

include a weak attractive part; such potentials include the physically realistic Lenard-Jones294

potential among others [75]. This would require some very new ideas, as much of the295

recent probabilistic and algorithmic work on Gibbs point processes (e.g. [55, 56, 8, 54]) has296

used repulsiveness as an essential ingredient (for one, repulsiveness of the potential implies297

stochastic domination by the underlying Poisson point process). As a notable exception, a298

deterministic approximation algorithm for partition functions of Ąnite-range stable potentials299

based on cluster expansion was recently proposed in [41].300

APPROX/RANDOM 2023



38:8 Perfect Sampling for Hard Spheres from Strong Spatial Mixing

1.4 Outline of the paper301

In Section 2, we describe the high-level idea and intuition behind the algorithm. In Section 3302

we introduce some notation and present some preliminary results that we will use throughout303

the paper. In Section 4 we present the algorithm that we will apply to both hard spheres304

and more general processes, and we state the main theorems and lemmas that we use for305

proving Theorem 1.2. The more general setting of bounded-range repulsive potentials (i.e.,306

Theorem 1.4) can be found in the full version of the paper [3]. Intermediate steps and proves307

are omitted and can be found in the full version as well.308

2 Intuitive idea behind the algorithm309

Our algorithm is an adaptation to continuum models of the work by Feng, Guo, and Yin [18]310

on perfect sampling from discrete spin systems. We mimic their setting of a spin system on311

a graph G = (V, E) by putting a graphical structure on sub-regions of our continuous space.312

Let Λ = [0, L)d ⊂ R
d be the region considered, λ > 0 the activity, and let ϕ be a repulsive313

potential of range r > 0. We subdivide Λ into (Λvvv)vvv∈V , a set of smaller boxes of side length314

r indexed by vertices of a graph: each box corresponds to a vertex and boxes are connected315

if they are within r of each other, i.e., particles in the boxes can interact directly through the316

potential ϕ. We Ąx the index set for the boxes to be V ⊂ N
d
0, where each vvv ∈ V corresponds317

to the box Λvvv = [v1r, (v1 + 1)r) × · · · × [vdr, (vd + 1)r). We extend this notation to sets of318

indices S ⊆ V by setting ΛS =
⋃

vvv∈S Λvvv. Further, we denote by Bk(vvv) the set of indices319

www ∈ V with ∥vvv − www∥∞ ≤ k. To shorten notation, we write ∂S =
(
⋃

vvv∈S B1(vvv)
)

\ S for the320

outer boundary of a set of boxes indexed by S ⊆ V.321

Our algorithm runs iteratively, keeping track of two random variables: a point conĄg-322

uration Xt ∈ NΛ with X0 = ∅, and a set of Śincorrect’ boxes Ut ⊆ V with U0 = V. With323

each iteration t we maintain the following invariant: the partial conĄguration Xt ∩ (ΛUt
)c

324

is distributed according to the projection of µλ to (ΛUt
)c under the boundary condition325

Xt ∩ ΛUt
. It follows that Xt is distributed according to µλ once we reach the state Ut = ∅.326

We proceed by sketching an iteration of the algorithm. An example for the involved327

subregions is given in Figure 1. Each iteration runs as follows:328

1. We choose uuut ∈ Ut uniformly at random and attempt to Śrepair’ it by updating Xt on a329

neighborhood of boxes B = ¶uuut♢ ∪ (Bℓ(uuut) \ Ut) for some update radius ℓ ∈ N.330

2. We sample a Bayes Ąlter Ft (i.e., a Bernoulli random variable) with probability depending331

on the potential ϕ, the activity λ, and the current point conĄguration Xt on Λuuut
and332

Λ∂B .333

3. a) If Ft = 1, we set Ut+1 = Ut \ ¶uuut♢ and we get Xt+1 by updating Xt on ΛB according334

to a projection of µλ conditioned on the boundary conĄguration Xt ∩ (ΛB)c.335

b) If Ft = 0, the conĄguration is unchanged and we add the boundary boxes to our336

Śincorrect’ list, i.e., Xt+1 = Xt and Ut+1 = Ut ∪ ∂B.337

We use the Bayes Ąlter, as in [18], to remove bias from the resulting distribution. To338

give some intuition for its role, suppose we run a naive version of the algorithm where we339

always update Xt on ΛB as in step 3.a) above. Assuming the desired invariant holds after340

t iterations, this naive algorithm gives a bias to the distribution of Xt+1 proportional to341

ZΛB\¶uuut♢

(

λXt∩Λ∂B∪¶uuut♢

)

ZΛB (λXt∩Λ∂B )
. We choose the Bayes Ąlter such that, conditioned on Ft = 1, the342
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ut

Ut

B

∂B

H

Figure 1 The box-shaped region Λ ⊂ R
2 is divided into

boxes of side length r (dotted lines). The boxes Ut are bor-
dered by bold black lines. For uuut as given and update radius
ℓ = 2, the corresponding set B of boxes to be updated is
indicated by the red hatched area (falling left to right). Its
boundary boxes ∂B are shown as blue hatched area (rising
left to right). The boxes in H = (Ut ∪ B)c are shown with
gray background.

bias term gets canceled. This suggests the choice343

P[Ft = 1 ♣ Xt, Ut,uuut ] = C(Ut,uuut, Xt) ·
ZΛB

(λXt∩Λ∂B
)

