Create, Analyze, and Visualize
Phylogenomic Datasets Using PhyloFisher

Robert E. Jones,!>® Alexander K. Tice,">3® Marek Eli4s,*® Laura Eme,’

Martin Kolisko,®”® Serafim Nenarokov,® Toma§ Panek,®® Antonis Rokas,’

Eric Salomaki,>!°® Jiirgen F. H. Strassert,!' © Xing-Xing Shen,!?

David Zihala,*® and Matthew W. Brown'>'3

'Department of Biological Sciences, Mississippi State University, Starkville, Mississippi,
USA

’Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University,
Starkville, Mississippi, USA

3Department of Biological Sciences, Texas Tech University, Lubbock, Texas, USA

“Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava,
Czech Republic

SUnité d’Ecologie, Systématique et Evolution, CNRS, Université Paris-Saclay France,
Orsay, France

®Institute of Parasitology, Biology Centre Czech Academy of Sciences, Ceské Bud&jovice
Czech Republic, USA

"Faculty of Science, University of South Bohemia, Ceské Bud&jovice, Czech Republic

8Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic

Department of Biological Sciences and Evolutionary Studies Initiative, Vanderbilt
University, Nashville, Tennessee, USA

10Center for Computational Biology of Human Disease and Center for Computation and
Visualization, Brown University, Providence, Rhode Island, USA

"Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater
Ecology and Inland Fisheries (IGB), Berlin, Germany

Institute of Insect Sciences, Zhejiang University, Hangzhou, China

13Corresponding author: matthew.brown @msstate.edu

Published in the Bioinformatics section

PhyloFisher is a software package written primarily in Python3 that can be used
for the creation, analysis, and visualization of phylogenomic datasets that con-
sist of protein sequences from eukaryotic organisms. Unlike many existing phy-
logenomic pipelines, PhyloFisher comes with a manually curated database of
240 protein-coding genes, a subset of a previous phylogenetic dataset sampled
from 304 eukaryotic taxa. The software package can also utilize a user-created
database of eukaryotic proteins, which may be more appropriate for shallow
evolutionary questions. PhyloFisher is also equipped with a set of utilities to
aid in running routine analyses, such as the prediction of alternative genetic
codes, removal of genes and/or taxa based on occupancy/completeness of the
dataset, testing for amino acid compositional heterogeneity among sequences,
removal of heterotachious and/or fast-evolving sites, removal of fast-evolving
taxa, supermatrix creation from randomly resampled genes, and supermatrix
creation from nucleotide sequences. © 2024 Wiley Periodicals LLC.
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INTRODUCTION

Single-gene molecular phylogenetic analyses revolutionized our understanding of the
evolutionary history of life. However, they lacked the necessary phylogenetic signal to
fully resolve especially deep branches in the tree of life (Leipe et al., 1993). In the
2000s, the field of molecular phylogenetics transformed into phylogenomics, a disci-
pline that combines the signal from hundreds of genes (or proteins) per taxon, yielding
a better understanding of deep phylogenetic relationships between lineages (Baldauf et
al., 2000). However, phylogenomic databases have been difficult to manage, maintain,
and update with newly available genomic data. Historically, this has been done either
by manually editing the sequence files or by use of private “in-house” code, both of
which drastically reduce reproducibility. In addition, as computing resources become
more powerful and genomic sequencing exponentially cheaper, the amount of data in-
cluded in phylogenomic studies has been consistently and rapidly increasing, making
manual dataset management a difficult task. The main aim of PhyloFisher is to ease the
burden of constructing, curating, maintaining, and updating phylogenomic databases in
a reproducible and time-saving fashion. Both the PhyloFisher software package and as-
sociated sequence database are publicly available, easy to install, and regularly updated
to ensure its proper function. PhyloFisher is also designed to open phylogenomics to re-
searchers new to the field and to help them overcome the challenges of the complex work-
flow that phylogenomic analysis requires—from the selection of orthologs to post-tree
analyses.

The terms database and dataset are used throughout PhyloFisher documentation. The
two terms are, however, not synonymous. The database is a collection of manually cu-
rated sequences demarcated as either orthologs or paralogs. This can refer either to the
provided database or to a custom database supplied by the user. Decisions made by a
user regarding orthology and paralogy during manual curation of sequences from in-
put proteomes are stored within the “database”. The initial database provided was man-
ually curated prior to its release; however, the user’s application of different phyloge-
netic methods, manual curation practices, and taxon selection will cause the database to
change over time. A dataset can refer to either a “working dataset” or a “phylogenomic
dataset”. The purpose of the working dataset is to aid in the identification of orthologs,
paralogs, and contaminants from input proteomes. The working dataset is created when
sequences are collected by fisher . py from input proteomes and appended to the copies
of the corresponding homolog files from the database. These data will then move through
the PhyloFisher workflow until final decisions based on manual curation have been ap-
plied back to the database. A working dataset is not revisited after decisions from man-
ual curation have been made and applied to the database. A phylogenomic dataset is a
set of orthologs and taxa in the form of individual ortholog alignments and a concate-
nated matrix of these alignments that have been selected from the database to perform
phylogenomic analyses. Figure 1 illustrates the flow of data between major steps of the
workflow, and how the flow relates to a working dataset, a phylogenomic dataset, and a
database.
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Figure1 Flow chart of the three major PhyloFisher main workflow steps leading to the production
of a phylogenomic dataset.

