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Abstract

Spatial heterogeneity brings numerous uncertainties to training datasets in the modeling process. An arbitrary selection of
training samples can result in a biased simulation. Although previous research provides a chance of reducing the degree
of spatial variance through homogeneous divisions, detailed information regarding the impact of the configuration of
divisions for training remains unknown. Moreover, few studies investigate the cross impact of extreme sampling on non-
extreme simulation. Therefore, we extend previous research to investigate the cross impact and further examine whether
the divisions of extremely high (EXH) and low (EXL) quantiles contribute equally to the simulation bias when employ-
ing the spatial stratified sampling. Statistical assessment demonstrates that the selection of extreme training sample does
affect the non-extreme simulation. The model has the best performance (RMSE: 2.735, VE: 7.481, Bias: -0.033) when
the least proportion (25%) of EXH and EXL was selected for training. Further analysis also indicated that the EXH and
EXL divisions contribute unequally to the process. Particularly, the non-extreme simulation is more sensitive to the EXH
training data with a steeper change rate of 0.043. This research provides a critical insight into the extreme point sampling
for a machine learning process. Different sensitivity of division calls upon that extreme training sample should be adjusted
on a basis of percentage rather than their amounts when applying stratified sampling in Geographical Random Forest.

Keywords Extreme point sampling - Geographical random forest -+ LiDAR - Canopy height

Introduction

Sampling refers to a process of extracting information over
an entire population by using limited number of observa-
tions that are as representative as possible (Berry and Mar-
ble 1968). Over the past decades, sampling approaches are
divided into two categories based on their conceptualiza-
tions: the design-based (e.g. random sampling, systematic
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sampling, stratified random sampling) (Gémez Puente et al.
2013; Gregoire 1998), and the model-based (e.g. universal
kriging, co-kriging) (Brus and De Gruijter 1997). Previ-
ous studies suggest that systematic sampling is the most
efficient method, but its efficiency is highly mutable in a
clustered population where stratified random sampling is
considered as a preference (Dunn and Harrison 1993; Sayed
and Ibrahim 2018). Moreover, a non-stationary distribu-
tion, such as vegetation height over a complex landscape,
was found to have a severe influence on systematic sam-
pling (J.-F. Wang et al. 2012; Wang et al. 2010). This would
probably because a neglect of this clustered spatial distri-
bution could lead to the fact which breaks a tenet of the
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word “representativeness” (Dixon 1950). To address this
concern, a spatial stratified sampling (SSS) idea similar to
the stratified random sampling was developed (J.-F. Wang
et al. 2012; Wang et al. 1997). With this method, a hetero-
geneous area is divided into several subareas or zones that
are as homogeneous as possible prior to stratified sampling
to reduce the degree of spatial variance (Wang et al. 1997).

Although the division by choosing optimal distribution
of sample can mitigate the issue of spatial heterogeneity,
further questions regarding “how much” should be taken
as sample within each subarea remain unclear. The criteria
of selection for subarea attracts more attention when popu-
lation are partitioned by the value of target variable (e.g.,
quantile) with extreme observations involved. An arbitrary
selection of these extreme samples as training data may
bring unexpected bias to statistical estimates, resulting in
under or overestimated results (Kwak and Kim 2017).

A biased estimation is recently detected when the ran-
dom forest (RF) is applied (Belgiu and Driagut 2016). It
is a widely-used decision tree-based ensemble learning
method but is sensitive to training data characteristics, such
as sample size, range of training data and spatial autocor-
relation (Millard and Richardson 2015; Wang et al. 2021).
This leads to the fact that an inappropriate configuration of
training divisions will affect the efficiency of prediction of
the model. For example, Millard and Richardson (2015)
concluded that the predicted proportion of division shares
a positive correlation with the proportion of the division in
the training dataset. That is to say, after applying the SSS,
less training data of a division may cause lower accuracy of
prediction for the same division due to the insufficient learn-
ing of the model. Thus, optimizing this tradeoff is especially
important when attempting to simulate both extreme and
central conditions.