ZΛB\¶uuut♢

(

λXt∩Λ∂B∪¶uuut♢

 , (3)344

345

where the choice C(Ut,uuut, Xt) serves three main purposes.346

First, it must guarantee that the right-hand side of (3) is a probability. To achieve this347

we need, for H = (Ut ∪ B)c and almost all realizations of Xt, Ut and uuut, that348

C(Ut,uuut, Xt) ≤ inf
ξ∈NΛH

ZΛB\¶uuut♢

(

λξ∪(Xt∩ΛUt
)



ZΛB

(

λξ∪(Xt∩ΛUt\¶uuut♢)

 . (4)349

350

Second, C(Ut,uuut, Xt) must introduce no new bias. Carrying out the calculations, it can be351

seen that this is guaranteed if C(Ut,uuut, Xt) only depends on Xt ∩ΛUt
. Finally, it must ensure352

that the algorithm terminates almost surely. It suffices to ensure C(Ut,uuut, Xt) is uniformly353

bounded away from 0 for almost all realizations of Xt, implying that the same holds for the354

right-hand side of (3). We refer to a function C(·) satisfying these requirements as a Bayes355

Ąlter correction.356

If we use a Bayes Ąlter as given in (3), keeping Xt and Ut unchanged whenever Ft = 0357

introduces new bias. To prevent this, we set Ut+1 = Ut ∪ ∂B in step 3.b), effectively deleting358

the part of the conĄguration that was revealed by the Ąlter. Since the algorithm only359

terminates once Ut = ∅, we further require the Bayes Ąlter correction to ensure that the360

probability of Ft = 0 is small to guarantee efficiency.361

Constructing a Bayes Ąlter correction that satisĄes the requirements above and allows362

for efficient sampling of Ft is a non-trivial task. In the next subsections, we present two363

approaches for this, the Ąrst specialized to the hard-sphere model without requirements, and364

the second one for more general potentials with strong spatial mixing of the point process.365

Crucially, assuming strong spatial mixing, both constructions allow us to control the success366

probability of the Bayes Ąlter via the update radius ℓ in the construction of the updated set367

of boxes B (see step 1).368

2.1 Bayes Ąlter for the hard-sphere model369

To construct a Bayes Ąlter for the hard-sphere model, we efficiently approximate the right-370

hand side of (4). To approximate the inĄmum over the uncountable set of conĄgurations371

ξ ∈ NΛH
we take the minimum over a Ąnite, but sufficiently rich set of conĄgurations,372

balancing the quality of approximation with the computation required. In fact the number373
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of conĄgurations needed will depend only on the volume of ΛB∪∂B. We approximate the374

fraction of partition functions in (4) with running time only depending on the volume of375

ΛB∪∂B . As a result, we efficiently compute a Bayes Ąlter correction Cε(·), with the parameter376

ε > 0 controlling how much Cε(Ut,uuut, Xt) deviates from the right-hand side of (4).377

While our construction of Cε(·) guarantees correctness of the sampling algorithm for378

any ε > 0, proving efficiency requires more. With strong spatial mixing, we choose ε so379

that the probability that Ft = 0 is uniformly bounded above, ensuring O(♣Λ♣) iterations in380

expectation.381

It remains to argue that we can efficiently sample Ft, using the Bayes Ąlter correction382

Cε(·). Explicitly computing the success probability of Ft as in (3) would require computing383

the fraction of partition functions on the right-hand side exactly, while approximating these384

partition functions would require that the approximation error only depends on Xt ∩ ΛUt
, to385

avoid new bias.386

It is unclear how to implement these approaches, so instead we use Bernoulli factories to387

sample Ft without knowing the success probability. To do so, we observe that the fraction of388

partition functions can be written as a ratio of probabilities for drawing the empty set from a389

conditional hard-sphere model on ΛB and ΛB\¶uuut♢. Since both regions have constant volume,390

rejection sampling obtains Bernoulli random variables with these success probabilities in391

constant time. Hence, we obtain a Bernoulli factory for Ft with constant expected running392

time. Wald’s identity yields a total expected running time O(♣Λ♣) for the algorithm.393

2.2 Bayes Ąlter for general potentials394

We now consider the case of general bounded-range, repulsive potentials. Unlike the hard395

sphere model, it is not clear here how to approximate the inĄmum in (4) from a Ąnite set of396

boundary conĄgurations. However, given constants a, b > 0 such that ϕ satisĄes (a, b)-strong397

spatial mixing, we can explicitly compute a function δ(a, b) so that398

Ca,b(Ut,uuut, Xt) = δ(a, b) ·
ZΛB\¶uuut♢

(

λXt∩ΛUt

)

ZΛB

(

λXt∩ΛUt\¶uuut♢

399

is a Bayes Ąlter correction. With strong spatial mixing, we use Ca,b(·) to construct a Bayes400

Ąlter such that probability that Ft = 0 is bounded above, again implying a bound of O(♣Λ♣)401

on the expected number of iterations of the algorithm.402

Note that in this setting, we require spatial mixing for both correctness and efficiency,403

while for the hard-sphere model we only need it for efficiency. Another crucial difference is404

that, while we can explicitly compute δ(a, b), the same does not hold for Ca,b(·) due to the405

fraction of partition functions involved. Again we circumvent this by rewriting the success406

probability of the Bayes Ąlter in a suitable way and applying a Bernoulli factory for sampling407