CONSTRUCTING A PHYLOGENOMIC DATASET

When originally conceived, PhyloFisher had the primary objective of situating novel taxa
on the Tree of Eukaryotes. Although its utility extends to various other types of inquiries,
we will illustrate its application within this specific context. Take, for example, a case
where an isolated organism is suspected to belong to the Obazoa group—comprising
Fungi, Metazoa, and their protistan counterparts (Brown et al., 2013)—based on mor-
phology. Verification of taxon classification within Obazoa and an exploration of its phy-
logenetic placement within the group may be achieved through phylogenomic analysis,
which entails the construction of an appropriate set of orthologs from the species under
investigation. Using PhyloFisher, this step begins with a preexisting database, either the
one provided with PhyloFisher or a user-constructed database. User-built databases can
be constructed by using the utility build database.py. The user can then enter the
PhyloFisher main workflow, which has three major steps involved in dataset construc-
tion with the following scripts: fisher.py, sgt constructor.py, and manual
homolog-tree inspection via forest .py and ParaSorter (Fig. 1). fisher.py se-
lects putative orthologs from input proteomes either through the default route or the phy-
logenetically informed route described in Tice et al. (2021). The output of fisher .py
contains, for each protein of the initial database, putative orthologs for newly added or-
ganisms and sequences from the starting database; this is used to build an individual
phylogenetic tree for each protein. These trees are then manually inspected for accuracy
of ortholog assignment, and the user makes and records any necessary changes. The re-
sults of the tree inspection are then applied to the database. The final dataset to be used
for phylogenomic tree construction is created from the curated set of orthologs present in
the updated starting database that now contains sequences from newly added organisms
(Tice et al., 2021).

Necessary Resources
Hardware

A Unix-based high-performance computing environment with access to the
Internet.

A local computer capable of running forest local.py and ParaSorter
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Table 1 input_metadata.tsv Included in the Sample Run through PhyloFisher

Higher  Lower
taxon-  taxon- BLAST

Location File name Unique ID omy omy seed Long name Data type  Source
J Batrdend.faa Batrdend Obazoa Fungi Allomacr Batrachochytrium Genomic GCF_00020
dendrobatidis 3795.1

Table 2 Example Segment of metadata.tsv Included in the Example Database

Unique ID Long Name Higher Taxonomy Lower Taxonomy Data Type Source

Gregniph  Gregarina niphandrodes (GNI3) Alveolata Apicomplexa Genomic GCF_000223845.1
Protadhe  Protocruzia adherens Alveolata Ciliata Transcriptomic SRR1296823
Stensten  Stenamoeba stenopodia Amoebozoa Discosea Transcriptomic SRR5396404
Idiovort  Idionectes vortex Amoebozoa Evosea Transcriptomic SRX5656095
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Software

PhyloFisher (high-performance computing environment)
ParaSorter (locally) (https:// github.com/TheBrownLab/PhyloFisher/
tree/master/parasorter)

forest.py (locally)

Files

Input proteomes in FASTA format.
Sample File. Sample data can be found at https.//github.com/TheBrownLab/
phylofisher-current-protocols.

. Download and decompress the PhyloFisher starting database in your desired loca-

tion (this location can be anywhere on your computer for which you have “write”
privileges).

$ wget https://ndownloader.figshare.com/files/29093409

$ tar -xzvf 29093409

. Make a project directory in your desired location (this location can be anywhere on

your computer and is independent of the location of the database). Once you have
made the project directory, move into it.

$ mkdir phylofisher tutorial

$ cd phylofisher tutorial

. Create the file input_metadata.tsv (Table 1) with information about your taxa-to-be-

added. The input_metadata.tsv file contains nine columns of information about input
taxa that are used throughout a PhyloFisher analysis. Each row in the file should be
a new taxon to be added to the database. The input_metadata.tsv file can be most
easily completed in spreadsheet software such as Microsoft Excel and saved as a
tab-delimited text file. Place the completed input_metadata.tsv file in the project
directory created in the previous step. After completion of a PhyloFisher run, the in-
formation in input_metadata.tsv will be appended to the permanent file metadata.tsv
(Table 2) for any input taxon that is to be permanently added to the database. The
file metadata.tsv serves as a long-term record of the contents of the database as taxa
are added over time. Download an example input_metadata.tsv.

$ wget https://raw.githubusercontent.com/TheBrownLab/phylofisher-current-protocols/main/addition/input_metadata.tsv
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Table 3 contaminants.tsv Input of forest.py

Unique ID Taxonomic term Taxonomic level

Stensten Fungi Lower taxonomy

4. Create and set up the PhyloFisher configuration file.

$ config.py -d .. /PhyloFisherDatabase vl1.0/database/ -i input metadata.tsv

5. Collect putative homologs from input taxa.
$ fisher.py -o fisher_ out
6. Produce preliminary statistics about newly input data.

$ informant.py -i fisher out

At this step, the statistics provided by informant . py should be considered pre-
liminary. The number of orthologs shown for a newly input taxon can be inflated
due to contamination or paralogs in the data (sequences that passed all criteria dur-
ing fisher . py but will be removed during manual curation because they do not
truly come from the organism’s genome or are not orthologs of the gene of interest).
These statistics will almost always change after manual curation. However, they can
be generated quickly and are useful for a rough estimate of data completeness with
regard to the starting database.

7. Construct a working dataset: Collect taxa and homologs for homolog tree construc-
tion.

$ working dataset_constructor.py -i fisher out -o working dataset_constructor_out

If you wish to exclude genes, taxa, and/or paralogs from the working dataset used for
homolog tree construction (NOT RECOMMENDED) change the column values for “Ho-
molog Tree” in gene_stats.tsv and/or org_stats.tsv to “NO” and then run. Similarly,
changing the column values for “Paralogs” in “db_taxa_stats.tsv” to “NO” will lead to
the inclusion of only orthologs for those taxa in homolog trees used for paralog/ortholog
vetting.

8. Filter, align, and trim homolog files followed by optional homolog tree construction.

$ sgt_constructor.py -i working dataset_constructor_out -o sgt_constructor_out

If you would like to perform filtering, aligning, and trimming without homolog tree con-
struction via RAxXML, use the —no_tree flag.

If you choose to build homolog trees without using sgt_constructor.py, you must
use a maximum likelihood program. Downstream quality control steps are not set up to
interpret Bayesian posterior probability values. Your naming convention for each maxi-
mum likelihood tree must follow {nameofyourchoosing}.{gene_namej.tre

9. Render .svg and .tsv files of homolog trees for visualization with ParaSorter.
If working on a remote server, copy the file sgt_constructor_out_< MDY >.tar.gz
file to your local machine for input into forest . py, using the —local_run flag.

