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Introduction

Sampling refers to a process of extracting information over 
an entire population by using limited number of observa-
tions that are as representative as possible (Berry and Mar-
ble 1968). Over the past decades, sampling approaches are 
divided into two categories based on their conceptualiza-
tions: the design-based (e.g. random sampling, systematic 
sampling, stratified random sampling) (Gómez Puente et al. 
2013; Gregoire 1998), and the model-based (e.g. universal 
kriging, co-kriging) (Brus and De Gruijter 1997). Previ-
ous studies suggest that systematic sampling is the most 
efficient method, but its efficiency is highly mutable in a 
clustered population where stratified random sampling is 
considered as a preference (Dunn and Harrison 1993; Sayed 
and Ibrahim 2018). Moreover, a non-stationary distribu-
tion, such as vegetation height over a complex landscape, 
was found to have a severe influence on systematic sam-
pling (J.-F. Wang et al. 2012; Wang et al. 2010). This would 
probably because a neglect of this clustered spatial distri-
bution could lead to the fact which breaks a tenet of the 
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Abstract
Spatial heterogeneity brings numerous uncertainties to training datasets in the modeling process. An arbitrary selection of 
training samples can result in a biased simulation. Although previous research provides a chance of reducing the degree 
of spatial variance through homogeneous divisions, detailed information regarding the impact of the configuration of 
divisions for training remains unknown. Moreover, few studies investigate the cross impact of extreme sampling on non-
extreme simulation. Therefore, we extend previous research to investigate the cross impact and further examine whether 
the divisions of extremely high (EXH) and low (EXL) quantiles contribute equally to the simulation bias when employ-
ing the spatial stratified sampling. Statistical assessment demonstrates that the selection of extreme training sample does 
affect the non-extreme simulation. The model has the best performance (RMSE: 2.735, VE: 7.481, Bias: -0.033) when 
the least proportion (25%) of EXH and EXL was selected for training. Further analysis also indicated that the EXH and 
EXL divisions contribute unequally to the process. Particularly, the non-extreme simulation is more sensitive to the EXH 
training data with a steeper change rate of 0.043. This research provides a critical insight into the extreme point sampling 
for a machine learning process. Different sensitivity of division calls upon that extreme training sample should be adjusted 
on a basis of percentage rather than their amounts when applying stratified sampling in Geographical Random Forest.
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word “representativeness” (Dixon 1950). To address this 
concern, a spatial stratified sampling (SSS) idea similar to 
the stratified random sampling was developed (J.-F. Wang 
et al. 2012; Wang et al. 1997). With this method, a hetero-
geneous area is divided into several subareas or zones that 
are as homogeneous as possible prior to stratified sampling 
to reduce the degree of spatial variance (Wang et al. 1997).

Although the division by choosing optimal distribution 
of sample can mitigate the issue of spatial heterogeneity, 
further questions regarding “how much” should be taken 
as sample within each subarea remain unclear. The criteria 
of selection for subarea attracts more attention when popu-
lation are partitioned by the value of target variable (e.g., 
quantile) with extreme observations involved. An arbitrary 
selection of these extreme samples as training data may 
bring unexpected bias to statistical estimates, resulting in 
under or overestimated results (Kwak and Kim 2017).

A biased estimation is recently detected when the ran-
dom forest (RF) is applied (Belgiu and Drăguţ 2016). It 
is a widely-used decision tree-based ensemble learning 
method but is sensitive to training data characteristics, such 
as sample size, range of training data and spatial autocor-
relation (Millard and Richardson 2015; Wang et al. 2021). 
This leads to the fact that an inappropriate configuration of 
training divisions will affect the efficiency of prediction of 
the model. For example, Millard and Richardson (2015) 
concluded that the predicted proportion of division shares 
a positive correlation with the proportion of the division in 
the training dataset. That is to say, after applying the SSS, 
less training data of a division may cause lower accuracy of 
prediction for the same division due to the insufficient learn-
ing of the model. Thus, optimizing this tradeoff is especially 
important when attempting to simulate both extreme and 
central conditions.

