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This article gives a new proof that fully connected neural networks with
random weights and biases converge to Gaussian processes in the regime
where the input dimension, output dimension, and depth are kept fixed, while
the hidden layer widths tend to infinity. Unlike prior work, convergence is
shown assuming only moment conditions for the distribution of weights and
for quite general nonlinearities.

1. Introduction. In the last decade or so neural networks, originally introduced in the
1940’s and 50’s [29, 44], have become indispensable tools for machine learning tasks ranging
from computer vision [32] to natural language processing [9] and reinforcement learning
[46]. Their empirical success has raised many new mathematical questions in approximation
theory [13, 54, 55], probability (see §1.2.2 for some references), optimization/learning theory
[7, 8, 31, 57] and so on. The present article concerns a fundamental probabilistic question
about arguably the simplest networks, the so-called fully connected neural networks, defined
as follows:

DEFINITION 1.1 (Fully connected network). Fix a positive integer L as well as L + 2
positive integers n0, . . . , nL+1 and a function σ : R → R. A fully connected depth L neural
network with input dimension n0, output dimension nL+1, hidden layer widths n1, . . . , nL,
and nonlinearity σ is any function xα ∈R

n0 �→ z
(L+1)
α ∈ R

nL+1 of the following form

z(�)
α =

{
W (1)xα + b(1) � = 1,

W (�)σ
(
z(�−1)
α

)
+ b(�) � = 2, . . . ,L + 1,

where W (�) ∈ R
n�×n�−1 are matrices, b(�) ∈ R

n� are vectors, and σ applied to a vector is
shorthand for σ applied to each component.

The parameters L,n0, . . . , nL+1 are called the network architecture, and z
(�)
α ∈ R

n� is
called the vector of pre-activations at layer � corresponding to input xα . A fully connected
network with a fixed architecture and given nonlinearity σ is therefore a finite (but typically
high) dimensional family of functions, parameterized by the network weights (entries of the
weight matrices W (�)) and biases (components of bias vectors b(�)).

This article considers the mapping xα �→ z
(L+1)
α when the network’s weights and biases are

chosen independently at random and the hidden layer widths n1, . . . , nL are sent to infinity
while the input dimension n0, output dimension nL+1, and network depth L are fixed. In this
infinite width limit, akin to the large matrix limit in random matrix theory (see §1.2), neural
networks with random weights and biases converge to Gaussian processes (see §1.4 for a
review of prior work). Unlike prior work Theorem 1.2, our main result, is that this holds for
general nonlinearities σ and distributions of network weights (cf §1.3).
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Moreover, in addition to establishing convergence of wide neural networks to a Gaussian
process under weak hypotheses, the present article gives a mathematical take aimed at prob-
abilists of some of the ideas developed in the recent monograph [43]. This book, written in
the language and style of theoretical physics by Roberts and Yaida, is based on research done
jointly with the author. It represents a far-reaching development of the breakthrough work of
Yaida [49], which was the first to systematically explain how to compute finite width correc-

tions to infinite width Gaussian process limit of random neural networks for arbitrary depth,
width, and nonlinearity. Previously, such finite width (and large depth) corrections were only
possible for some special observables in linear and ReLU networks [21, 23–25, 39, 56]. The
present article deals only with the asymptotic analysis of random neural networks as the
width tends to infinity, leaving to future work a probabilistic elaboration of some aspects of
the approach to finite width corrections from [43].

1.1. Roadmap. The rest of this article is organized as follows. First, in §1.2 we briefly
motivate the study of neural networks with random weights. Then, in §1.3 we formulate our
main result, Theorem 1.2. Before giving its proof in §2, we first indicate in §1.4 the general
idea of the proof and its relation to prior work.

1.2. Motivation for studying random neural networks.

1.2.1. Practical motivations. It may seem at first glance that studying neural networks
with random weights and biases is of no practical interest. After all, a neural network is only
useful after it has been “trained,” that is, one has found a setting of its parameters so that
the resulting network function (at least approximately) interpolates a given training dataset
of input-output pairs (x, f (x)) for an otherwise unknown function f : Rn0 →R

nL+1 .
However, the vast majority of neural network training algorithms used in practice are vari-

ants of gradient descent starting from a random initialization of the weight matrices W (�) and
bias vectors b(�). Studying networks with random weights and biases therefore provides an
understanding of the initial conditions for neural network optimization.

Beyond illuminating the properties of networks at the start of training, the analysis of ran-
dom neural networks can reveal a great deal about networks after training as well. Indeed, on
a heuristic level, just as the behavior of the level spacings of the eigenvalues of large random
matrices is a surprisingly good match for emission spectra of heavy atoms [48], it is not un-
reasonable to believe that certain coarse properties of the incredibly complex networks used
in practice will be similar to those of networks with random weights and biases. More rigor-
ously, neural networks used in practice often have many more tunable parameters (weights
and biases) than the number of datapoints from the training dataset. Thus, at least in certain
regimes, neural network training provably proceeds by an approximate linearization around
initialization, since no one parameter needs to move much to fit the data. This so-called NTK
analysis [14, 16, 30, 31, 35] shows, with several important caveats related to network size
and initialization scheme, that in some cases the statistical properties of neural networks at
the start of training are the key determinants of their behavior throughout training.

1.2.2. Motivation from random matrix theory. In addition to being of practical impor-
tance, random neural networks are also fascinating mathematical objects, giving rise to new
problems in approximation theory [12, 13, 22, 54, 55], random geometry [26, 27], and ran-
dom matrix theory (RMT). Perhaps the most direct, though by no means only, connection to
RMT questions is to set the network biases b(�) to zero and consider the very special case
when σ(t) = t is the identity (in the machine learning literature these are called deep linear
networks). The network function

(1.1) z(L+1)
α = W (L+1) · · ·W (1)xα



4800 B. HANIN

is then a linear statistic for a product of L + 1 independent random matrices. Such matrix
models have been extensively studied, primarily in two regimes. The first is the multiplica-
tive ergodic theorem regime [10, 17, 18, 45], in which all the layer widths n0, . . . , nL+1 are
typically set to a fixed value n and the network depth L tends to infinity. The second regime,
where L is fixed and the layer widths n� (i.e., matrix dimensions) tend to infinity, is the
purview of free-probability [38, 47].

In the presence of a nonlinearity σ , random neural networks provide nonlinear general-
izations of the usual RMT questions. For instance, the questions taken up in this article are
analogs of the joint normality of linear statistics of random matrix products in the free proba-
bility regime. Further, random neural networks give additional motivation for studying matrix
products appearing in (1.1) when the matrix dimensions n� and the number of terms L are
simultaneously large. This double scaling limit reveals new phenomena [3–6, 20, 24, 25] but
is so far poorly understood relative to the ergodic or free regimes.

Finally, beyond studying linear networks, random matrix theory questions naturally ap-
pear in neural network theory via nonlinear analogs of the Marchenko–Pastur distribution for
empirical covariance matrices of z

(L+1)
α when α ∈ A ranges over a random dataset of inputs

[1, 28, 41, 42] as well as through the spectrum of the input-output Jacobian [24, 42] and the
NTK [2, 16].

1.3. Main result. Our main result shows that under rather general conditions, when the
weights W (�) and biases b(�) of a fully connected network are chosen at random, the result-
ing field xα �→ z

(L+1)
α converges to a centered Gaussian field with iid components when the

input dimension n0 and output dimension nL+1 are held fixed but the hidden layer widths
n1, . . . , nL tend to infinity. To give the precise statement in Theorem 1.2 below, fix a fully
connected neural network with depth L ≥ 1, input dimension n0, output dimension nL+1,
hidden layer widths n1, . . . , nL ≥ 1, and nonlinearity σ : R → R. We assume that σ is ab-
solutely continuous and that its almost-everywhere defined derivative (and hence σ itself) is
polynomially bounded:

(1.2) ∃k > 0 s.t. ∀x ∈R

∥∥∥∥
σ ′(x)

1 + |x|k

∥∥∥∥
L∞(R)

< ∞.

All nonlinearities used in practice satisfy these rather mild criteria. Further, let us write W
(�)
ij

for the entries of the weight matrices W (�) and b
(�)
i for the components of the bias vectors

b(�). For � ≥ 2 the Definition 1.1 of fully connected networks means that the formula for the
components of the pre-activations z

(�)
α at layer � in terms of those for z

(�−1)
α reads

(1.3) z
(�)
i;α := b

(�)
i +

n�−1∑

j=1

W
(�)
ij σ

(
z
(�−1)
j ;α

)
, i = 1, . . . , n�,

where we’ve denoted by z
(�)
i;α the ith component of the n�-dimensional vector of pre-

activations z
(�)
α in layer � corresponding to a network input xα ∈ R

n0 . We make the following
assumption on the network weights:

(1.4) W
(�)
ij :=

(
CW

n�−1

)1/2
Ŵ

(�)
ij , Ŵ

(�)
ij ∼ μ iid,

where μ is a fixed probability distribution on R such that

(1.5) μ has mean 0, variance 1, and finite higher moments.
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We further assume the network biases are iid Gaussian1 and independent of the weights:

(1.6) b
(�)
i ∼ N (0,Cb) iid.

