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Voltage-gated ion channels are expressed in the Malpighian
tubules and anal papillae of the yellow fever mosquito
(Aedes aegypti), and may regulate ion transport during salt and

water imbalance

Serena Farrell, Jocelyne Dates, Nancy Ramirez, Hannah Hausknecht-Buss and Dennis Kolosov*

ABSTRACT

Vectors of infectious disease include several species of Aedes
mosquitoes. The life cycle of Aedes aegypti, the yellow fever
mosquito, consists of a terrestrial adult and an aquatic larval life
stage. Developing in coastal waters can expose larvae to fluctuating
salinity, causing salt and water imbalance, which is addressed by two
prime osmoregulatory organs — the Malpighian tubules (MTs) and
anal papillae (AP). Voltage-gated ion channels (VGICs) have recently
been implicated in the regulation of ion ftransport in the
osmoregulatory epithelia of insects. In the current study, we:
(i) generated MT transcriptomes of freshwater-acclimated and
brackish water-exposed larvae of Ae. aegypti, (i) detected
expression of several voltage-gated Ca®*, K*, Na* and non-ion-
selective ion channels in the MTs and AP using transcriptomics, PCR
and gel electrophoresis, (iii) demonstrated that mMRNA abundance of
many altered significantly following brackish water exposure, and
(iv) immunolocalized Cay 1, NALCN, TRP/Painless and KCNH8 in the
MTs and AP of larvae using custom-made antibodies. We found Cay1
to be expressed in the apical membrane of MTs of both larvae and
adults, and its inhibition to alter membrane potentials of this
osmoregulatory epithelium. Our data demonstrate that multiple
VGICs are expressed in osmoregulatory epithelia of Ae. aegypti
and may play an important role in the autonomous regulation of ion
transport.

KEY WORDS: Insect osmoregulation, Vectors of infectious disease,
Mosquito larvae, Epithelia, Voltage-gated ion channels

INTRODUCTION

Mosquitoes are economically important vectors of infectious
diseases (e.g. malaria, Zika virus and Ebola), contributing to the
annual death toll of ~700,000 people from, and ~4 billion people at
risk of contracting, mosquito-borne infectious diseases worldwide
(Lozano et al., 2012; WHO, 2014). Disease transmission occurs
when the female mosquitoes take blood from humans to gain protein
needed to produce eggs, and, in the process, transmit infectious
disease pathogens to the human host. Following blood feeding, the
female mosquito lays eggs in water, which can introduce vectors of
infectious diseases into new areas not yet affected by an established
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mosquito population. Recent incursions into regions that do not
usually have permanent breeding populations create a direct threat
(Schefters et al., 2016).

The mosquito life cycle consists of a filter-feeding aquatic larval
life stage hatching from eggs laid in water, after which developing
larvae pupate and metamorphose into terrestrial adults. Mosquito
larvae can be found in diverse aquatic habitats and, in general,
demonstrate an extensive range of salinity tolerance compared with
most animals (Bradley, 1994). Most Ae. aegypti larvae develop in a
constant salinity (mostly freshwater, FW), larvae of females that do
choose to lay eggs in brackish water (BW) near coastline may
experience fluctuations in salinity, with documented cases ranging
from 2 to 18 ppt (Ramasamy et al., 2011), and established survival
in up to 10 ppt (e.g. de Brito Arduino et al., 2015). These larvae are
often faced with rapid changes in salinity caused by heavy rainfall,
evaporation, or incursion of seawater (Bradley, 1987). Worldwide,
Ae. aegypti are increasingly present in BW habitats and more
northern latitudes, currently reaching as far as Canada in North
America, with projections predicting expanding habitat range
worldwide (Ramasamy et al., 2011, 2014; Surendran et al., 2012;
Lounibos and Kramer, 2016; Ramasamy and Surendran, 2016;
Surendran et al., 2018a,b; Parker et al., 2019; Giordano et al., 2020;
Khan et al., 2020; Brennan et al., 2021). This includes Southern
California, where Ae. aegypti has established breeding populations
across the state counties stemming from recent introduction from
multiple genetically divergent source populations — it has recently
been detected in 72% of households in Los Angeles County, posing
increased risk of infectious disease transmission and spread for
inhabitants of coastal cities that surround ocean and brackish waters
(Lee et al., 2019; Donnelly et al., 2020). Southern California lacks
natural FW habitats and mosquito eggs are typically laid by blood-
fed females into bodies of standing water created by human activity
or in bodies of FW, which often connect with the ocean. Thus, all
larvae hatched from eggs laid in FW actively hyper-osmoregulate,
keeping hemolymph ion concentrations higher than those of FW.
However, larvae may end up drifting downstream towards the ocean
through BW. Eggs laid in small human-made standing bodies of
water can face rapid evaporative water loss, increasing in salinity
and nitrogenous waste content as larvae develop (Bradley, 1987). In
fact, the recent spread of Ae. aegypti may be due to its ability to
tolerate saline BW that surrounds coastal cities, where the capacity
of some populations to complete their life cycle in BW is considered
a heritable trait (Lee et al., 2019).

The Malpighian tubules (MTs) are an osmoregulatory organ
found in both adult and larval mosquitoes, consisting of a
multifunctional epithelium, which together with the hindgut is
essential for the maintenance of solute and water homeostasis,
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acid—base balance and nitrogenous waste excretion, among other
functions (Piermarini and Gillen, 2015; Esquivel et al., 2016;
Piermarini et al., 2017a). MTs of FW-dwelling larvae produce
isosmotic urine, which is modified by the rectum via KCI
reabsorption to conserve ions (recycling ions between MTs and
the rectum to move excess water out via the urine). In contrast, post-
prandial urine production by MTs in blood-fed females is plentiful,
but urine is closer to being isosmotic, containing both ions and
water from a recent blood meal (Bradley, 1994; Drake et al., 2010;
Lietal., 2017). Ion transport is achieved via principal and secondary
epithelial cells of the MTs, which carry out cation and anion
transport, and thus directly enable the excretory function of the MTs
by creating an osmotic gradient that draws water into the tubule
(Beyenbach and Piermarini, 2011). Mechanisms of ion transport in
the MTs of mosquitoes are well studied, whereas the regulation of
ion transport remains largely understudied.