$ forest.py --local_run -i sgt_constructor out-local.tar.gz -o forest_out

If a user has a priori knowledge of eukaryotic contamination in their data, they
can provide forest .py with a file via the —contaminants flag. The file should
be tab delimited and have three columns (Table 3). The first column contains the
Unique ID of the contaminated input proteome and the second column contains
the taxonomic term of the contaminant. Any of the three taxonomic levels used in
PhyloFisher (higher taxonomy, lower taxonomy, Unique ID) can be used to identify
contamination. Finally, the third column contains the name of the taxonomic level
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chosen for the contaminant. When this file is provided, forest . py will pre-mark
instances of this branching pattern for deletion regardless of maximum likelihood
bootstrap support (MLBS) for the relationship.

If a user discovers pervasive contamination during manual curation of homolog
trees, rather than having to manually mark each instance for deletion, the user can
provide forest .py with a file in the same format as above only with both the
—contaminants and —backpropagate flags given. When the —backpropagate is added,
all decisions made previously in manually curated gene trees will be maintained
rather than rewriting the original .tsv files, with the only difference being the de-
fined contaminant is marked for deletion.

Only sequences from newly added organisms can be pre-marked for contamination or
have contamination backpropagated. Contamination discovered in previously added or-
ganisms must be marked manually if found after their initial addition.

Homolog Tree Inspection

The PhyloFisher workflow strongly encourages manual inspection of homolog trees
to ensure that only sequences with an orthologous relationship make it into the fi-
nal phylogenomic dataset and that any sequences derived from contaminants are
removed. While this process is an arduous portion of the workflow, tools are pro-
vided within PhyloFisher to help alleviate some of this burden. Below, we also pro-
vide guidelines for ortholog selection during the construction of the PhyloFisher v.
1.0.0-provided starting database.

To manually inspect a homolog tree, open the application ParaSorter, which can
be downloaded from the PhyloFisher GitHub repository.

Once ParaSorter has opened:

In the upper left corner, click “Open tree” and choose a .svg file created by
forest .py in the last step.
Click “Import tsv”” and choose the corresponding gene’s .tsv file.

Figure 2 illustrates a segment of a homolog tree visualized with ParaSorter (top)
and of the PhyloFisher naming scheme for phylogenetic tree leaves (bottom). To the
right of each sequence in the tree are three boxes. If selected, the leftmost box (green)
will display a capital letter “O” for “ortholog”, the middle box (yellow) will display
a capital letter “P” for “paralog”, and the rightmost box (red) will display a capital
letter “D” for “delete.” These boxes are used to display and change a sequence’s
current or future designation in the database. To change a sequence’s designation,
simply click the box that corresponds to the desired assignment. These designations
will be applied to the starting database in the next step.

Below is an overview of information provided in sequence names (phylogenetic tree
leaves) and homolog tree files to better inform ortholog, paralog, and contamination
selection during manual inspection (Fig. 2):

A) User-provided “Long Name” of the taxon.
B) Route through fisher . py that produced sequence:

a. Specific Best Hit (SBH) —appended if a specific query produced a significant
hit and the sequence was sister to another sequence from the same taxonomic
group in the phylogeny automatically inferred by fisher . py using FastTree
(Price et al., 2010).

b. Best Blast Hit (BBH) — appended if a specific query produced a signifi-
cant hit and the sequence was not sister to another sequence from the same
taxonomic group in the phylogeny automatically inferred by fisher . py us-
ing FastTree.

Current Protocols
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Figure 2 Example segment of a homolog tree visualized with ParaSorter (above) and of the PhyloFisher

sequence header naming scheme (below).

c. HMMER route (HMM) — appended if the sequence was selected by the de-

fault route using a hmmer search (Mistry et al., 2013).
C) Priority in final set of collected sequences:

a. Denoted “qn” where “n” is an integer representing the sequence’s order of
priority out of “n” sequences collected in the initial search using the profile
HMMs (e.g., ql, g2, ..., qn).

b. If the collected sequence’s best BLAST hit is or is not a sequence in the
corresponding ortholog ahgnment from the database.

i. c-collected sequence’s best BLAST hit IS a sequence in the correspond-
ing ortholog alignment from the database.
ii. n - collected sequence’s best BLAST hit IS NOT a sequence in the cor-
responding ortholog alignment from the database.
D) The proportional length of the sequence in the trimmed alignment used for
length filtering.
E) Unique ID of taxon in dataset.
F) Higher and Lower taxonomic designations.
G) Other valuable information provided:

a. Displayed at the top of each tree is the name of the gene, the length of
trimmed alignment used to filter sequences, the length of the alignment used
to produce the tree and the number of “suspicious clades” detected.

b. A clade is marked as suspicious if it is supported by an MLBS value of 70
or greater and contains sequences from multiple higher taxonomic groups.
These clades are highlighted with a grey background and each node that
meets the above criteria is marked with a red sphere.

c. Newly added sequences that were chosen as the putative ortholog by
fisher.py are written in bold black font while sequences chosen as par-
alogs are written in regular black font.

Current Protocols
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d. Sequences that are newly added are not highlighted in color based on taxon-
omy.

e. Orthologs already in the database are highlighted in color based on taxon-
omy and are written in regular black font.

f. Paralogs already in the database are not highlighted in color based on tax-
onomy and are written in regular blue font.

g. Sequences pre-marked for deletion are not highlighted in color based on
taxonomy and are written in regular red font. Red sequences will only be
presented if known contaminants were provided to forest . py via the —
contaminants and —backpropagate flags.

Here we provide the logic used for ortholog selection during the construction of
PhyloFisher v. 1.0.0 provided starting database as described in Salomaki et al. (2020)
and Tice et al. (2021). However, many of these guidelines are flexible for users with
knowledge of systematics and molecular evolution to adjust based on their prefer-
ences.

A) In cases of in-paralogy, defined as instances of a duplication event that occur in

a single organism, the longest sequence was retained as the ortholog (Fig. 3a).