In (1.4) and (1.6), CW > 0 and Cb ≥ 0 are fixed constants. These constants do not play an
important role for the analysis in this article but will be crucial for followup work. With the
network weights and biases chosen at random the vectors z

(�)
α are also random. Our main

result is that, in the infinite width limit, they have independent Gaussian components.

THEOREM 1.2. Fix n0, nL+1 and a compact set T ⊆ R
n0 . As the hidden layer widths

n1, . . . , nL tend to infinity, the sequence of stochastic processes

xα ∈ R
n0 �→ z(L+1)

α ∈R
nL+1

converges weakly in C0(T ,RnL+1) to a centered Gaussian process taking values in R
nL+1

with iid coordinates. The coordinate-wise covariance function

K
(L+1)
αβ := lim

n1,...,nL→∞
Cov

(
z
(L+1)
i;α , z

(L+1)
i;β

)

for this limiting process satisfies the layerwise recursion

(1.7) K
(�+1)
αβ = Cb + CWE

[
σ(zα)σ (zβ)

]
,

(
zα

zβ

)
∼N

(
0,

(
K(�)

αα K
(�)
αβ

K
(�)
αβ K

(�)
ββ

))

for � ≥ 2, with initial condition

(1.8) K
(2)
αβ = Cb + CWE

[
σ
(
z
(1)
1;α

)
σ
(
z
(1)
1;β

)]
,

where the distribution of (z
(1)
1;α, z

(1)
1;β) is determined via (1.3) by the distribution of weights and

biases in the first layer and is not universal.

We prove Theorem 1.2 in §2. First, we explain the main idea and review prior work.

1.4. Theorem 1.2: Discussion, main idea, and relation to prior work. At a high level,
the proof of Theorem 1.2 (specifically the convergence of finite-dimensional distributions)
proceeds as follows:

1. Conditional on the mapping xα �→ z
(L)
α , the components of the neural network output

xα �→ z
(L+1)
α are independent sums of nL independent random fields (see (1.3)), and hence,

when nL is large, are each approximately Gaussian by the CLT.
2. The conditional covariance in the CLT from step 1 is random at finite widths (it

depends on z
(L)
α ). However, it has the special form of an average over j = 1, . . . , nL of the

same function applied to each component z
(L)
j ;α of the vector z

(L)
α of pre-activations at the last

hidden layer. We call such objects collective observables (see §2.1.2 and (1.10)).
3. While z

(�)
j ;α are not independent at finite width when � ≥ 2, they are sufficiently

weakly correlated that a LLN still applies to any collective observable in the infinite width
limit (see §2.1.2).

4. The LLN from step 3 allows us to replace the random conditional covariance matrix
from steps 1 and 2 by its expectation, asymptotically as n1, . . . , nL tend to infinity.

1As explained in §1.4 the universality results in this article are simply not true if the biases are drawn iid from
a fixed non-Gaussian distribution.
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We turn to giving a few more details on steps 1-4 and reviewing along the way the relation
of the present article to prior work. The study of the infinite width limit for random neural
networks dates back at least to Neal [37], who considered networks with one hidden layer:

z
(2)
i;α = b

(2)
i +

n1∑

j=1

W
(2)
ij σ

(
z
(1)
j ;α

)
, z

(1)
j ;α = b

(1)
j +

n0∑

k=1

W
(1)
jk xk;α,

where i = 1, . . . , n2. In the shallow L = 1 setting of Neal if in addition n2 = 1, then neglect-
ing the bias b

(2)
1 for the moment, the scalar field z

(2)
1;α is a sum of iid random fields with finite

moments, and hence the asymptotic normality of its finite-dimensional distributions follows
immediately from the multidimensional CLT. Modulo tightness, this explains why z

(2)
1;α ought

to converge to a Gaussian field. Even this simple case, however, holds several useful lessons:

• If the distribution of the bias b
(2)
1 is fixed independent of n1 is and non-Gaussian, then the

distribution of z
(2)
1;α will not be Gaussian, even in the limit when n1 → ∞.

• If the first layer biases b
(1)
j are drawn iid from a fixed distribution μb and σ is nonlinear,

then higher moments of μb will contribute to the variance of each neuron post-activation
σ(z

(1)
j ;α), causing the covariance of the Gaussian field at infinite width to be nonuniversal.

• Unlike in deeper layers, as long as n0 is fixed, the distribution of each neuron pre-activation
z
(1)
j ;α in the first layer will not be Gaussian, unless the weights and biases in layer 1 are

themselves Gaussian. This explains why, in the initial condition (1.8) the distribution is
non-Gaussian in the first layer.

In light of the first two points, what should one assume about the bias distribution? There are,
it seems, two options. The first is to assume that the variance of the biases tends to zero as
n1 → ∞, putting them on par with the weights. The second, which we adopt in this article,
is to declare all biases to be Gaussian.

The first trick in proving Theorem 1.2 for general depth and width appears already when
L = 1 but the output dimension n2 is at least two.2 In this case, even for a single network
input xα , at finite values of the network width n1 different components of the random n2-
dimensional vector z

(2)
α are not independent, due to their shared dependence on the vector

z
(1)
α . The key observation, which to the author’s knowledge was first presented in [34], is

to note that the components of z
(2)
α are independent conditional on the first layer (i.e., on

z
(1)
α ) and are approximately Gaussian when n1 is large by the CLT. The conditional variance,

which captures the main dependence on z
(1)
α , has the following form:

(1.9) �(2)
αα := Var

[
z
(2)
i;α|z(1)

α

]
= Cb +

CW

n1

n1∑

j=1

σ
(
z
(1)
j ;α

)2
.

This is an example of what we will call a collective observable, an average over all neurons in
a layer of the same function applied to the pre-activations at each neuron (see §2.1.2 for the
precise definition). In the shallow L = 1 setting, �(2)

αα is a sum of n1 iid random variables with
finite moments. Hence, by the LLN, it converges almost surely to its mean as n1 → ∞. This
causes the components of z

(2)
α to become independent in the infinite width limit, since the

source of their shared randomness, �
(2)
αα , can be replaced asymptotically by its expectation.

The proof for general L follows a similar pattern. Exactly as before, for any 0 ≤ � ≤ L,
the components of the pre-activations at layer �+ 1 are still conditionally independent, given

2Neal [37] states erroneously on page 38 of his thesis that z
(2)
i;α and z

(2)
j ;α will be independent because the weights

going into them are independent. This is not true at finite width but becomes true in the infinite width limit.
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the pre-activations at layer �. When the width n� is large the conditional distribution of each
component over any finite collection of inputs is therefore approximately Gaussian by the
CLT. Moreover, the conditional covariance across network inputs has the form:

(1.10) �
(�+1)
αβ := Cov

(
z
(�+1)
i;α , z

(�+1)
i;β |z(�)

α , z
(�)
β

)
= Cb +

CW

n�

n�∑

j=1

σ
(
z
(�)
j ;α

)
σ
(
z
(�)
j ;β

)
.

The summands on the right hand side are no longer independent at finite width if � ≥ 2.
However, �

(�+1)
αβ are still collective observables, and the crucial point is to check that their

dependence is sufficiently weak that we may still apply the LLN. Verifying this is the heart
of the proof of Theorem 1.2 and is carried out in §2.1.2.

Let us mention that, in addition to the approach outlined above, other methods for showing
that wide neural networks are asymptotically Gaussian processes are possible. In the prior ar-
ticle [36], for instance, the idea is to use that the entries of z

(�)
α are exchangeable and argue

using an exchangeable CLT. This leads to some technical complications which, at least in the
way the argument is carried out in [36], result in unnatural restrictions on the class of nonlin-
earities and weight distributions considered there. Let us also mention that in the article [34],
the nonindependence at finite width of the components of z

(�)
α for large � was circumvented

by considering only the sequential limit in which n� → ∞ in order of increasing �. The effect
is that for every � the conditional covariance �

(�)
αβ has already converged to its mean before

n�+1 is taken large. However, this way of taking the infinite width limit seems to the author
somewhat unnatural and is in any case not conducive to studying finite width corrections as
in [43, 49], which we plan to take up in future work.

We conclude this section by pointing the reader to several other related strands of work.
The first are articles such as [11], which quantify the magnitude of the difference

1

n�

n�∑

i=1

z
(�)
i;αz

(�)
i;β − lim

n1,...,n�→∞
E

[
1

n�

n�∑

i=1

z
(�)
i;αz

(�)
i;β

]

between the empirical overlaps n−1
� 〈z(�)

α , z
(�)
β 〉 of pre-activations and the corresponding infi-

nite width limit uniformly over network inputs xα , xβ in a compact subset of Rn0 . In a similar
vein are articles such as [15], which give quantitative estimates at finite width for the distance
from xα �→ z

(�)
α to a nearby Gaussian process.

The second is the series of articles starting with the work of Yang [50–53], which devel-
ops the study not only of initialization but also certain aspects of inference with infinitely
wide networks using what Yang terms tensor programs. As part of that series, the article
[51] establishes that in the infinite width limit many different architectures become Gaussian
processes. However, the arguments in those articles are significantly more technical than the
ones presented here since they are focused on building the foundation for the tensor pro-
gram framework. At any rate, to the best of the author’s knowledge, no prior article addresses
universality of the Gaussian process limit with respect to the weight distribution in deep net-
works (for shallow networks with L = 1 this was considered by Neal in [37]). Finally, that
random neural networks converge to Gaussian processes in the infinite width limit under
various restrictions but for architectures other than fully connected is taken up in [19, 40, 51].