Following the study of Wang et al. (2021), we learned
that the extremely high (EXH) and low (EXL) tree canopy
heights are under and over-estimated, respectively, with
random sampling. Although the divisions (i.e., EXH, non-
extreme, EXL) are predetermined for the research, there is
no method dealing with the spatial heterogeneity issues in
the sampling process. For example, the divisions of training
data (e.g., EXH and EXL) may contribute unequally to the
sensitivity of model performance, and sample size can also
be an essential factor leading to less convincing simulated
results (Boukerche et al. 2020; Byrd et al. 2012; Ugar et
al. 2020). In this study, therefore, we proposed to address
the issue by applying SSS based on the predetermined divi-
sions. As aforementioned, we understand the rule of how
each division can be affected by the selection of its train-
ing data, but the cross impact of extreme division sampling
on non-extreme simulation remains unknown. A neglect of
this understanding would affect the modeling results when a
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significant number of extreme observations are involved. In
the present study, we follow up the partial results of Wang
et al. (2021) and aim to investigate two research questions
when elimination of spatial heterogeneity is considered:

1) It is known that extreme point sampling could affect
simulation of non-extreme values. But what is the sen-
sitivity of non-extreme simulation to the EXH and EXL
divisions? Will these divisions contribute equally to the
process?

2) Ifnot, can we quantitatively assess these uneven contri-
butions? Are there any strategies to follow when choos-
ing extreme samples for the training data?

Method and data
Method description

This study uses the concept of SSS and the geographi-
cal random forest (GRF) (Georganos et al. 2021), a local
machine learning model, to examine the two research ques-
tions. Various configurations of training data are generated
from the sampling and thus the rest of population are used
for validation in the GRF.

The SSS is employed to mitigate the issue of spatial het-
erogeneity based on the predetermined divisions of tree can-
opy height over a mixed landscape. The mechanism of this
method shares a similarity with the idea of zoning stratified
sampling (Wang et al. 2010) while the criteria of division
are slightly different. The rules of division can be on a basis
of prior knowledge about the area of interest, standardized
criteria, or the spatial distribution of other known influ-
encing variables. Tree canopy height is the dependent and
only variable of target in this study, and the value has been
calculated for the corresponding location. Therefore, the
judgement of whether the heights can be defined as extreme
depends on their statistical distribution. The height with a
predefined high (low) rank order is recognized as one of the
EXH (EXL) canopies. In the present research, as aforemen-
tioned, we continue to use the divisions (i.e., EXH, non-
extreme, EXL) determined in the previous study, but the
scope is redefined to better reflect the concept of extreme.
After the divisions are plotted on a map, random sampling is
eventually applied to select the training data. Although the
major process of design-based sampling focuses on choos-
ing training data through some randomization mechanism,
Fig. 1 illustrates how the SSS works and its difference from
the other design-based sampling methods (Dumelle et al.
2022; James and Knaub 1999). One of the major differences
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Fig. 1 Examples of design-based sampling methods. An “x” represents
the selected pixel for training dataset. The blue and orange squares
indicate the pixels with extremely low and high values, respectively.
Figures a, b and c represent a random sampling, a systematic sampling,

takes ideas of weight and space into consideration when
applying the SSS.

