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—— Abstract

We provide a perfect sampling algorithm for the hard-sphere model on subsets of R? with expected
running time linear in the volume under the assumption of strong spatial mixing. A large number of
perfect and approximate sampling algorithms have been devised to sample from the hard-sphere
model, and our perfect sampling algorithm is efficient for a range of parameters for which only
efficient approximate samplers were previously known and is faster than these known approximate
approaches. Our methods also extend to the more general setting of Gibbs point processes interacting
via finite-range, repulsive potentials.
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1 Introduction

Gibbs point processes, or classical gases, are mathematical models of interacting particles. In
statistical physics they are used to model gases, fluids, and crystals, while in other fields they
are used to model spatial phenomena such as the growth of trees in a forest, the distribution
of stars in the universe, or the location of cities on a map (see e.g. [68, 59, 73, 12]).
Perhaps the longest and most intensively studied Gibbs point process is the hard-sphere
model: a model of a gas in which the only interaction between particles is a hard-core
exclusion in a given radius around each particle. That is, it is a model of a random packing
of equal-sized spheres. Despite the simplicity of its definition, the hard-sphere model is
expected to exhibit the qualitative behavior of a real gas [2], and in particular exhibits
gas, liquid, and solid phases, thus giving evidence for the hypothesis, dating back to at
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least Boltzmann, that the macroscopic properties of a gas or fluid are determined by its
microscopic interactions. This rich behavior exhibited by the hard-sphere model is very
difficult to analyze rigorously, and the most fundamental questions about phase transitions
in this model are open mathematical problems [68, 50].

In studying the hard-sphere model (or Gibbs point processes more generally), a funda-
mental task is to sample from the model. Sampling is used to estimate statistics, observe
evidence of phase transitions, and perform statistical tests on data. A wide variety of meth-
ods have been proposed to sample from these distributions; for instance, the Markov chain
Monte Carlo (MCMC) method was first proposed by Metropolis, Rosenbluth, Rosenbluth,
Teller, and Teller [53] to sample from the two-dimensional hard-sphere model. Understand-
ing sampling methods for point processes in theory and in practice is a major area of
study [58, 59, 16, 39, 47], and advances in sampling techniques have led to advances in the
understanding of the physics of these models [53, 2, 50, 7, 6, 16].

In this paper we will be concerned with provably efficient sampling from the hard-sphere
model. Rigorous guarantees for sampling algorithms come in several different varieties. One
question is what notion of ‘efficient’ to use; another is what guarantee we insist on for the
output. In this paper we will provide an efficient sampling algorithm under the strictest
possible terms with respect to both running time and accuracy of the output: a linear-time,
perfect sampling algorithm.

For simplicity we focus on sampling from the hard-sphere model defined on finite boxes
in R?. For fixed parameter values of the model, the typical number of points appearing in
such a region is linear in the volume, and so any sampling algorithm will require at least this
much time.

As for guarantees on the output, there are two main types of guarantees. The first type is
an approximate sampler: the output of such an algorithm must be distributed within e total
variation distance of the desired target distribution. Perhaps the main approach to efficient
sampling from distributions normalized by intractable normalizing constants is the MCMC
method. In this approach, one devises a Markov chain with the target distribution as the
stationary distribution and runs a given number steps of the chain from a chosen starting
configuration; if the number of steps is at least the e-mixing time, then the final state has
distribution within € total variation distance of the target [42, 65, 13]. In general, however,
computing or bounding the mixing time can be a very challenging problem.

The second type of guarantee is that of a perfect sampler [63]. Such an algorithm has a
running time that is random, but the distribution of the output is guaranteed to be ezxactly
that of the target distribution. The main advantage of perfect sampling algorithms — and
the primary reason they are studied and used in practice — is that one need not prove a
theorem or understand the mixing time of a Markov chain to run the algorithm and get
an accurate sample; one can simply run the algorithm and know that the output has the
correct distribution. The drawback is that the running time may be very large, depending on
the specific algorithm and on the parameter regime. Some naive sampling methods such as
rejection sampling return perfect samples but are inefficient on large instances (exponential
expected running time in the volume). The breakthrough of Propp and Wilson in introducing

‘coupling from the past’ [63, 64] was to devise a procedure for using a Markov chain transition

matrix to design perfect sampling algorithms which, under some conditions, could run in time
polylogarithmic in the size of a discrete state space (polynomial-time in the size of the graph
of a spin system), matching the efficiency of fast mixing Markov chains which only return
approximate samples (see also [5, 49] for precedents in perfect sampling). The work of Propp
and Wilson led to numerous constructions of perfect sampling algorithms for problems with



90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

125

126

127

128

129

130

131

132

133

134

K. Anand, A. Gobel, M. Pappik and W. Perkins

both discrete and continuous state spaces including [17, 27, 45, 60, 28, 21, 46, 58, 23]. Notably,
many of the first applications of Propp and Wilson’s technique were in designing perfect
sampling algorithms for Gibbs point processes (though often without rigorous guarantees on
the efficiency of the algorithms).

