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Abstract

Many terrestrial microbes have evolved cell behaviors that help them rise above their
substrate, often to facilitate dispersal. One example of these behaviors is found in the
amoebae of Sappinia pedata, which actively lift most of their cell mass above the
substrate, known as standing. This standing behavior was first described in S. pedata in
the 1890s from horse dung isolates but never molecularly characterized from herbivore
dung. Our study expands this understanding, revealing the first molecularly confirmed S.
pedata from herbivore dung in Mississippi, USA, and describing a new species, Sappinia
dangeardi n. sp., with larger trophozoite cells. Additionally, we isolated another standing
amoeba, Thecamoeba homeri n. sp., from soil, exhibiting a previously unreported
"doughnut shape" transient behavior. In S. dangeardi n. sp., we discovered that standing
is likely triggered by substrate drying, and that actin filaments actively localize in the “stalk”
to support the standing cells, as observed through confocal microscopy. While the
purpose of standing behaviors has not been investigated, we hypothesize it is
energetically expensive and therefore a significant evolutionary strategy in these
organisms. Overall, this study emphasizes behavioral adaptations to terrestrial
environments within Amoebozoa, stressing the importance of diverse laboratory
conditions that replicate natural habitats.

Keywords
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1. Introduction

The study of non-model protists, particularly those inhabiting terrestrial
environments, presents an exciting frontier in biology. With the expansion of molecular
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methods, great biological diversity has been exposed and better resolved (Burki et al.,
2019, 2021). As we discover novel diversity, it becomes evident that there are more
biological mysteries to uncover through direct observation in the lab. We set out to explore
terrestrial microhabitats, such as dung and soil, to isolate, culture, and observe eukaryotic
microbes focused primarily on amoeboid taxa. From this, we have found novel diversity
within the genera Sappinia and Thecamoeba (Amoebozoa, Discosea, Thecamoebida),
and recorded remarkable standing behaviors that have not been previously observed in
some members of these genera.

In the late 1890s, Pierre Clement Augustin Dangeard, a pioneering mycologist,
discovered Sappinia pedata forming macroscopic white patches on old horse dung
cultures that had undergone several cycles of desiccation and high humidity (Dangeard
1896). These patches revealed numerous individuals heaped upon each other, forming
what he compared to the “pseudoplasmodium” aggregate of cells to the cellular,
sorocarpic, slime molds. Dangeard’s work paid tribute to the mycologist Mister Sappin-
Trouffy, establishing the genus Sappinia and naming this dung-dwelling species Sappinia
pedata. S. pedata has a characteristic ability to stand, where the cell attaches to the
substrate and pushes most of its cell mass into the open air, resembling a club or baseball
bat shape. Dangeard shed light on the standing behavior of S. pedata and its remarkable
nuclear division where nuclei would divide as closely apposed pairs or quadruples. E. W.
Olive (1902) and Kenneth B. Raper (1960) further expanded on Dangeard’s work,
focusing on Sappinia’s aggregative cellular interactions, standing behavior (mistaken as
formation of a walled-cell spore), and adaptation to varying environmental factors.
Looking at herbivore dung in the United States, E. W. Olive hypothesized that there are
two species of standing Sappinia differing in size, also noted in Cook (1939) from Bos
taurus dung in Bristol, England. At this time, S. pedata was still held as a slime mold in
the Acrasiaceae much like other amoebae from herbivore dung and dead plant material
(Dictyostelids, Copromyxa, Guttulinopsis, Fonticula, Sorodiplophrys, Pocheina, and
Acrasis) now known to be polyphyletic across Amoebozoa, Rhizaria, Obazoa,
Stramenopiles, and Excavata (Brown and Silberman, 2013; Tice and Brown, 2022).
Dangeard, Olive, Cook, and Raper all studied S. pedata exclusively from dung samples,
but S. pedata may also be frequently found on dead plant materials (Brown et al., 2007).
Brown et al. (2007) neotypified a leaf isolate of Sappinia pedata and examined it with
molecular phylogenetics along with three additional globally distributed, plant-isolated
strains of S. pedata. Until now, a dung-dwelling strain of Sappinia pedata has yet to be
molecularly confirmed calling into question if S. pedata from dung is conspecific with S.
pedata from leaves as proposed by Brown et al. (2007).

Other members of Sappinia have much in common with the morphology of S.
pedata described by Dangeard. They are also primarily terrestrial amoebae, distinguished
by paired nuclei (most often a single pair) and locomotive forms are monopodial lingulate
ovate amoebae with ridges (wrinkles) along the sides of their cell body (Goodfellow et al.,
1974; Page, 1976; Page, 1988; Brown et al., 2007; Walochnik et al., 2010). Sappinia
diploidea was first described as “Amoeba diploidea” by Max Hartmann and Kurt Nagler in
1908. They isolated it from the intestinal material of a lizard's colon and were intrigued by
the genus Sappinia due to shared morphology with S. pedata. In 2014, Sappinia platani
was described and showed standing in older cultures although it appeared to be much
less frequent than in S. pedata (Wylezich et al., 2014). This behavior was only mentioned
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in the text and no photographic evidence was published of the standing cells. Sappinia
species have been isolated from various herbivore dung (Dangeard, 1896; Olive, 1902),
dead plant material, barks, mosses, soils, and freshwater ponds (Brown et al., 2007,
Michel et al., 2006). In 2001, Sappinia was reported to be a neurological pathogen
causing amoebic encephalitis (Gelman et al., 2001; Gelman et al., 2003), molecularly
confirmed to be S. pedata sensu Brown et al. 2007 (Qvarnstrom et al., 2009).