GRF is a modified random forest integrated with the
geographically weighted regression (GWR) model (Bruns-
don et al. 1998) to ease the issue of spatial variance for the
selected covariates (Wadoux et al. 2020). Similarly, this
method applies an adjustable kernel to choose a bandwidth
with maximum radius, capturing as much information as
possible to offset the negative effect brought by an unequal
distribution of tree canopy over the study area. The major
discrepancy between GRF and traditional random forest
(TRF) is the dimensionality over space, with an attribute of
location embedded in GRF. The formulas can be expressed
as:

H, = oju; + -+ ¢ (N

Hiy) = Qieytii + - + €iay) 2

d2

and a stratified sampling (weighted by area, light and gray boxes),
respectively. Figure d depicts the spatial stratified sampling; d1 (100%
& 100%) and d2 (25% & 25%) show the configurations of EXH and
EXL for training

Where H; denotes the simulated canopy height at pixel 7,
contributions of selected features (e.g., aiui) are at the right
side of the equation, ¢; Tepresents the simulation error at the
pixel ; and (x,y) provides GRF with the locational infor-
mation at the site. As a decision tree-based method, GRF
uses the same calibrated results of the two most important
parameters (Zafari et al. 2019), number of decision trees and
selected features, as TRF in the subsequent validation stage.
It is worth mentioning that the validated pixel only uses the
closest calibrated GRF to predict the canopy height in its
location. Previous research indicates that a TRF-GRF fusion
model provided the least biased prediction, and a trade-off
approach is suggested for an optimal configuration (e.g.,
50% of TRF-50% of GREF, hereafter, “50% GRF”) based on
actual needs of a given project. Following the study of Wang
et al. (2021), we decided to apply a configuration of 50%
GREF in this study because the model accuracy is maximized
and the spatial autocorrelation is addressed moderately at
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this level. The GRF algorithm was developed as the package
‘SpatialML 0.1.3” in R by Kalogirou and Georganos (2018).

Data acquisition and predefinition

As we proposed the questions on a basis of conclusions
made by the study of Wang et al. (2021), this research shares
the same data acquisition and the set of calibrated param-
eters for both GRF and TRF over the study area within the
Mann Creek Watershed in the state of Idaho, USA (Fig. 2).

This section only provides some key results of data clean-
ing, while detailed introduction of data background can be
found in their research (Wang et al. 2021).

Our study is primarily based on two major types of data,
the Light Detection and Ranging (LiDAR) point cloud
dataset and Landsat imagery. Tree canopy height analysis
is conducted through a set of pixel-based datasets derived
from the Canopy Height Model (CHM) created by the
LiDAR (Fig. 2). The LiDAR data were collected from Sep-
tember 9th ~ October 14th, 2017. For a compliance with
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Fig. 2 Study area of this research
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other source data, mean value of the LIDAR CHM (0.25 m
% 0.25 m) was calculated for each 30 m X 30 m pixel as a
reference of true canopy height. The outermost pixels were
eliminated because of the edge effect caused by the loss of
neighbor. To avoid the intervention brought by other veg-
etation, we excluded those pixels, primarily dominated by
homogenous sagebrush in uplands, less than or equal to 1 m
in further analysis. The Landsat images were acquired on
October 6th, 2017, in order to be synchronous with the date
of the LiDAR data acquisition. Previous research shows
that the reflectance of vegetated surfaces depends on its
structure, optical property, and underlying soil (Myneni et
al. 1995a, b; Myneni, Hall, Sellers, & MarshaMyneni et
al. 1995a, b; Zeng et al. 2021). However, we omitted blue
band due to its sensitivity to the aerosol conditions in the
atmosphere (Flood et al. 2013). Under this case, to prepare
for the calibration of the model, we retained 5 basic land
surface reflectance (LSF) bands, green, red, near infrared
(NIR), short-wave infrared 1 (SWIR1), and short-wave
infrared 2 (SWIR2), to generate vegetation indices and
band rations. Therefore, a total of 27 parameters, including
5 LSF bands, 12 vegetation indices and 10 band ratios are
prepared to run the model (Table 1). A feature selection was
then implemented to rule out those with high collinearity
(Pearson coefficient) and low importance (Gini importance),
leading to a total of 12 parameters remaining. Predefining
extreme division of tree canopy height plays a decisive role
in model design. Following the previous study, we selected
half number of pixels for respective training and validation
datasets, resulting in 8868 for each to ensure a balance and
a full coverage of the extreme. To better reflect the concept
of extreme, the scope of division is redefined based on the
quantile statistics of true canopy height. To maintain a rea-
sonable amount of data within extreme division, we eventu-
ally identified the canopy heights lower than the 1st quantile
(<3.72 m) and higher than the 95% quantile (>19.53 m)
as the EXL and EXH. Under this case, the divisions of
extreme and non-extreme contain 2913 and 5775 pixels,
respectively. In order to investigate the impact of extreme
sampling on non-extreme simulation, we decided to adjust
the SSS weighting of extreme values in the training data-
set, leading to a range from 25%~100% at a 25% interval.