Perfect sampling continues to be a very active area of research today, with a special focus
on improving the range of parameters for which perfect sampling algorithms can (provably)
run in expected linear or polynomial time [9, 40, 30]

In this paper we design a perfect sampling algorithm for the hard-sphere model (and
Gibbs point processes interacting with a finite-range, repulsive pair potential more generally)
that is guaranteed to run in linear expected time for activity parameters up to the best
known bound for efficient approximate sampling via MCMC.

What is this bound and how do we design the algorithm? One central theme in the
analysis of discrete spin systems is the relationship between spatial mixing (correlation decay
properties) and temporal mixing (mixing times of Markov chains) [35, 1, 72, 52, 15]. At
a high level, these works show that for discrete lattice systems a strong correlation decay
property (strong spatial mizing) implies a near-optimal convergence rate for local-update
Markov chains like the Glauber dynamics. Recently it has been showed that strong spatial
mixing in a discrete lattice model also implies the existence of efficient perfect sampling
algorithms [18, 4]. In parallel, there has been work establishing the connection between
strong spatial mixing and optimal temporal mixing for Markov chains in the setting of the
hard-sphere model and Gibbs point processes [33, 55, 56]. At a high level, our aim is to
combine these threads to show that strong spatial mixing for Gibbs point processes implies
the existence of an efficient perfect sampler. One challenge is that the approaches of [18, 4]
are inherently discrete in that key steps of the algorithms involve enumerating over all
possible configurations in a subregion, something that is not possible in the continuum. To
overcome this we make essential use of Bernoulli factories — a method for perfect simulation
of a coin flip with a bias f(p) given access to coin flips of bias p. Bernoulli factories have
recently been used in perfect sampling algorithms for solutions to constraint satisfaction
problems in [31, 32].

1.1 The hard-sphere model, strong spatial mixing, and perfect sampling

The hard-sphere model is defined on a bounded, measurable subset A of R? with an activity
parameter A > 0 that governs the density of the model and a parameter > 0 that governs
the range of interaction (though by re-scaling there is really only one meaningful parameter,
and we could take r = 1 without loss of generality). In words, the hard-sphere model is the
distribution of finite point sets in A obtained by taking a Poisson point process of activity A
on A and conditioning on the event that all pairs of points are at distance at least r from
each other; in other words, on the event that spheres of radius r/2 centered at the given
points form a sphere packing.

We can equivalently define the model more explicitly, and in doing so, introduce objects
and notation we work with throughout the paper. To begin, let /s be the set of all finite point
sets in A. Each point set n € N, represents a particle configuration in A. Write 85 C 2NA
for the o-field generated by the maps {/\/A — INo,n — |nN B] | BCA Borel—measurable}.
The hard-sphere model (or in fact any Gibbs point process) is a probability measure py on
the space (Na,Rx).

Define for every zi,...,z; € R? the indicator that the points are centers of non-
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overlapping spheres of radius r/2; that is,

D(Jfl,...,l‘k;) = H 1dist(xi7zj)2r-

{i.iye('s)
Then define the partition function
)\k’
Za(\) = ZF kD(xh...,xk)dxl... dzy, .
k>0

For an event A € Ry, the hard-sphere model assigns the probability

i) = 5

)\k
)\) ’;0 T /Ak 1{m17__,’xk}€AD($17 .. 7.’Ek) dxy... dzg . (1)

A very useful generalization of this model is to allow for a non-constant (but measurable)
activity function A : A — [0,00). Here the model is a Poisson process with inhomogenous
activity A conditioned on the points forming the centers of a sphere packing; the partition
function is now

k
1
ZA(A) = ZE/A [[Ma)D(@s, ... z) day ... day,
. kizl

k>0

and the measure py is defined analogously to (1). This generalization allows modeling of
non-homogenous spaces and generalizes the concept of imposing boundary conditions on the
model. To see this, suppose we fix a particle configuration n € M as boundary conditions.
Additional points are forbidden within the balls of radius r around each point x € 7; we can
implement the distribution of additional points by considering the measure py with A(y) =0
if dist(y, ) < r for some x € n; and A(y) = A otherwise. We denote the resulting activity
function by X by A,. Further, we can use this generalization to restrict a point process to
only place points in a subregion A’ C A by considering the measure px1,, with activity
function A1y : z +— Agecpr. Of course the generalization to measurable activity functions is
much more general than this, and activity functions A need not be realizable by boundary
conditions or restriction to a subregion, nor take only two values.

This generalization to activity functions is crucial for defining strong spatial mizing, the
condition under which we can guarantee the efficiency of our perfect sampling algorithm.

To define the concept of strong spatial mixing we consider projections of the measure
to subregions A’ C A. We write uy[A’] for the probability measure on (N, %R/) induced
by px (we make this definition formal in Section 3). We can impose two distinct boundary
conditions on A’ by choosing two different activity functions A, X’. Strong spatial mixing
asserts that the distributions px[A’], ua[A’] are close in total variation when A, A’ differ only
on points far from A’; i.e., when dist(A’, supp(A — X)) is large (as supp(A — X’) is the set of
points at which the two activity functions disagree).

Writing |A’| for the volume of A’, strong spatial mixing with exponential decay is defined
as follows.