Ft. Finally, we point out that we do not obtain a constant bound for the expected running408

time of each iteration, but instead the bound depends on the number of points in Xt ∩ Λ∂B .409

Possible dependencies between the conĄguration Xt and the number of iterations prevent us410

from bounding the total expected running time using Wald’s identity. Instead, we provide411

tail bounds on the number of iterations and the running time of each iteration, allowing us to412

derive an expected total running time that is linear in the volume of Λ up to polylogarithmic413

factors.414



K. Anand, A. Göbel, M. Pappik and W. Perkins 38:11

3 Preliminaries415

Throughout the paper, we write N for the set of strictly positive integers, and we write416

N0 = N ∪ ¶0♢. For any k ∈ N, we denote by [k] the set [1, k] ∩ N.417

For a bounded measurable region Λ ⊂ R
d and any Ąnite point conĄguration η ∈ NΛ, we418

write ♣η♣ for the number of points in η. Note that this notation is the same that as the one419

we use for the volume of a region. The particular meaning will be clear from the context.420

Moreover, for k ∈ N, we write
(

η
k

)

for the set ¶η′ ⊆ η ♣ ♣η′♣ = k ♢.421

3.1 Gibbs point processes422

We introduce some additional notation for Gibbs point processes, used in the rest of the423

paper. Firstly, when dealing with a tuple (x1, . . . , xk) ∈ (Rd)k we frequently denote it by424

the corresponding bold letter xxx. Based on this, we write dxxx for dx1 . . . dxk and H(xxx) for425

H(x1, . . . , xk). Moreover, for any k ∈ N0 and xxx = (x1, . . . , xk) ∈ (Rd)k we write ηxxx for the426

set ¶x1, . . . , xk♢, where the case k = 0 results in ηxxx = ∅. Finally, for xxx ∈ Λk we write λλλxxx for427

∏

i∈[k] λλλ(xi). This simpliĄes the deĄnition of µλλλ given in the introduction to428

µλλλ(A) =
1

ZΛ(λλλ)

∑

k≥0

1

k!

∫

Λk

1ηxxx∈Aλλλxxxe−H(xxx) dxxx.429

Next, we formalize two different notions of restricting a Gibbs point process on Λ to a430

subregion Λ′ ⊆ Λ that are relevant throughout the paper.431

The Ąrst is based on restricting the support of λλλ by deĄning a new activity function432

λλλ1Λ′ : y 7→ λλλ(y) · 1y∈Λ′ (for constant activity λ, we write λ1Λ′ : y 7→ λ1y∈Λ′). The resulting433

Gibbs point process is a probability measure on (NΛ,RΛ) with434

µλλλ1Λ′ (A) =
1

ZΛ(λλλ1Λ′)

∑

k≥0

1

k!

∫

Λk

1ηxxx∈A(λλλ1Λ′)xxxe−H(xxx) dxxx435

=
1

ZΛ′(λλλ)

∑

k≥0

1

k!

∫

Λ′k

1ηxxx∈Aλλλxxxe−H(xxx) dxxx436

437

for all A ∈ RΛ. In particular, for A = ¶η ∈ NΛ ♣ η ∩ (Λ′)c > 0♢, it holds that µλλλ1Λ′ (A) = 0.438

The second way of restricting a Gibbs point process µλλλ is by projecting it to a measurable439

subregion Λ′ ⊆ Λ. To this end, we write µλλλ[Λ′] for the image measure of µλλλ under the map440

NΛ → NΛ′ , η 7→ η ∩ Λ′. By construction, µλλλ[Λ′] is a probability distribution on (NΛ′ ,RΛ′)441

that, for every A ∈ RΛ′ , assigns a probability442

µλλλ[Λ′](A) =
1

ZΛ(λλλ)

∑

k≥0

1

k!

∫

Λk

1ηxxx∩Λ′∈Aλλλxxxe−H(xxx) dxxx.443

444

As discussed in Section 1, we frequently modify the activity function to encode the effect445

of Ąxing a certain point set (boundary condition). More precisely, for a Ąxed potential ϕ, an446

activity function λλλ and a point set η ∈ NΛ we write λλλη for the function y 7→ λλλ(y)e
−

∑

x∈η
ϕ(x,y)

.447

Similarly, for k ∈ N and xxx ∈ Λk we write λλλxxx for the activity function y 7→ λλλ(y)e
−

∑

i∈[k]
ϕ(xi,y)

.448

We extend this notation to constant activity λ ∈ R≥0, writing λη : y 7→ λe
−

∑

x∈η
ϕ(x,y)

and449

λxxx : y 7→ λe
−

∑

i∈[k]
ϕ(xi,y)

. Using this notation, a useful alternative deĄnition of µλλλ[Λ′] is450

given by451

µλλλ[Λ′](A) =
1

ZΛ(λλλ)

∑

k≥0

1

k!

∫

Λ′k

1ηxxx∈Aλλλxxxe−H(xxx)ZΛ

(

λλλxxx1(Λ′)c

)

dxxx452

APPROX/RANDOM 2023



38:12 Perfect Sampling for Hard Spheres from Strong Spatial Mixing

=
1

ZΛ(λλλ)

∑

k≥0

1

k!

∫

Λ′k

1ηxxx∈Aλλλxxxe−H(xxx)Z(Λ′)c(λλλxxx) dxxx453

454

for A ∈ RΛ′ . In particular, note that455

µλλλ1Λ′ [Λ
′](A) =

1

ZΛ′(λλλ)

∑

k≥0

1

k!