Table 1 Spectral, ratio and band features used in the study

Based on previous studies (Masud et al. 2008; Vabalas et
al. 2019), this limited training sample will only result in a
minor change of the simulation with a small increment of
percentage. Therefore, we only retained those same percent-
ages and the entire amount (i.e., 100%) of extreme train-
ing divisions. Under this case, there are 10 configurations
of extreme divisions applied in this study, such as 25% of
EXL and 25% of EXH (Table 2). Model optimization was
initiated through determining the number of decision trees
employed in RF. The highest cross validation score (0.846)
was achieved when 1500 decision trees were used. An adap-
tive kernel of 51 neighboring points was selected for GRF
calibration. To quantitatively assess the impact of extreme
training sample on the non-extreme simulation, the root
mean squared error (RMSE), variance of error (VE) and
bias statistics were calculated for only non-extreme division
at the validation stage. Equations were expressed as:

RSME = %Z(h — ) )
VE-— i 12:1 (e,; — 5)2 )
Bias= Zj:l % (3)

where  represents the number of sample points, h; and
z; were the predicted and observed or true canopy height
at point 7, respectively. e; denotes the difference between
hi and ;. at point ; while ¢ is the average of errors for
all sample points. Additionally, we used residual to measure
the deviation of a simulated value and its corresponding true
value. The formula is indicated as follows:

r; — h; = Residual

Therefore, a positive residual implies that the correspond-
ing tree canopy is underestimated while a negative residual
indicates an overestimation. To examine the quantitative
impact of each configuration set (e.g., 25% of EXL and 25%

Vegetation Index

Normalized Difference Vegetation Index (NDVI); Green Soil Adjusted
Vegetation Index (GSAVI); Green Normalized Vegetation Index
(GNDVI); Chlorophyll Vegetation Index (CVI); Normalized Difference
Greenness Index (NDGI); Normalized Burn Ratio SWIR2 (NBR); Nor-
malized Burn Ratio SWIR1 (NDII); Green Difference Vegetation Index
(GDVI); Modified Soil Adjusted Vegetation Index (MSAVI); Difference
Vegetation Index (DVI); Soil adjusted Vegetation index (SAVI); Modi-
fied Simple Ratio (MSR)

Band Ratio LSF
bands
Red/Green; SWIR1/NIR Green;
NIR/Green; SWIR2/Green Red;
NIR/Red; SWIR2/Red NIR;
SWIR1/Green; SWIR2/NIR SWIRI;
SWIR1/Red; SWIR2/SWIR1 SWIR2
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Table 2 SSS weighting configurations for extreme value training datasets and statistical results

Case # % of EXL % of EXH # of EXL # of EXH RMSE VE Bias

1 25% 25% 604 124 2.735 7.481 -0.033
2 50% 50% 1208 249 2.752 7.571 -0.067
3 75% 75% 1812 373 2.863 8.190 -0.079
4 100% 100% 2416 497 2.903 8.427 -0.058
5 25% 100% 604 497 2.818 7.874 -0.266
6 50% 100% 1208 497 2.834 7.976 -0.237
7 75% 100% 1812 497 2.898 8.384 -0.118
8 100% 100% 2416 497 2.903 8.427 -0.058
9 100% 25% 2416 124 2.776 7.675 0.180