» Definition 1.1. Given a,b € R, the hard-sphere model on R? ezhibits (a,b)-strong
spatial mixing up to A € R~ if for all bounded measurable A C R? the following holds: For
all measurable A’ C A and all activity functions \,X’ < X it holds that

drv (ua[A'], v [A]) < af A'fe st (W suop (X))

where dpy (-, -) denotes total variation distance.
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174 This definition of strong spatial mixing comes from [56], which in turn adapted similar
s notions from discrete spin systems [15, 74]. Strong spatial mixing has proved to be an
e essential definition in the analysis, both probabilistic and algorithmic, of spin systems on
w7 graphs, and many recent works are focused on either proving strong spatial mixing for a
ws  particular model, range of parameters, and class of graphs (e.g. [74, 22, 51, 69, 66, 10]) or
o deriving consequences of strong spatial mixing (e.g. [70, 19, 48, 18, 4]).

180 Our main result is a linear expected-time perfect sampling algorithm for the hard-sphere
11 model under the assumption of strong spatial mixing.

1.2 » Theorem 1.2. There is a perfect sampling algorithm for the hard-sphere model on finite
w3 bozes A C Re with the property that if the hard-sphere model exhibits (a,b)-strong spatial
e mazing up to A, then the expected running time of the algorithm at activity A is O(|A]), where
185 the implied constant is a function of a,b, and .

186 In particular, one can run the algorithm for any value of A (without knowing whether
17 or not strong spatial mixing holds) and the algorithm will terminate in finite time with an
18 output distributed exactly as py; under the assumption of strong spatial mixing the expected
189 running time is guaranteed to be linear in the volume.

1% Using bounds from [56] on strong spatial mixing in the hard-sphere model, we obtain the
11 following explicit bounds on the activities for which the algorithm is efficient.

102 B Corollary 1.3. The above perfect sampling algorithm runs in expected time O(|A|) when
95 A < oot where vq(r) is the volume of the ball of radius r in R?.

104 In comparison, near-linear time MCMC-based approximate samplers were given in [56]
s for the same range of parameters (following results for more restricted ranges in [43, 33]).
16 For perfect sampling from the hard-sphere model, linear expected time algorithms were given
w7 in [36, 25] for more restrictive ranges of parameters.

ws 1.2 Gibbs point processes with finite-range repulsive potentials

19 We now give a closely related result in the more general setting of Gibbs point processes
200 interacting via finite-range, repulsive pair potentials.

201 Gibbs point processes are defined via a density against an underlying Poisson point
22 process. In general, this density is the exponential of (the negative of) an energy function on
203 point sets that captures the interactions between points. In many of the most studied cases,
2 this energy function takes a special form: it is the sum of potentials over pairs of points in a
25 configuration.

206 A pair potential is a measurable symmetric function ¢ : R? x R — R U {cc}. For a
27 bounded, measurable activity function A on A the Gibbs point process with pair potential ¢
208 on A is defined via the partition function

200 Za(A) = Z %/ H A(z;) e @) quy o day
. Ak

k>0 1€[k]
20 where
211 H(.’El,...,.’lﬁk) = Z qb(x“x])
{i.re('s)

a2 Again the corresponding probability measure uy is obtained as in (1). A pair potential
a3 ¢ is repulsive if ¢(x,y) > 0 for all z,y. It is of finite-range if there exists r > 0 so that
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¢(z,y) = 0 whenever dist(z,y) > r. As with the hard-sphere model, we can use the
activity function to encode the influence of boundary conditions by defining the activity

function A, : y — Xe Zwen @) for any activity A € [0,00) and particle configuration
1 € Na. Moreover, strong spatial mixing for a Gibbs point process is defined exactly as in
Definition 1.1.

The hard-sphere model is one example of a model interacting via a finite-range, repulsive
pair potential; it is obtained by letting ¢(x,y) take the value +oo if dist(z,y) < r and 0
otherwise. The Strauss process [71, 44] is another such example.

Our next result is a near-linear expected time perfect sampling algorithm for Gibbs point
processes interacting via finite-range, repulsive potentials under the assumption of strong
spatial mixing.

» Theorem 1.4. Suppose ¢ is a finite-range, repulsive potential on R and suppose ¢ exhibits
(a,b)-strong spatial mizing up to A for some constants a,b > 0. Then there is a perfect
sampling algorithm for the Gibbs point process defined by ¢ and activity functions bounded

by A on bozes A in RY with expected running time O(|A| 1ogo(1)|A|>.

One difference between this algorithm and the hard-sphere algorithm of Theorem 1.2 is
that this algorithm needs knowledge of the constants a, b in the assumption of strong spatial
mixing, whereas the hard-sphere algorithm does not.

Using the results of [56], we can get explicit bounds for the existence of efficient perfect
sampling algorithms in terms of the temperedness constant of the potential defined by

Cy = sup / |1 —e @) dy. (2)
z€R? JR?

Under the assumption that ¢ is repulsive and of finite range 7, we have 0 < Cy < vq(r).