The anal papillaec (AP) are exclusively larval osmoregulatory
organs that are in direct contact with the external aquatic
environment. Classical ultrastructural and functional studies
revealed that these sac-like structures are filled with hemolymph
and are syncytial in nature (Koch, 1938; Treherne, 1954; Ramsay,
1953; Sohal and Copeland, 1966). In FW habitats, AP actively
sequester ions and experience diffusional water uptake from
surrounding FW (Wigglesworth, 1933; Marusalin et al., 2012),
and are capable of completely replenishing Na* and C1~ content of
the hemolymph in ~3 h (Donini and O’Donnell, 2005; Durant et al.,
2021). The larvae are known to survive in more saline habitats, with
AP altering in ultrastructure, ion and water transport kinetics, and
gene expression, but remaining functional despite fluctuating
salinities over the course of larval development (Stobbart, 1971;
Donini et al., 2007; Marusalin et al., 2012; Akhter et al., 2017;
Surendran et al., 2018a,b; Durant et al., 2021). Molecular
mechanisms of ion transport in AP of mosquitoes have recently
been described; however, the detailed mechanisms of its regulation
remain to be studied (Donini and O’Donnell, 2005; Patrick et al.,
2006; Del Duca et al., 2011; Durant et al., 2021).

Larvae of Ae. aegypti maintain salt and water balance during BW
exposure using a combination of the hindgut, the MTs and AP,
resulting in hemolymph osmolality equivalent to BW, but without
active osmoconformation (Bradley, 1994). Multiple studies report
that Ae. aegypti can be reared in, or abruptly exposed to, ~30%
seawater, although detailed mechanisms of how short-term
variations in environmental salinity are detected and handled by
the osmoregulatory tissues of mosquito larvae remain unclear (e.g.
Edwards, 1982; Donini et al., 2006, 2007; Jonusaite et al., 2016,
2017; Durant et al., 2021). Recent transcriptomic surveys revealed
that voltage-gated ion channels (VGICs) are expressed in all non-
innervated non-contractile osmoregulatory epithelia of animals
studied to date (Kapoor et al., 2021; Durant et al., 2021; Kolosov
and O’Donnell, 2022). VGICs are often ion selective and can
respond rapidly to changes in membrane potential (V) (Kariev and
Green, 2012). In insect MTs, specifically, voltage-gated Cay1 and
HCN channels have recently been shown to directly regulate ion
transport in the MTs of larval lepidopterans (Kolosov and
O’Donnell, 2019; Kolosov et al., 2021).

In mosquitoes, MTs and AP are simple epithelial organs with
tracheae — neither is innervated or capable of peristaltic movement;
thus, all regulation of M T ion transport must be endo/auto/paracrine,
or aided by autonomous osmosensing of the organ (Edwards and
Harrison, 1983; Coast, 1998). Additionally, lack of innervation or
muscle layers eliminates the confounding variables of VGIC
contribution to the regulation of ion transport via neuronal/

muscular pathways. The objectives of the current study were to:
(i) generate MT transcriptomes of FW-acclimated and BW-exposed
larvae of 4e. aegypti, (ii) detect all VGICs expressed in the MTs and
AP, (iii) investigate whether VGICs alter in mRNA abundance in
MTs and AP of larvae exposed to BW, and (iv) investigate whether
select VGIC proteins are expressed in these osmoregulatory
epithelia. We demonstrate that multiple VGICs are expressed in
MTs and AP epithelia of larval Ae. aegypti, and that the abundance
of several changes with BW exposure. As Cay 1 has been shown by
our recent study to be involved in the regulation of ion transport in
the MTs of larval lepidopterans (Kolosov et al., 2021), we
additionally show that Cayl may be specifically linked to ion
transport in the MTs of Ae. aegypti.

MATERIALS AND METHODS

Experimental animals and salinity exposure

Eggs of Aedes aegypti (Linnaeus) were obtained from Benzon
Research (Carlisle, PA, USA), which provided the basis for the lab
Aedes colony. Eggs were hatched in dechlorinated FW ([Na*]
19.2+5.6 umol 171, [C17] 44.3£15.5 pmol 171). Larvae were fed a
diet of inactivated yeast and liver powder, water was replaced every
2 days and larval density was maintained throughout development
at 50 larvae 17!, Pupae were transferred to bug dorms daily, where
adult de. aegypti were kept and fed 5% aqueous sucrose solution
and warmed-up Alsevers sheep blood (Carolina Biological Supply
Company, Burlington, NC, USA). Lab temperature is maintained at
21°C throughout the year, and the light:dark cycle is maintained at
12 h:12 h using timed light fixtures.

For salinity exposure experiments, several groups of 100 larvae
were exposed to different salinities. Half the containers were
exposed to a typical water change to FW. The other half were
exposed to 10 ppt BW ([Na'] 132.0+4.2 mmol 1=}, [CI7] 151.9
£3.1 mmol I7!) for 24 h. Salinity exposure containers were set up in
a paired and staggered manner to allow for prompt dissection of
tissues of larvae exposed to salinities for ~24 h. BW was made in
the lab using Instant Ocean aquarium salt (United Pet Group Inc.,
Cincinnati, OH, USA) and double-distilled water. This mixture was
measured using a portable refractometer until 10 ppt was reached.