Following the study of Wang et al. (2021), we learned 
that the extremely high (EXH) and low (EXL) tree canopy 
heights are under and over-estimated, respectively, with 
random sampling. Although the divisions (i.e., EXH, non-
extreme, EXL) are predetermined for the research, there is 
no method dealing with the spatial heterogeneity issues in 
the sampling process. For example, the divisions of training 
data (e.g., EXH and EXL) may contribute unequally to the 
sensitivity of model performance, and sample size can also 
be an essential factor leading to less convincing simulated 
results (Boukerche et al. 2020; Byrd et al. 2012; Uçar et 
al. 2020). In this study, therefore, we proposed to address 
the issue by applying SSS based on the predetermined divi-
sions. As aforementioned, we understand the rule of how 
each division can be affected by the selection of its train-
ing data, but the cross impact of extreme division sampling 
on non-extreme simulation remains unknown. A neglect of 
this understanding would affect the modeling results when a 

significant number of extreme observations are involved. In 
the present study, we follow up the partial results of Wang 
et al. (2021) and aim to investigate two research questions 
when elimination of spatial heterogeneity is considered:

1)	 It is known that extreme point sampling could affect 
simulation of non-extreme values. But what is the sen-
sitivity of non-extreme simulation to the EXH and EXL 
divisions? Will these divisions contribute equally to the 
process?

2)	 If not, can we quantitatively assess these uneven contri-
butions? Are there any strategies to follow when choos-
ing extreme samples for the training data?

Method and data

Method description

This study uses the concept of SSS and the geographi-
cal random forest (GRF) (Georganos et al. 2021), a local 
machine learning model, to examine the two research ques-
tions. Various configurations of training data are generated 
from the sampling and thus the rest of population are used 
for validation in the GRF.

The SSS is employed to mitigate the issue of spatial het-
erogeneity based on the predetermined divisions of tree can-
opy height over a mixed landscape. The mechanism of this 
method shares a similarity with the idea of zoning stratified 
sampling (Wang et al. 2010) while the criteria of division 
are slightly different. The rules of division can be on a basis 
of prior knowledge about the area of interest, standardized 
criteria, or the spatial distribution of other known influ-
encing variables. Tree canopy height is the dependent and 
only variable of target in this study, and the value has been 
calculated for the corresponding location. Therefore, the 
judgement of whether the heights can be defined as extreme 
depends on their statistical distribution. The height with a 
predefined high (low) rank order is recognized as one of the 
EXH (EXL) canopies. In the present research, as aforemen-
tioned, we continue to use the divisions (i.e., EXH, non-
extreme, EXL) determined in the previous study, but the 
scope is redefined to better reflect the concept of extreme. 
After the divisions are plotted on a map, random sampling is 
eventually applied to select the training data. Although the 
major process of design-based sampling focuses on choos-
ing training data through some randomization mechanism, 
Fig. 1 illustrates how the SSS works and its difference from 
the other design-based sampling methods (Dumelle et al. 
2022; James and Knaub 1999). One of the major differences 
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takes ideas of weight and space into consideration when 
applying the SSS.

GRF is a modified random forest integrated with the 
geographically weighted regression (GWR) model (Bruns-
don et al. 1998) to ease the issue of spatial variance for the 
selected covariates (Wadoux et al. 2020). Similarly, this 
method applies an adjustable kernel to choose a bandwidth 
with maximum radius, capturing as much information as 
possible to offset the negative effect brought by an unequal 
distribution of tree canopy over the study area. The major 
discrepancy between GRF and traditional random forest 
(TRF) is the dimensionality over space, with an attribute of 
location embedded in GRF. The formulas can be expressed 
as:

Hi = αiui + · · · + ei � (1)

Hi(x,y) = αi(x,y)ui + · · · + ei(x,y)� (2)