Sappinia was placed into the Thecamoebidae (Schaeffer, 1926) by Page (1987)
using traditional morphological characterizations, and later placed molecularly into the
clade by Michel et al. (2006). Although the cells of Sappinia visually resemble their sister
genus, Thecamoeba, they lack the characteristic dorsal longitudinal folds indicative of
Thecamoeba cells (Page, 1976). Thecamoeba is recognized by its single, centrally
located ovoid nucleus and prominent dorsal longitudinal folds. Found mainly in moist soil
and leaf litter (Page, 1977) but also in freshwater habitats (Page, 1976; Page, 1983),
Thecamoeba cells exhibit a flattened locomotive form with a broad, fan-shaped
appearance, and a rugose or striate morphotype (Smirnov and Brown, 2004). Together,
Sappinia and Thecamoeba are relatively common in terrestrial environments and
morphologically understood but are not well described in their cellular behaviors.

Here we expand our knowledge of the Thecamoebida group, reporting two new
isolates of both Sappinia and Thecamoeba, representing two new species. Our study
contributes to the rich history of research on Sappinia and Thecamoeba, offering new
insights into the interesting cellular behaviors of these commonly found yet
morphologically diverse and behaviorally complex amoeboid taxa.

2. Materials and methods
2.1. Sample Processing and Culturing

Locality information for each strain is presented in Table 1. Sappinia strains BF22-
2A and MSU2206 were isolated from Bos taurus dung, incubated at room temperature
for 2—3 days, and scanned at 5x magnification on a Leica M205C stereoscope. Standing
cells were carefully picked from dung samples using a sterile Minutien Insect Pin
(Carolina Biological, Burlington, NC, USA) (Suppl. Video 1). These cells were then
transferred to sterilized cow dung that had been soaked in a dense suspension of
Escherichia coli (K-12 strain MG1655) in commercially available spring water. To prepare
sterilized dung, approximately 0.5 kg of fresh cow dung was collected from Mississippi
State University cattle farms, placed into a 1 L beaker, and covered with aluminum foil.
This setup was autoclaved for 45 minutes to ensure sterilization. For culturing, about 2 g
of sterilized dung was placed on the surface of a non-nutrient spring water agar Petri dish
(1 L Deer-Park spring water and 15 g agar) (Deer Park Spring Water, BlueTriton Brands,
Stamford, CT, USA). The suspension of food bacteria (E. coli), as above, was made by
scrapping four culture plates of E. coli (on LB medium) and vortexing it with 5 mL of spring
water. This suspension had an estimated optical density (OD) of eight, calculated by
measuring the OD of a 1/16 dilution of the suspension. Clonal cultures were maintained
at room temperature, with passages onto fresh media every three weeks. To sub-culture,
a small piece of culture dung with standing cells was transferred to the same E. coli
soaked sterilized dung medium mentioned above.
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Thecamoeba strain SK13-4B and SK13-4H were isolated from soil collected in
Northern Mississippi, USA (Table 1, 33.455812° N, -88.788126° E). About 1g of the upper
soil crust was sterilely collected into a sterile Petri dish, immediately brought into the lab,
and suspended in 10mL of sterile spring water. Four drops (ca. 40uL each) of this
suspension were put onto a sterile non-nutrient spring water agar Petri dish separated by
roughly 2 cm of space between each drop. Once the drops soaked into the agar surface
the plate was put upside-down. Observation of the plate using a 10x objective of a
compound microscope occurred daily, focusing primarily on the edges of the dried drop
of soil suspension. After five days post-plating single amoeba cells were isolated using a
30-gauge platinum wire loop, sterilized by an ethanol flame. To do this, cells were dragged
using the Pt loop in the meniscus created by touching the loop to the agar surface from
one area of the plate to an area and transferred onto spring water agar with a streak of
E. coli (MG1655) as a food source. A clonal culture of each was established using this
technique. Unfortunately strain SK13-4H was lost and no further cultures remain of this
strain.

2.2. Microscopy and Morphometrics

For detailed observations, agar culture slides were made using a small block (ca.
4mm?3 cube) of spring water agar melted onto glass slides with a coverslip on top of the
agar block. This was achieved by gently heating the bottom of a glass slide over a Bunsen
burner flame to heat the slide surface causing the agar to melt and be sandwiched
between the slide and coverslip. After 10 minutes of cooling at room temperature the
coverslip was removed by sliding off the thin agar surface, inoculated with amoebae, and
covered with a fresh cover slip and sterile spring water. After 15 minutes, cells were
examined using differential interference contrast (DIC) on a Zeiss Axioskop 2 Plus upright
compound microscope (Carl Zeiss Microimaging, Thornwood, NJ, USA) under a 40x
Plan-NeoFluar (NA 0.75) connected to a Canon (Huntington, NY, USA) CMOS digital
camera (EOS R, 30.3MP full frame mirrorless for Sappinia spp. and Canon EOS 650D,
18.0MP 4:3 APS-C DSLR for Thecamoeba SK13-4B & SK13-4H) controlled by Canon
EOS Utility software for Macintosh. Imaging of standing amoebae of Sappinia and
Thecamoeba isolates were imaged under brightfield illumination with a 10x Plan-
NeoFluar (NA 0.30) objective directly on the dung substrate or straw by removing the
Petri dish lid and imaging from above. Cellular measurements to generate morphometric
data for both Sappinia strains were obtained by measuring images of active locomotive
trophozoites on agar surfaces only taken under a 10x Plan-NeoFluar (NA 0.30) objective
in Imaged software (http://imagej.nih.gov/ij/) with the Scale Bar tools for Microscopes
utility (http://image.bio.methods.free.fr/ImageJ/?Scale-Bar-Tools-for-Microscopes.html).
Length, breadth, and length to breadth ratios were plotted for both strains of Sappinia and
Thecamoeba SK13-4B in R (R Core Team, 2021). Significant differences were tested
using two-sample t-tests between both strains of Sappinia also in R.