Hemolymph collection and ion-selective microelectrode
analysis

Hemolymph was collected from BW- and FW-exposed larvae under
hydrated oil by gently puncturing the exoskeleton with iris
microscissors. Larvae were captured and briefly rinsed in double-
distilled water to wash environmental salt off the exoskeleton.
Collected hemolymph samples were immediately analyzed for ion
content using ion-selective microelectrodes constructed according
to Donini and O’Donnell (2005). Briefly, K*- and Na*-selective
microelectrodes were constructed by pulling glass microcapillaries
(cat. no. B150-110-10, Sutter Instruments, Novato, CA, USA) on a
PUL-1000 microelectrode puller (World Precision Instruments,
Inc., Sarasota, FL, USA) with a barrel diameter of ~2—3 um. Freshly
pulled microelectrodes were silanized and baked, and kept in a
desiccator until further use. K* Tonophore l-cocktail A was
purchased (cat. no. 99311, Sigma-Aldrich, St Louis, MO, USA).
Na* ionophore was prepared in the lab, and consisted of (w/w):
3.5% Na" ionophore X (cat. no. 71747, Sigma-Aldrich), 0.6%
potassium tetrakis(4-chlorophenyl)borate (cat. no. 60591, Sigma-
Aldrich) and 95.9% 2-nitrophenyl octyl ether (cat. no. 73732,
Sigma-Aldrich). On the day of use, ion-selective electrodes were
constructed by back-filling the glass microelectrode with
150 mmol 17! KCI or NaCl, front-filling it with the liquid-state
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ionophore cocktails mentioned above, and calibrating in the
following solutions: K*, 1.5 mmol1~' and 15 mmol 1='; Na®,
15 mmol 17! and 150 mmol I=!. Solid-state Cl- electrodes were
constructed according to Kolosov and O’Donnell (2020), and
calibrated in 15 and 150 mmol 17! NaCl. All calibration solutions
were balanced to maintain constant ionic strength. Ion-selective
microelectrodes and reference electrodes (non-silanized, back-filled
with 150 mmol 17! KCI) were connected to a high-impedance
electrometer (ML165 pH Amp, ADInstruments, Colorado Springs,
CO, USA), which in turn was connected to a PowerLab 2/26 data
acquisition system running LabChart software (ADInstruments,
Sydney, NSW, Australia). Hemolymph ion concentration
measurements were conducted under oil and ion-selective
microelectrode data were acquired and analyzed using LabChart
software. Voltage readings from hemolymph samples were used to
back-calculate ion concentrations in the samples using the following
equation:  [i0n]sample=[10N]standara* 10""S), where [ion]umple 1S
hemolymph ion concentration, [i0n]sandara 1S 10N concentration in
the calibration solution, d¥ is the difference in voltage between the
hemolymph and the calibration solution, and S is the Nernstian
slope of the electrode measured in response to a 10-fold change in
ion concentration.

Microdissections and tissue sampling: MTs and AP
Microdissections of larval Ae. aegypti were performed under a
stereomicroscope in larval saline containing (in mmol 1=!) 30 NaCl,
25 Hepes, 3 KCI, 5 NaHCO3;, 0.6 MgSO,, 5 CaCl,, 5 glucose, 5
proline, 9.1 glutamine, 8.74 histidine, 14.4 leucine, 3.37 arginine, 5
succinic acid, 5 malic acid and 10 tri-sodium citrate, pH 7.10
(Donini et al., 2007) (all chemicals were purchased from fisher
scientific, ThermoFisher Scientific, Carlsbad, CA, USA). Larvae
were pinned down by the head and MTs and AP were dissected out
in larval Aedes saline. Tissue samples were manipulated and
microdissected out using Dumont 5 ultrafine forceps and glass
microprobes custom-made in the lab, while carefully and diligently
removing tracheal connections and surrounding tissues to ensure no
other tissues were harvested together with AP or MTs. The tissue
samples were stored in Eppendorf tubes filled with 500 ul of
RNAlater® Stabilization solution (ThermoFisher Scientific) and
samples were collected for each osmoregulatory tissue in each
salinity type. Each biological replicate contained 200 MTs or 160
AP microdissected out of 40 larvae from the same treatment group.
During collection time, previously harvested biological replicates
were stored at 4°C. Tissue collection was always performed in a
timed and paired manner to ensure ~24 h of salinity exposure and
the side-by-side collection of the two salinity treatment samples.

RNA extraction and purification, and cDNA synthesis

RNA extraction (RNA precipitation, wash and redissolving) was
performed using TRIzol reagent (ThermoFisher Scientific)
according to the manufacturer’s instructions as described in
Kolosov et al. (2019). Briefly, larvaec were dissected in larval
Aedes saline and tissues collected as described above. Following
microdissection and storage in RNAlater®, tissues were
homogenized in Trizol® using a 26G syringe needle and total
RNA was extracted following the manufacturer’s protocol.
RNAlater was removed by aspiration and tissues were immersed
in 0.5 ml Trizol (ThermoFisher Scientific) per biological replicate.
Tissues were homogenized in Trizol using a 26G syringe needle and
allowed to remain at room temperature for 5 min to dissociate
nucleoprotein complexes. Molecular grade chloroform (100 pl) was
then added to every sample. Tubes were vigorously agitated by hand

and incubated at room temperature for 3 min. Samples were then
centrifuged at 12,000 g for 15 min at 4°C to perform phase
separation, after which the clear aqueous phase containing total
RNA was collected into a set of new, sterile 1.5 ml Eppendorf tubes
and kept on ice. Molecular grade isopropanol (250 pl) was added to
every sample to precipitate RNA. Tubes were agitated gently and
left at room temperature for 10 min, after which they were
centrifuged at 12,000 g for 10 min at 4°C to concentrate the
precipitate into the pellet. Supernatant was removed from every tube
by aspiration and pellets were washed in 75% molecular grade
ethanol solution in RNase-free water, and centrifuged at 7500 g for
S5min to immobilize pellets. Ethanol was then removed by
aspiration and pellets were left to air-dry for 1 min at room
temperature, after which they were dissolved in 12 pl of RNase-free
water. Total RNA was purified using a Thermo Scientific GenelJet
RNA Cleanup and Concentration Micro Kit (cat. no. K0841,
ThermoFisher Scientific). The concentration and quality of purified
RNA were determined using a nano-sample spectrophotometer
(DeNovix DS-11, Wilmington, DE, USA). Absorbance ratios of
A260/A280:2~1 1£0.01 and A260/A230:2.08i0.03 were observed,
indicating excellent purity of samples free of contamination. Total
purified RNA from 3 biological replicates for each salinity treatment
group was sent to University of California Riverside Genomics
Facility for Illumina library preparation (see ‘RNAseq library
preparation, sequencing, quality control, mapping and differential
expression analysis’, below).