Where Hi  denotes the simulated canopy height at pixel i , 
contributions of selected features (e.g., αiui

) are at the right 
side of the equation, ei

 represents the simulation error at the 
pixel i  and (x, y) provides GRF with the locational infor-
mation at the site. As a decision tree-based method, GRF 
uses the same calibrated results of the two most important 
parameters (Zafari et al. 2019), number of decision trees and 
selected features, as TRF in the subsequent validation stage. 
It is worth mentioning that the validated pixel only uses the 
closest calibrated GRF to predict the canopy height in its 
location. Previous research indicates that a TRF-GRF fusion 
model provided the least biased prediction, and a trade-off 
approach is suggested for an optimal configuration (e.g., 
50% of TRF-50% of GRF, hereafter, “50% GRF”) based on 
actual needs of a given project. Following the study of Wang 
et al. (2021), we decided to apply a configuration of 50% 
GRF in this study because the model accuracy is maximized 
and the spatial autocorrelation is addressed moderately at 

Fig. 1  Examples of design-based sampling methods. An “x” represents 
the selected pixel for training dataset. The blue and orange squares 
indicate the pixels with extremely low and high values, respectively. 
Figures a, b and c represent a random sampling, a systematic sampling, 

and a stratified sampling (weighted by area, light and gray boxes), 
respectively. Figure d depicts the spatial stratified sampling; d1 (100% 
& 100%) and d2 (25% & 25%) show the configurations of EXH and 
EXL for training
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This section only provides some key results of data clean-
ing, while detailed introduction of data background can be 
found in their research (Wang et al. 2021).

Our study is primarily based on two major types of data, 
the Light Detection and Ranging (LiDAR) point cloud 
dataset and Landsat imagery. Tree canopy height analysis 
is conducted through a set of pixel-based datasets derived 
from the Canopy Height Model (CHM) created by the 
LiDAR (Fig. 2). The LiDAR data were collected from Sep-
tember 9th ∼ October 14th, 2017. For a compliance with 

this level. The GRF algorithm was developed as the package 
‘SpatialML 0.1.3’ in R by Kalogirou and Georganos (2018).

Data acquisition and predefinition

As we proposed the questions on a basis of conclusions 
made by the study of Wang et al. (2021), this research shares 
the same data acquisition and the set of calibrated param-
eters for both GRF and TRF over the study area within the 
Mann Creek Watershed in the state of Idaho, USA (Fig. 2). 

Fig. 2  Study area of this research
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Based on previous studies (Masud et al. 2008; Vabalas et 
al. 2019), this limited training sample will only result in a 
minor change of the simulation with a small increment of 
percentage. Therefore, we only retained those same percent-
ages and the entire amount (i.e., 100%) of extreme train-
ing divisions. Under this case, there are 10 configurations 
of extreme divisions applied in this study, such as 25% of 
EXL and 25% of EXH (Table 2). Model optimization was 
initiated through determining the number of decision trees 
employed in RF. The highest cross validation score (0.846) 
was achieved when 1500 decision trees were used. An adap-
tive kernel of 51 neighboring points was selected for GRF 
calibration. To quantitatively assess the impact of extreme 
training sample on the non-extreme simulation, the root 
mean squared error (RMSE), variance of error (VE) and 
bias statistics were calculated for only non-extreme division 
at the validation stage. Equations were expressed as:

RSME =

√
1
n

∑
(hi − xi)

2 � (1)

VE =
1

n − 1

∑n

i=1

(
ei − −

e
)2

� (2)