10 100% 50% 2416 249 2.801 7.836 0.121

11 100% 75% 2416 373 2.851 8.130 0.048

12 100% 100% 2416 497 2.903 8.427 -0.058

Note Cases are divided into three groups for analysis. Group 1 (G1) spans from Case #1—4, representing the condition when the proportion of
EXH and EXL increase synchronously. Group 2 (G2) spans from Case #5-8, representing the condition when the EXH division is fixed as
100%. Group 3 (G3) spans from Case #9—-12, representing the condition when the EXL division is fixed as 100%

of EXH) on the non-extreme simulated data, a series of fig-
ures of canopy height — residual is compiled in this study.

Results and discussion

Table 2 shows that the impact of extreme training sample
on the non-extreme simulation can be varying depending
on the different configuration of EXH and EXL. In general,
the RMSE and VE manifest an increasing trend when the
percentage of either EXH or EXL is growing in the train-
ing dataset. This reconfirmed that extreme point sampling
could affect simulation of non-extreme values. The Bias
indicator exhibits that the negative and positive values are
associated with a fixed (100%) EXL or EXH, indicating that
various configurations of extreme training sample can lead
to an overestimated or underestimated non-extreme simula-
tion. Although discrepancies between cases of each assess-
ment index are considered as references to investigate the
research questions, the accuracy of each case of the non-
extreme simulation is still relatively high and acceptable
for subsequent analysis. Integrating the configurations of
extreme training sample with the statistics, we can conclude
that both EXH and EXL affected the simulation of non-
extreme division while their contributions were different.
When the proportion of EXH and EXL increase synchro-
nously, the values of RMSE and VE rise by 0.168 and 0.946,
respectively. This finding shows that the predictive ability
of GRF to the non-extreme simulation is weakened slightly
with more extreme training sample involved. This inference
also applies to the circumstances (i.e., Case #5—12) when
proportion of an extreme division is fixed as 100%. The
increasing trend of VE implies that a greater percentage of
either EXH or EXL can lead to a larger variance of error of
simulation, providing that more extreme training data can

@ Springer

cause the model overfitting due to a larger random noise.
Moreover, comparisons between G2 and G3 indicate that
these two statistics are more sensitive (higher change rates)
to the EXH even though the number of EXH is less than that
of EXL in the training data. Evidence shows that the errors
are more intense under the cases that the entire EXH divi-
sion is selected for training (G2). This conclusion is made
by the fact that the rate of variation of the errors is faster
when the EXL is fixed as 100%, in spite of the significantly
lower increment of the EXH than that of the EXL in G2
(Fig. 3).

The Bias statistic reflects an instability with both nega-
tive and positive values, showing that various proportions
of extreme training sample can lead to over and underes-
timates, respectively. Comparisons between G1, G2 and
G3 manifest that the 1st and 5th case own the smallest and
greatest bias, respectively. The negative value indicates the
overestimated simulation in the cases of G1 and G2, regard-
less of the proportion of the EXL applied to the training
dataset. Based on this evidence, it is appropriate to infer
that the model is more sensitive to the EXH division, with
the weakest predictive ability occurred when the smallest
(25%) and largest (100%) percentages of EXL and EXH are
used, respectively. This speculation is validated again by the
cases of G3 where the entire division of EXL is employed.
The simulated canopy heights are first underestimated (i.e.,
Case #9-11) and was then changed to overestimation with
100% of the EXH selected for training. The increased 25%
of the EXH are attributed to this transition although the cor-
responding incremental number is only 124. Therefore, we
can draw a conclusion that the non-extreme simulation is
more sensitive to the EXH training dataset in the present
research. Based on the statistical distribution of tree canopy
height, we hypothesize that the impact of extreme point
sampling on non-extreme simulation is closely associated
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Fig. 3 Comparisons of two statistical indicators (A: RMSE, B: VE) between G1 (growing % in same pace for EXH and EXL), G2 (with a fixed