2.3. Video Microscopy and Time-Lapse Microscopy

Our S. dangeardi n. sp. isolates from dung habitats regularly stand on sterilized
dung (Suppl. Video 2, 3, 4). To capture the process of standing in “natural” habitats, we
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employed time-lapse microscopy. For supplemental video 2 and 3, we used sterile
forceps to move a piece of dung with numerous standing cells from a dense culture from
a dung culture plate, placed it on an agar-coated slide (described above, but without a
coverslip overlay), and took an image every five seconds under a 10x objective with
transmitted light (same camera setup as above). Alternatively for Suppl. Video 4 we took
time-lapse microscopy on dung culture plates under reflected light, using a Canon EOS
650D camera connected to a Leica M205C stereomicroscope. The resulting image sets
were compiled together in Adobe Premiere Pro (Mountain View, CA, USA) and exported
as an MP4 video at 30 frames per second. To create a timecode in the video, Adobe After
Effects and custom JavaScript were used (found on TheBrownLab GitHub:
https://github.com/TheBrownLab/time-lapse.tools). The process of doughnut -cell
morphology formation in Thecamoeba SK13-4B was captured with brightfield real-time
video microscopy (Suppl. Video 5) as noted above using brightfield microscopy under 10x
with the plate inverted upside-down imaging through the agar medium. Canon EOS utility
was used for video acquisition.

2.4. Induction of standing in Thecamoeba

The formation of standing bodies was tested for Thecamoeba strain SK13-4B by
soaking sterilized straw in a slurry of sterile spring water (ca. 500 yL) containing loop of
E. coli grown on a nutrient agar and placing the soaked straw on an agar Petri dish
containing the amoeba culture near a dense patch of amoebal growth according to Brown
et al. (2013). Straw was subsequently observed for one week by scanning the edges of
the substrate using a 10x objective with a compound microscope. After a few days of
observation, standing was observed on the straw edge. The same technique was used
for Thecamoeba strain SK13-4H, but no standing was observed.

2.5. Cytoskeletal Staining

About 15 standing cells of Sappinia (BF22-2A) were picked directly off the
agar/sterile dung culture using a flame sterilized Minutien needle. This was achieved by
picking one cell then using that cell to pick the next cell, creating a chain of standing cells.
The chain was placed onto the center of one well of a sterile 2-well cell culture chamber
glass slide (NEST Scientific USA, Woodbridge, NJ, USA). Immediately under a dissecting
stereoscope, 1000uL of -80°C methanol was gently put into the well of the slide, while
watching the chain of cell being careful to not disrupt or cause cells to detach. Cells were
fixed for 10 seconds in the methanol after washing in sterile spring water the cells were
stained following the protocol from Porfirio-Sousa et al. (2023). Cells were labeled with
ActinGreen 488-nm ready probes (Life Tech | R37110) followed by NucBlue
ReadyProbes (Life Tech | R37605). Subsequently after 3 rounds of washing, the cells
were mounted in Fluoromount-G (Life Tech | 00-4958-02) with a clean 1.5H coverslip
(0.170mm +/- 0.005mm), allowed to dry, and sealed with clear nail polish. Cells were
visualized with an inverted confocal microscope (Leica TCS SPE-II, Leica Microsystems,
Wetzlar, Germany) equipped with four solid state lasers (405, 488, 532/561, 635 nm
excitation), under an Advanced Correction System (ACS) 63x-Oil (NA 1.30) objective
controlled by the LAS X Leica software.
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2.6. Genomic DNA Extraction

Cells of Sappinia isolates (BF22-2A and MSU2206) were maintained on sterile
dung inoculated with a slurry of E. coli. Since these isolates only grew well on dung as a
medium, to isolate genomic DNA from these strains about 100 individual cells were picked
using a Minutien insect needle and placed directly into QuickExtract solution (LGC
Biosearch Technologies-Epicentre, Madison WI, USA) following the manufacturer's
recommended protocol. Thecamoeba SK13-4B cells were grown on agar surfaces where
they ate the E. coli streaked onto the plate. Dense cultures of amoebae on agar plates
were used for DNA extraction. An area of dense cells were picked using a metal loop and
transferred to a 200uL PCR tube with 100 uL of QuickExtract. DNA was processed
following the manufacturer’'s recommended protocol and in accordance with Walthall et
al. (2016).