Following a similar RNA extraction and purification process,
2 ug of total RNA, treated with DNAse, was used for oligo-dT-
aided reverse-transcriptase cDNA synthesis. cDNA was diluted in
RNAse/DNAse-free water and used for PCR and qPCR (see ‘PCR/
qPCR amplification and gel electrophoresis’, below).

RNAseq library preparation, sequencing, quality control,
mapping and differential expression analysis
Single-end 75 bp Illumina libraries were prepared by the University
of California Riverside Institute for Integrative Genome Biology
sequencing facility (UCR IIGB, Riverside, CA, USA) using the
following methodology. Total RNA samples were screened with an
Agilent Bioanalyzer 2100 to confirm quality and concentration.
Each sample was diluted to 250 ng for input into NEBNext Poly(A)
mRNA Magnetic Isolation Module (E4790, New England Biolabs),
followed by NEBNext Ultra II Directional RNA Library Prep kit for
Mlumina (E7760). The NEB protocol was followed with the
following adjustments: 0.8x bead clean after second strand
synthesis, adaptor dilution of 1:30, 0.7x bead clean after ligation,
15 cycles of amplification, and dual bead clean after enrichment.
Standard Illumina adaptors were used for all, but each library was
barcoded independently with TruSeq indexes. Final libraries were
qualified and quantified with Agilent Bioanalyzer 2100, then
pooled equimolarly. Sequencing was performed with Illumina
NextSeq500 using a High-output Single-end 75 bp kit.

Sequencing (at UCR IIGB) of six strand-specific libraries (3 FW
exposed and 3 BW exposed) with 75 bp single-end reads yielded a
total of 398,425,646 reads with an average of ~66.4 million of raw
reads per library. Quality control (QC) reports were performed by
UCR IIGB and 100% of reads with a read length of exactly 75 bp
were subjected to quality control trimming with Trimmomatic using
previously described protocols (usegalaxy.org; Goecks et al., 2010;
Kolosov et al., 2019). Raw sequencing data are available at SRA
BioProject (PRINA1068135).

The Aaegl5.0 A. aegypti transcriptome was accessed at ncbi.nlm.
nih.gov and official genome transcript annotation was used for
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mapping. Mapping of Next Generation Sequencing (NGS) reads to
this transcript set was performed using Salmon (Galaxy version
1.3.0, usegalaxy.org) mapping software (Patro et al., 2017).
Mapping was performed to the Ae. aegypti transcriptome and
annotation supplied with the official genome annotation was used.
Differential expression analysis was performed in R (version
3.4.2) using the DESeq2 package (release 3.7) (Love et al., 2014),
where the BW-exposed group was compared with the FW-exposed
group. This analysis involved compiling counts tables for all
samples generated by Salmon in Galaxy, uploading them to R,
creating a metadata table indicating which sample belongs to which
treatment group, and running the DESeq?2 script in R as instructed
in the vignette publication, which estimates size factors and
dispersions, determines mean dispersion relationship, and builds
a model of differential expression. DESeq2 analysis in R resulted
in a list of all differentially expressed transcripts (Table S1)
accompanied by the log, fold-change (log,FC), P-value of the
change (P) and P-value adjusted (P,q;) for the false discovery rate
(FDR) by the DESeq2 Benjamini—Hochberg algorithm. For further
information, the reader is directed to Love et al. (2014).

PCRIqPCR amplification and gel electrophoresis
Detailed analysis of NGS data suggested that multiple voltage-gated,
ligand-gated and mechanosensitive ion channels (VGICs, LGICs and
MSICs, respectively) were expressed in the MTs of larval Ae. aegypti.
Expression of transcripts encoding VGICs was determined by
RT-PCR in MTs and AP using Platinum or DreamTaq Hot-Start
Supermix (ThermoFisher Scientific). Changes in transcript abundance
in MTs and AP of BW-exposed larvae were assessed using
quantitative real-time PCR (qPCR) with 2x DyNAmo Flash SYBR
Green gPCR Mastermix (F415L, ThermoFisher Scientific), a BioRad
PCR machine for RT-PCR (PTC-2000; Bio-Rad Laboratories Canada
Ltd, Mississauga, ON, Canada) and ThermoFisher Scientific
QuantStudio 3 qPCR machine running ABM Design and Analysis
software. Primers specific for VGICs were designed based on
sequences obtained from RNAseq experiments. Gel electrophoresis
was performed on PCR amplicons to confirm their size, and
electrophoresed samples were subsequently extracted from the gel,
purified and sequenced to ensure that amplicon identity was in line
with designed parameters, and submitted to GenBank for annotation
(see Table 1 for PCR primer and cycling information).

The following reaction conditions were used: 1 cycle for
denaturation (95°C, 4 min), followed by 40 cycles of: denaturation

(95°C, 30 s), annealing (see Table 1, 30 s) and extension (72°C,
30 s), with a final extension step (72°C, 10 min). To ensure that a
single PCR product was synthesized during reactions, a dissociation
curve analysis was carried out after each qPCR run. Transcript
abundance was normalized to that of Ae. aegypti actin (act). The use
of act for gene of interest normalization in salinity exposure studies
was validated by statistically comparing tub threshold cycle values
between tissues to confirm that no statistically significant changes
occurred (P=0.842 for MTs and P=0.4688 for AP, Student’s r-test).