2. Proof of Theorem 1.2. Let us recall the notation. Namely, we fix a network depth
L ≥ 1, an input dimension n0 ≥ 1, an output dimension nL+1 ≥ 1, hidden layer widths
n1, . . . , nL ≥ 1, and a nonlinearity σ satisfying (2.5). We further assume that the networks
weights and biases are independent and random as in (1.4) and (1.6). To prove Theorem 1.2
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we must show that the random fields xα �→ z
(L+1)
α converge weakly in distribution to a Gaus-

sian process in the limit where n1, . . . , nL tend to infinity. We start with the convergence of
finite-dimensional distributions. Let us therefore fix a collection

xA = {xα, α ∈ A}

of |A| distinct network inputs in R
n0 and introduce for each � = 0, . . . ,L + 1, every i =

1, . . . , n�, and all α ∈ A the vectorized notation

z
(�)
i;A :=

(
z
(�)
i;α, α ∈ A

)
∈ R

|A|, z
(�)
A :=

(
z
(�)
i;A, i = 1, . . . , n�

)
∈ R

n�×|A|.

The following result states that the distribution of the random variable z
(L+1)
A with values in

R
nL+1×|A| converges to that of the claimed Gaussian field.

PROPOSITION 2.1 (Convergence of finite-dimensional distributions). Fix L ≥ 1 and n0,
nL+1. The distribution of z

(L+1)
A converges weakly as n1, . . . , nL → ∞ to that of a centered

Gaussian in R
nL+1×|A| with iid rows for which the covariance

K
(L+1)
αβ = lim

n1,...,nL→∞
Cov

(
z
(L+1)
i;α , z

(L+1)
i;β

)
, α,β ∈ A

between the entries in each row satisfies the recursion (1.7) with initial condition (1.8).

Once we have proved Proposition 2.1 in §2.1, it remains to show tightness. For this, we fix
a compact subset T ⊆ R

n0 . The tightness of xα �→ z
(L+1)
α in C0(T ,RnL+1) follows immedi-

ately from the Arzelà–Ascoli theorem and the following result, which we prove in §2.2.

PROPOSITION 2.2 (High probability equicontinuity and equiboundedness of z
(L+1)
α ).

For every L ≥ 1, ε > 0 there exists C = C(ε,σ,T ,L,Cb,CW , nL+1) > 0 so that

(2.1) sup
xα,xβ∈T

‖z(L+1)
α − z

(L+1)
β ‖2

‖xα − xβ‖2
≤ C and sup

xα∈T

∥∥z(L+1)
α

∥∥ ≤ C

with probability at least 1 − ε.

2.1. Finite-dimensional distributions: Proof of Proposition 2.1. We will prove Proposi-
tion 2.1 in two steps. First, we prove a special case in which we keep the weights in layer 1
completely general as in (1.4) but take weights in layers � ≥ 2 to be independent Gaussians:

W
(�)
ij ∼ N

(
0,CWn−1

�−1

)
, iid.

We continue to assume (as in the statement of Theorem 1.2) that all biases are Gaussian:

b
(�)
i ∼ N (0,Cb), iid.

The argument in this case is the technical heart of this paper and is presented in §2.1.1–
§2.1.2. Ultimately, it relies on the analysis of collective observables, which we isolate in
§2.1.2. A simple Lindeberg swapping argument and induction on layer detailed in §2.1.3
allows us to extend Proposition 2.1 to general weights in layers � ≥ 2 from the Gaussian
case.
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2.1.1. Proof of Proposition 2.1 with Gaussian weights in layers � ≥ 2. Fix

� = (ξi, i = 1, . . . , nL+1) ∈ R
nL+1×|A|, ξi = (ξi;α, i = 1, . . . , nL+1, α ∈ A) ∈ R

|A|

and consider the characteristic function

χA(�) = E
[
exp

[
−i

〈
z
(L+1)
A ,�

〉]]
= E

[
exp

[
−i

∑

α∈A

nL+1∑

i=1

z
(L+1)
i;α ξi;α

]]

of the random variable z
(L+1)
A ∈ R

nL+1×|A|. By Levy’s continuity theorem, it is sufficient to
show that

(2.2) lim
n1,...,nL→∞

χA(�) = exp

[
−

1

2

nL+1∑

i=1

〈
K

(L+1)
A ξi, ξi

〉
]
,

where

K
(L+1)
A =

(
K

(L+1)
αβ

)
α,β∈A

is the matrix defined by the recursion (1.7) with initial condition (1.8). Writing

(2.3) F� := filtration defined by
{
W (�′), b(�′), �′ = 1, . . . , �

}
,

we may use the tower property to write

χA(�) = E
[
E
[
exp

[
−i

〈
z
(L+1)
A ,�

〉]
|FL

]]
.(2.4)

Note that conditional on FL, the random vectors z
(L+1)
i;A ∈ R

|A| in layer L + 1 for each i =
1, . . . , nL+1 are iid Gaussians, since we have assumed for now that weights in layers � ≥ 2
are Gaussian. Specifically,

z
(L+1)
i;A

d=
(
�

(L+1)
A

)1/2
Gi, Gi ∼ N (0, I|A|) iid 1 ≤ i ≤ nL+1,

where for any α,β ∈ A the conditional covariance is

(2.5)
(
�

(L+1)
A

)
αβ = Cov

(
z
(L+1)
i;α , z

(L+1)
i;β |FL

)
= Cb +

CW

nL

nL∑

j=1

σ
(
z
(L)
j ;α

)
σ
(
z
(L)
j ;β

)
.

Using (2.4) and the explicit form of the characteristic function of a Gaussian reveals

χA(�) = E

[
exp

[
−

1

2

nL+1∑

i=1

〈
�

(L+1)
A ξi, ξi

〉
]]

.(2.6)

The crucial observation is that each entry of the conditional covariance matrix �
(L+1)
A is an

average over j = 1, . . . , nL of the same fixed function applied to the vector z
(L)
j ;A. While z

(L)
j ;A

are not independent at finite values of n1, . . . , nL−1 for L > 1, they are sufficiently weakly
correlated that a weak law of large numbers still holds:

LEMMA 2.3. Fix n0, nL+1. There exists a |A| × |A| PSD matrix

K
(L+1)
A =

(
K

(L+1)
αβ

)
α,β∈A

such that for all α,β ∈ A

lim
n1,...,nL→∞

E
[(

�
(L+1)
A

)
αβ

]
= K

(L+1)
αβ and lim

n1,...,nL→∞
Var

[(
�

(L+1)
A

)
αβ

]
= 0.
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PROOF. Lemma 2.3 is a special case of Lemma 2.4 (see §2.1.2). �

Lemma 2.3 implies that �
(L+1)
A converges in distribution to K

(L+1)
A . In view of (2.6)

and the definition of weak convergence this immediately implies (2.2). It therefore remains
to check that K

(L+1)
A satisfies the desired recursion. For this, note that at any values of

n1, . . . , nL we find

Cov
(
z
(L+1)
i;α , z

(L+1)
i;β

)
= E

[(
�

(L+1)
A

)
αβ

]
= Cb + CWE

[
σ
(
z
(L)
1;α

)
σ
(
z
(L)
1;β

)]
.

When L = 1, we therefore see that

Cov
(
z
(2)
i;α, z

(2)
i;β

)
= Cb + CWE

[
σ
(
z
(1)
i;α

)
σ
(
z
(1)
i;β

)]
,

where the law of (z
(1)
i;α, z

(1)
i;β) is determined by the distribution μW of weights in layer 1 and

does not depend on n1. This confirms the initial condition (1.8). Otherwise, if L > 1, the
convergence of finite-dimensional distributions that we’ve already established yields

K
(L+1)
αβ = lim

n1,...,nL→∞
Cov

(
z
(L+1)
i;α , z

(L+1)
i;β

)
= lim

n1,...,nL−1→∞
(
Cb + CWE

[
σ
(
z
(�)
1;α

)
σ
(
z
(�)
1;β

)])
.

Since σ is continuous we may invoke the continuous mapping theorem to conclude that

K
(L+1)
αβ = Cb + CWE(zα,zβ )∼G(0,K(L))

[
σ(zα)σ (zβ)

]
,

which confirms the recursion (1.7). This completes the proof that the finite-dimensional dis-
tributions of z

(L+1)
α converge to those of the desired Gaussian process, modulo two issues.

First, we must prove Lemma 2.3. This is done in §2.1.2 by proving a more general result,
Lemma 2.4. Second, we must remove the assumption that the weights in layers � ≥ 2 are
Gaussian. This is done in §2.1.3. �

2.1.2. Collective observables with Gaussian weights: Generalizing Lemma 2.3. This sec-
tion contains the key technical argument in our proof of Proposition 2.1. To state the main
result, define a collective observable at layer � to be any random variable of the form

O
(�)
n�,f ;A :=

1

n�

n�∑

i=1

f
(
z
(�)
i;A

)
,

where f :R|A| →R is measurable and polynomially bounded:

∃C > 0, k ≥ 1 s.t. ∀z ∈ R
|A| ∣∣f (z)

∣∣ ≤ C
(
1 + ‖z‖k

2
)
.