∫

Λ′k

1ηxxx∈Aλλλxxxe−H(xxx) dxxx.456

While µλλλ1Λ′ [Λ
′] and µλλλ1Λ′ seem similar, the former is a distribution on (NΛ′ ,RΛ′) whereas457

the latter is deĄned on (NΛ,RΛ).458

3.2 Bernoulli factories459

In designing our sampling algorithm, it will be useful to consider the following Bernoulli460

factory problem. We are given access to a sampler for Ber(p) and for Ber(q), that is samplers461

of Bernoulli random variables with parameters p and q respectively, where we further assume462

p < q. We want to sample a random variable Z ∼ Ber
(

p
q



.463

Most work on Bernoulli factories studies their running time in terms of the number of coin464

Ćips required. In our setting, the time needed to generate each of these coin Ćips is random465

variable. Fortunately, suitable independence assumptions hold in our setting allowing us to466

prove the following lemma.467

▶ Lemma 3.1. Fix some p, q ∈ [0, 1] such that q − p ≥ ϵ for some ϵ > 0. Further assume468

that we have oracle access to a sampler from Ber(p) and Ber(q) in the following sense:469

1. every sample from Ber(p) (resp. Ber(q)) is independent from all previous samples;470

2. the expected running time for obtaining a sample from Ber(p) (resp. Ber(q)), conditioned471

on previously obtained samples, is uniformly bounded by some t ∈ R≥0.472

Then we can sample from Ber
(

p
q



in O
(

tϵ−2
)

expected time.473

4 The algorithm474

Let Λ = [0, L)d and consider a Gibbs point processes on Λ with uniform activity λλλ(x) ≡ λ for475

some λ ∈ R>0 and repulsive potential ϕ with Ąnite range r ∈ R>0. Throughout the analysis476

of our algorithm, it will be useful to focus on conĄgurations η ∈ NΛ such that ϕ(x, y) < ∞477

for all ¶x, y♢ ∈
(

η
2

)

, in which case we call η a feasible conĄguration.478

Before stating our algorithm, we Ąrst formalize how we divide Λ into smaller boxes,479

following the description given in Section 2. For a r and L as above, let N = ⌈L/r⌉.480

We set V = ¶0, . . . , N − 1♢d
to be the set of box indices and associate each box index481

vvv = (v1, . . . , vd) ∈ V with the region Λvvv =
(

[v1r, (v1 + 1)r) × · · · × [vdr, (vd + 1)r)
)

∩ Λ. As482

in Section 2, we extend this notation to sets of box indices S ⊆ V by setting ΛS =
⋃

vvv∈S Λvvv.483

Further, recall that, for vvv ∈ V, we write Bk(vvv) for the set of boxes www ∈ V with ∥vvv − www∥∞ < k.484

As mentioned earlier, our algorithm tries to update in each step the point conĄguration on a485

subset of boxes B ⊆ V. To this end, for S ⊆ V, vvv ∈ S, r ∈ R>0 and ℓ ∈ N, we deĄne486

B(S,vvv, ℓ) := ¶vvv♢ ∪ (Bvvv(ℓ) \ S).487
488

We refer to the parameter ℓ as the update radius. Finally, recall that we write ∂S =489

(
⋃

vvv∈S B1(vvv)) \ S for the outer boundary of S ⊆ V.490

Whether the algorithm updates the point conĄguration in iteration t depends on the491

outcome of a Bernoulli random variable Ft, called the Bayes Ąlter. We introduce the following492

deĄnition.493
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▶ DeĄnition 4.1. Fix a repulsive potential ϕ of range r ∈ R>0, an activity λ ∈ R>0 and494

some ℓ ∈ N. We call a function C : 2V × V × NΛ → [0, 1] a Bayes Ąlter correction if, for all495

non-empty S ⊆ V and vvv ∈ S, it holds that496

1. C(S,vvv, ·) is RΛS
-measurable (in particular C(S,vvv, η) = C(S,vvv, η ∩ ΛS) for all η ∈ NΛ),497

2. there is some ε > 0 such that for B = B(S,vvv, ℓ), H = (S ∪ B)c and all feasible η ∈ NΛ it498

holds that499

ε ≤ C(S,vvv, η) ≤ inf
ξ∈NΛH

ξ∪(η∩ΛS) is feasible







ZΛB\¶vvv♢

(

λξ∪(η∩ΛS)

)

ZΛB

(

λξ∪(η∩ΛS\¶vvv♢)









.500

Our perfect sampling procedure is stated in Algorithm 1.

Algorithm 1 Perfect sampling algorithm for repulsive Gibbs point processes

Data: region Λ = [0, L)d, repulsive potential ϕ of range at most r ∈ R>0, activity

λ ∈ R>0, update radius ℓ ∈ N

1 set t = 0, Ut = V, Xt = ∅

2 while Ut ̸= ∅ do

3 draw uuut ∈ Ut uniformly at random

4 set B = B(Ut,uuut, ℓ)

5 draw Ft from Ber



C(Ut,uuut, Xt) ·
ZΛB (λXt∩Λ∂B )

ZΛB\¶uuut♢

(

λXt∩Λ∂B∪¶uuut♢

)



where C is a Bayes

Ąlter correction as in DeĄnition 4.1

6 if Ft = 1 then

7 draw Y from µλXt∩(ΛB )c1ΛB
[ΛB ]