Bias =
∑n

i=1

hi − xi

n
� (3)

where n  represents the number of sample points, hi  and 
xi

 were the predicted and observed or true canopy height 
at point i , respectively. ei

 denotes the difference between 
hi  and xi

 at point i  while −
e  is the average of errors for 

all sample points. Additionally, we used residual to measure 
the deviation of a simulated value and its corresponding true 
value. The formula is indicated as follows:

xi − hi = Residual

Therefore, a positive residual implies that the correspond-
ing tree canopy is underestimated while a negative residual 
indicates an overestimation. To examine the quantitative 
impact of each configuration set (e.g., 25% of EXL and 25% 

other source data, mean value of the LiDAR CHM (0.25 m 
× 0.25 m) was calculated for each 30 m × 30 m pixel as a 
reference of true canopy height. The outermost pixels were 
eliminated because of the edge effect caused by the loss of 
neighbor. To avoid the intervention brought by other veg-
etation, we excluded those pixels, primarily dominated by 
homogenous sagebrush in uplands, less than or equal to 1 m 
in further analysis. The Landsat images were acquired on 
October 6th, 2017, in order to be synchronous with the date 
of the LiDAR data acquisition. Previous research shows 
that the reflectance of vegetated surfaces depends on its 
structure, optical property, and underlying soil (Myneni et 
al. 1995a, b; Myneni, Hall, Sellers, & MarshaMyneni et 
al. 1995a, b; Zeng et al. 2021). However, we omitted blue 
band due to its sensitivity to the aerosol conditions in the 
atmosphere (Flood et al. 2013). Under this case, to prepare 
for the calibration of the model, we retained 5 basic land 
surface reflectance (LSF) bands, green, red, near infrared 
(NIR), short-wave infrared 1 (SWIR1), and short-wave 
infrared 2 (SWIR2), to generate vegetation indices and 
band rations. Therefore, a total of 27 parameters, including 
5 LSF bands, 12 vegetation indices and 10 band ratios are 
prepared to run the model (Table 1). A feature selection was 
then implemented to rule out those with high collinearity 
(Pearson coefficient) and low importance (Gini importance), 
leading to a total of 12 parameters remaining. Predefining 
extreme division of tree canopy height plays a decisive role 
in model design. Following the previous study, we selected 
half number of pixels for respective training and validation 
datasets, resulting in 8868 for each to ensure a balance and 
a full coverage of the extreme. To better reflect the concept 
of extreme, the scope of division is redefined based on the 
quantile statistics of true canopy height. To maintain a rea-
sonable amount of data within extreme division, we eventu-
ally identified the canopy heights lower than the 1st quantile 
(< 3.72 m) and higher than the 95% quantile (> 19.53 m) 
as the EXL and EXH. Under this case, the divisions of 
extreme and non-extreme contain 2913 and 5775 pixels, 
respectively. In order to investigate the impact of extreme 
sampling on non-extreme simulation, we decided to adjust 
the SSS weighting of extreme values in the training data-
set, leading to a range from 25%~100% at a 25% interval. 

Table 1  Spectral, ratio and band features used in the study
Vegetation Index Band Ratio LSF 

bands
Normalized Difference Vegetation Index (NDVI); Green Soil Adjusted 
Vegetation Index (GSAVI); Green Normalized Vegetation Index 
(GNDVI); Chlorophyll Vegetation Index (CVI); Normalized Difference 
Greenness Index (NDGI); Normalized Burn Ratio SWIR2 (NBR); Nor-
malized Burn Ratio SWIR1 (NDII); Green Difference Vegetation Index 
(GDVI); Modified Soil Adjusted Vegetation Index (MSAVI); Difference 
Vegetation Index (DVI); Soil adjusted Vegetation index (SAVI); Modi-
fied Simple Ratio (MSR)

Red/Green; SWIR1/NIR
NIR/Green; SWIR2/Green
NIR/Red; SWIR2/Red
SWIR1/Green; SWIR2/NIR
SWIR1/Red; SWIR2/SWIR1

Green; 
Red; 
NIR; 
SWIR1; 
SWIR2
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cause the model overfitting due to a larger random noise. 
Moreover, comparisons between G2 and G3 indicate that 
these two statistics are more sensitive (higher change rates) 
to the EXH even though the number of EXH is less than that 
of EXL in the training data. Evidence shows that the errors 
are more intense under the cases that the entire EXH divi-
sion is selected for training (G2). This conclusion is made 
by the fact that the rate of variation of the errors is faster 
when the EXL is fixed as 100%, in spite of the significantly 
lower increment of the EXH than that of the EXL in G2 
(Fig. 3).