2.7. SSU rDNA Amplification

The near full-length SSU rDNA was PCR amplified using the universal eukaryotic
SSU rDNA primers, 5AmF forward 5’- AACCTGGTTGATCCTGCC (primer S1 in Fiore-
Donno et al., 2008) with MedlinB reverse 5’-
CCCGGGATCCAAGCTTGATCCTTCTGCAGGTTCACCTAC (Medlin et al., 1988) and
GoTaqg Green Master Mix (Promega). The PCR cycling parameters were 3m at 95°C,
followed by 34 cycles of 30s at 95°C, 25s at 48°C, and 3.5min at 72°C. PCR products
were purified used Mag-Bind TotalPure NGS magnetic beads (Omega Bio-tek, Inc.,
Nocross, GA, USA). The purified PCR amplicons were sequenced directly using the PCR
primers and internal sequencing primers. All rDNAs were fully sequenced in both
orientations.

2.8. Molecular Phylogenetic Analyses

The 18S rRNA gene sequences of S. dangeardi n. sp. (BF22-2A), S. pedata from
dung (MSU2206), and T. homeri n. sp. (SK13-4B), and sequences from GenBank (Clark
et al., 2016) from 72 taxa from Thecamoebida, and the closely related genera
Dermamoeba and Paradermamoeba as outgroup taxa were collected. In addition, the
locality information of each strain is presented in Suppl. Table 1, which was used to
visualize strain locality in the SSU rDNA phylogenetic tree. All these SSU rDNA
sequences were aligned using MAFFT with the L-INS-I algorithm (Katoh and Standley,
2013). The aligned sequences were then trimmed with BMGE software (Criscuolo &
Gribaldo, 2010) with a global entropy (-g) value of 0.8. The final dataset was visually
inspected for alignment errors and contained 1732 unambiguously aligned nucleotide
characters. The maximum likelihood tree of SSU rRNA was built from RAXML V. 8.2.12
(Stamatakis, 2014) with GTRGAMMAI model of nucleotide substitution. Topological
support for this phylogeny was assessed with 1,000 rapid bootstrap replicates.

Uncorrected pairwise distances of SSU rRNA genes for Sappinia spp. and
Thecamoeba spp. were inferred by individually collecting all taxa within each genus,
realigning these generic sequences alone using MAFFT with the AUTO algorithm. The
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aligned sequences were then trimmed with BMGE software (Criscuolo & Gribaldo, 2010)
with a global entropy (-g) value of 0.9, yielding an alignment per genus without
ambiguously aligned sites. From these uncorrected pairwise distances were calculated in
PAUP* (Swofford, 2002) using the “showdist” function (Suppl. Table 2). From these
trimmed alignments we also inferred phylogenetic trees in RAXML with GTRGAMMA
model of nucleotide substitution. Topological support for each phylogeny was assessed
with 100 rapid bootstrap replicates.

3. Results and discussion
3.1. Phylogenetic identity and morphological characteristics of strains and new species

This study illustrates two molecularly identified species of standing Sappinia
inhabiting herbivore dung from cows. One of these species, strain BF22-2A, is new and
herein named “Sappinia dangeardi” n. sp. in honor of P. A. Dangeard (Fig. 1A-C). The
phylogenetic placement of S. dangeardi n. sp. is fully supported in its grouping with S.
diploidea and S. platani (Fig. 2). The exact placement of S. dangeardi n. sp. in the genus
is ambiguous, branching with poor support as sister to S. diploidea (Fig. 2) or branching
with Sappinia sp. LC311582 in our Sappinia only phylogeny also with poor support (Suppl.
Fig. 1). Based on a phylogenetic species concept, we consider that this strain represents
a new species of Sappinia. The second strain, MSU2206, was identified as Sappinia
pedata by its near full support close grouping with other S. pedata isolates neotypified by
Brown et al. (2007) from dead leaves (bootstrap support of 99% in Fig. 2 in a global
Thecamoebida phylogeny, and 100% in Suppl. Fig. 1 in a phylogeny of Sappinia). This
makes MSU2206 the first molecularly confirmed herbivore dung isolate of S. pedata.

Additionally, we examined the morphology of both Sappinia dung isolates. The
locomotive cells of S. dangeardin. sp. are significantly larger than S. pedata both in length
(two sample t-test, p-value = 6.51e-16) and breadth (two sample t-test, p-value = 2.159e-
08) (Suppl. Fig. 2). From these data, S. dangeardi n. sp. cells measure to be about 10
um longer and 4 um wider in breadth than S. pedata cells. The standing cells of S.
dangeardi n. sp. and S. pedata show remarkable plasticity in their shape and size. We
have measured the height of standing cells showing that S. dangeardi n. sp. tends to be
significantly taller than S. pedata (Suppl. Fig. 2). This may support E. W. Olive’s
hypothesis that there are two distinct dung-inhabiting species of Sappinia distinguished
by size (Olive, 1902). However, we qualitatively find that the age of the cultures and
humidity can affect standing behavior, further complicating reliable measurements.
Because of this, we advise that standing form morphology should not be used for
diagnosis of species. Interestingly, the S. dangeardi n. sp. and S. pedata from dung both
display hemispherical paired nuclei as well as the circular paired nuclei that are common
across Sappinia amoebae. We most often observe this morphology in standing cells that
were picked onto a glass slide, and it is more common in S. dangeardi n. sp. (Suppl. Fig.
3). This nuclear morphology does not appear to have been reported in Sappinia before.