B) In cases of mid or deep paralogy, clades with 50% or greater MLBS and se-
quences from at least one taxon present on both sides of the initial bifurcation
were considered to represent gene duplication events.

a. In the case of such duplication events, sequences on the side of the dupli-
cation that contained the most sequence data (measured as the sum total of
retained sequence length) were retained as the orthologs (Fig. 3b).

b. In instances where the sequence data retention was nearly equal on both
sides of the bifurcation, sequences from the side which had the most species
represented were retained as the orthologs (Fig. 3c¢).

c. Figure 3d shows a case were paralogy clearly exists for taxon A and B. While
the tree topology suggests that taxon G is also paralogous, as it branches
with taxa A and B, it can be retained as an ortholog because its position is
not highly supported and there is no strong evidence for its position with the
paralogous sequences from A and B.

After all decisions have been made, click “Save to tsv”’ on the top left-hand
side of the ParaSorter display. The default name ParaSorter will suggest
{gene_name}_parsed.tsv as the new name of the file. The file must be named
{gene_name}_parsed.tsv for subsequent steps of the workflow to operate correctly.

Apply tree parsing decision to the database.
$ apply to db.py -i forest out -fi fisher out

apply to db.py will first backup the current database/directory and place
the backup in PhyloFisherDatabase_v1.0/database/backups. Next, apply
to_db.py will append orthologs from input taxa to their corresponding gene
files in PhyloFisherDatabase_v1.0/database/orthologs/, append paralogs for
input taxa to their corresponding gene files located in PhyloFisherDatabase_
v1.0/database/paralogs/, and remove sequences from the database that were marked
for deletion (this does not impact proteome files stored in PhyloFisherDatabase_
v1.0/database/proteomes/). The file metadata.tsv (Table 2) will also be updated with
information provided for newly added taxa in input_metadata.tsv (Table 1). Next,
apply to db.py will rebuild the database so sequences from newly added
taxa are present in the profile HMMs and the diamond database. This will allow
orthologs from the newly added taxa to be used as specific queries in subsequent
addition runs. Finally, apply to db.py will copy the input proteome of all new
taxa added to the database to PhyloFisherDatabase_v1.0/database/proteomes/.
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A Taxon A_SBH_q1¢_0.99@TaxonA [O] [ ][]
100
Taxon A_SBH_g2c_0.53@TaxonA [] [P] ]

Taxon A_SBH_q3c_0.55@TaxonA |:| |E| |:|

B Taxon A_SBH_q1c_1.0@TaxonA [O] [ ][]
Taxon B_SBH_q1¢c_0.99@TaxonB [O] [ ][]
Taxon C_SBH_q1c_1.0@TaxonC [O] [ ][]
97 Taxon D_SBH_q1c_0.98@TaxonD @ |:| |:|
Taxon E_SBH_q1¢_0.99@TaxonE [O] [ ][]

Taxon F_SBH_q1c_1.0@TaxonF QO
Taxon A_SBH_g2c_0.55@TaxonA [] [P] []

Taxon B_SBH_g2c_0.58@TaxonB D |E| |:|
Taxon C_SBH_g2c_0.56@TaxonC |:| |E| |:|
99 Taxon D_SBH_qg2c_0.63@TaxonD |:| E |:|
Taxon E_SBH_qg2c_0.55@TaxonE [] [P] []

Taxon F_SBH_q1c_0.60@TaxonF [] [P] ]

—
(=]
(=]

Taxon A_SBH_q1c_1.0@TaxonA [O] [ ]| []
Taxon B_SBH_qg1c_0.99@TaxonB |§| D D
Taxon C_SBH_q1c_1.0@TaxonC [O] [ ][]
Taxon D_SBH_q1c_0.98@TaxonD [O] [ | []
Taxon E_SBH_q1c_0.99@TaxonE @ |:| |:|
Taxon F_SBH_q1c_1.0@TaxonF [O] [ | []

Taxon A_SBH_g2c_1.0@TaxonA [][P] ]

Taxon B_SBH_qg2c_0.99@TaxonB [] [P] ]

Taxon C_SBH_g2c_1.0@TaxonC [] [P] []
Taxon D_SBH_qg2c_0.98@TaxonD [][P] []

Taxon A_SBH_q1c_1.0@TaxonA [O] [ | []
Taxon B_SBH_q1c_0.99@TaxonB [O] [ ][]
Taxon C_SBH_q1c_1.0@TaxonC [O] [ ][]
Taxon D_SBH_q1c_0.98@TaxonD [O] [ | []
Taxon E_SBH_q1c_0.99@TaxonE |§| D |:|
Taxon F_SBH_q1c_1.0@TaxonF QO

Taxon A_SBH_g2c_1.0@TaxonA [][P] []
Taxon B_SBH_qg2c_0.99@TaxonB [] [P] []
Taxon G_SBH_g2c_1.0@TaxonC |§| |:| |:|

Figure 3 Diagrammatic subsections of phylogenetic trees showing how ortholog and paralog as-
signments were made during construction of the PhyloFisher 1.0.0 database. (a) In cases where
a duplication event occurred in a single organism, the longest sequence was retained as the or-
tholog. (b) In cases where two clades supported by >50% MLBS that contain overlapping taxa
in each, but on one side taxa are represented more completely in the sequence alignment, the
sequences on the side of the duplication that contained the most sequence data (measured as
the sum total of retained sequence length shown as a proportion to the immediate left of the “@”
symbol in the sequence header) were retained as the orthologs. (€) In cases where two clades
supported by >50% MLBS that contain overlapping taxa, and the sequence data retention was
nearly equal for taxa on both sides of the bifurcation, sequences from the side which had with the
most species represented were retained as the orthologs. (d) lllustration of cases where paralogy
clearly exists for taxons A and B. While tree topology suggests that taxon G is also paralog as it
branches with taxa A and B, it can be retained as ortholog since its position is not highly supported
and there is no strong evidence for its position with the paralogous sequences from A and B.
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14.

15.