» Corollary 1.5. The above perfect sampling algorithm runs in expected time O(|A| log@W) \A|>
when A < C%,'

» Remark 1.6. In fact, using the results of Michelen and Perkins [54], one can push the bound
for strong spatial mixing up to e/Ay, where Ay < Cy is the potential-weighted connective
constant defined therein; our perfect sampling algorithm is efficient up to that point.

1.3 Related work and future directions
Related work

In recent years there has been a moderate flurry of activity around proving rigorous results
for Gibbs point processes in both the setting of statistical physics and probability theory
and in the setting of provably efficient sampling algorithms.

Work on provably efficient approximate sampling methods for the hard-sphere model
begins with the seminal paper of Kannan, Mahoney, and Montenegro [43], who used techniques
from the analysis of discrete spin systems to prove mixing time bounds for Markov chains
for the hard-sphere model. Improvements to the range of parameters for which fast mixing
holds came in [29, 33], before Michelen and Perkins proved the bound e/vq(r) in [56], which
we match with a perfect sampling algorithm in Corollary 1.3.

Perfect sampling algorithms for the hard sphere model have been considered in [27, 46,
21, 25, 38]. In terms of rigorous guarantees of efficiency, Huber proved a bound of 2/v4(r)
for a near-linear expected time perfect sampler in [36]. The perfect sampling algorithm of
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Guo and Jerrum in [25] does not match this bound, but the algorithm, based on ‘partial
rejection sampling’ [26] is novel and particularly simple. Several of these approaches also
apply for finite-range, repulsive potentials or can be extended to that setting (e.g. [57]).

In parallel, there has been much work on proving bounds on the range of activities
for which no phase transition can occur in the hard-sphere model; and, in recent years in
particular, the techniques used have close connections to algorithms and the study of Markov
chains. The classic approach to proving absence of phase transition is by proving convergence
of the cluster expansion; the original bound here is 1/(evq(r)) due to Groeneveld [24]. In small
dimensions (most significantly in dimension 2) improvements to the radius of convergence
can be obtained [20]. On the other hand, this approach is inherently limited by the presence
of non-physical singularities on the negative real axis. Alternative approaches avoiding
this obstruction include using the equivalence of spatial and temporal mixing [33, 56]; or
disagreement percolation [11, 34, 8]. The best current bound for absence of phase transition
for the hard-sphere model and for repulsive pair potentials is the bound of e/Cy (and e/Ay)
obtained by Michelen and Perkins [55, 56, 54]. Theorem 1.4 brings the bound for efficient
perfect sampling up to this bound.

On a technical level, the most relevant past work is [18], in which the authors prove
that for discrete spin systems, strong spatial mixing and subexponential volume growth of a
sequence of graphs imply the existence of an efficient perfect sampling algorithm. We take
their approach as a starting point but need new ideas to replace their exhaustive enumeration
of configurations.

A key step in our algorithm is the use of a Bernoulli factory to implement a Bayes
filter. Bernoulli factories are algorithms by which a Bernoulli random variable with success
probability f(p) can be simulated (perfectly) by an algorithm with access to independent
Bernoulli p random variables, where the algorithm does not know the value p. Whether a
Bernoulli factory exists (and how efficient it can be) depends on the function f(-) and a
priori bounds on the possible values p. Bernoulli factories have been studied in [61, 37, 14]

and recently used in the design of perfect sampling algorithms for CSP solutions in [31, 32].

Future directions

There are a number of extensions and improvements to these results one could pursue.

Perhaps most straightforward would be to relax the notion of strong spatial mixing from
exponential decay to decay faster than the volume growth of R? and to extend the results
to repulsive potentials of unbounded range but finite temperedness constant C,. Moreover,
it would be nice to upgrade the guarantees of the algorithm in Theorem 1.4 to that of
Theorem 1.2: that the algorithm does not need prior knowledge of the strong spatial mixing
constants a, b to run correctly.

An ambitious and exciting direction would be to remove the assumption of a repulsive
potential and find efficient perfect sampling algorithms for the class of stable potentials (see
e.g. [62, 67, 68] for a definition). A stable potential is repulsive at short ranges but can
include a weak attractive part; such potentials include the physically realistic Lenard-Jones
potential among others [75]. This would require some very new ideas, as much of the
recent probabilistic and algorithmic work on Gibbs point processes (e.g. [55, 56, 8, 54]) has
used repulsiveness as an essential ingredient (for one, repulsiveness of the potential implies
stochastic domination by the underlying Poisson point process). As a notable exception, a
deterministic approximation algorithm for partition functions of finite-range stable potentials
based on cluster expansion was recently proposed in [41].
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1.4 OQutline of the paper

In Section 2, we describe the high-level idea and intuition behind the algorithm. In Section 3
we introduce some notation and present some preliminary results that we will use throughout
the paper. In Section 4 we present the algorithm that we will apply to both hard spheres
and more general processes, and we state the main theorems and lemmas that we use for
proving Theorem 1.2. The more general setting of bounded-range repulsive potentials (i.e.,
Theorem 1.4) can be found in the full version of the paper [3]. Intermediate steps and proves
are omitted and can be found in the full version as well.