Sappinia sp. CCAP 1575/3 was unintentionally obtained from the Culture
Collection of Alga and Protozoa (https://www.ccap.ac.uk/) on October 25, 2021. We had
originally purchased the strain CCAP 1575/4 (named Sappinia diploidea on CCAP’s
website), which is the type strain of Sappinia platani (PL-247). Through a transcriptome
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sequencing project, unrelated to this study, we discovered that the isolate labeled as
CCAP 1575/4 is actually CCAP 1575/3 based on BlastN (Altschul et al., 1990) of the SSU
rDNA contig from the transcriptome generated from this culture to NCBI nucleotide
database is 99.96% identical (1 base pair difference across the BlastN alignment) to
Sappinia sp. CCAP 1575/3 strain Busnog (EU881942), versus 93% identity to that of the
S. platani CCAP 1575/4 (EU881943) (data not shown). Thus, the isolate we purchased
turned out to be the undescribed strain of Sappinia sp. CCAP 1575/3 (Busnog). During
our cultivation of this organism we observed multiple standing cells on the agar surface.
One standing individual was imaged under a 10x objective as below (Fig. 1F).

We also isolated two new strains of Thecamoeba (SK13-4B and SK13-4H), the
sister to Sappinia spp. to further expand our phylogeny of Thecamoebida. We herein
name our strain SK13-4B Thecamoeba homeri n. sp. named after the cartoon character
Homer Simpson, due to the “doughnut” morphology described below. The morphology of
both strains are typical of the genus, with lingulate oblong to somewhat round amoebae
with longitudinal folds on the dorsum of the cells (Fig. 3A—-C, 4A—C). As noted previously
by others, because of shared morphological characteristics, morphological identification
of Thecamoeba isolates to the species level is often not possible under light microscopy
and thus requires molecular characterization of the SSU rRNA gene (Mesentsev et al.,
2020). These isolates have an uncorrected pair-wise distance of 0.05, i.e., 5% different
in 18S rDNA sequence (Suppl. Table 2), in an alignment of strictly Thecamoeba isolates
which was also used in a phylogenetic analysis (Suppl. Fig. 4). In our SSU rDNA
phylogeny, both new strains form a clade fully supported as sister to T. similis, which
together are sister to T. foliovenanda (Fig. 2). These relationships are further supported
by similar morphological characteristics between our strains, T. similis, and T.
foliovenanda. Unfortunately, shortly after isolation and molecular characterization of
strain SK13-4H, it was lost, and no further characterization is now possible thus we are
unable to adequately describe the strain. The locomotive form of cells from SK13-4B
measure on average 65 ym in length and 49 uym in breadth falling morphologically
between T. similis (36—57 um and 38—44 um breadth) and T. foliovenanda (71 um length
and 55 uym breadth) (Page, 1977; Mesentsev et al., 2020). Like these species, the nuclei
of SK13-4B are rounded and elongated with irregular peripheral nucleoli (Fig. 3D, 4). In
addition, we have represented the morphological variation of T. homeri n. sp. as violin
plots in Supplementary Figure 5.

3.2. Investigation into the behaviors of Sappinia dangeardi n. sp.

We further investigated the mechanisms of standing behavior of Sappinia
dangeardi n. sp. For the cytoskeletal architecture of standing cells, we were able to stain
DNA and microfilaments. Through confocal fluorescence microscopy, we observed that
actin heavily localizes to the “stalk” of standing cells (Fig. 5). Unlike the true stalk created
by dormant fruiting forms of other amoebae, such as protosteloid amoebae (see Spiegel
et al., 2017), the “stalk” of Sappinia is a temporary structure of the cell itself. Standing
Sappinia are not dormant. They immediately begin moving when transferred to agar.
From our observations, we hypothesize the cells must constantly create physical pressure
in the stalk, utilizing actin, to maintain standing. This is an intriguing biophysical
phenomenon, as cells can maintain standing completely straight up, upside down, and
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horizontally for hours (Supplementary Video 2, 3, 4). We also consistently observe nuclei
resting at the lower end of the “head” region of the cell.

The initiation of standing in S. dangeardin. sp. appears to be triggered by substrate
drying. A qualitative experiment of three parafiim-sealed and three unsealed cultures
supported this hypothesis. When parafilm-sealed, the freshly passed culture was kept
moist and there was still growth (seen on the clear agar edges), but little to no standing
after 10 hours. After removing parafilm, thousands of cells began standing within 10
hours. In the presence of dry conditions, we also predict it is more advantageous to leave
the substrate and to disperse to more favorable conditions. Standing behavior may be
beneficial to dispersal via abiotic (rain, wind, etc.) or biotic (animals) vectors. Experiments
that gauge standing’s contribution to dispersal would be beneficial for future work.

Since 2007, one of us (Brown) has attempted and failed many times to isolate and
culture S. pedata from dung, which is frequently encountered when working with dung
amoebae. In these attempts, cells were simply picked from the dung and placed on a
non-nutrient agar along with E. coli as a food source. While this method was highly
successful for Sappinia pedata from dead plant materials (mostly leaves) (Brown et al.,
2007), this simply has not worked for dung inhabiting S. pedata. S. dangeardi also shows
a reliance on dung to culture. Over the last few years, we have discovered that dung itself
and perhaps the prokaryotic community may be required for the successful cultivation of
many dung-inhabiting protistan taxa (personal observation). Moreover, we observed
aggregates of Sappinia cells on wild dung samples. These Sappinia aggregates were
subcultured by carefully transferring an aggregate with a sterile insect needle onto
sterilized dung seeded with E. coli. Contrary to our experiences with subculturing both
our Sappinia isolates (MSU2206 and BF22-2A), these subcultures showed a resurgence
of this aggregative behavior using the same culture method. When subculturing by picking
standing single cells, aggregative behavior has not been observed.