(OPTIONAL) Select taxa to compose final phylogenomic matrix.
$ select_taxa.py

By default, all taxa will be included. The —to_include and —to_exclude options were
designed to decrease the amount of manual manipulation of select_taxa.tsv gener-
atedby select taxa.py. Bothoptions take a file created by the user that has one
column with an organism’s Unique ID or a taxonomic rank (higher or lower) from the
metadata to be excluded or included in downstream steps. The options can be used
individually or in conjunction with one another to implement decisions on taxa se-
lection in an automated fashion. For example, if all taxa in the eukaryotic assemblage
“Amoebozoa” are to be excluded from downstream phylogenomic analyses provide
the —to_exclude option with a file (named anything) that contains “Amoebozoa” as
the first column entry. This will result in all amoebozoans being marked as “no”
in the “Include in Subset” column of select_taxa.tsv when it is generated. If a user
wanted all amoebozoans excluded except Dictyostelium discoideum (Unique ID =
Dictdisc), provide the —to_exclude option with a file (named anything) that contains
“Amoebozoa” as the first entry of the column as before and the —to_include option
with a file (named anything) with “Dictdisc” as the first column entry . This will
result in all amoebozoans being marked as “no” in the “Include in Subset” column
of select_taxa.tsv, but D. discoideum will be marked “yes.”

—to_include is not necessary. It only serves to ease the burden of manual taxa selection
in cases as outlined above. All taxa are marked to include by default, it is not necessary
to provide —to_include with a list of all taxa you wish to include in downstream steps.

Decisions provided to —to_include will override decisions provided to —to_exclude so be
cautious.

Alternatively, all changes can be made manually by opening select_taxa.tsv and
changing taxa designations from “yes” to “no.”

(OPTIONAL) Select genes to compose final phylogenomic matrix.
$ select_orthologs.py

By default, all genes will be included. The options —gene_number and —
percent_complete filter the genes to be included based on completeness. Complete-
ness is the percentage of taxa containing a gene. For example, if the gene ADK?2 is
present in 80 of 100 taxa, the completeness of ADK?2 is 80%. —percent_complete
allows for genes greater than or equal to the given threshold to be included. The
—gene_number option receives an integer. Genes are sorted based on completeness
and the highest n, with n being the integer given to —gene_number, number of genes
and marked “yes” and the remaining genes “no”.

If select taxa.pyisrunpriorto select orthologs.py, completeness is cal-
culated based on only those taxa to be included in the final phylogenomic matrix rather
than all taxa in the database.

Alternatively, all changes can be made manually by opening select_ortholog.tsv and
changing gene designations from “yes” to “no.”

Collect orthologs and taxa to be included in the final phylogenomic dataset.
$ prep_final_dataset.py -o prep_final dataset_out

At this step, FASTA-formatted files for the orthologs selected in step 13 are created
containing the taxa selected in step 12.

Align, trim, and concatenate orthologs into a super-matrix.
$ matrix constructor.py -i prep_final dataset_out -o matrix constructor out

Common errors and their solutions are detailed in Table 9.
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PERFORMING PHYLOGENOMIC ANALYSES

Here we demonstrate how to perform phylogenetic analyses using a concatenation-based
approach with IQ-TREE2.

Concatenation of individually aligned and trimmed loci results in a large super-matrix
that contains a multiple sequence alignment generated from stitching together all trimmed
orthologs from a given taxon one after another, creating a super-matrix file. Each charac-
ter of a column in the super-matrix is presumed homologous, meaning they share com-
mon evolutionary ancestry, amongst all taxa, and it accounts for missing data within
an ortholog or the complete absence of the ortholog for an individual taxon. Typically,
we use this super-matrix file as a large single protein alignment; however, PhyloFisher
also provides ortholog boundaries in a tab-delimited file allowing users to use individ-
ual protein substitution models per ortholog (i.e., partitioned models). This is output by
matrix constructor.py as indices.tsv. When inferring phylogenomic trees, ac-
counting for site specific amino acid replacement patterns is critical for accurate phylo-
genetic inferences in the face of phylogenetic signal saturation and long-branch attraction
artifacts (Wang et al., 2018; Yang, 1994; Lartillot & Philippe, 2004; Le et al., 2008). For
ML analyses we utilize profile mixture classes (Le et al., 2008) which are variants of
the CAT model (Lartillot & Philippe, 2004). In our examination of model parameters in
use with the PhyloFisher super-matrix in Tice et al. (2021), our preferred approach first
uses the LG+C20+G+F model, which is the LG protein substitution matrix (Le et al.,
2008) applied to the 20-profile mixture classes (C20) of site rate heterogeneity plus an-
other class for the empirical AA profile (counted from the current data) and gamma rate
heterogeneity across sites (Yang, 1994) with a default of four rate categories. Under this
LG+C20+G+F model, we infer an ML tree, which is then used as a preliminary guide
tree (-ft) to infer another ML tree under a model with 60 profile mixtures (C60) with
the LG model applied to these profiles plus the empirical AA profile (+F) of the data
also with four gamma categories employing the posterior mean site frequency (PMSF)
method as a computationally efficient strategy in IQ-TREE2. This algorithm also gener-
ates a conditional mean amino acid frequency profile for each site output as (*.sitefreq).
This approach permits full nonparametric bootstrap analyses under this complex site-
heterogeneous model (LG4+C60+G+F+PMSF) on large concatenated super-matrices,
which would otherwise be computationally challenging due to high requirements in RAM
and computational time (Wang et al., 2018).

Necessary Resources
Hardware

A Unix-based high-performance computing environment

Software

IQ-TREE2
Sample File. Sample data can be found at https://github.com/TheBrownLab/
phylofisher-current-protocols.

Concatenation-based analysis using IQ-TREE2:
1. Generate a LG+C20+4-F+4G ML tree from the super-matrix

2. Applying LG matrix for 20 classes plus the 21st class of empirical AA profile (counted
from the current data) and gamma rate heterogeneity. The -mem and -T options
should be adjusted based on available resources.

$ igtree2 -T 60 -m LGH+C20+F+G -s matrix.fas -pre PF.tutorial.LGC20GF -mem 800G
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3. Use the LG4C20+F+G ML tree from the super-matrix as a guide tree for
LG+C60+F4G+PMSF to generate an ML tree and a site frequencies file (.sitefreq).

$ igtree2 -T 60 -ft PF.tutorial.LGC20GF.treefile -m LG+C60+F+G -s matrix.fas

-pre PF.tutorial.LGC60GCF-PMSF -mem 800G
4. Make a directory to run Real Bootstrap replicated and move into it.

$ mkdir REALBS

$ cd REALBS
5. Make 100 Real Bootstrap replicate submission scripts.