Immunohistochemistry: whole-mount and cross-sections

Whole-mount immunohistochemistry (IHC) procedures have been
described in detail elsewhere (Kolosov et al., 2018a; Patrick et al.,
2006). Briefly, larvae were dissected in larval saline (as described
above); adult tissues were dissected in adult saline (in mmol I=': 150
NaCl, 3.4 KCl, 1.8 NaHCOs;, 1.7 CaCl,, 1.0 MgSOy,, 25 Hepes and 5.0
glucose; Yu and Beyenbach, 2002). After dissection in appropriate
saline, MTs or AP were removed and fixed in 4% paraformaldehyde
(PFA) in phosphate-buffered saline (PBS, pH 7.4) overnight at 4°C.
The following day, tissues were washed in PBS and dehydrated (20%
v/v, stepwise to 100%) and rehydrated (100% to PBS) in a methanol/
PBS series. Tissues were then permeabilized and blocked in PBS
containing 0.1% Triton X-100 solution (PBT), containing 2% w/v
bovine serum albumin (BSA). After blocking, tissues were incubated
with primary antibody overnight at 4°C at 1:100 dilution. The anti-
VGIC antibodies were custom-ordered from GenScript (Piscataway,
NI, USA), epitope-affinity purified and directed against the C-terminal
region of the following Ae. aegypti proteins encoded by mRNA
detected by RNAseq and PCR (NCBI accession no.; epitope): Cayl
alpha-1 isoform (XP_021699870.1; CWSEYDPDAKGRIKH), Na*
leak channel Nalen (XP_021710075.1; MKMLGRKQSLKGEPC),
voltage-gated K* channel KCNHS8 (XP_021699750.1; ILKEFPEE
LRGDIS) and transient receptor potential TRP/Painless (XP_
001652261.2; CLTANDKRPGDDDY). An additional preparation
was included with each THC analysis, where primary antibody was
omitted to act as negative control. Tissues were washed after 16-18 h
in PBT/1% BSA supplemented with normal goat serum 3 times for
15 min each with constant agitation to remove unbound primary
antibody. Following washes, tissues were incubated with goat anti-
rabbit TRITC-conjugated secondary antibody at 1:1000 dilution
(Jackson ImmunoResearch, Westgrove, PA, USA) in the dark at room
temperature for 2 h. Following incubation with secondary antibody,
tissue was washed 3 times in PBT/1% BSA for 15 min each time.

Table 1. Primer sets used for RT-PCR and gPCR analysis of voltage-gated ion channel transcript expression and abundance in Malpighian tubules

and anal papillae of larval Aedes aegypti

NCBI
Transcript Forward sequence Reverse sequence accession no. NCBI match Ta
actin CAGGGTGTGATGGTCGGTAT CGGTGTGTTGAAGGTTTCG OR187519 XM_001655125.2 60
CaVi1a1x9 TTTCCAAACCTTCCCGCAAG CGTACTCACTCCATAGCCGA OR187520 XM_021844183.1 59
HCN2x4 CCGTCTACTGAAAAACCATCATC  GTTCGGCGTTATCTTGTTGC OR187523 XM_021844343.1 56
TRPpainless211.2 (TRP/ CAGTATCCCATCCACTTTGC CTTCCTCAACTCCCCCTTC OR187524 XM_001652211.2 58
painless 1)
painless473 (TRPIpainless 2) AGTTGGTGTGGTGTTGCTTG AAGAGAGGGCAGAAGAGTGC OR187525 XM_021839473.1 59
painless989 (TRP/painless 3) CCGCTTTCAACGAGAGAATC GGACGAGTTTTTCATCAGCA OR187526 XM_001648989.2 59
TRPA1 GCCATACTACCAGAACCATC CGAAATCAATACCTCCTTTG OR187527 XM_021842764.1 57
TRPpyrexia (TRPIpyrexia 1) CGGTATTGCTGGGATGGAC ATGAACGGAGGGTCTTTTCC OR187529 XM_021853484.1 60
TRPpyrexiaX3 (TRPIpyrexia2) =~ GCCACACACAATGCCTACAA CACAATCCGATTTGCCCACA OR187530 XM_021853483.1 61
paraX7 GGCGACCACAAGCAATAGTA AACGAGACCTAAAATGGACAGGA OR187528 XM_021852347.1 58
NALCN CGAAACACCGCAATACAGAG CAAGCATCGTAAAATCATCAAAAG OR187521 XM_021854385.1 59
KCNQ1 GCCATCATCTTCATCATCACATG GGAAGAACTCGATCGAAAACCATA  OR187522 XM_021842612.1 63

T,, annealing temperature.
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Tissues were then mounted on slides using a transfer pipet. Slides were
then blotted dry using KimWipes and preparations were mounted
using ProLong Antifade® reagent (ThermoFisher Scientific)
containing 4,6-diamidino-2-phenylindole (DAPI) as a nuclear stain
under coverslips and left to cure in the dark. Images of VGICs were
obtained using a Nikon Eclipse CI-S microscope and Nikon DS-Qi2
camera in imaging facilities at the Department of Biological Sciences
at California State University San Marcos.