We continue to assume, as §2.1.1, that the weights (and biases) in layers � ≥ 2 are Gaussian
and will remove this assumption in §2.1.3. Several key properties of collective observables
are summarized in the following Lemma:

LEMMA 2.4 (Key properties of collective observables). Let O
(�)
n�,f ;A be a collective ob-

servable at layer �. There exists a deterministic scalar O
(�)

f ;A such that

(2.7) lim
n1,...,n�−1→∞

E
[
O

(�)
n�,f ;A

]
= O

(�)

f ;A.

Moreover,

(2.8) lim
n1,...,n�→∞

Var
[
O

(�)
n�,f ;A

]
= 0.

Hence, we have the following convergence in probability

lim
n1,...,n�→∞

O
(�)
n�,f ;A

p−→ O
(�)

f ;A.
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PROOF. This proof is by induction on �, starting with � = 1. In this case, z
(1)
i;A are inde-

pendent for different i. Moreover, for each i, α we have

z
(1)
i;α = b

(1)
i +

n0∑

j=1

W
(1)
ij xj ;α = b

(1)
i +

(
CW

n0

)1/2 n0∑

j=1

Ŵ
(1)
ij xj ;α.

Hence, z
(1)
i;α have finite moments since b

(1)
i are iid Gaussian and Ŵ

(1)
ij are mean 0 with finite

higher moments. In particular, since f is polynomially bounded, we find for every n1 that

E
[
O

(1)
n1,f ;A

]
= E

[
f
(
z
(1)
1;A

)]
,

which is finite and independent of n1, confirming (2.7). Further, O(1)
n1,f ;A is the average of n1

iid random variables with all moments finite. Hence, (2.8) follows by the weak law of large
numbers, completing the proof of the base case.

Let us now assume that we have shown (2.7) and (2.8) for all � = 1, . . . ,L. We begin by
checking that (2.7) holds at layer L + 1. We have

(2.9) E
[
O

(L+1)
nL+1,f ;A

]
= E

[
f
(
z
(L+1)
1;A

)]
.

Since the weights and biases in layer L + 1 are Gaussian and independent of FL, we find

(2.10) z
(L+1)
1;A

d=
(
�

(L+1)
A

)1/2
G,

where �
(L+1)
A is the conditional covariance defined in (2.5) and G is an |A|-dimensional

standard Gaussian. The key point is that �
(L+1)
A is a collective observable at layer L. Hence,

by the inductive hypothesis, there exists a PSD matrix �
(L+1)
A such that �

(L+1)
A converges in

probability to �
(L+1)
A as n1, . . . , nL → ∞. To establish (2.7) it therefore suffices in view of

(2.9) to check that

(2.11) lim
n1,...,nL→∞

E
[
f
((

�
(L+1)
A

)1/2
G
)]

= E
[
f
((

�
(L+1)
A

)1/2
G
)]

,

where the right hand side is finite since f is polynomially bounded and all polynomial mo-
ments of G are finite. To establish (2.11), let us invoke the Skorohod representation theorem
to find a common probability space on which there are versions of �

(L+1)
A —which by an

abuse of notation we will still denote by �
(L+1)
A —that converge to �

(L+1)
A almost surely.

Next, note that since f is polynomially bounded we may repeatedly apply ab ≤ 1
2(a2 + b2)

to find

(2.12)
∣∣f

((
�

(L+1)
A

)1/2
G
)∣∣ ≤ p

((
�

(L+1)
A

)1/2)+ q(G),

where p is a polynomial in the entries of (�
(L+1)
A )1/2, q a polynomial in the entries of G, and

the polynomials p, q don’t depend on n1, . . . , nL. The continuous mapping theorem shows
that

lim
n1,...,nL→∞

E
[
p
((

�
(L+1)
A

)1/2)] = E
[
p
((

�
(L+1)
A

)1/2)]
.

Thus, since all moments of Gaussian are finite, (2.11) follows from the generalized dominated
convergence theorem. It remains to argue that (2.8) holds at layer L + 1. To do this, we write

Var
[
O

(L+1)
nL+1,f ;A

]

=
1

nL+1
Var

[
f
(
z
(L+1)
1;A

)]
+
(

1 −
1

nL+1

)
Cov

(
f
(
z
(L+1)
1;A

)
, f

(
z
(L+1)
2;A

))
.

(2.13)
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Observe that

Var
[
f
(
z
(L+1)
1;A

)]
≤ E

[
f
(
z
(L+1)
1;A

)2] = E

[
1

nL+1

nL+1∑

i=1

f
(
z
(L+1)
i;A

)2

]
< ∞,

since we already showed that (2.7) holds at layer L + 1. Next, recall that, conditional on FL,
neurons in layer L+1 are independent. The law of total variance and Cauchy–Schwartz yield

∣∣Cov
(
f
(
z
(L+1)
1;A

)
, f

(
z
(L+1)
2;A

))∣∣ =
∣∣Cov

(
E
[
f
(
z
(L+1)
1;A

)
|FL

]
,E

[
f
(
z
(L+1)
2;A

)
|FL

])∣∣

≤ Var
[
E
[
f
(
z
(L+1)
1;A

)
|FL

]]
.

(2.14)

Using (2.10) and the polynomial estimates (2.12) on f , we conclude that the conditional
expectation on the previous line is some polynomially bounded function of the components
of (�

(L+1)
A )1/2. Hence, we may apply dominated convergence as above to find

lim
n1,...,nL→∞

Var
[
E
[
f
(
z
(L+1)
1;A

)
|FL

]]
= Var

[
E
[
f
(
�

1/2
A

)
G
]]

= 0, G ∼ N (0, I|A|)

since E[f (�
1/2
A )G] is a constant. This proves (2.8) for observables at layer L + 1 and com-

pletes the proof of Lemma 2.4. �

2.1.3. Proof of Proposition 2.1 for general weights. In this section, we complete the
proof of Proposition 2.1 by removing the assumption from §2.1.1 that weights in layers � ≥ 2
are Gaussian. To do this, let us introduce some notation. Let us write

xα �→ z(�)
α

for the pre-activations at layers � = 0, . . . ,L + 1 of a random fully connected network in
which, as in the general case of Theorem 1.2, all weights and biases are independent, biases
are Gaussian as in (1.6) and weights in all layers are drawn from a general centered distri-
bution with the correct variance and finite higher moments as in (1.4) and (1.5). Next, let us
write

xα �→ z̃(�)
α ,

for the vector of pre-activations obtained by replacing, in each layer � = 2, . . . ,L + 1, all
weights W

(�)
ij by iid centered Gaussians with variance CW/n�−1. We already saw that the

distribution of z̃
(L+1)
A converges weakly to that of the desired Gaussian in the infinite width

limit. Our goal is thus to show that, as n1, . . . , nL tend to infinity, z
(L+1)
A and z̃

(L+1)
A converge

weakly to the same distribution. We will proceed by induction on L. When L = 0 the claim is
trivial since, by construction, the weight and bias distributions in layer 1 are identical in both
z
(1)
α and z̃

(1)
α (recall that when we proved Proposition 2.1 in §2.1.1 we had Gaussian weights

only starting from layer 2 and general weights in layer 1).
Suppose therefore that we have shown the claim for � = 0, . . . ,L. By the Portmanteau

theorem and the density of smooth compactly supported functions in the space of continuous
compactly supported functions equipped with the supremum norm, it suffices to show that
for any smooth function g :RnL+1×|A| →R with compact support we have

(2.15) lim
n1,...,nL→∞

(
E
[
g
(
z
(L+1)
A

)]
−E

[
g
(
z̃
(L+1)
A

)])
= 0.

To check (2.15), let us define an intermediate object:

z(L+1),•
α = b(L+1) + W (L+1),•σ

(
z(L)
α

)
,
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where the entries W
(L+1),•
ij of W (L+1),• are iid Gaussian with mean 0 and variance CW/nL.

That is, we take the vector σ(z
(L)
α ) of post-activations from layer L obtained by using general

weights in layers 1, . . . ,L and use Gaussian weights only in layer L + 1. Our first step in
checking (2.15) is to show that this relation holds when z

(L+1)
A is replaced by z

(L+1),•
A .

LEMMA 2.5. Let xA = {xα, α ∈ A} be a finite subset of Rn0 consists of |A| distinct ele-

ments. Fix in addition nL+1 ≥ 1 and a smooth compactly supported function g :RnL+1×|A| →
R. There exists C > 0 and a collective observable O

(L)
nL,f ;A at layer L so that

∣∣E
[
g
(
z
(L+1)
A

)]
−E

[
g
(
z
(L+1),•
A

)]∣∣ ≤ Cn3
L+1n

−1/2
L E

[
O

(L)
nL,f ;A

]
.

PROOF. This is a standard Lindeberg swapping argument. Namely, for each α ∈ A and
k = 0, . . . , nL define

z(L+1),k
α := b(L+1) + W (L+1),kσ

(
z(L)
α

)
,

where the first k entries of each row of W (L+1),k are iid Gaussian with mean 0 and variance
CW/nL, while the remaining entries are (CW/nL)−1/2 times iid draws Ŵ

(L+1)
ij from the

general distribution μ of network weights, as in (1.4) and (1.5). With this notation, we have

z(L+1)
α = z(L),0

α , z̃(L+1),•
α = z(L),nL

α .