$ igtree2 -T 1 -m LGHC60+F+G -s matrix.fas -fs ../PF.tutorial.LGC60GCF-

PMSF.sitefreq -pre PF.tutorial.LGC60GCF-PMSF.realbs 100 -mem 80G --bonly 1

6. Write Bootstrap values to tree.

$ raxmlHPC-PTHREADS-AVX2 -f b -t PF.tutorial.LGC20GF.LGC60GCF-PMSF.treefile -z boot.tre

-n PF.tutorial.LGC20GF.LGC60GCF-PMSF.100MLBS -N 2 -m PROTGAMMALGF -s ../matrix.fas

INSTALLING PHYLOFISHER

Bioinformatic software comes in multiple different languages and forms, each of which
has a unique method of installation and dependency handling. Academic software bears
its own set of unique challenges due to the need for reproducibility. In domains out-
side of academics, system administrators are responsible for installing and maintaining
software. However, academic scientists must often handle these tasks on their own. To
overcome such difficulties, we utilize the Conda package manager (https://conda.io) to
install PhyloFisher. The PhyloFisher Conda package is housed in the Bioconda channel
(Griining et al., 2018). Here we present how to install PhyloFisher via the Conda package
manager.

Necessary Resources

Hardware
A Unix-based computing environment with access to the internet.

1. Install mamba via mamba-forge. Mamba greatly reduces environment solve time
when creating conda environments.

$ curl -L -0 “https:/github.com/conda-forge/miniforge/releases/latest/download/Mambaforge-$(uname)-$(uname-m).sh™

$ bash Mambaforge-$ (uname)-$ (uname -m) .sh
2. Create a conda virtual environment.
$ mamba create -n fisher
3. Activate the conda virtual environment.
$ conda activate fisher
4. Add the Bioconda & Conda-Forge Anaconda Cloud channels to your channels.

$ conda config --append channels bioconda

$ conda config ---append channels conda-forge
5. Install PhyloFisher.

$ mamba install phylofisher

PREPARING A CUSTOM STARTING DATABASE

Due to the pan-eukaryotic composition of the provided starting database and the marker
genes it contains, the provided database will not be suitable for all protein-based
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phylogenomic studies. Therefore, users may benefit from creating their own, more appro-
priate, starting database. Here we detail the necessary steps to construct a custom starting
database to be used within the PhyloFisher workflow.

Necessary Resources
Hardware

A Unix-based high-performance computing environment with access to the internet
Software
PhyloFisher (high-performance computing environment)

Files

Amino acid sequences for the genes and taxa to be included in the starting database
in FASTA format

1. Retrieve the required PhyloFisher directory structure, OrthoMCL v. 5.0 database, ex-
ample metadata.tsv (Table 2), and tree_colors.tsv file via wget.

$ wget https://ndownloader.figshare.com/files/29093325
2. Decompress the file 29093325.
$ tar -xzvf 29093325
3. Move into the directory PhyloFisher FOR_CUSTOM_DATABASE.
$ cd PhyloFisher FOR_CUSTOM DATABASE
4. Populate database/orthologs/
$ cp <source> database/orthologs
The ortholog files must be in FASTA format.

Each  ortholog  file must be named with the following  conven-
tion {gene_namej.fas. (Ex. RPL7 fas)

Each individual taxon should have a Unique ID as the header in all ortholog files and
nothing else (see step 7 below for rules regarding Unique ID structure). This Unique ID
must be the same in all ortholog files.

Each taxon can be present only once in each ortholog file.
5. (OPTIONAL) Populate database/paralogs/
Place files of known paralogs for each gene in the directory database/paralogs/

$ cp <source> database/paralogs

Each gene file must be named with the following convention {gene_name}_paralogs.fas
(i.e., RPL7_paralogs.fas).

Each individual taxon should have a Unique ID as the header in all paralog files. This
Unique ID must be the same in all paralog files and the corresponding ortholog files.

Each taxon can be present more than once in each paralog file.

6. (OPTIONAL) Populate database/proteomes/

$ cp <source> database/proteomes

Place the complete proteome of each taxon present in the ortholog files
in database/proteomes

All proteomes must be in FASTA format.
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All proteomes must be compressed with both tar and gzip and follow the naming conven-
tion {Unique ID}.faa.tar.gz (i.e., Homosapi.faa.tar.gz).

7. Fill out the metadata.tsv file.

The file metadata.tsv (Table 2) initially contains information regarding the data
used to construct the database. As users add taxa to the database, metadata.tsv acts
as a permanent archival file and is updated after each round of addition of new
taxa. The contents of metadata.tsv can be explored using the provided utility ex-
plore_ database.py. Once created, a user should never be required to open this
file to view its contents manually. However, the structure of metadata.tsv is detailed
below.

metadata.tsvis a tab-delimited file with six columns:

i) Unique ID - An abbreviated name for each taxon. We followed an eight-letter
convention in the provided starting database. Unique IDs cannot contain un-

derscores “_", at symbols “@”, or double dots “..”.
ii) Long Name - Full name of the input taxon. The long name cannot contain
underscores “_”, at symbols “@”, double dots “..”.

iii) Higher Taxonomy - The highest taxonomic rank for the input organism de-
sired. We have chosen to use the “supergroup” level here, but any user-defined
rank is accepted. However, we do recommend that users choose a highly inclu-
sive taxonomic rank here (phylum or class level in Linnaean terms) to promote
the best possible performance of the fisher algorithm and other downstream
tools.

iv) Lower Taxonomy - A taxonomic rank at or above the genus level for the input
taxon

v) Data Type - A place to add a note about the type of data being added (e.g.,
transcriptomic, genomic, EST...

vi) Source - A place to add notes about the source of the data such as accession
numbers, “in-house information”, strain information, etc.

A comma (,) may not be used anywhere in metadata.tsv (Table 2).