Cross-section immunohistochemistry procedures were performed
as follows. Tissues were carefully microdissected out in appropriate
saline (see above) and fixed in Bouin’s solution for 4 h at room
temperature. Following fixation, all tissues were rinsed 3 times in 70%
ethanol and stored in 70% ethanol at 4°C until further processing.
Fixed tissues were dehydrated through an ascending series of ethanol
rinses (70-100%), cleared with xylene and infiltrated and embedded
in Polyfin Tissue Embedding Medium (cat. no. 50-279-84, fisher
scientific). Then, 5 um thick sections were cut using an HM 355 S
rotary microtome (MICROM International GmbH, Walldorf,
Germany), collected on glass slides and incubated overnight at
45°C. Sections were deparaffinized with xylene, rehydrated to water
via a descending ethanol series (100% to 50%), and subjected to heat-
induced epitope retrieval (HIER). HIER was accomplished by
immersing slides in a sodium citrate buffer (10 mmol I=!, pH 6.0)
and heating both solution and slides in a microwave oven to 92-95°C.
The solution was allowed to cool for 20 min, reheated again and
cooled fora further 15 min. Slides were then washed 3 times with PBS
(pH 7.4) and quenched for 30 min in 3% H,0, in PBS. Following
quenching, slides were successively washed with 0.4% Kodak Photo-
Flo 200 in PBS (PF/PBS, 10 min), 0.05% Triton X-100 in PBS (PBT,
10 min), and 10% antibody dilution buffer (ADB: 10% goat serum,
3% BSA in PBT) in PBS (ADB/PBS, 10 min). Slides were incubated
overnight at room temperature with one of the rabbit polyclonal anti-
VGIC antibodies (anti-NALCN, anti-TRP/Painless, anti-KCNHS, or
anti-Cay1; 1:100 dilution in ADB). Custom epitope affinity purified
anti-VGIC antibodies (see above) were used. As negative controls,
two sets of slides were also incubated overnight with ADB alone.
Following overnight incubation, sections were successively washed
with PF/PBS, PBT and ADB/PBS (10 min each) as described above,
and incubated with tetramethylrhodamine isothiocyanate (TRITC)-
labeled goat anti-rabbit antibody (1:500 in ADB; Jackson
ImmunoResearch) for 2 h at room temperature. Slides were then
successively washed with PF/PBS, PBT and PF/PBS (10 min each)
and rinsed 3 times with 0.4% PF in distilled water (PF/dH,0, 1 min
each). Slides were air dried for 1 h and mounted with Molecular
Probes ProLong Antifade (ThermoFisher Scientific) containing
DAPI. Fluorescence images were captured using a Nikon Eclipse
CI-S microscope and Nikon DS-Qi2 camera, and merged using
ImagelJ software (US National Institutes of Health, Bethesda, MD,
USA).

Adult female mosquitoes were either fed on sucrose solution or
fed on animal blood, and harvested for microscopy 4 h after feeding.
Once MTs were microdissected out, tissue samples were processed
as above for Cayl immunohistochemistry (see below).

Negative control preparations with primary antibodies omitted
were used with every set of IHC samples, did not produce
immunofluorescence, and were omitted for brevity.

Western blotting analysis

MTs were isolated in ice-cold physiological saline, transferred to
microtubes and stored at —80°C for later analysis. Tissues from 40
larvae were combined in each tube. For examination of Cayl
expression, tissue samples were thawed on ice and homogenized in

a RIPA homogenization buffer containing 50 mmol 17! Tris-HCI,
pH 7.5, 150 mmol 17! NaCl, 1% sodium deoxycholate, 1% Triton
X-100, 0.1% SDS, 1 mmol 1=! PMSF and 1:200 protease inhibitor
cocktail (Sigma-Aldrich). All homogenates were then centrifuged at
13,000 g for 20 min at 4°C, and the protein content of the collected
supernatants was determined using the Pierce 660 nm assay
(ThermoFisher Scientific) according to the manufacturer’s
guidelines. Samples (10-20 pg protein) were prepared for SDS-
PAGE by heating for 5min at 100°C in a 6% loading buffer
containing 360 mmol 17! Tris-HCI (pH 6.8), 12% (w/v) SDS, 30%
glycerol, 600 mmol 17! DTT and 0.03% (w/v) Bromophenol Blue.
SDS-PAGE electrophoresis and western blot analysis of Cay 1 were
conducted according to a previously described protocol (Kolosov
and Kelly, 2017) using anti-Cay1 antibody at a 1:1000 dilution.
Antigen reactivity was visualized using SuperSignal West Pico
PLUS Chemiluminescent Western ECL substrate kit (34577,
ThermoScientific, Rockford, IL, USA) and images were captured
using a iBright CL750 imaging system (ThermoFisher Scientific).
A brightfield image of the blot was acquired to superimpose the
ladder onto the final blot figure panel.

V., measurements and Cay1 inhibitor
Larvae were dissected under larval Ae. aegypti saline (see recipe
above). MTs together with the gut were dissected out and MTs were
pulled away from the gut and separated from tracheae. MTs were
excised and mounted in petri dish pre-coated with poly-L-lysine to
aid tissue adherence. Transepithelial potential (V) and basolateral
membrane potential (/},) were measured in separate preparations by
impaling the tubule lumen with a microelectrode pulled from
BF150-110-10 glass (Sutter Instruments) on a microelectrode puller
PUL-1000 (World Precision Instruments, Inc.) where the barrel was
filled with 150 mmol 1=! KCI (Kolosov et al., 2021). All potentials
were measured with respect to a reference electrode back-filled with
150 mmol 17! KCL. V. and ¥}, were recorded with a high impedance
(>10"3 Q) electrometer (ML165 pH Amp, ADInstruments), which in
turn was connected to a PowerLab 2/26 data acquisition system
running LabChart software (ADInstruments). Apical membrane
potential (V,) was calculated as the difference between Vi, and V4.
Stock solutions of nifedipine (Sigma-Aldrich), an inhibitor of
voltage-gated Cay 1 channels, was prepared in DMSO and diluted in
saline to 0.1 umol I~! (final DMSO concentration in the bath did not
exceed 0.01% v/v). Addition of inhibitor to the bathing saline for
Vie/ V1 was achieved by replacing 1/10th of the volume of bathing
saline with freshly prepared inhibitor solution at 10x the final
concentration in saline. Nifedipine at concentrations used in this
study did not affect the response time V;./V}, electrodes. Vi, and V4,
measurements were performed in different cells.

Statistical analysis

Significance of the effect of salinity exposure on hemolymph ion
concentration, and mRNA abundance of ion channels was assessed
with Student’s #test with a significance limit of P<0.05, following
checks for normality and homogeneity of variance (performed in
GraphPad Prism 7 statistical software). The effects of pharmacological
inhibition of Cayl on basolateral and transepithelial membrane
potentials were assessed using a paired #-test in the same software with
the same significance limit.