2 Intuitive idea behind the algorithm

Our algorithm is an adaptation to continuum models of the work by Feng, Guo, and Yin [18]
on perfect sampling from discrete spin systems. We mimic their setting of a spin system on
a graph G = (V| E) by putting a graphical structure on sub-regions of our continuous space.

Let A = [0, L) ¢ R? be the region considered, A > 0 the activity, and let ¢ be a repulsive
potential of range r > 0. We subdivide A into (Ay)pey, a set of smaller boxes of side length
r indexed by vertices of a graph: each box corresponds to a vertex and boxes are connected
if they are within r of each other, i.e., particles in the boxes can interact directly through the
potential ¢. We fix the index set for the boxes to be V C INd, where each v € V corresponds
to the box A, = [v1r, (v1 4+ 1)r) X -+ X [vgr, (vg + 1)r). We extend this notation to sets of
indices S C V by setting As = |J,cg Av. Further, we denote by By (v) the set of indices
w € V with v —w]||, < k. To shorten notation, we write 95 = (U,cg B1(v)) \ S for the
outer boundary of a set of boxes indexed by S C V.

Our algorithm runs iteratively, keeping track of two random variables: a point config-
uration X; € Ny with Xy = ), and a set of ‘incorrect’ boxes Uy C V with Uy = V. With
each iteration ¢ we maintain the following invariant: the partial configuration X; N (Ay, )¢
is distributed according to the projection of uy to (Ay, )¢ under the boundary condition
X N Ay,. Tt follows that X, is distributed according to uy once we reach the state U; = ().

C

We proceed by sketching an iteration of the algorithm. An example for the involved
subregions is given in Figure 1. Each iteration runs as follows:

1. We choose u; € U; uniformly at random and attempt to ‘repair’ it by updating X; on a
neighborhood of boxes B = {u;} U (Be(u;) \ U;) for some update radius £ € IN.

2. We sample a Bayes filter F; (i.e., a Bernoulli random variable) with probability depending
on the potential ¢, the activity A, and the current point configuration X; on A,, and
A8B-

3.a) If F; =1, we set Upy1 =U; \ {u:} and we get X;1 by updating X; on Ap according

to a projection of py conditioned on the boundary configuration X; N (Ag)°.
b) If F; = 0, the configuration is unchanged and we add the boundary boxes to our
‘incorrect’ list, i.e., X;11 = Xy and Uy = U, U OB.

We use the Bayes filter, as in [18], to remove bias from the resulting distribution. To
give some intuition for its role, suppose we run a naive version of the algorithm where we
always update X; on Ap as in step 3.a) above. Assuming the desired invariant holds after
t iterations, this naive algorithm gives a bias to the distribution of X;,; proportional to

z A
AB\{“‘}( thAaBU{"‘)) . We choose the Bayes filter such that, conditioned on F; = 1, the
Zng (AXthBB)
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Figure 1 The box-shaped region A C R? is divided into
boxes of side length r (dotted lines). The boxes U; are bor-
dered by bold black lines. For u; as given and update radius
¢ = 2, the corresponding set B of boxes to be updated is
indicated by the red hatched area (falling left to right). Its

e, R e oo
, % 7 gray bacl%ground.

H

s

bias term gets canceled. This suggests the choice

ZAB (/\Xtﬂ/\aB) (3)

)

P[Ft =1 ‘ Xt,ut,’ult

= C(utvut) Xt) :
N fur) ()‘XtﬂAaBu{ut})

where the choice C'(U;,us, Xt) serves three main purposes.
First, it must guarantee that the right-hand side of (3) is a probability. To achieve this
we need, for H = (U, U B)® and almost all realizations of X;, U; and u;, that

ZAp\ (u, (Agu(xtm\ t))
CU,u, Xy) < iJI\lff D /.
EENA Y, ZAB (AfU(XthMf,\{ut}))

(4)

Second, C (U, us, Xt) must introduce no new bias. Carrying out the calculations, it can be
seen that this is guaranteed if C'(Uy, ut, X¢) only depends on X; N Ay, . Finally, it must ensure
that the algorithm terminates almost surely. It suffices to ensure C(U;, us, X;) is uniformly
bounded away from 0 for almost all realizations of X;, implying that the same holds for the
right-hand side of (3). We refer to a function C(-) satisfying these requirements as a Bayes
filter correction.

If we use a Bayes filter as given in (3), keeping X; and U; unchanged whenever Fy = 0
introduces new bias. To prevent this, we set U1 = Uy U IB in step 3.b), effectively deleting
the part of the configuration that was revealed by the filter. Since the algorithm only
terminates once U; = (), we further require the Bayes filter correction to ensure that the
probability of F; = 0 is small to guarantee efficiency.

Constructing a Bayes filter correction that satisfies the requirements above and allows
for efficient sampling of F; is a non-trivial task. In the next subsections, we present two
approaches for this, the first specialized to the hard-sphere model without requirements, and
the second one for more general potentials with strong spatial mixing of the point process.
Crucially, assuming strong spatial mixing, both constructions allow us to control the success
probability of the Bayes filter via the update radius ¢ in the construction of the updated set
of boxes B (see step 1).