Thus,

E
[
g
(
z
(L+1)
A

)]
−E

[
g
(
z̃
(L+1)
A

)]
=

nL∑

k=1

E
[
g
(
z
(L+1),k−1
A

)]
−E

[
g
(
z
(L+1),k
A

)]
.

For any Z ∈ R
n�+1×|A| and

δZ = (δzi;αi = 1, . . . , n�+1, α ∈ A) ∈ R
n�+1×|A|

consider the third order Taylor expansion of g around Z.

g(Z + δZ) = g(Z) +
∑

α∈A
i=1,...,nL+1

gi;αδzi;α +
∑

α1,α2∈A
i1,i2=1,...,nL+1

gi1,i2;α1,α2δzi1;α1δzi2;α2

+ O

( ∑

α1,α2,α3∈A
i1,i2,i3=1,...,nL+1

|δzi1;α1δzi2;α2δzi3;α3 |
)
.

Let us write

z
(L+1),k−1
i;α = z

(L+1),k
i;α + n

−1/2
L Yi,k;α, δZi,k;α = C

1/2
W

(
W̃

(L+1)
ik − Ŵ

(L+1)
ik

)
σ
(
z
(L)
k;α

)
,

where W̃
(L+1)
ik ∼N (0,1). Then, Taylor expanding g to third order around Zk = z

(L+1),k
i;α and,

using that the first two moments of (CWn−1
L )1/2Ŵ

(L)
ij match those of N (0,CWn−1

L ), we find
that

E
[
g
(
z
(L+1),k−1
A

)]
−E

[
g
(
z̃
(L+1),k
A

)]
= O

(
n

−3/2
L n3

L+1E
[
p
(∣∣σ

(
z
(L)
k;α

)∣∣, α ∈ A
))]

),

where p is a degree 3 polynomial in the |A|-dimensional vector of absolute values
|σ(z

(�)
k;α)|, α ∈ A. Summing this over k completes the proof. �

To make use of Lemma 2.5 let us consider any collective observable O
(L)

nL,f ;A at layer L.

Recall that by (2.9) and (2.13) both the mean and variance of O(L)

nL,f ;A depend only on the
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distributions of finitely many components of the vector z
(L)
A . By the inductive hypothesis we

therefore find

(2.16) lim
n1,...,nL→∞

E
[
O

(L)
nL,f ;A

]
= lim

n1,...,nL→∞
E
[
Õ

(L)
nL,f ;A

]
,

where the right hand side means that we consider the same collective observable but for z̃
(L)
A

instead of z
(L)
A , which exists by Lemma 2.4. Similarly, again using Lemma 2.4, we have

(2.17) lim
n1,...,nL→∞

Var
[
O

(L)
nL,f ;A

]
= 0.

Therefore, we conclude that

(2.18) O
(L)
nL,f ;A − Õ

(L)
nL,f ;A

d−→ 0, as n1, . . . , nL → ∞.

Note that by (2.16) the mean of any collective observable E[O(L)
nL,f ;A] is bounded independent

of n1, . . . , nL since we saw in Lemma 2.4 that the limit exists and is bounded when using
Gaussian weights. Since nL+1 is fixed and finite, the error term n

−1/2
L n3

L+1E[O(L)

nL,f ;A] in
Lemma 2.5 is therefore tends to zero as n1, . . . , nL → ∞, and (2.15) is reduced to showing
that

(2.19) lim
n1,...,nL→∞

(
E
[
g
(
z
(L+1),•
A

)]
−E

[
g
(
z̃
(L+1)
A

)])
= 0.

This follows from (2.17) and the inductive hypothesis. Indeed, by construction, conditional
on the filtration FL defined by weights and biases in layers up to L (see (2.3)), the |A|-
dimensional vectors z

(L+1),•
i;A are iid Gaussians:

z
(L+1),•
i;A

d=
(
�

(L+1)
A

)1/2
Gi, Gi ∼N (0, I|A|) iid,

where �
(L+1)
A is the conditional covariance matrix from (2.5). The key point, as in the proof

with all Gaussian weights, is that each entry of the matrix �
(L+1)
A is a collective observable

at layer L. Moreover, since the weights and biases in the final layer are Gaussian for z
(L+1),•
A

the conditional distribution of g(z
(L+1),•
A ) given FL is completely determined by �

(L+1)
A . In

particular, since g is bounded and continuous, we find that

E
[
g
(
z
(L+1),•
A

)]
−E

[
g
(
z̃
(L+1)
A

)]
= E

[
h
(
�

(L+1)
A

)]
−E

[
h
(
�̃

(L+1)
A

)]
,

where h :RnL+1×|A| →R is a bounded continuous function and �̃
(L+1)
A is the conditional co-

variance matrix at layer L+1 for z̃
(L+1)
A . Combining this with the convergence in distribution

from (2.18) shows that (2.19) holds and completes the proof of Proposition 2.1 for general
weight distributions. �

2.2. Tightness: Proof of Proposition 2.2. In this section, we provide a proof of Proposi-
tion 2.2. In the course of showing tightness, we will need several elementary lemmas, which
we record in §2.2.1. We then use them in §2.2.2 to complete the proof of Proposition 2.2.

2.2.1. Preparatory lemmas. For the first lemma, let us agree to write C(A) for the cone
over a subset A in a euclidean space and B1(R

n) for the unit ball in R
n.

LEMMA 2.6. Fix integers n0, n1 ≥ 1 and a real number λ ≥ 1. Suppose that T is a

compact of Rn0 and f : Rn0 → R
n1 is λ-Lipschitz with respect to the �2-norm on both R

n0

and R
n1 . Define the Minkowski sums

T̂ = f (T ) + C
(
f (T ) − f (T )

)
∩ B1

(
R

n1
)
.

There exists a constant C > 0 a compact subset T ′ of R3n0+1, and a Cλ-Lipschitz map g :
R

3n0+1 →R
n1 (all depending only T , λ,), so that T̂ = g(T ′).
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PROOF. By definition,

(2.20) T̂ = g
(
T × T × T × [0,1]

)
, g(x, y, z, r) = f (x) + r

(
f (y) − f (z)

)
.

In particular, for some constant C depending on T0, λ, we have
∥∥g(x, y, z, r) − g

(
x′, y′, z′, r ′)∥∥

2

≤
∥∥f (x) − f

(
x′)∥∥

2 +
∥∥f (y) − f

(
y′)∥∥

2 +
∥∥f (z) − f

(
z′)∥∥

2

+
∣∣r − r ′∣∣∥∥f (y) − f (z)

∥∥
2

≤ λ
(∥∥x − x′∥∥

2 +
∥∥y − y′∥∥

2 +
∥∥z − z′∥∥

2 + Diam(T0)|r − r0|
)

≤ Cλ
∥∥(x − x′, y − y′, z − z′, r − r ′)∥∥

2.

Hence, T̂ is the image under a Lipschitz map with a Lipschitz constant depending only on
T0, λ of a compact set in R

3n0+1. �

The second lemma we need is an elementary inequality.

LEMMA 2.7. Let a, b, c ≥ 0 be real numbers and k ≥ 1 be an integer. We have

(a + b + c)k ≤ 22k−1(1 + a2k)+
1

4

[
(2 + b)4k + (1 + c)4k].

PROOF. For any a, b ≥ 0 we have

(a + b)k =
k∑

j=0

(
k

j

)
ajbk−j

≤
k∑

j=0

(
k

j

)
(1 + a)kbk−j = (1 + a)k(1 + b)k(2.21)

≤
1

2

(
(1 + a)2k + (1 + b)2k).

Further, breaking into cases depending on whether 0 ≤ a ≤ 1 or 1 ≤ a we find that

(a + b)k ≤ 22k−1(1 + a2k)+
1

2
(1 + b)2k.(2.22)

Combining (2.21) with (2.22) we see as desired that any a, b, c ≥ 0

(a + b + c)k ≤ 22k−1(1 + a2k)+
1

4

[
(2 + b)4k + (1 + c)4k]. �

The next lemma is also an elementary estimate.

LEMMA 2.8. Fix an integer k ≥ 1, and suppose X1, . . . ,Xk are nonnegative random

variables. There exists a positive integer q = q(k) such that

E

[
k∏

i=1

Xi

]
≤
(

k∏

i=1

E
[
X

q
i

]
)1/q

.
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PROOF. The proof is by induction on k. For the base cases when k = 1, we may take
q = 1 and when k = 2 we may take q = 2 by Cauchy–Schwartz. Now suppose we have
proved the claim for all k = 1,2, . . . ,K for some K ≥ 3. Note that 1 ≤ v�(K + 1)/2� ≤ K .
So we may use Cauchy–Schwartz and the inductive hypothesis to obtain

E

[
K+1∏

i=1

Xi

]
= E

[�K+1
2 �∏

i=1

Xi

K∏

i=�K+1
2 �+1

Xi

]

≤ E

[�K+1
2 �∏

i=1

X2
i

]1/2

E

[
K∏

i=�K+1
2 �+1

X2
i

]1/2

≤
(

K+1∏

i=1

E
[
X

2q
i

]
)1/2q

,

where q = max{q(�1
2(K + 1)�), q(K − �1

2(K + 1)� − 1)}. �

The next Lemma is an elementary result about the moments of marginals of iid random
vectors.