8 set Xt+1 = (Xt \ ΛB) ∪ Y

9 set Ut+1 = Ut \ ¶uuut♢

10 else

11 set Ut+1 = Ut ∪ ∂B

12 increase t by 1

13 return Xt

501

Before we get to the question of how to sample an appropriate Bayes Ąlter in step 5, the502

following statement ensures that the algorithm produces the correct output distribution.503

▶ Theorem 4.2. Let T = inft∈N¶Ut = ∅♢. Then T is almost surely Ąnite and for all t ∈ N0504

with P[t ≥ T ] > 0 and all A ∈ RΛ, it holds that P[Xt ∈ A ♣ t ≥ T ] = µλ(A).505

We proceed to exemplify how we use Bernoulli factories to sample the Bayes Ąlter. For506

brevity, we focus on the hard-sphere model here. The more general case of bounded-range507

repulsive potential can be found in the full version of the paper [3].508

Bayes Ąlter for the hard-sphere model509

Recall that for the hard-sphere model, we have ϕ(x, y) = ∞ if dist(x, y) < r and 0 otherwise.510

Given a non-empty set of boxes S ⊆ V, vvv ∈ S and a feasible conĄguration η ∈ NΛ, we want511

to construct a Bayes Ąlter correction C(S,vvv, η) that allows us to efficiently sample the Ąlter.512

To this end, set B = B(S,vvv, ℓ) and H = (S ∪ B)c. Our construction makes use of two513

ingredients. Firstly, we argue that, instead of minimization over the uncountable set of514
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boundary conditions NΛH
, it suffices to minimize over subsets of the Ąnite set (δ1Z)d ∩ΛH∩∂B515

for a sufficiently small δ1 > 0. Secondly, choosing a sufficiently small δ2 > 0, we show that516

we can approximate the involved partition functions using the function517

Ẑ(S, η, δ2) =
∑

γ⊆(δ2Z)d∩ΛS

λ♣γ♣δ
♣γ♣
2 · D(γ) · D(γ ♣ η ∩ Λ∂S), (5)518

519

where D(γ) =
∏

¶x,y♢∈(γ
2)
1dist(x,y)≥r and D(γ ♣ η) =

∏

x∈γ

∏

y∈η 1dist(x,y)≥r.520

The following lemma then gives a way to construct a Bayes Ąlter correction for the521

hard-sphere model.522

▶ Lemma 4.3. For non-empty S ⊆ V, vvv ∈ S, feasible η ∈ NΛ and ε, δ1, δ2 > 0 deĄne523

Cε(S,vvv, η) := e−ε · min
γ⊆(δ1Z)d∩ΛH∩∂B

Ẑ(B \ ¶vvv♢, γ ∪ (η ∩ ΛS), δ2)

Ẑ
(

B, γ ∪ (η ∩ ΛS\vvv), δ2

) ,524

where B = B(S,vvv, ℓ) and H = (S ∪ B)c. For δ1, δ2 sufficiently small, depending only on525

d, r, ℓ and ε, it holds that Cε(S,vvv, η) is a Bayes Ąlter correction.526

In fact, we will not use Cε directly for our Bayes Ąlter, but a slightly scaled version527

0 < e−εCε, which is again a Bayes Ąlter correction. The additional slack allows us to528

efficiently sample the Bayes Ąlter by using a Bernoulli factory, as we argue in the next lemma.529

530

▶ Lemma 4.4. Let S ⊆ V be non-empty, vvv ∈ S and η ∈ NΛ be feasible, and set B = B(S,vvv, ℓ).531

For all ε > 0 we can sample a Bernoulli random variable with success probability532

e−εCε(S,vvv, η) ·
ZΛB

(λη∩Λ∂B
)

ZΛB\¶vvv♢

(

λη∩Λ∂B∪¶vvv♢

)533

with expected running time only depending on ε, ℓ, r, λ and d.534

The core idea of the above lemma to express
ZΛB (λη∩Λ∂B )

ZΛB\¶vvv♢

(

λη∩Λ∂B∪¶vvv♢

) as a fraction of probabilities.535

Together with the fact that e−εCε(S,vvv, η) < 1, this allows us to write the success probability536

of the Bayes Ąlter as a fraction of probabilities p
q
. Arguing that p < q, and that we can537

sample Ber(p) and Ber(q) efficiently allows us to apply Lemma 3.1 to prove Lemma 4.4.538

While the above suffices to perform each iteration of Algorithm 1 efficiently, we still539

need to bound the number of iterations. For this, we derive a lower bound on the success540

probability of the Bayes Ąlter with correction e−εCε(·) for a particular choice of ε, using the541

assumption of strong spatial mixing.542

▶ Lemma 4.5. Consider a hard-sphere model that exhibits (a, b)-strong spatial mixing up543

to λ. Then there are constants a′, b′, only depending on a, b, r, λ and d, such that for all544

non-empty S ⊆ V, vvv ∈ S and feasible η ∈ NΛ it holds that545

e−e−ℓ

Ce−ℓ(S,vvv, η) ·
ZΛB

(λη∩Λ∂B
)

ZΛB\¶vvv♢

(

λη∩Λ∂B∪¶vvv♢

) ≥ 1 − a′e−b′ℓ.546

Lemma 4.5 allows us to control the success probability of the Bayes Ąlter in terms of ℓ.547