3.3. Standing and doughnut behaviors of Thecamoeba homeri n. sp.

In addition to the well-known standing behavior in Sappinia species, we observed
standing-like structures of our Thecamoeba homeri n. sp. isolate (SK13-4B) (Fig. 3E—F)
after adding sterilized straw soaked in an E. coli slurry on top of the agar culture medium.
This idea came from observations of primary isolation plates with dead plant material,
where we have seen presumed Thecamoeba cells protrude most of their cell body
(standing) from the edges of the plant material. The standing cell observed in this strain
was not as obvious or pronounced as the standing cells in Sappinia spp. As it is shorter
and appears to be much less infrequent, only observed less than five times.

Another interesting behavior found in T. homeri n. sp. (SK13-4B), and of a lost
strain of Thecamoeba (SK13-4H), is the formation of a transient doughnut-shaped cell
morphology (Fig. 3GH, Fig. 4 EF, Supplementary Video 5). When viewed from above (or
below) the cells have a doughnut ring-like appearance. Currently, the cellular processes
to form this transient morphology are completely unknown, but the behavior is worth
noting here as it has never been previously documented. First, the cell appears to form a
volcano shape with the hole (crater-like) towards the air. However, we cannot make a
definitive description of how this hole closes and if there is another opening on the
adhered end of the cell. We also have observed this behavior as a separate process from
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contractile vacuole formation (Supplementary Video 6). The process of forming the
doughnut shape is very rapid (ca. 2-5 minutes) and the cells seem to frequently perform
this behavior at random intervals. Due to this, we have been unable to fix cells forimaging
under scanning electron, transmission electron, or immunohistochemical microscopy to
clarify the underlying mechanism. As far as we know, this doughnut behavior has not
been reported in any other Thecamoeba isolate, although it has been noted to occur
frequently in unidentified Thecamoeba species on primary isolation plates while searching
for protosteloid amoebae by other researchers (pers. comm. Spiegel & Tice, as well as
ourselves). Both standing and doughnut behaviors may indeed be more prevalent across
Thecamoeba and even Thecamoebida, but often these taxa are cultured in liquid
environmental conditions in the laboratory. These behaviors are unlikely to be observed
in liquid conditions, as they appear to be terrestrial phenomena. Future studies are
needed to examine standing behaviors among Thecamoeba and the whole
Thecamoebidae family.

Our research has unveiled two novel isolates, Sappinia dangeardi n. sp. and
Thecamoeba homeri n. sp. each exhibiting unique behaviors and morphologies in
terrestrial contexts. Our findings emphasize the importance of considering culture
conditions when studying amoeboid taxa, as the use of standard liquid media may lead
to overlooking behaviors unique to terrestrial contexts. The induction of standing behavior
in our Thecamoeba isolate SK13-4B by adding sterilized straw to agar media highlights
the potential for mimicking environmental conditions to reveal previously undocumented
behaviors in these organisms. Furthermore, this study and other studies reinforce the
notion that traditional morphological features, such as standing, bicellular cysts, and
paired nuclei, are insufficient for species identification within Sappinia (Wylezich et al.,
2014). Molecular methods, particularly 18S rRNA phylogenetics, provide an accurate and
reliable means of identification and classification, particularly when conferred with
morphological characters, revealing cryptic species where morphology fails. Notably, our
work, along with a recent study on Thecamoeba terricola by Mesentsev et al. (2023),
suggests that standing behavior is more widespread among Sappinia and Thecamoeba
species than previously understood. Observing Sappinia sp. CCAP 1575/3 (Busnog
strain) and its standing behavior further corroborate this expanded view. These findings
collectively underscore the dynamic nature of amoeboid taxonomy and the ongoing need
to refine our understanding of their ecological adaptations and evolutionary relationships.

Taxonomy of novel species
Sappinia dangeardi Henderson & Brown n. sp.

Taxonomic Summary

Eukaryota (Chatton, 1925) Whittaker & Margulis, 1978
Amorphea Adl et al., 2012

Amoebozoa Lihe, 1913 emend. Cavalier-Smith, 1998
Discosea Cavalier-Smith et al., 2004

Flabellinia Smirnov et al., 2005 sensu Kang et al., 2017
Thecamoebida Smirnov and Cavalier-Smith, 2011
Thecamoebidae Schaeffer, 1926

Sappinia Dangeard, 1896
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Sappinia dangeardi n. sp. Henderson & Brown, 2024