2.1 Bayes filter for the hard-sphere model

To construct a Bayes filter for the hard-sphere model, we efficiently approximate the right-
hand side of (4). To approximate the infimum over the uncountable set of configurations
¢ € Ny, we take the minimum over a finite, but sufficiently rich set of configurations,
balancing the quality of approximation with the computation required. In fact the number
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of configurations needed will depend only on the volume of Agugp. We approximate the
fraction of partition functions in (4) with running time only depending on the volume of
Apusp. As a result, we efficiently compute a Bayes filter correction C¢(-), with the parameter
g > 0 controlling how much C. (U, us, X;) deviates from the right-hand side of (4).

While our construction of C.(-) guarantees correctness of the sampling algorithm for
any € > 0, proving efficiency requires more. With strong spatial mixing, we choose ¢ so
that the probability that F; = 0 is uniformly bounded above, ensuring O(]A|) iterations in
expectation.

It remains to argue that we can efficiently sample F}, using the Bayes filter correction
C.(+). Explicitly computing the success probability of F; as in (3) would require computing
the fraction of partition functions on the right-hand side exactly, while approximating these
partition functions would require that the approximation error only depends on X; N Ay, to
avoid new bias.

It is unclear how to implement these approaches, so instead we use Bernoulli factories to
sample F}; without knowing the success probability. To do so, we observe that the fraction of
partition functions can be written as a ratio of probabilities for drawing the empty set from a
conditional hard-sphere model on Ap and Ap\ fy,}. Since both regions have constant volume,
rejection sampling obtains Bernoulli random variables with these success probabilities in
constant time. Hence, we obtain a Bernoulli factory for F; with constant expected running
time. Wald’s identity yields a total expected running time O(|A]) for the algorithm.

2.2 Bayes filter for general potentials

We now consider the case of general bounded-range, repulsive potentials. Unlike the hard
sphere model, it is not clear here how to approximate the infimum in (4) from a finite set of
boundary configurations. However, given constants a,b > 0 such that ¢ satisfies (a, b)-strong
spatial mixing, we can explicitly compute a function §(a,b) so that

ZAp\fur) ()‘Xtm\ut)
ZAg ()‘Xtm\ut\{ut})

Ca,b(utautaXt) = 6(0‘7 b) :

is a Bayes filter correction. With strong spatial mixing, we use Cy () to construct a Bayes
filter such that probability that F;, = 0 is bounded above, again implying a bound of O(|A|)
on the expected number of iterations of the algorithm.

Note that in this setting, we require spatial mixing for both correctness and efficiency,
while for the hard-sphere model we only need it for efficiency. Another crucial difference is
that, while we can explicitly compute 6(a,b), the same does not hold for C, ;(-) due to the
fraction of partition functions involved. Again we circumvent this by rewriting the success
probability of the Bayes filter in a suitable way and applying a Bernoulli factory for sampling
F;. Finally, we point out that we do not obtain a constant bound for the expected running
time of each iteration, but instead the bound depends on the number of points in X; N Aypg.
Possible dependencies between the configuration X; and the number of iterations prevent us
from bounding the total expected running time using Wald’s identity. Instead, we provide
tail bounds on the number of iterations and the running time of each iteration, allowing us to
derive an expected total running time that is linear in the volume of A up to polylogarithmic
factors.
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3 Preliminaries

Throughout the paper, we write IN for the set of strictly positive integers, and we write
Ny = NU {0}. For any k € IN, we denote by [k] the set [1, k] N IN.

For a bounded measurable region A C R? and any finite point configuration n € Ny, we
write |n| for the number of points in 7. Note that this notation is the same that as the one

we use for the volume of a region. The particular meaning will be clear from the context.

Moreover, for k € IN, we write (Z) for the set {n/ Cn | |n'|=k}.

3.1 Gibbs point processes

We introduce some additional notation for Gibbs point processes, used in the rest of the
paper. Firstly, when dealing with a tuple (z1,...,2;) € (RY)* we frequently denote it by
the corresponding bold letter . Based on this, we write dz for dz; ... dxy and H(z) for
H(z1,...,z;). Moreover, for any k € Ny and & = (z1,...,z3) € (R%)* we write 7, for the
set {x1,..., 73}, where the case k = 0 results in 7, = (. Finally, for £ € A* we write A% for
[Ticg A(@s). This simplifies the definition of y5 given in the introduction to

1 1
pa(A) = 0 > il /A 1,y eaX®e 1@ dg.
k>0

Next, we formalize two different notions of restricting a Gibbs point process on A to a
subregion A’ C A that are relevant throughout the paper.

The first is based on restricting the support of A by defining a new activity function
Ap iy = A(y) - Lyear (for constant activity A, we write Al os : y — Alycar). The resulting
Gibbs point process is a probability measure on (N, R,) with

1 1
A= ———— — 1 L )Ee H®)
pan,, (A) Za (M) k§>0 7l /Ak necA(ALpr)%e dz

1 1
= — 1 Ne @) qg
ZA,(,\)Zk! /A na €A% C

k>0

for all A € 9®5. In particular, for A = {n € Ny | nN(A)® > 0}, it holds that jxy,,(A) = 0.