LEMMA 2.9. Fix an even integer p ≥ 2 a positive integer, and suppose μ is a probability

measure on R with mean 0 and finite higher moments. Assume also that w = (w1, . . . ,wn)

is a vector with iid components, each with distribution μ. Then, there exists a constant C

depending only on p and first p moments of μ such that for all n ≥ 1

sup
‖u‖=1

E
[
|w · u|p

]
≤ C.

PROOF. We will use the following result of Łatała [33], Thm. 2, Cor. 2, Rmk. 2. Suppose
Xi are independent random variables and p is a positive even integer. Then

(2.23) E

[∣∣∣∣∣

n∑

i=1

Xi

∣∣∣∣∣

p]
� inf

{
t > 0|

n∑

i=1

logE
[∣∣∣∣1 +

Xi

t

∣∣∣∣
p]

≤ p

}
,

where � means bounded above and below up to universal multiplicative constants. Let us fix
a unit vector u = (u1, . . . , un) ∈ Sn−1 and apply this to Xi = uiwi . Since wi have mean 0
and p is even we find

n∑

i=1

logE
[∣∣∣∣1 +

Xi

t

∣∣∣∣
p]

≤
n∑

i=1

log

(
1 +

p∑

k=2

(
p

k

) |ui |kE[|w1|k]
tk

)
.

Note that for each k = 2, . . . , p we have

E
[
|w1|k

]
≤ E

[(
1 + |w1|

)p]and|ui |k ≤ u2
i .

Hence, using that log(1 + x) ≤ x we find
n∑

i=1

logE
[∣∣∣∣1 +

Xi

t

∣∣∣∣
p]

≤
n∑

i=1

log

(
1 + u2

i E
[(

1 + |w1|
)p]

p∑

k=2

(
p

k

)
1

tk

)

=
n∑

i=1

log
(

1 + u2
i E

[(
1 + |w1|

)p]
[(

1 +
1

t

)p

− 1 −
p

t

])

≤ E
[(

1 + |w1|
)p]

[(
1 +

1

t

)p

− 1 −
p

t

]
.
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Note that for 2 < t , there is a constant C > 0 depending only on p so that
∣∣∣∣
(

1 +
1

t

)p

− 1 −
p

t

∣∣∣∣ ≤
Cp2

t2 .

Thus, there exists a constant C′ > 0 so that

t > C′
√

pE
[(

1 + |w1|
)p]

) ⇒
n∑

i=1

logE
[∣∣∣∣1 +

Xi

t

∣∣∣∣
p]

≤ p.

Combining this with (2.23) completes the proof. �

The final lemma we need is an integrability statement for the supremum of certain non-
Gaussian fields over low-dimensional sets.

LEMMA 2.10. Fix a positive integer n0, an even integer k ≥ 1, a compact set T0 ⊆ R
n0 ,

a constant λ > 0, and a probability measure μ on R with mean 0, variance 1, and finite

higher moments. For every ε ∈ (0,1) there exists a constant C = C(T0, ε, λ,n0, k,μ) with

the following property. Fix any integer n1 ≥ 1 and a λ-Lipschitz map f : Rn0 → R
n1 . Define

T1 := f (T0), and let w = (w1, . . . ,wn1) be a vector with iid components wi , each drawn

from μ. Then, for any fixed y0 ∈ T1

(2.24) E

[
sup
y∈T1

(
w · (y − y0)

)k] ≤ C.

PROOF. The proof is a standard chaining argument. For each y ∈ T1 write 
k(y) for the
closest point to y in a 2−k net in T1 and assume without loss of generality that the diameter
of T1 is bounded above by 1 and that 
0(y) = y0 for all y ∈ T1. We have using the usual
chaining trick that

(2.25) E

[(
sup
y∈T1

w · (y − y0)
)k]

≤
∞∑

q1,...,qk=0

E

[
k∏

i=1

sup
yi∈T1

∣∣w ·
(

qi

(yi) − 
qi−1(yi)
)∣∣
]
.

By Lemma 2.8, there exists q depending only on k so that for any q1, . . . , qk we have

E

[
k∏

i=1

sup
yi∈T1

∣∣w ·
(

qi

(yi) − 
qi−1(yi)
)∣∣
]

≤
k∏

i=1

(
E

[
sup
y∈T1

∣∣w ·
(

qi

(y) − 
qi−1(y)
)∣∣q

])1/q
.

(2.26)

We seek to bound each expectation on the right hand side in (2.26). To do this, write

E

[
sup
y∈T1

∣∣w ·
(

qi

(y) − 
qi−1(y)
)∣∣q

]
=

∫ ∞

0
P

(
sup
y∈T1

∣∣w ·
(

qi

(y) − 
qi−1(y)
)∣∣q > t

)
dt.

Note that the supremum is only over a finite set of cardinality at most

|
qi
||
qi−1 | ≤ 2cn0qi

for some c > 0 depending only T0, λ. This is because, by assumption T1 is the image of T0
under a λ-Lipschtiz map and Lipschitz maps preserve covering numbers. Thus, by a union
bound,

P

(
sup
y∈T1

∣∣w ·
(

qi

(y) − 
qi−1(y)
)∣∣q > t

)
≤ 2cn0qi sup

y∈T1

P
(∣∣w ·

(

qi

(y) − 
qi−1(y)
)∣∣q > t

)
.
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But for any y ∈ T1 and any s > 0, p ≥ 1 we have

P
(∣∣w ·

(

q(y) − 
q−1(y)

)∣∣q > s
)
≤ sup

‖u‖=1
E
[
|w · u|p

](‖
k(y) − 
k−1(y)‖p

sp/q

)

= 2−pqi s−p/q sup
‖u‖=1

E
[
|w · u|p

]
.

Putting this all together we find for any p ≥ 2 max{q + 2, cn0} that

E

[
sup
y∈T1

∣∣w ·
(

qi

(y) − 
qi−1(y)
)∣∣q

]
≤ 2−cn0qi sup

‖u‖=1
E
[
|w · u|p

]
.

Thus, substituting this into (2.26) yields

E

[(
sup
y∈T1

w · (y − y0)
)k]

≤ sup
‖u‖=1

E
[
|w · u|p

] ∞∑

q1,...,qk=0

2−cn0
∑k

i=1 qi

≤ 2k sup
‖u‖=1

E
[
|w · u|p

]
.

Appealing to Lemma 2.9 completes the proof of Lemma 2.10. �

2.2.2. Proof of Proposition 2.2 using lemmas from §2.2.1. Let us first establish the equi-
Lipschitz condition, which we recall states that for each ε ∈ (0,1) and each compact set
T ⊆ R

n0 there exist C > 0 so that with probability at least 1 − ε we have

(2.27) sup
xα,xβ∈T

‖z(L+1)
α − z

(L+1)
β ‖2

‖xα − xβ‖2
≤ C.

For (2.27) to hold, we need a result about the Lipschitz constant of each layer. To ease the
notation define a normalized single layer with random weights W and random biases b via
the map ψ :Rn1 →R

n2 :

(2.28) ψ(x;W,b) =
1

√
n2

σ(Wx + b),

where b ∼N (0,CbIn2) and W = (wij ) ∈ R
n2×n1 with wij drawn iid from a distribution with

mean 0, variance 1, and finite higher moments. We choose the variance of wij to be 1 instead

of CW/n1 since we will later think of x as the normalized vector (CW/n�)
1/2σ(z

(�)
α ) of post-

activations in a given layer.

LEMMA 2.11. Fix an integer n0 ≥ 1, a compact set T0 ⊆ R
n0 , and a constant λ > 0. For

every ε ∈ (0,1) there exists a constant C = C(ε,n0, T0, σ, λ) with the following property. Fix

any integers n1, n2 ≥ 1, and define ψ :Rn1 →R
n2 as in (2.28). Suppose that T1 ⊆ R

n1 is the

image of T0 under a λ-Lipschitz map from R
n0 to R

n1 . Then,

P

(
sup

xα,xβ∈T1

‖ψ(xα) − ψ(xβ)‖2

‖xα − xβ‖2
≤ C

)
≥ 1 − ε.

PROOF. Fix xα �= xβ ∈ T1 and define

ξαβ =
xα − xβ

‖xα − xβ‖2
.
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Write Wi for the ith row of W and bi for the ith component of b. Since ab ≤ 1
2(a2 + b2) and

σ is absolutely continuous, we have

∥∥ψ(xα) − ψ(xβ)
∥∥2

2 =
1

n2

n2∑

i=1

(
σ(Wi · xα + bi) − σ(Wi · xα + bi)

)2

=
1

n2

n2∑

i=1

(
Wi · ξαβ

∫ ‖xα−xβ‖2

0
σ ′(Wi · (xβ + tξαβ) + bi

)
dt

)2

≤ ‖xα − xβ‖2
2

1

n2

n2∑

i=1

sup
y∈T̂

(
σ ′(Wi · y + bi)

)2 sup
ξ∈T̃

(Wi · ξ)2

(2.29)

≤ ‖xα − xβ‖2
2

1

n2

n2∑

i=1

[
sup
y∈T̂

(
σ ′(Wi · y + bi)

)4 + sup
ξ∈T̃

(Wi · ξ)4
]
,

where we’ve set

T̃ = C(T1 − T1) ∩ Sn1−1 and T̂ := T1 + C(T1 − T1) ∩ B1
(
R

n1
)
,

and have denoted by C(A) the cone over a set A and by B1(R
n1) the unit ball in R

n1 . The
estimate (2.29) yields

P

(
sup

xα,xβ∈T

‖ψ(xα) − ψ(xβ)‖2
2

‖xα − xβ‖2
2

> C

)

≤ P

(
1

n2

n2∑

i=1

[
sup
y∈T̂

(
σ ′(Wi · y + bi)

)4 + sup
ξ∈T̃

(Wi · ξ)4
]
> C

)
.