Combining the results above gives the following theorem.548

▶ Theorem 4.6. Consider Algorithm 1 on a hard-sphere model with C(·) = e−e−ℓ

Ce−ℓ(·) as549

Bayes Ąlter correction in line 5. We can run the algorithm in almost-surely Ąnite running550

time and, on termination, it outputs a sample from the hard-sphere Gibbs measure µλ on Λ.551

Moreover, if the hard-sphere model satisĄes (a, b)-strong spatial mixing and if ℓ is chosen as552

a sufficiently large constant, depending on a, b, r, λ and d, then we can run the algorithm in553

expected time O(♣Λ♣).554



K. Anand, A. Göbel, M. Pappik and W. Perkins 38:15

References555

1 Michael Aizenman and Richard Holley. Rapid convergence to equilibrium of stochastic Ising556

models in the Dobrushin Shlosman regime. Percolation theory and ergodic theory of inĄnite557

particle systems, pages 1Ű11, 1987.558

2 Berni Julian Alder and Thomas Everett Wainwright. Phase transition for a hard sphere system.559

The Journal of Chemical Physics, 27(5):1208Ű1209, 1957.560

3 Konrad Anand, Andreas Göbel, Marcus Pappik, and Will Perkins. Perfect sampling for hard561

spheres from strong spatial mixing. arXiv preprint arXiv:2305.02450, 2023.562

4 Konrad Anand and Mark Jerrum. Perfect sampling in inĄnite spin systems via strong spatial563

mixing. SIAM Journal on Computing, 51(4):1280Ű1295, 2022.564

5 Søren Asmussen, Peter W Glynn, and Hermann Thorisson. Stationarity detection in the initial565

transient problem. ACM Transactions on Modeling and Computer Simulation (TOMACS),566

2(2):130Ű157, 1992.567

6 Etienne P Bernard and Werner Krauth. Two-step melting in two dimensions: Ąrst-order568

liquid-hexatic transition. Physical Review Letters, 107(15):155704, 2011.569

7 Etienne P Bernard, Werner Krauth, and David B Wilson. Event-chain Monte Carlo algorithms570

for hard-sphere systems. Physical Review E, 80(5):056704, 2009.571

8 Steffen Betsch and Günter Last. On the uniqueness of Gibbs distributions with a non-negative572

and subcritical pair potential. In Annales de l’Institut Henri Poincare (B) Probabilites et573

statistiques, volume 59, pages 706Ű725. Institut Henri Poincaré, 2023.574

9 Siddharth Bhandari and Sayantan Chakraborty. Improved bounds for perfect sampling of575

k-colorings in graphs. In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory576

of Computing, pages 631Ű642, 2020.577

10 Zongchen Chen, Kuikui Liu, Nitya Mani, and Ankur Moitra. Strong spatial mixing for colorings578

on trees and its algorithmic applications. arXiv preprint arXiv:2304.01954, 2023.579

11 Hofer Temmel Christoph. Disagreement percolation for the hard-sphere model. Electronic580

Journal of Probability, 24:1Ű22, 2019.581

12 David Dereudre. Introduction to the theory of Gibbs point processes. In Stochastic Geometry,582

pages 181Ű229. Springer, 2019.583

13 Persi Diaconis. The Markov Chain Monte Carlo revolution. Bulletin of the American584

Mathematical Society, 46(2):179Ű205, 2009.585

14 Shaddin Dughmi, Jason Hartline, Robert D Kleinberg, and Rad Niazadeh. Bernoulli factories586

and black-box reductions in mechanism design. Journal of the ACM (JACM), 68(2):1Ű30,587

2021.588

15 Martin Dyer, Alistair Sinclair, Eric Vigoda, and Dror Weitz. Mixing in time and space for589

lattice spin systems: A combinatorial view. Random Structures & Algorithms, 24(4):461Ű479,590

2004.591

16 Michael Engel, Joshua A Anderson, Sharon C Glotzer, Masaharu Isobe, Etienne P Bernard,592

and Werner Krauth. Hard-disk equation of state: First-order liquid-hexatic transition in two593

dimensions with three simulation methods. Physical Review E, 87(4):042134, 2013.594

17 Stefan Felsner and Lorenz Wernisch. Markov chains for linear extensions, the two-dimensional595

case. In SODA, pages 239Ű247, 1997.596

18 Weiming Feng, Heng Guo, and Yitong Yin. Perfect sampling from spatial mixing. Random597

Structures & Algorithms, 61(4):678Ű709, 2022.598

19 Weiming Feng and Yitong Yin. On local distributed sampling and counting. In Proceedings of599

the 2018 ACM Symposium on Principles of Distributed Computing, pages 189Ű198, 2018.600

20 Roberto Fernández, Aldo Procacci, and Benedetto Scoppola. The analyticity region of the601

hard sphere gas. Improved bounds. J. Stat. Phys., 5:1139Ű1143, 2007.602

21 Pablo A Ferrari, Roberto Fernández, and Nancy L Garcia. Perfect simulation for interacting603

point processes, loss networks and Ising models. Stochastic Processes and their Applications,604