8. Build Database

$ build database.py

In this step, build database.py will first align the provided set of orthologs us-
ing MAFFT (Katoh & Standley, 2013) and create profile HMMs for each gene align-
ment using the hmmbuild utility from the HMMER3 package (Mistry et al., 2013).
Next, a DIAMOND BLAST database (Buchfink et al., 2021) will be built from the
set of provided orthologs for use in the ortholog “fishing” algorithms implemented
infisher.py. Finally, build database.py assigns OrthoMCL (Li et al., 2003)
orthogroup number(s) to each ortholog for use in the ortholog “fishing” algorithms
implemented in fisher . py.

OrthoMCL orthogroup numbers are assigned by using all sequences in a provided
gene file as queries in a BLAST search against the OrthoMCL v. 5.0 database. If a
user-defined percentage (default = 10%) of sequences hit an OrthoMCL orthogroup
with a significance threshold of e-value <le-10, then that Orthogroup is assigned
to the gene. More than one OrthoMCL orthogroup number can be assigned to one
gene. If the provided gene alignment is assigned “no group” in OrthoMCL, the gene
cannot be used in the PhyloFisher workflow. Also, if the gene is assigned a bacterial
OrthoMCL orthogroup the gene cannot be used in the PhyloFisher workflow.

OrthoM CL orthogroup assignment hinges on the integrity of ortholog choices in the start-
ing ortholog files provided. If paralogs are unknowingly present in the provided ortholog
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alignments, they could be prioritized by the fisher algorithm. To investigate the level of par-
alogy of genes in a custom database, we strongly recommend that users re-add all taxa in
their custom database using the main workflow of PhyloFisher. After an initial run through
the main PhyloFisher workflow that includes manual curation, build dataset.py
will update profile HMMs and blast databases to promote the highest level of accuracy by

the fisher algorithm in subsequent runs.

COMMENTARY

Background Information

PhyloFisher is not without limitations.
For instance, it does not work with nu-
cleotides as the initial input. However,
nucleotide sequences can be utilized down-
stream to build nucleotide supermatrices
with nucl matrix constructor.py
(Jones et al., 2023). If a user begins with
nucleotide data, amino acid sequences must
first be inferred using an amino acid infer-
ence software like TransDecoder (Haas &
Papanicolaou, 2017). Once amino acid se-
quences are inferred, the user can enter the
PhyloFisher workflow. Also, due to the highly
conserved nature of the genes composing
the starting database, we do not recommend
using the provided PhyloFisher database
for investigating divergences less than 100
mya. In these cases, it is recommended that
users build their own starting database with
more appropriate genes for the time scale in
question. This can be achieved by utilizing
the script, build database.py, whichis
a utility script included within PhyloFisher.

The homolog tree parsing step of the
PhyloFisher workflow allows for an increase
in accuracy compared to the default designa-
tion provided by fisher.py. This step re-
quires manual curation by the user, which can
be time intensive. However, this strategy is
highly encouraged in the PhyloFisher main
workflow, since programmatically assigning
paralog and ortholog designations can be dif-
ficult due to the complex nature of homolog
relations.

The PhyloFisher starting database per-
forms similarly to thousands of genes. There-
fore, utilizing the database requires less com-
putational time compared to databases with
many more genes. The database contains se-
quence data for 304 eukaryotic taxa from
various public sources and is comprised of
240 “housekeeping” genes, a subset of a pre-
vious phylogenomic dataset, BORDOR, that
was developed in Tice et al. (2016). The pro-
vided script explore database.py can
be used to parse the “metadata.tsv” file, which
contains information about data that com-
prises the provided starting database, such
as the species name, taxonomic information,
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source information, and number of the 240
marker genes identified for each taxon (Tice
etal., 2021).

Critical Parameters

Deciding between a phylogenetically in-
formed and default algorithm is important. In
cases where novel lineages of eukaryotes or
organisms with completely unknown phyloge-
netic positions are added, it is better to use
the default algorithm, as choosing the wrong
seed query can lead to distorted results and in-
evitable inclusion of paralogs.

The BLAST query field in in-
put_metadata.tsv  (Table 1) used by
fisher.py is an important parameter for
accurate results. The best practice is to use the
most closely related organism available in the
starting database. A poor choice in BLAST
query can lead to the collection of contami-
nating sequences if present or paralogs being
inaccurately classified as orthologs by the
fisher . py algorithm.

All  significant BLAST hits from
fisher.py can be kept by utilizing the
—all_bbh flag. This leads to an increase in can-
didate orthologs. If contamination is present
in the input sequences, it is probable that this
contamination will be picked up and inac-
curately included in the candidate orthologs.
While the inclusion of contamination and
paralogs can be dealt with in single homolog
tree inspection, it is important to keep in
mind the ramifications of considering all best
BLAST hits.

Paralogs from the starting database can
be included or excluded by editing the
db_taxa_stats.tsv (Table 4) file as output by
informant .py. The inclusion of paralogs
from the starting database in homolog tree
construction can allow for easier classifica-
tion of orthologs and paralogs during manual
inspection.

sgt _constructor.py can be cir-
cumnavigated, and alternative single ho-
molog tree-building strategies can be im-
plemented. Users can develop their own
pipelines to trim, align, and build trees from
the amino acid sequence files output by
working dataset constructor.py.
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Table 4 db_taxa_stats.tsv Output by informant . py

Unique ID  Higher taxonomy Lower taxonomy Genes out of 5 Long name SGT Paralogs
Allomacr  Obazoa Fungi 5 Allomyces macrogynus yes  yes
Ancysigm  Ancyromonadida Ancyromonas 5 Ancyromonas sigmoides B70  yes  none
Bigenata Rhizaria Cercozoa 5 Bigelowiella natans yes  yes
Carpmemb Metamonada Fornicata 5 Carpediemonas membranifera yes  yes

Table 5 Sources and Solutions to Potential Errors

Problem

Possible cause

Solution

The file, config.ini, is
missing

fisher . py input file
contains nucleotide
sequences

fisher . py input file does
not exist

Unique ID already in
metadata, from
fisher.py

BLAST query not in the
starting database, from
fisher.py

Too many values to
unpack, from fisher . py

Too many values to
unpack, from
informant.py

Too many values to
unpack, from
select_taxa.py

Too many values to
unpack, from se-
lect_orthologs.py

The configuration step of PhyloFisher has
not been completed

A FASTA file of nucleotide sequences
has been provided to fisher.py

Incorrect path is present in
input_metadata.tsv (Table 1)

The Unique ID provided in
input_metadata.tsv (Table 1) already
exists in the starting database

The blast query provided in
input_metadata.tsv (Table 1) does not
exist in the starting database.