The second way of restricting a Gibbs point process uy is by projecting it to a measurable
subregion A’ C A. To this end, we write uy[A’] for the image measure of uy under the map
Na = Nar, n—=nn AL By construction, puy[A’] is a probability distribution on (Ma/, Ra/)
that, for every A € PRy, assigns a probability

1 1
ANA) = ——=> = [ 1, ~near®e @ dg.
palN(4) ZA<A>,§M/M poeaX®e 1) do

As discussed in Section 1, we frequently modify the activity function to encode the effect
of fixing a certain point set (boundary condition). More precisely, for a fixed potential ¢, an

activity function A and a point set n € N, we write A, for the function y — A(y)e Zwén

Similarly, for ¥ € IN and & € A* we write A, for the activity function y — A(y)e 2iem

We extend this notation to constant activity A € R>q, writing A, : y — e Zwen @9 and

Az 1Y — e 2ienm @ey), Using this notation, a useful alternative definition of uy[A'] is
given by

1 1
N](A) = = 1 o= HE@) 7, (AL ane
ialN(4) ZA<A>,§,M/M reANTe @ 7y (1 () do

¢(:v,y)
d(x4,y)
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1 1
= ) 1 N _H(x)Z ne(X) d
ZA(N) ]gk! /A,k e €AAC (A (Az) dx

for A € Rp/. In particular, note that

/ _ 1 l/ x —H(x)
a1 = s 3 [ s )t

While fixg,,[A’] and juxg,, seem similar, the former is a distribution on (NMy/,9R,/) whereas
the latter is defined on (N, Ra).

3.2 Bernoulli factories

In designing our sampling algorithm, it will be useful to consider the following Bernoulli
factory problem. We are given access to a sampler for Ber(p) and for Ber(g), that is samplers
of Bernoulli random variables with parameters p and q respectively, where we further assume
p < q. We want to sample a random variable Z ~ Ber % .

Most work on Bernoulli factories studies their running time in terms of the number of coin
flips required. In our setting, the time needed to generate each of these coin flips is random
variable. Fortunately, suitable independence assumptions hold in our setting allowing us to
prove the following lemma.

» Lemma 3.1. Fiz some p,q € [0,1] such that ¢ — p > € for some ¢ > 0. Further assume
that we have oracle access to a sampler from Ber(p) and Ber(q) in the following sense:

1. every sample from Ber(p) (resp. Ber(q)) is independent from all previous samples;
2. the expected running time for obtaining a sample from Ber(p) (resp. Ber(q)), conditioned
on previously obtained samples, is uniformly bounded by some t € Rx>g.

Then we can sample from Ber(%) n O(tefz) expected time.

4 The algorithm

Let A = [0, L)¢ and consider a Gibbs point processes on A with uniform activity A(z) = X for
some X\ € R~ and repulsive potential ¢ with finite range r € R~. Throughout the analysis
of our algorithm, it will be useful to focus on configurations n € Ny such that ¢(z,y) < oo
for all {z,y} € (;’), in which case we call 1 a feasible configuration.

Before stating our algorithm, we first formalize how we divide A into smaller boxes,
following the description given in Section 2. For a r and L as above, let N = [L/r].
We set V = {0,...,N — l}d to be the set of box indices and associate each box index
v =(v1,...,vq) €V with the region Ay = ([v17, (v1 + 1)r) X -+ X [vgr, (vg + 1)r)) NA. As
in Section 2, we extend this notation to sets of box indices S C V by setting Ag = J,cg Av-
Further, recall that, for v € V, we write By (v) for the set of boxes w € V with ||v —w| _ < k.
As mentioned earlier, our algorithm tries to update in each step the point configuration on a
subset of boxes B C V. To this end, for S C V, v € S;r € R~ and £ € IN, we define

B(S,v,0) = {v} U (By(0) \ S).

We refer to the parameter £ as the update radius. Finally, recall that we write 0S =
(Upes Bi(v)) \ S for the outer boundary of S C V.

Whether the algorithm updates the point configuration in iteration ¢ depends on the
outcome of a Bernoulli random variable F}, called the Bayes filter. We introduce the following
definition.
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» Definition 4.1. Fiz a repulsive potential ¢ of range r € Rsq, an activity A € R~ and
some { € N. We call a function C : 2V x V x Ny — [0,1] a Bayes filter correction if, for all
non-empty S CV andv € S, it holds that

1. C(S,v,-) is Rag-measurable (in particular C(S,v,n) = C(S,v,n N Ag) for alln € Np),
2. there is some € > 0 such that for B = B(S,v,{), H = (SU B)° and all feasible n € Ny it
holds that

e <C(S,v,n) < inf 2N\ () (/\fu(nm\s))
- ¢eN,
§U(nNAs) ?steasible Zng (AEU(UﬂAs\{v)))

Our perfect sampling procedure is stated in Algorithm 1.