Diagnosis. Sappinia dangeardi n. sp. can be diagnosed by its specific SSU rRNA
sequences and by its phylogenetic placement. Ligulate monopodial amoeboid trophozoite
cells with lateral side folds. Length in locomotion as observed on agar surfaces is 47-117
um (average 72 ym, SD = 11, n = 161), width in locomotion 26-63 ym (average 42 um,
SD =7, n = 161), length to breadth ratio 1.09-2.57 (average 1.75). The nuclei of cells
most often display hemispherical morphologies. Cells with two closely appressed
hemispherical nuclei measure in diameter across both nuclei at widest point is 9-14 ym
(average 12 ym, SD = 1.4, n = 21). The length of hemispherical nuclei measure between
8—11 ym (average 9 um, SD = 0.8, n = 21). The flat surface of the hemispherical nucleus
pairs with flat surface of the other nucleus. Each nucleus is most often observed to have
a central hemispherical nucleolus measuring in length 6-10 ym (average 8 ym, SD =1,
n = 21) and breadth 3-5 ym (average 4 um, SD = 0.5, n = 21). Rarely rounded pairs of
nuclei with central round nucleoli are observed. Trophozoite cells forms multiple small
contractile vacuoles, merging into one larger vacuole before expulsion (termed
“polyvacuole”) often associated with the nucleus. Standing cells show a variety of forms,
often associated with an erect baseball bat-shaped morphology of 53—159 ym (average
85 um, SD=201, n=103) in height (length). Aggregative forms have been observed in this
strain on the tips of small dung pieces. Cysts have not been observed in this strain.
Primarily a bacterivore.

Type location. Strain BF22-2A of Sappinia dangeardi n. sp. Was obtained from Bos
taurus dung on private farm that is home to both cattle and horses near the Mississippi
State University campus in Starkville, Mississippi, USA Lat. 33.500459° N, Long. -
88.752719° E, in March of 2022.

Type material. The type specimen (BF22-2A) is a permanent slide of fixed cells
deposited in the Invertebrate Zoology Collection at the Smithsonian National Museum of
Natural History. This slide is also considered the hapantotype (name-bearing type) of the
species, under article 73.3 of the International Code of Zoological Nomenclature (ICZN,
1999).

Gene Sequence data. The nearly complete SSU-rRNA gene of the type isolate (BF22-
2A) is deposited GenBank under accession {awaiting Accession numbers}.

ZooBank ID: urn:lsid:zoobank.org:act:0CD69482-BOB7-46BB-9F08-29545E79CD59

Etymology. For the specific epithet, we chose dangeardi n. sp. in recognition of
Dangeard who originally described the genus Sappinia.

Differential Diagnosis. S. dangeardi n. sp. differs from other known species based on
SSU rRNA gene sequences.

Thecamoeba homeri Henderson & Brown n. sp.
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Taxonomic Summary

Eukaryota (Chatton, 1925) Whittaker & Margulis, 1978
Amorphea Adl et al., 2012

Amoebozoa Luhe, 1913 emend. Cavalier-Smith, 1998
Discosea Cavalier-Smith et al., 2004

Flabellinia Smirnov et al., 2005 sensu Kang et al., 2017
Thecamoebida Smirnov and Cavalier-Smith, 2011
Thecamoebidae Schaeffer, 1926

Thecamoeba Fromentel, 1874

Thecamoeba homeri n. sp. Henderson & Brown, 2024

Diagnosis. Cells are typical of the genus. Dorsally wrinkled or parallel folds oblong
amoeboid cells with dorsal wrinkles or parallel folds. Length in locomotion 50-79 ym
(average 65 uym, SD =7, n = 102), width in locomotion 37-65 ym (average 49 uym, SD =
6, n = 102), length to breadth ratio 1.03—1.92 (average 1.34). Nucleus commonly ovoid,
length 7-21 uym (average 12.4 ym, SD = 3, n = 101) and breadth 4-14 ym (average 7
um, SD = 3, n = 101). A single nucleus per cell observed. Numerous nucleoli circular to
lobed (ca. 0.5—-1 um in diameter) and parietal on the periphery of the internal wall of the
nuclear envelope. Cysts have not been observed. Cells often form a transient doughnut-
shaped round structure on the surface of agar lasting 2—7 minutes. Primarily a
bacterivore. These morphological and behavioral characteristics are similar to other
species, thus confident identification of T. homeri n. sp. must be done by SSU rDNA
sequencing and analysis.

Type location. Strain SK13-4B of Thecamoeba homeri n. sp. Was obtained from the
uppermost soil surface on the Mississippi State University campus in Starkville,
Mississippi, USA Lat. 33.455812° N, Long. -88.788126° E in May of 2013.

Type material. This type culture (SK13-4B) is deposited in a metabolically inactive state
with the Culture Collection of Algae and Protozoa (CCAP). This culture is also considered
the hapantotype (name-bearing type) of the species, under article 73.3 of the International
Code of Zoological Nomenclature (ICZN, 1999).

Gene Sequence data. The nearly complete SSU-rRNA gene of the type isolate (SK13-
4B) is deposited GenBank under accession {awaiting Accession numbers}.

ZooBank ID: urn:lsid:zoobank.org:act:0D7CD4D5-D76D-4E41-AAAC-8FFECE8S5AA4E

Etymology. For the specific epithet, we chose “homeri” referring to the transient,
doughnut-shaped cell morphology observed in this Thecamoeba strain. The name is after
The Simpsons television cartoon character Homer Simpson, whose favorite food are
doughnut pastries (donut).

Differential Diagnosis. T. homeri n. sp. differs from other known species based in SSU
rRNA gene sequences.
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TABLES

Table 1: Details of isolates explored in this study.