The Bias statistic reflects an instability with both nega-
tive and positive values, showing that various proportions 
of extreme training sample can lead to over and underes-
timates, respectively. Comparisons between G1, G2 and 
G3 manifest that the 1st and 5th case own the smallest and 
greatest bias, respectively. The negative value indicates the 
overestimated simulation in the cases of G1 and G2, regard-
less of the proportion of the EXL applied to the training 
dataset. Based on this evidence, it is appropriate to infer 
that the model is more sensitive to the EXH division, with 
the weakest predictive ability occurred when the smallest 
(25%) and largest (100%) percentages of EXL and EXH are 
used, respectively. This speculation is validated again by the 
cases of G3 where the entire division of EXL is employed. 
The simulated canopy heights are first underestimated (i.e., 
Case #9–11) and was then changed to overestimation with 
100% of the EXH selected for training. The increased 25% 
of the EXH are attributed to this transition although the cor-
responding incremental number is only 124. Therefore, we 
can draw a conclusion that the non-extreme simulation is 
more sensitive to the EXH training dataset in the present 
research. Based on the statistical distribution of tree canopy 
height, we hypothesize that the impact of extreme point 
sampling on non-extreme simulation is closely associated 

of EXH) on the non-extreme simulated data, a series of fig-
ures of canopy height – residual is compiled in this study.

Results and discussion

Table 2 shows that the impact of extreme training sample 
on the non-extreme simulation can be varying depending 
on the different configuration of EXH and EXL. In general, 
the RMSE and VE manifest an increasing trend when the 
percentage of either EXH or EXL is growing in the train-
ing dataset. This reconfirmed that extreme point sampling 
could affect simulation of non-extreme values. The Bias 
indicator exhibits that the negative and positive values are 
associated with a fixed (100%) EXL or EXH, indicating that 
various configurations of extreme training sample can lead 
to an overestimated or underestimated non-extreme simula-
tion. Although discrepancies between cases of each assess-
ment index are considered as references to investigate the 
research questions, the accuracy of each case of the non-
extreme simulation is still relatively high and acceptable 
for subsequent analysis. Integrating the configurations of 
extreme training sample with the statistics, we can conclude 
that both EXH and EXL affected the simulation of non-
extreme division while their contributions were different.

When the proportion of EXH and EXL increase synchro-
nously, the values of RMSE and VE rise by 0.168 and 0.946, 
respectively. This finding shows that the predictive ability 
of GRF to the non-extreme simulation is weakened slightly 
with more extreme training sample involved. This inference 
also applies to the circumstances (i.e., Case #5–12) when 
proportion of an extreme division is fixed as 100%. The 
increasing trend of VE implies that a greater percentage of 
either EXH or EXL can lead to a larger variance of error of 
simulation, providing that more extreme training data can 

Table 2  SSS weighting configurations for extreme value training datasets and statistical results
Case # % of EXL % of EXH # of EXL # of EXH RMSE VE Bias
1 25% 25% 604 124 2.735 7.481 -0.033
2 50% 50% 1208 249 2.752 7.571 -0.067
3 75% 75% 1812 373 2.863 8.190 -0.079
4 100% 100% 2416 497 2.903 8.427 -0.058
5 25% 100% 604 497 2.818 7.874 -0.266
6 50% 100% 1208 497 2.834 7.976 -0.237
7 75% 100% 1812 497 2.898 8.384 -0.118
8 100% 100% 2416 497 2.903 8.427 -0.058
9 100% 25% 2416 124 2.776 7.675 0.180
10 100% 50% 2416 249 2.801 7.836 0.121
11 100% 75% 2416 373 2.851 8.130 0.048
12 100% 100% 2416 497 2.903 8.427 -0.058
Note Cases are divided into three groups for analysis. Group 1 (G1) spans from Case #1–4, representing the condition when the proportion of 
EXH and EXL increase synchronously. Group 2 (G2) spans from Case #5–8, representing the condition when the EXH division is fixed as 
100%. Group 3 (G3) spans from Case #9–12, representing the condition when the EXL division is fixed as 100%
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Conclusion