Algorithm 1 Perfect sampling algorithm for repulsive Gibbs point processes

Data: region A = [0, L)%, repulsive potential ¢ of range at most r € R, activity
A € Ry, update radius £ € IN

sett=0,Us =V, X; =0

2 while U; # () do

3 draw u; € U; uniformly at random

4 set B = B(Uy,ut, )

—

5 draw F; from Ber <C’(L{t,ut, Xy) - Zap (Axinrop) > where C' is a Bayes

Zap uey \MXe080 0w,y
filter correction as in Definition 4.1

6 if F;, = 1 then

7 draw Y from FXxyniagelag [AB]
8 set Xy = (X \Ap)UY

9 set Z/{tﬂ = Z/{t \ {Ut}

10 else

11 L set U1 =U UOB

12 increase t by 1

13 return X;

Before we get to the question of how to sample an appropriate Bayes filter in step 5, the
following statement ensures that the algorithm produces the correct output distribution.

» Theorem 4.2. Let T = infyew{Uy = 0}. Then T is almost surely finite and for all t € Ny
with P[t > T] > 0 and all A € Ry, it holds that P[X, € A |t > T = uxr(A4).

We proceed to exemplify how we use Bernoulli factories to sample the Bayes filter. For
brevity, we focus on the hard-sphere model here. The more general case of bounded-range
repulsive potential can be found in the full version of the paper [3].

Bayes filter for the hard-sphere model

Recall that for the hard-sphere model, we have ¢(x,y) = oo if dist(x,y) < r and 0 otherwise.

Given a non-empty set of boxes S C V, v € S and a feasible configuration n € Ay, we want

to construct a Bayes filter correction C(S,v,n) that allows us to efficiently sample the filter.

To this end, set B = B(S,v,¢) and H = (S U B)¢. Our construction makes use of two
ingredients. Firstly, we argue that, instead of minimization over the uncountable set of
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boundary conditions NV}, , it suffices to minimize over subsets of the finite set (J; Z)d NAgnoB
for a sufficiently small §; > 0. Secondly, choosing a sufficiently small 5 > 0, we show that
we can approximate the involved partition functions using the function

2(8m0) = Y. ADA) Dy [N Ass), (5)

’yg(égz)dﬂl\s

where D(v) = H{w,y}e(;) Laist(z,y)>r and D(y | ) = Hme’y Hyen Laist(a,y)>r-
The following lemma then gives a way to construct a Bayes filter correction for the
hard-sphere model.

» Lemma 4.3. For non-empty S CV, v € S, feasible n € N and ¢,01, 02 > 0 define
Z(B\ {v},7U (N As), 6)
YC(61Z)*NArnon Z(B, YU (N AS\,,,), 52)

where B = B(S,v,¢) and H = (S U B)¢. For 61,0 sufficiently small, depending only on
d,r, 0 and e, it holds that C.(S,v,n) is a Bayes filter correction.

05(57'077]) =e -

)

In fact, we will not use C. directly for our Bayes filter, but a slightly scaled version
0 < e °C¢, which is again a Bayes filter correction. The additional slack allows us to
efficiently sample the Bayes filter by using a Bernoulli factory, as we argue in the next lemma.

» Lemma 4.4. Let S CV be non-empty, v € S andn € Ny be feasible, and set B = B(S,v,Y).
For all ¢ > 0 we can sample a Bernoulli random variable with success probability

ZAB (/\170/\65)
ZAB\{v} (/\nﬂ/\asu{v})

with expected running time only depending on €, £, v, X and d.

e_ECE(S,’U, 77) ’

Zap (A"IﬁAaB)

AB\{v} (’\"”Aasu{v}

Together with the fact that e °C.(S,v,n) < 1, this allows us to write the success probability

of the Bayes filter as a fraction of probabilities g. Arguing that p < ¢, and that we can

sample Ber(p) and Ber(q) efficiently allows us to apply Lemma 3.1 to prove Lemma 4.4.
While the above suffices to perform each iteration of Algorithm 1 efficiently, we still

need to bound the number of iterations. For this, we derive a lower bound on the success

probability of the Bayes filter with correction e *C¢(-) for a particular choice of ¢, using the

assumption of strong spatial mixing.

The core idea of the above lemma to express as a fraction of probabilities.

» Lemma 4.5. Consider a hard-sphere model that exhibits (a,b)-strong spatial mixing up
to A\. Then there are constants a’,b’, only depending on a, b, v, A\ and d, such that for all
non-empty S CV, v € S and feasible n € N it holds that

e Znn(A
I [Ce—z (S,'U, 77) . ~ Ap ()\VIOABB)
AB\{v)( nﬁAaBu{v))

Lemma 4.5 allows us to control the success probability of the Bayes filter in terms of /.
Combining the results above gives the following theorem.

>1—de ¥

» Theorem 4.6. Consider Algorithm 1 on a hard-sphere model with C(-) = e_eleCefz(-) as
Bayes filter correction in line 5. We can run the algorithm in almost-surely finite running
time and, on termination, it outputs a sample from the hard-sphere Gibbs measure uy on A.
Moreover, if the hard-sphere model satisfies (a,b)-strong spatial mizing and if £ is chosen as
a sufficiently large constant, depending on a, b, r, A and d, then we can run the algorithm in
expected time O(|A]).
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