102(1):63Ű88, 2002.605

APPROX/RANDOM 2023



38:16 Perfect Sampling for Hard Spheres from Strong Spatial Mixing

22 David Gamarnik, Dmitriy Katz, and Sidhant Misra. Strong spatial mixing of list coloring of606

graphs. Random Structures & Algorithms, 46(4):599Ű613, 2015.607

23 Nancy L Garcia. Perfect simulation of spatial processes. Resenhas do Instituto de Matemática608

e Estatística da Universidade de São Paulo, 4(3):283Ű325, 2000.609

24 J Groeneveld. Two theorems on classical many-particle systems. Phys. Letters, 3, 1962.610

25 Heng Guo and Mark Jerrum. Perfect simulation of the hard disks model by partial rejection611

sampling. Annales de l’Institut Henri Poincaré D, 8(2):159Ű177, 2021.612

26 Heng Guo, Mark Jerrum, and Jingcheng Liu. Uniform sampling through the Lovász local613

lemma. Journal of the ACM (JACM), 66(3):1Ű31, 2019.614

27 Olle Häggström and Karin Nelander. Exact sampling from anti-monotone systems. Statistica615

Neerlandica, 52(3):360Ű380, 1998.616

28 Olle Häggström, Marie-Colette N.M. van Lieshout, and Jesper Møller. Characterization results617

and Markov chain Monte Carlo algorithms including exact simulation for some spatial point618

processes. Bernoulli, 5(4):641Ű658, 1999.619

29 Thomas P Hayes and Cristopher Moore. Lower bounds on the critical density in the hard disk620

model via optimized metrics. arXiv preprint arXiv:1407.1930, 2014.621

30 Kun He, Xiaoming Sun, and Kewen Wu. Perfect sampling for (atomic) Lovász Local Lemma.622

arXiv preprint arXiv:2107.03932, 2021.623

31 Kun He, Chunyang Wang, and Yitong Yin. Sampling Lovász Local Lemma for general624

constraint satisfaction solutions in near-linear time. In 2022 IEEE 63rd Annual Symposium625

on Foundations of Computer Science (FOCS), pages 147Ű158. IEEE, 2022.626

32 Kun He, Kewen Wu, and Kuan Yang. Improved bounds for sampling solutions of random CNF627

formulas. In Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms628

(SODA), pages 3330Ű3361. SIAM, 2023.629

33 Tyler Helmuth, Will Perkins, and Samantha Petti. Correlation decay for hard spheres via630

Markov chains. The Annals of Applied Probability, 32(3):2063Ű2082, 2022.631

34 Christoph Hofer-Temmel and Pierre Houdebert. Disagreement percolation for Gibbs ball632

models. Stochastic Processes and their Applications, 129(10):3922Ű3940, 2019.633

35 Richard Holley. Possible rates of convergence in Ąnite range, attractive spin systems. Part.634

Syst. Random Media Large Deviat., 41:215, 1985.635

36 Mark Huber. Spatial birthŰdeath swap chains. Bernoulli, 18(3):1031Ű1041, 2012.636

37 Mark Huber. Nearly optimal Bernoulli factories for linear functions. Combin. Probab. Comput.,637

25(4):577Ű591, 2016.638

38 Mark Huber, Elise Villella, Daniel Rozenfeld, and Jason Xu. Bounds on the artiĄcial phase639

transition for perfect simulation of hard core Gibbs processes. Involve, a Journal of Mathematics,640

5(3):247Ű255, 2013.641

39 Masaharu Isobe. Hard sphere simulation in statistical physicsŮmethodologies and applications.642

Molecular Simulation, 42(16):1317Ű1329, 2016.643

40 Vishesh Jain, Ashwin Sah, and Mehtaab Sawhney. Perfectly sampling k ≥ (8/3 + o(1))∆-644

colorings in graphs. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory645

of Computing, pages 1589Ű1600, 2021.646

41 Matthew Jenssen, Marcus Michelen, and Mohan Ravichandran. Quasipolynomial-time algo-647

rithms for repulsive Gibbs point processes. arXiv preprint arXiv:2209.10453, 2022.648

42 Mark Jerrum and Alistair Sinclair. The Markov chain Monte Carlo method: an approach to649

approximate counting and integration. Approximation algorithms for NP-hard problems, pages650

482Ű520, 1996.651

43 Ravi Kannan, Michael W. Mahoney, and Ravi Montenegro. Rapid mixing of several Markov652

chains for a hard-core model. In Algorithms and computation, volume 2906 of Lecture Notes653

in Comput. Sci., pages 663Ű675. Springer, Berlin, 2003.654

44 Frank P Kelly and Brian D Ripley. A note on Strauss’s model for clustering. Biometrika,655

pages 357Ű360, 1976.656



K. Anand, A. Göbel, M. Pappik and W. Perkins 38:17

45 Wilfrid S Kendall. Perfect simulation for the area-interaction point process. In Probability657

towards 2000, pages 218Ű234. Springer, 1998.658

46 Wilfrid S Kendall and Jesper Møller. Perfect simulation using dominating processes on ordered659

spaces, with application to locally stable point processes. Advances in Applied Probability,660

pages 844Ű865, 2000.661

47 Botao Li, Yoshihiko Nishikawa, Philipp Höllmer, Louis Carillo, AC Maggs, and Werner Krauth.662

Hard-disk pressure computationsŮa historic perspective. The Journal of Chemical Physics,663

157(23):234111, 2022.664

48 Jingcheng Liu, Alistair Sinclair, and Piyush Srivastava. Correlation decay and partition function665

zeros: Algorithms and phase transitions. SIAM Journal on Computing, (0):FOCS19Ű200,666