RESULTS

Hemolymph ion loading in BW-exposed Ae. aegypti larvae
Hemolymph ion concentrations were measured to determine
whether 24 h exposure to BW constituted a significant challenge
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to the salt-and-water balance of the larvae. Significant elevation in
hemolymph [Na*] and [CI~] was observed in BW-exposed larvae.
Hemolymph [Na'] increased significantly from 89.0+4.2 mmol 17!
to 132.1+1.6 mmol I7! (n=9-10, t-test P<0.0001) (Fig. 1A).
Hemolymph [CI7] increased significantly from  96.2
£33 mmol 17! to 128.0+2.5 mmol I™' (n=10, t-test P<0.0001)
(Fig. 1B). Hemolymph [K*] did not change significantly (5.4
£0.7 mmol 17! to 6.7+0.9 mmol 17!, n=10, P=0.2822) (Fig. 1C).

Transcriptomes of MTs of larval Ae. aegypti and differentially
expressed transcripts following 24 h BW exposure

A preliminary literature search and survey of publicly available and
collaborator transcriptomic datasets indicated that larval MTs and
AP, as well as adult MTs express a variety of VGICs, which change
in transcript abundance in response to salt and water imbalance
(Table 2). Following this initial analysis, which was particularly
useful for identifying targets in the AP of larvae, all analysis aimed
at identifying targets in MTs was conducted using transcriptomic
data generated in the lab.

Analysis of our own transcriptomic data detected expression of
multiple voltage-gated cation-, Na'-, K'- and Ca?'-selective
channels, as well as many LGICs and MSICs in the MTs of larval
Ae. aegypti (Fig. 2). VGIC assemblage in MT epithelia included:
several transient receptor potential (TRP) A, M and V channels,
ranging in mean abundance from 2041.66 transcripts per million
(TPM) (TRPA/pyrexia) to 0.11 TPM (TRPV35); voltage-gated K*
channels KCNSI/shab, KCNHS8/elk, KCNQ2, KCNH6/erg2,
KCNQI, KCNH1/eag and Kc,5.1/slo, ranging in abundance from
550.71 TPM (KCNSI1/shab) to 1.00 TPM (K,5.1/slo); voltage-
gated Na* channels nalcn (5.11 TPM), 60E (0.74 TPM) and para
(1.90 TPM); voltage-gated Ca>" channels Cay/ (1.60 TPM) and
Cay3 (1.60 TPM); and cation-selective HCN2 (0.67 TPM) (see
Table S1).

Deseq2 analysis of BW-exposed and FW-acclimated MT
transcriptomes revealed that several VGICs altered in transcript
abundance in the MT with salinity exposure. Transcripts of
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voltage-gated TRP/pyrexia, TRP/painless 1 and nalcn were less
abundant in the MTs of larvae exposed to BW. In contrast, voltage-
gated TRP/painless 2, TRP/painless 3 and KCNHS8 were all more
abundant in the MTs of BW-exposed larvae (see Table S1).

In order to establish the background of salt-and-water balance
transcriptome changes, alterations in transcript abundance of solute
and water transporters were quantified as well. Presence and
abundance changes of ion pumps, channels and transporters, as well
as aquaporins, hormone receptors and transcripts encoding cyclic
nucleotide and Ca®' signaling pathways, and septate junction
proteins have been provided in the supplementary information and
are not discussed in the manuscript for brevity and clarity of focus
(see Table S1, ‘General transporters’).

VGICs are expressed in the MTs and AP of larval Ae. aegypti
PCR and gel electrophoresis confirmed the expression of several
VGICs from different ion channel families using transcript-specific
primers, where most channels were found to be expressed in both
MTs and AP of Ae. aegypti (Fig. 3). Expression of the voltage-gated
calcium channel Cayl, the sodium channels nalcn and parax7, the
potassium channel KCNQ1I, and the transient receptor potential
channels TRPA1, TRP/painless 1, 2 and 3, as well as TRP/pyrexia 1
and 2 was detected in both MTs and AP of Ae. aegypti larvae.
Expression of the hyperpolarization-activated cyclic nucleotide-
gated sodium/potassium channel HCN2 %4 was detected only in the
MTs.

Many VGICs expressed in MTs and AP alter in transcript
abundance following 24 h BW exposure

Transcriptomics did not find any effect of BW exposure on the
expression levels of VGICs — RNAseq is prone to false negatives
due to a low number of replicates, low expression levels of many
genes, insufficient depth of sequencing, and multiple comparison
false discovery rate adjustment (e.g. Robert and Watson, 2015).
Therefore, we employed qPCR to detect multiple changes in mRNA
abundance between FW- and BW-exposed larvae. In AP, mRNA

Fig. 1. Brackish water exposure
leads to ion loading in larval Aedes
aegypti. Larval Ae. aegypti were raised
in freshwater (FW), exposed to
brackish water (BW) for 24 h, and
hemolymph concentrations of (A) Na*,
(B) CI~ and (C) K* were measured with
ion-selective microelectrodes. BW-
exposed larvae demonstrated
increased hemolymph [Na*] and [CI7]
with no significant perturbation of
hemolymph [K*]. All data are presented
as mean valuests.e.m. (N=10). An
asterisk indicates a significant
difference due to BW exposure as
determined by Student’s t-test.
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Table 2. Summary of publicly available and collaborator-generated RNAseq data