This follow-up research provides a critical insight into the 
impact of extreme point sampling on the non-extreme simu-
lation, particularly for a machine learning process. Two 
major research questions have been addressed. First, we 
confirmed that the selection of extreme training sample does 
affect the non-extreme simulation. In addition to this, we 
also further found that the non-extreme simulation is more 
sensitive to the EXH training data in this case study, lead-
ing to the fact that the EXH and EXL divisions contribute 
unequally to the process. Moreover, we also infer that this 
phenomenon probably depends on the biased distribution 
of non-extreme division. Therefore, an investigation of the 
‘noise’ embedded in a set of simulation data also seems to 
be necessary at a preliminary stage before simulation. Sec-
ond, numbers of extreme sampling data and statistical anal-
ysis (i.e., RMSE and VE) demonstrate that the change rates 
of model performance are unstable for different proportions 
of EXH and EXL. Therefore, the distinct sensitivities finally 
call upon an attention that extreme training sample should 
be adjusted on a basis of ratio or percentage rather than their 
amounts when applying stratified sampling. This research 
provides a critical insight into the extreme point sampling 
for a machine learning process. Although this study fills in 
the gaps stated above, there are certain limitations existing 
at the stages of data preparation and method development. 
First, the EXH and EXL divisions are predefined based on 
the quantile statistics, which could be involved with subjec-
tive consciousness. A more objective definition of “extreme” 
is expected. Second, the detailed information of variation of 
statistical value is still missing. The interval of percentage 
(25%) could be narrowed down to depict a clearer image of 
statistical change curve in future analysis. Lastly, although 
we believe this study area can represent those places where 
canopy heights are randomly distributed, we still expect that 

with the overall distribution of non-extreme heights. In this 
study, a majority of the non-extreme are prone to be rela-
tively low, leading to the fact that more selected EXH train-
ing sample may cause a significant disturbance even though 
the number is critically less than the EXL at the same per-
centage level. This hypothesis can be verified through Fig. 4 
which shows the relationship between non-extreme true 
canopy height and its residual for each configuration set. 
From A to J, the non-extreme true canopies are found to be 
biased to the low heights.

Figure  4 further reveals a coherently robust predic-
tive ability of every configuration while some outstanding 
residuals make their performances various. A dispersed 
distribution of these outstanding residuals (>|5| m) helps 
to quantitatively define the impacts of extreme sampling 
by combining the comprehensive statistical assessment. 
The integrated analysis implies that the strongest predic-
tive ability of the model for the non-extreme simulation is 
taken place at Case #1, with the least proportion (25%) of 
EXH and EXL selected for training. This evidence further 
verifies that less amount of extreme training sample has a 
smaller effect on the non-extreme simulation. However, the 
underlying mechanism of this influence may vary depend-
ing on the different statistical index. The variation trend 
of Bias statistic is distinct from others. In future research, 
particularly with biased distribution of target value, the 
selection of extreme training data should be determined by 
percentage rather than amount due to the substantially dif-
ferent sensitivity of model to each division. Although less 
extreme training data may lead to an inaccurate simulation 
of extreme division, the observation of this study apparently 
provides a contrary implication. Therefore, a trade-off con-
sideration is desirable when choosing the best configuration 
of training dataset between the extreme and non-extreme.

Fig. 3  Comparisons of two statistical indicators (A: RMSE, B: VE) between G1 (growing % in same pace for EXH and EXL), G2 (with a fixed 
100% for EXH) and G3 (with a fixed 100% for EXL)
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