Since σ ′ is polynomially bounded by assumption (1.2), we find by Markov’s inequality that
there exists an even integer k ≥ 2 so that for any C > 1

P

(
sup

xα,xβ∈T

‖ψ(xα) − ψ(xβ)‖2

‖xα − xβ‖2
> C

)

≤
1 +E[supy∈T̂ |W1 · y + b1|k + supξ∈T̃ |W1 · ξ |4]

C − 1
.

(2.30)

Our goal is now to show that the numerator in (2.30) is bounded above by a constant that
depends only on T0, n0, λ. For this, let us fix any y0 ∈ T̂ and apply Lemma 2.7 as follows:

|W1 · y + b1|k =
∣∣W1 · (y − y0) + W1 · y0 + b1

∣∣k

≤ 22k−1(1 +
∣∣W1 · (y − y0)

∣∣2k)+
1

4

[(
2 + |W1 · y0|4k)+

(
1 + |b1|

)4k]
.

Substituting this and the analogous estimate for |W · ξ |4 into (2.30), we see that since all mo-
ments of the entries of the weights and biases exist, there exists a constant C′ > 0 depending
on λ, T0, k so that

P

(
sup

xα,xβ∈T

‖ψ(xα) − ψ(xβ)‖2

‖xα − xβ‖2 > C

)

≤
C′ +E[supy∈T̂ |W1 · (y − y0)|2k + supξ∈T̃ |W1 · (ξ − ξ0)|4]

C − 1
,

(2.31)
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where ξ0 ∈ T̃ is any fixed point. Note that by Lemma 2.6, the sets T̂ , T̃ are both contained in
the image of a compact subset T ′ ⊆ R

3n0+1 under a Lipschitz map, with Lipschitz constant
depending only on λ, T . Thus, an application of Lemma 2.6 shows that there exists a constant
C′′ depending only λ, T , k so that

E

[
sup
y∈T̂

∣∣W1 · (y − y0)
∣∣2k

]
+E

[
sup
ξ∈T̃

∣∣W1 · (ξ − ξ0)
∣∣4
]
≤ C′′.

Substituting this into (2.31) and taking C sufficiently large completes the proof of Lemma 2.6.
�

Lemma 2.11 directly yields the equi-Lipschitz estimate (2.27). Indeed, let us fix ε ∈ (0,1)

and a compact set T ⊆ R
n0 . Let us define

h(�)
α :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
CW

n0
xα � = 0,

√
CW

n�

σ
(
z(�)
α

)
� = 1, . . . ,L,

1
√

nL+1
z(L+1)
α � = L + 1.

For � = 1, . . . ,L + 1 we have

h(�)
α =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

√
CW

n�

σ
(
Ŵ (�)h(�−1)

α + b(�)) � = 1, . . . ,L,

1
√

nL+1

(
Ŵ (L+1)h(L)

α + b(L+1)) � = L + 1,

where the rescaled weight matrices Ŵ (�), defined in (1.4), has iid mean 0 variance 1 entries
with finite higher moments. To each of the transformations h

(�)
α �→ h

(�+1)
α we may now apply

Lemma 2.11. Specifically, applying Lemma 2.11 in the first layer shows that there exists
C(1) > 0 so that the rescaled first layer map

sup
xα,xβ∈T

‖h(1)
α − h

(1)
β ‖

‖xα − xβ‖
≤ C(1)

with probability at least 1 − ε/(L + 1). Thus, the image

T (1) := h(1)(T )

of T under the normalized first layer map is the image under a C(1)-Lipschitz map of the
compact set T ⊆ R

n0 . This allows us to apply Lemma 2.11 again, but this time to the second
layer, to conclude that, again, there exist C(2) > 0 so that with probability at least 1−2ε/(L+
1) the normalized second layer map satisfies

sup
xα,xβ∈T

‖h(2)
α − h

(2)
β ‖

‖xα − xβ‖
≤ sup

xα,xβ∈T

‖h(2)
α − h

(2)
β ‖

‖h(1)
α − h

(1)
β ‖

sup
xα,xβ∈T

‖h(1)
α − h

(1)
β ‖

‖xα − xβ‖
≤ C(1)C(2).

Proceeding in this way, with probability at least 1 − ε we that

sup
xα,xβ∈T

‖z(L+1)
α − z

(L+1)
β ‖

‖xα − xβ‖
= n

1/2
L+1 sup

xα,xβ∈K

‖h(L+1)
α − h

(L+1)
β ‖

‖xα − xβ‖
≤ n

1/2
L+1C

(1) · · ·C(L+1).
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Since nL+1 is fixed and finite, this confirms (2.27). It remains to check the uniform bounded-
ness condition in (2.1). For this note that for any fixed xβ ∈ K by Lemma 2.4, we have

sup
n1,...,nL≥1

E

[
1

nL+1

∥∥z(L+1)
β

∥∥2
]

< ∞.

Thus, by Markov’s inequality, ‖z(L+1)
β ‖ is bounded above with high probability. Combined

with the equi-Lipschitz condition (2.27), which we just saw holds with high probability on
K , we conclude that for each ε > 0 there exists C > 0 so that

P

(
sup

xα∈K

‖z(L+1)
α ‖ ≤ C

)
≥ 1 − ε,

as desired.

Funding. The author was supported by an NSF CAREER grant DMS-2143754 and NSF
grants DMS-1855684, DMS-2133806. He was also a consultant for an ONR MURI on Foun-
dations of Deep Learning.

REFERENCES

[1] ADLAM, B., LEVINSON, J. and PENNINGTON, J. (2022). A random matrix perspective on mixtures of
nonlinearities for deep learning. AISTATS.

[2] ADLAM, B. and PENNINGTON, J. (2020). The neural tangent kernel in high dimensions: Triple descent
and a multi-scale theory of generalization. In International Conference on Machine Learning 74–84.
PMLR.

[3] AHN, A. (2022). Fluctuations of β-Jacobi product processes. Probab. Theory Related Fields 183 57–123.
MR4421171 https://doi.org/10.1007/s00440-022-01109-0

[4] AKEMANN, G. and BURDA, Z. (2012). Universal microscopic correlation functions for products of inde-
pendent Ginibre matrices. J. Phys. A 45 465201. MR2993423 https://doi.org/10.1088/1751-8113/45/
46/465201

[5] AKEMANN, G., BURDA, Z. and KIEBURG, M. (2019). From integrable to chaotic systems: Universal local
statistics of Lyapunov exponents. Europhys. Lett. 126 40001.

[6] AKEMANN, G., BURDA, Z., KIEBURG, M. and NAGAO, T. (2014). Universal microscopic correlation func-
tions for products of truncated unitary matrices. J. Phys. A 47 255202. MR3224113 https://doi.org/10.
1088/1751-8113/47/25/255202

[7] BARTLETT, P. L., LONG, P. M., LUGOSI, G. and TSIGLER, A. (2020). Benign overfitting in linear re-
gression. Proc. Natl. Acad. Sci. USA 117 30063–30070. MR4263288 https://doi.org/10.1073/pnas.
1907378117

[8] BELKIN, M., HSU, D., MA, S. and MANDAL, S. (2019). Reconciling modern machine-learning practice
and the classical bias-variance trade-off. Proc. Natl. Acad. Sci. USA 116 15849–15854. MR3997901
https://doi.org/10.1073/pnas.1903070116

[9] BROWN, T. B., MANN, B., RYDER, N., SUBBIAH, M., KAPLAN, J., DHARIWAL, P., NEELAKANTAN,
A., SHYAM, P., SASTRY, G. et al. (2020). Language models are few-shot learners. ArXiv Preprint.
Available at arXiv:2005.14165.

[10] CRISANTI, A., PALADIN, G. and VULPIANI, A. (2012). Products of Random Matrices: In Statistical

Physics 104. Springer, Berlin.
[11] DANIELY, A., FROSTIG, R. and SINGER, Y. (2016). Toward deeper understanding of neural networks: The

power of initialization and a dual view on expressivity. In Advances in Neural Information Processing

Systems 2253–2261.
[12] DAUBECHIES, I., DEVORE, R., FOUCART, S., HANIN, B. and PETROVA, G. (2022). Nonlinear approxi-

mation and (deep) ReLU networks. Constr. Approx. 55 127–172. MR4376561 https://doi.org/10.1007/
s00365-021-09548-z

[13] DEVORE, R., HANIN, B. and PETROVA, G. (2021). Neural network approximation. Acta Numer. 30 327–
444. MR4298220 https://doi.org/10.1017/S0962492921000052

[14] DU, S. S., ZHAI, X., POCZOS, B. and SINGH, A. (2019). Gradient descent provably optimizes over-
parameterized neural networks. In International Conference on Learning Representations.