Isolate ID | Species Place | Site Name Substrate | Latitude Longitude
BF22-2A | “Sappinia MS, Byrum Farm Bos taurus | 33.500459° | -88.752719°
dangeardi’ n. sp. | USA dung N E
MSU2206 | Sappinia pedata | MS, MSU - | Bos taurus | 33.418104° | -88.786925°
USA Agricultural dung N E
Research Center
SK13-4B | “Thecamoeba MS, MS—- - Harned | Soil 33.455812° | -88.788126°
homeri” n. sp. USA Hall N E
SK13-4H | Thecamoeba sp. | MS, MS- - Harned | Soil 33.455812° | -88.788126°
USA Hall N E
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Figures

Fig. 1. Microscopy of Sappinia isolates. A—C. Sappinia dangeardi n. sp. strain BF22-2A.
A. DIC micrograph of a trophozoite amoeboid cell. B. Standing cell on dung. C. Numerous
standing cells on dung. D—E. Sappinia pedata strain MSU2206 standing cells on dung. F.
Sappinia sp. CCAP 1575/3 (Busnog strain) standing cell in culture. All scale-bars = 50
pum. Cells in B, D, F are to scale, as are C and E.
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Fig. 2. Maximum likelihood (ML) SSU rRNA gene tree of Thecamoebida, including all
available Thecamoebida 18S sequences with Dermamoeba and Paradermamoeba as
outgroup taxa. The tree was constructed with RAxML using the GTRGAMMAI model of
evolution with 1772 nucleotides sites, with 1000 ML bootstrap replicates mapped. Bolded
taxa are strains observed during the course of this research. Closed dots represent 100
bootstrap support and open dots represent 95-99 bootstrap support. Bootstrap values
below 50 are not noted. Additional strain locality information included in Supplementary
Table 1.
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Fig. 3. Microscopy of Thecamoeba homeri n. sp. strain SK13 4B. A-C.DIC micrographs
of trophozoite amoeboid cells, showing dorsal ridges. F-L. nucleus with lobed peripheral
nucleoli. M. standing cell on a projection of a piece of straw material. F. standing cells on
straw material. O—P. Doughnut morphologies on the agar surface. A-E, scale-bar = 10
pum. F—L, scale-bar = 10 ym. M-N, scale-bar = 50 ym. O-P, scale-bar = 25 ym.




714  Fig. 4. Thecamoeba sp. strain SK13-4H amoebae (A, B, C) and nucleus (D). Doughnut
715  behavior (E & F). Scale-bar A & D = 10 ym (A—C to scale) and F is 25 pym.
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719 C

720 Fig. 5. Histocytochemical fluorescence localization of cellular structures of Sappinia
721 dangeardi n. sp. (BF22-2A) standing amoebae using confocal microscopy. A-C
722 ActinGreen 488-nm ready probes (Actin, Green) and NucBlue ReadyProbes (DNA, Blue),
723 scale bar = 50 um (A—C to scale).

724

725



726  SUPPLEMENTAL FILES

727  All molecular data and supplemental files (figures and videos) associated with this
728  manuscript are available on FigShare (https://doi.org/10.6084/m9.figshare.24772854).
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Supplemental Figure 2: Morphological variation of locomotive and standing Sappinia
cells comparing S. dangeardi n. sp. BF22-2A and S. pedata MSU2206.
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Supplemental Figure 3. Hemispherical nucli of S. dangeardin. sp.. Scalebar = 10 ym.
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Supplemental Figure 6. Type specimen of S. dangeardi n. sp. fixed in methanol and
paraformaldehyde, type slide containing this cell has been deposited to the Invertebrate
Zoology collection at the Smithsonian Institute. Scale-bar = 50 ym.

Supplemental Video 1.
[SupplementalVideo1.SappiniaPick.mp4] An example of a single cell pick of Sappinia
sp. using platinum wire.

Supplemental Video 2.

[SupplementalVideo2.20220522 BF22-2A 5spf 30fps standing behavior.mp4]
Timelapse video of standing Sappinia dangeardi n. sp. BF22-2A. Each frame was taken
five seconds apart and compiled at 30 frames per second. Taken under transmitted light.

Supplemental Video 3.

[SupplementalVideo3.Sappinia Timelapse.BF22-2b.20220306.mp4] Timelapse video
of standing Sappinia dangeardin. sp. BF22-2A. Each frame was taken five seconds apart
and compiled at 30 frames per second. Taken under transmitted light.

Supplemental Video 4.

[SupplementalVideo4.BF22Dense CultureOverview_QT.mp4] Realtime video
microscopy of standing Sappinia dangeardi n. sp. BF22-2A on dung. Taken under
reflected light.

Supplemental Video 5.
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[SupplementalVideo5.Thecamoeba.Doughnut.variousmag.realtime.mp4] Realtime
video microscopy of the doughnut formation in Thecamoeba homeri n. sp. SK13-4B.
Taken under transmitted light. Multiple occurrences compiled into one video.

Supplemental Video 6.
[SupplementalVideo6.Polyvacuole_timeseries.Sappinia_dangeardi.40X.mp4] Time
series micrographs of Sappinia dangeardi n. sp. polyvacoule formation.

Supplemental Video 7.
[SupplementalVideo7.SK13-4H.Donut.mp4] Real time video of doughnut formation in
Thecamoeba sp. SK13-4H.

Supplemental Table 1.
[SupplementalTable1.Tree_Strain_Information.xlsx] Locality information of strains
whose 18S rDNA sequences were used in Fig. 4.

Supplemental Table 2.
[SupplementalTable2.UncorrectedPairwiseDistances.MAFFTAUTO-BMGEO0.9.xlIsx]
Uncorrected pairwise distance matrices for the genera Sappinia and Thecamoeba.