100% for EXH) and G3 (with a fixed 100% for EXL)

with the overall distribution of non-extreme heights. In this
study, a majority of the non-extreme are prone to be rela-
tively low, leading to the fact that more selected EXH train-
ing sample may cause a significant disturbance even though
the number is critically less than the EXL at the same per-
centage level. This hypothesis can be verified through Fig. 4
which shows the relationship between non-extreme true
canopy height and its residual for each configuration set.
From A to J, the non-extreme true canopies are found to be
biased to the low heights.

Figure 4 further reveals a coherently robust predic-
tive ability of every configuration while some outstanding
residuals make their performances various. A dispersed
distribution of these outstanding residuals (>|5| m) helps
to quantitatively define the impacts of extreme sampling
by combining the comprehensive statistical assessment.
The integrated analysis implies that the strongest predic-
tive ability of the model for the non-extreme simulation is
taken place at Case #1, with the least proportion (25%) of
EXH and EXL selected for training. This evidence further
verifies that less amount of extreme training sample has a
smaller effect on the non-extreme simulation. However, the
underlying mechanism of this influence may vary depend-
ing on the different statistical index. The variation trend
of Bias statistic is distinct from others. In future research,
particularly with biased distribution of target value, the
selection of extreme training data should be determined by
percentage rather than amount due to the substantially dif-
ferent sensitivity of model to each division. Although less
extreme training data may lead to an inaccurate simulation
of extreme division, the observation of this study apparently
provides a contrary implication. Therefore, a trade-off con-
sideration is desirable when choosing the best configuration
of training dataset between the extreme and non-extreme.

Conclusion

This follow-up research provides a critical insight into the
impact of extreme point sampling on the non-extreme simu-
lation, particularly for a machine learning process. Two
major research questions have been addressed. First, we
confirmed that the selection of extreme training sample does
affect the non-extreme simulation. In addition to this, we
also further found that the non-extreme simulation is more
sensitive to the EXH training data in this case study, lead-
ing to the fact that the EXH and EXL divisions contribute
unequally to the process. Moreover, we also infer that this
phenomenon probably depends on the biased distribution
of non-extreme division. Therefore, an investigation of the
‘noise’ embedded in a set of simulation data also seems to
be necessary at a preliminary stage before simulation. Sec-
ond, numbers of extreme sampling data and statistical anal-
ysis (i.e., RMSE and VE) demonstrate that the change rates
of model performance are unstable for different proportions
of EXH and EXL. Therefore, the distinct sensitivities finally
call upon an attention that extreme training sample should
be adjusted on a basis of ratio or percentage rather than their
amounts when applying stratified sampling. This research
provides a critical insight into the extreme point sampling
for a machine learning process. Although this study fills in
the gaps stated above, there are certain limitations existing
at the stages of data preparation and method development.
First, the EXH and EXL divisions are predefined based on
the quantile statistics, which could be involved with subjec-
tive consciousness. A more objective definition of “extreme”
is expected. Second, the detailed information of variation of
statistical value is still missing. The interval of percentage
(25%) could be narrowed down to depict a clearer image of
statistical change curve in future analysis. Lastly, although
we believe this study area can represent those places where
canopy heights are randomly distributed, we still expect that
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Fig.4 Relationship between non- it A
extreme true canopy height and
its residual for each configuration

set. (X-axis: true canopy height 5
in meters, y-axis: residual in
meters; A: 25% of EXL and 25%

of EXH (hereafter, “25L-25H"), 3
B:25L-100 H, C:50 L-50 H, D:
50 L-100 H, E: 75 L-75 H, F:
75 L-100 H, G: 100 L-25 H, H: 2
100 L-50 H, I: 100 L-75 H, J: 15
100 L-100 H.)

further research should cover more areas with various types
of canopy heights.
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