Extra column(s) present after handling
input_metadata.tsv (Table 1)

Extra column(s) present after handling
db_taxa_stats.tsv (Table 4), gene_stats.tsv
(Table 6), or new_taxa_stats.tsv (Table 7).
[*Place Table 6 near here];

[*Place Table 5 near here];

Extra column(s) present after handling
select_taxa.tsv (Table 8)
[*Place Table 7 near here];

Extra column(s) present after handling
select_orthologs.tsv (Table 9)
[*Place Table 8 near here];

Run config . py with the required
arguments

Infer amino acid sequence from
nucleotide FASTA file and rerun
fisher . py with inferred nucleotide
sequences as the input

Correct the file path in input_metadata.tsv
(Table 1)

Choose a Unique ID not already in use by
taxa in the starting database

Provide the Unique ID of a taxon in the
starting database to be used as the blast
query.

Remove extra column(s) from

input_metadata.tsv. (Table 1). Each row
should have nine columns.

Remove extra column(s) from
db_taxa_stats.tsv (Table 4), gene_stats.tsv
(Table 6), or new_taxa_stats.tsv (Table 7).
Each row should have seven, four, and
eleven, columns, respectively.

Remove extra column(s) from
select_taxa.tsv. (Table 8). Each row
should have six columns.

Remove extra column(s) from
select_orthologs.tsv. (Table 9). Each row
should have three columns.

Table 6 gene_stats.tsv Output by informant . py

Gene Name Number of Taxa Percent of Total Taxa (out of 32) SGT
CCT-B 32 100.0 yes
CCT-A 31 96.88 yes
RPS3 31 96.88 yes
RPL12 30 93.75 yes
CDKS5 26 81.25 yes
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Table 7 new_taxa_stats.tsv Output by informant .py

Lower Sequences
Higher Taxon-  Col- Genes
Unique ID  Long Name Taxonomy omy lected outof5 #SBH #BBH #HMM SGT
Batrdend Batrachochytrium Obazoa Fungi 6 5 3 3 0 yes
dendrobatidis

Table 8 select_taxa.tsv Output by select taxa.py

UniqueID Long name Higher taxonomy Lower taxonomy Completeness Include in subset
Gregniph  Gregarina niphandrodes (GNI3) Alveolata Apicomplexa 100.0 yes
Protadhe  Protocruzia adherens Alveolata Ciliata 100.0 yes
Stensten  Stenamoeba stenopodia Amoebozoa Discosea 100.0 yes
Idiovort  Idionectes vortex Amoebozoa Evosea 100.0 yes

Table 9 select_orthologs.tsv Output by se-
lect _orthologs.py

Orthologs Completeness Include in subset
CCT-B 1.0 yes
CCT-A 0.969 yes
RPS3 0.969 yes
RPL12 0.938 yes
CDK5 0.812 yes

User-developed pipelines could be a mod-
ified version of the pipeline implemented
in sgt_constructor.py, such as dif-
fering trimming and aligning parameters.
A pipeline with major differences such as
different programs to align, trim, and build
trees can also be used. For example, a user
may prefer IQ-TREE2 (Nguyen et al., 2015)
over RAXML (Stamatakis, 2014) for homolog
tree construction. Differing tree-building
methodologies can impact the topology of the
resulting homolog tree. This, in turn, could
impact ortholog and paralog designation
during manual inspection.

Ortholog/paralog selection in homolog tree
inspection is a crucial step in the main
PhyloFisher workflow. Sequences classified
as orthologs will be included in downstream
phylogenomic analysis. Both paralogs and or-
thologs will go on to aid homolog tree inspec-
tors in the classification of new sequences.

Troubleshooting

If you encounter problems while attempt-
ing to install or run PhyloFisher, please raise
them on the “Issues” page of the PhyloFisher
GitHub repository at https://github.com/
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TheBrownLab/PhyloFisher/issues. The fol-
lowing are some common issues that may
arise when running PhyloFisher.

Installation issues

We recommend using the PhyloFisher Bio-
conda package, which will make installation
and future updates much easier to manage. Al-
ternatively, a docker image is also available
and can be utilized on clusters with singularity
(Kurtzer et al., 2017) installed.

Issues with input files

Ensure input proteomes are in FASTA for-
mat and do not include non-standard amino
acids or non-ASCII characters in the se-
quences.

Time Considerations

Basic Protocol 1 — Constructing a phyloge-
nomic dataset using the sample database and
5 threads takes around 90 min. Two scripts ac-
count for the bulk of this time used. The scripts
fisher.py and sgt_constructor.py,
utilizing 5 threads, take approximately 2 and
90 min to complete, respectively. A run-
through of the PhyloFisher main workflow
that adds 15 taxa to a database with 240
genes and 304 taxa, takes fisher.py and
sgt_constructor.py  approximately
1 hr and 8 days, respectively, when utilizing
80 threads.

Basic Protocol 2 — Performing phyloge-
nomic analyses, as detailed in Basic Proto-
col 2, requires users to run IQ-TREE2. Run-
ning IQ-TREE2, using LG4+C204+F+G as
the model of evolution, with an input ma-
trix containing 70428 sites, 57 taxa, and 64
threads takes approximately 8 hr and 30 min
to run. Under LG+C60+F+G+PMSF with
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40 threads, IQ-TREE2 takes approximately
8 hr to complete. Each bootstrap replicate us-
ing 1 thread runs for approximately 5 days.

Support Protocol 1 — Installing mamba via
mamba-forge takes approximately 1 min. The
installation of PhyloFisher via mamba takes
approximately 3 min to complete.

Support Protocol 2 - The script,
build database.py, is used to build
custom starting databases. The script, with
5 threads, takes approximately 2 min to
complete on the sample database, which
contains 5 genes and 32 taxa. For a full-
size database with 240 genes and 304 taxa,
build database.py completes in about
90 min with 5 threads.
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