2022.667

49 Laszlo Lovasz and Peter Winkler. Exact mixing in an unknown Markov chain. The Electronic668

Journal of Combinatorics, pages R15ŰR15, 1995.669

50 Hartmut Löwen. Fun with hard spheres. In Statistical physics and spatial statistics, volume670

554, pages 295Ű331. Springer, 2000.671

51 Pinyan Lu and Yitong Yin. Improved FPTAS for multi-spin systems. In Approximation, Ran-672

domization, and Combinatorial Optimization. Algorithms and Techniques: 16th International673

Workshop, APPROX 2013, and 17th International Workshop, RANDOM 2013, Berkeley, CA,674

USA, August 21-23, 2013. Proceedings, pages 639Ű654. Springer, 2013.675

52 Fabio Martinelli. Lectures on Glauber dynamics for discrete spin models. In Lectures on676

probability theory and statistics, pages 93Ű191. Springer, 1999.677

53 Nicholas Metropolis, Arianna W Rosenbluth, Marshall N Rosenbluth, Augusta H Teller, and678

Edward Teller. Equation of state calculations by fast computing machines. The Journal of679

Chemical Physics, 21(6):1087Ű1092, 1953.680

54 Marcus Michelen and Will Perkins. Potential-weighted connective constants and uniqueness681

of Gibbs measures. arXiv preprint arXiv:2109.01094, 2021.682

55 Marcus Michelen and Will Perkins. Analyticity for classical gasses via recursion. Communica-683

tions in Mathematical Physics, pages 1Ű22, 2022.684

56 Marcus Michelen and Will Perkins. Strong spatial mixing for repulsive point processes. Journal685

of Statistical Physics, 189(1):9, 2022.686

57 Sarat B Moka, Dirk P Kroese, et al. Perfect sampling for Gibbs point processes using partial687

rejection sampling. Bernoulli, 26(3):2082Ű2104, 2020.688

58 Jesper Møller. A review of perfect simulation in stochastic geometry. Lecture Notes-Monograph689

Series, pages 333Ű355, 2001.690

59 Jesper Møller and Rasmus Plenge Waagepetersen. Statistical inference and simulation for691

spatial point processes. CRC Press, 2003.692

60 Duncan J Murdoch and Peter J Green. Exact sampling from a continuous state space.693

Scandinavian Journal of Statistics, 25(3):483Ű502, 1998.694

61 Serban Nacu and Yuval Peres. Fast simulation of new coins from old. The Annals of Applied695

Probability, 15(1A):93Ű115, 2005.696

62 Oliver Penrose. Convergence of fugacity expansions for Ćuids and lattice gases. Journal of697

Mathematical Physics, 4(10):1312Ű1320, 1963.698

63 James Gary Propp and David Bruce Wilson. Exact sampling with coupled Markov chains and699

applications to statistical mechanics. Random Structures & Algorithms, 9(1-2):223Ű252, 1996.700

64 James Gary Propp and David Bruce Wilson. How to get a perfectly random sample from a701

generic Markov chain and generate a random spanning tree of a directed graph. Journal of702

Algorithms, 27(2):170Ű217, 1998.703

65 Dana Randall. Rapidly mixing Markov chains with applications in computer science and704

physics. Computing in Science & Engineering, 8(2):30Ű41, 2006.705

66 Guus Regts. Absence of zeros implies strong spatial mixing. Probability Theory and Related706

Fields, pages 1Ű21, 2023.707

67 David Ruelle. Correlation functions of classical gases. Annals of Physics, 25:109Ű120, 1963.708

APPROX/RANDOM 2023



38:18 Perfect Sampling for Hard Spheres from Strong Spatial Mixing

68 David Ruelle. Statistical mechanics: Rigorous results. World ScientiĄc, 1999.709

69 Alistair Sinclair, Piyush Srivastava, Daniel Štefankovič, and Yitong Yin. Spatial mixing and the710

connective constant: Optimal bounds. Probability Theory and Related Fields, 168(1-2):153Ű197,711

2017.712

70 Yinon Spinka. Finitary codings for spatial mixing Markov random Ąelds. Ann. Probab.,713

48(3):1557Ű1591, 2020.714

71 David J Strauss. A model for clustering. Biometrika, 62(2):467Ű475, 1975.715

72 Daniel W Stroock and Boguslaw Zegarlinski. The logarithmic Sobolev inequality for discrete716

spin systems on a lattice. Communications in Mathematical Physics, 149(1):175Ű193, 1992.717

73 Marie-Colette N.M. van Lieshout. Markov Point Processes and Their Applications. 2000.718

74 Dror Weitz. Counting independent sets up to the tree threshold. In Proceedings of the719

Thirty-Eighth Annual ACM Symposium on Theory of Computing, STOC 2006, pages 140Ű149.720

ACM, 2006.721

75 William W. Wood, F. Raymond Parker, and Jack David Jacobson. Recent monte carlo722

calculations of the equation of state of lenard-jones and hard sphere molecules. Il Nuovo723

Cimento (1955-1965), 9:133Ű143, 1958.724


	1 Introduction
	1.1 The hard-sphere model, strong spatial mixing, and perfect sampling
	1.2 Gibbs point processes with finite-range repulsive potentials
	1.3 Related work and future directions
	1.4 Outline of the paper

	2 Intuitive idea behind the algorithm
	2.1 Bayes filter for the hard-sphere model
	2.2 Bayes filter for general potentials

	3 Preliminaries
	3.1 Gibbs point processes
	3.2 Bernoulli factories

	4 The algorithm