[15] ELDAN, R., MIKULINCER, D. and SCHRAMM, T. (2021). Non-asymptotic approximations of neural net-
works by Gaussian processes. In Conference on Learning Theory 1754–1775. PMLR.



4818 B. HANIN

[16] FAN, Z. and WANG, Z. (2020). Spectra of the conjugate kernel and neural tangent kernel for linear-width
neural networks. Adv. Neural Inf. Process. Syst. 33 7710–7721.

[17] FURSTENBERG, H. (1963). Noncommuting random products. Trans. Amer. Math. Soc. 108 377–428.
MR0163345 https://doi.org/10.2307/1993589

[18] FURSTENBERG, H. and KESTEN, H. (1960). Products of random matrices. Ann. Math. Stat. 31 457–469.
MR0121828 https://doi.org/10.1214/aoms/1177705909

[19] GARRIGA-ALONSO, A. and RASMUSSEN, CE. and AITCHISON, L. (2021). Deep Convolutional Networks

as Shallow Gaussian Processes. International Conference on Representation Learning 2021.
[20] GORIN, V. and SUN, Y. (2022). Gaussian fluctuations for products of random matrices. Amer. J. Math. 144

287–393. MR4401507 https://doi.org/10.1353/ajm.2022.0006
[21] HANIN, B. (2018). Which neural net architectures give rise to exploding and vanishing gradients? In Ad-

vances in Neural Information Processing Systems.
[22] HANIN, B. (2019). Universal function approximation by deep neural nets with bounded width and relu

activations. Mathematics 7 992.
[23] HANIN, B. and NICA, M. (2019). Finite depth and width corrections to the neural tangent kernel. ICLR

2020 and available at arXiv:1909.05989.
[24] HANIN, B. and NICA, M. (2020). Products of many large random matrices and gradients in deep neural net-

works. Comm. Math. Phys. 376 287–322. MR4093863 https://doi.org/10.1007/s00220-019-03624-z
[25] HANIN, B. and PAOURIS, G. (2021). Non-asymptotic results for singular values of Gaussian matrix prod-

ucts. Geom. Funct. Anal. 31 268–324. MR4268303 https://doi.org/10.1007/s00039-021-00560-w
[26] HANIN, B. and ROLNICK, D. (2019). Deep ReLU networks have surprisingly few activation patterns.

NeurIPS.
[27] HANIN, B. and ROLNICK, D. (2019). Complexity of linear regions in deep networks. ICML.
[28] HASTIE, T., MONTANARI, A., ROSSET, S. and TIBSHIRANI, R. J. (2022). Surprises in high-dimensional

ridgeless least squares interpolation. Ann. Statist. 50 949–986. MR4404925 https://doi.org/10.1214/
21-aos2133

[29] HEBB, D. O. (1949). The Organization of Behavior: A Neuropsychological Theory. Wiley, New York.
[30] HUANG, J. and YAU, H.-T. (2020). Dynamics of deep neural networks and neural tangent hierarchy. In

International Conference on Machine Learning 4542–4551. PMLR.
[31] JACOT, A., GABRIEL, F. and HONGLER, C. (2018). Neural tangent kernel: Convergence and generalization

in neural networks. In Advances in Neural Information Processing Systems 8571–8580.
[32] KRIZHEVSKY, A., SUTSKEVER, I. and HINTON, G. E. (2012). Imagenet classification with deep convolu-

tional neural networks. In Advances in Neural Information Processing Systems 1097–1105.
[33] LATALA, R. (1997). Estimation of moments of sums of independent real random variables. Ann. Probab. 25

1502–1513.
[34] LEE, J., BAHRI, Y., NOVAK, R., SCHOENHOLZ, S. S., PENNINGTON, J. and SOHL-DICKSTEIN, J. (2018).

Deep neural networks as Gaussian processes. ICML 2018 and available at arXiv:1711.00165.
[35] LIU, C., ZHU, L. and BELKIN, M. (2020). On the linearity of large non-linear models: When and why the

tangent kernel is constant. Adv. Neural Inf. Process. Syst. 33 15954–15964.
[36] MATTHEWS, A. G. D. G., ROWLAND, M., HRON, J., TURNER, R. E. and GHAHRAMANI, Z.

(2018). Gaussian process behaviour in wide deep neural networks. ArXiv Preprint. Available at
arXiv:1804.11271.

[37] NEAL, R. M. (1996). Priors for infinite networks. In Bayesian Learning for Neural Networks 29–53.
Springer, Berlin.

[38] NICA, A. and SPEICHER, R. (2006). Lectures on the Combinatorics of Free Probability. London

Mathematical Society Lecture Note Series 335. Cambridge Univ. Press, Cambridge. MR2266879
https://doi.org/10.1017/CBO9780511735127

[39] NOCI, L., BACHMANN, G., ROTH, K., NOWOZIN, S. and HOFMANN, T. (2021). Precise characterization
of the prior predictive distribution of deep ReLU networks. Adv. Neural Inf. Process. Syst. 34 20851–
20862.

[40] NOVAK, R., XIAO, L., LEE, J., BAHRI, Y., YANG, G., HRON, J., ABOLAFIA, D. A., PENNINGTON,
J. and SOHL-DICKSTEIN, J. (2018). Bayesian deep convolutional networks with many channels are
Gaussian processes. ArXiv Preprint. Available at arXiv:1810.05148.

[41] PÉCHÉ, S. (2019). A note on the Pennington–Worah distribution. Electron. Commun. Probab. 24 66.
MR4029435 https://doi.org/10.1214/19-ecp262

[42] PENNINGTON, J. and WORAH, P. (2017). Nonlinear random matrix theory for deep learning. In Advances

in Neural Information Processing Systems 2634–2643.
[43] ROBERTS, D. A., YAIDA, S. and HANIN, B. (2022). The Principles of Deep Learning Theory: An Effective

Theory Approach to Understanding Neural Networks. Cambridge Univ. Press, Cambridge.



RANDOM NEURAL NETS AS GPS AT INFINITE WIDTH 4819

[44] ROSENBLATT, F. (1958). The perceptron: A probabilistic model for information storage and organization in
the brain. Psychol. Rev. 65 386.

[45] RUELLE, D. (1979). Ergodic theory of differentiable dynamical systems. Publ. Math. Inst. Hautes étud. Sci.
50 27–58.

[46] SILVER, D., HUANG, A., MADDISON, C. J., GUEZ, A., SIFRE, L., VAN DEN DRIESSCHE, G., SCHRIT-
TWIESER, J., ANTONOGLOU, I., PANNEERSHELVAM, V. et al. (2016). Mastering the game of go with
deep neural networks and tree search. Nature 529 484–489.

[47] VOICULESCU, D. (1986). Addition of certain noncommuting random variables. J. Funct. Anal. 66 323–346.
MR0839105 https://doi.org/10.1016/0022-1236(86)90062-5

[48] WIGNER, E. P. (1958). On the distribution of the roots of certain symmetric matrices. Ann. of Math. (2) 67

325–327. MR0095527 https://doi.org/10.2307/1970008
[49] YAIDA, S. (2020). Non-Gaussian processes and neural networks at finite widths. MSML.
[50] YANG, G. (2019). Scaling limits of wide neural networks with weight sharing: Gaussian process be-

havior, gradient independence, and neural tangent kernel derivation. ArXiv Preprint. Available at
arXiv:1902.04760.

[51] YANG, G. (2019). Tensor programs I: Wide feedforward or recurrent neural networks of any architecture
are gaussian processes. ArXiv Preprint. Available at arXiv:1910.12478.

[52] YANG, G. (2020). Tensor programs II: Neural tangent kernel for any architecture. ArXiv Preprint. Available
at arXiv:2006.14548.

[53] YANG, G. (2020). Tensor programs III: Neural matrix laws. ArXiv Preprint. Available at arXiv:2009.10685.
[54] YAROTSKY, D. (2016). Error bounds for approximations with deep ReLU networks. ArXiv Preprint. Avail-

able at arXiv:1610.01145.
[55] YAROTSKY, D. (2018). Optimal approximation of continuous functions by very deep ReLU networks. In

Conference on Learning Theory 639–649. PMLR.
[56] ZAVATONE-VETH, J. and PEHLEVAN, C. (2021). Exact marginal prior distributions of finite Bayesian neu-

ral networks. Adv. Neural Inf. Process. Syst. 34.
[57] ZHANG, C., BENGIO, S., HARDT, M., RECHT, B. and VINYALS, O. (2017). Understanding deep learning

requires rethinking generalization. In International Conference on Learning Representations, (ICLR).


	Introduction
	Roadmap
	Motivation for studying random neural networks
	Practical motivations
	Motivation from random matrix theory

	Main result
	Theorem 1.2: Discussion, main idea, and relation to prior work

	Proof of Theorem 1.2
	Finite-dimensional distributions: Proof of Proposition 2.1
	Proof of Proposition 2.1 with Gaussian weights in layers l>=2
	Collective observables with Gaussian weights: Generalizing Lemma 2.3
	Proof of Proposition 2.1 for general weights

	Tightness: Proof of Proposition 2.2
	Preparatory lemmas
	Proof of Proposition 2.2 using lemmas from §2.2.1


	Funding
	References