Animal clade Species Tissue/organ Differential factor VGICs Reference
Insects, Trichoplusia ni MTs Diet (ion poor versus ion rich) Cay1, TRPV5, CATSPER1, KCNH8 Kolosov et al.,
lepidopterans 2019
Regional heterogeneity (distal Nay/para, Ca,1-3, KCNA3, KCNC1, Kolosov and
versus proximal) KCNH1 and 8, KCNH6, KCNQ1, O’Donnell, 2019
KCNM/Slo, TRP (A,M,V)
Helicoverpa MTs Life stage (larva versus adult) Nay/Para, Cay1, CATSPER1, KCNA3, Yuan et al., 2018
armigera KCNC1, TRPA1, short TRP4, TRPM
Insects, Aedes MTs Diet (sugar meal versus blood KCNA3, KCNH1, TRPA1/pyrexia, Ky Esquivel et al.,
dipterans albopictus meal) 2014
Aedes aegypti MTs Life stage (larva versus adult) Cay1-3, Nay, KCND1, KCNC1, KCNQ1, Lietal., 2017
TRP channels, HCN2, HCN4, nalcn
Larval AP Salinity (freshwater versus Cay1, Nay, KCND1, KCNQ1, TRP A, Durant et al., 2021
brackish water) KCNA3, HCN2, HCN4, Nalcn
Mollusks, Tridacna Gill (ctenidium) Light exposure Cay1 Cao-Pham et al,,
bivalves squamosa 2019
Crassostrea Mantle Salinity, exposure to dilute Cay3 Sillanpaa et al.,
gigas epithelium seawater 2020
Teleosts, eels Anguilla Gill epithelia Environmental salinity PVC — SCN3B, Cay1, TRPA1, Hy1, Lai et al., 2015
Japonica (freshwater versus seawater) MRC - Caya2d3
Cell-type heterogeneity KCNE1
(mitochondrion-rich versus
pavement cells)
Mammals Canis lupus Cultured kidney ~ Osmolality stress SCN1B, Cay2-3, KCNQ4, KCNC4, Rasmussen et al.,
familiaris epithelia HCN2, TRPV1-2, TRPM6 2019

Salt stress

SCN1B, Cay3, KCNQ4, KCNC3, HCN2,
TRPC1, TRPV1-2

Sample survey of publicly available raw transcriptomic data and studies citing expression of voltage-gated ion channels (VGICs) in epithelia of many animal
clades. Analysis of raw transcriptomic datasets of several studies indicated that VGICs are expressed in the Malpighian tubules (MTs) of larvae and adults, as well
as anal papillae (AP) of Ae. aegypti larvae. In particular, RNAseq analysis suggests the presence of voltage-gated Ca?*-, K*-, Na*- and cation-selective channels

in the osmoregulatory epithelia of Ae. aegypti.

abundance of KCNQI and TRP/pyrexia 1 significantly decreased
~2-fold, while that of nalcn decreased ~4-fold. TRP/painless 2
significantly increased ~4-fold, while TRPA! increased ~2-fold in
mRNA abundance following 24 h BW exposure (Fig. 4). Similarly,
in MTs, voltage-gated Cayl, TRP/pyrexia 2 and TRPAI all
significantly decreased ~2-fold in mRNA abundance, while
KCNQI significantly increased ~12-fold, and TRP/painless 1 and
TRP/painless 3 significantly increased ~3.5-fold in mRNA
abundance (Fig. 5). All P-values regarding data presented in
Figs 4 and 5 can be found in Table S1.

Cay1, Nalcn, KCNH8 and TRP/Painless immunolocalize to AP
and MT epithelia

Immunohistochemistry was used to demonstrate that Cayl was
expressed in the luminal side of AP (Fig. 6A,B), Nalcn was
expressed in the water-facing membrane (Fig. 6C,D), while KCNHS8
expression was restricted to the distal-most tip of the AP (Fig. 6E,F),
and TRP/Painless was expressed in the water-facing membrane of
the AP (Fig. 6G,H).

In contrast, expression of all VGICs in the MTs was restricted to
the apical (lumen-facing) membrane of the principal cells, which
expressed Nalen (Fig. 7A.B), TRP/Painless (Fig. 7C,D) and
KCNHS8 (Fig. 7E,F). Western blotting with anti-Cay1 antibody
identified Cay1 as a single protein of expected molecular weight
(Fig. 8A); this was detected in the MTs larvae (Fig. 8B) and sugar-
fed (Fig. 8C) and blood-fed (Fig. 8D) adults.

Pharmacological inhibition of Cay1 alters V,,, and V.
membrane potential in the larval and adult MTs of Ae. aegypti
Pharmacological inhibition of Cay1 significantly depolarized MT
epithelia of adults and larvae. In larvae, V. decreased significantly
from 29.02+1.93 mV to 20.16+£2.16 mV (P<0.001), but %}, did not

alter significantly (—74.20+6.77 mV to —61.40£10.51 mV) (Fig. 8E),
corresponding with a calculated change in V, from approximately
—103 mV to approximately —81 mV. In contrast, both V. and V%,
altered in adult MTs from 41.38+6.95mV to 15.40+4.35 mV
(P=0.015) and from —32.284+2.19mV to —20.2842.05 mV
(P=0.003), respectively, corresponding with a calculated change in
V, from approximately —74 mV to approximately —36 mV.

DISCUSSION

Overview of findings

In the current study, we employed data mining from publicly available
datasets, as well as in-lab transcriptomics to indicate the presence of
VGICs in AP and MTs of larval de. aegypti. We then used acute
salinity exposure combined with PCR and gel electrophoresis, qPCR,
immunohistochemistry and V;,, measurements to directly demonstrate
the presence of VGICs in osmoregulatory epithelia of larval Ae.
aegypti and their potential relevance to salt and water balance in MTs
and AP. An acute exposure to increased salinity presented a challenge
in osmoregulatory function, as demonstrated by ion loading of the
hemolymph. A hypothesis-generating, transcriptomic approach was
used to find VGIC genes that might be involved in ion transport and its
regulation in the MTs and AP of larval mosquitos, and suggested that
multiple VGICs belonging to several ion channel families were
expressed in these osmoregulatory organs (Table 2, Fig. 2). Using PCR
and gel electrophoresis, we confirmed that voltage-gated Ca®*, cation-
selective, Na* and K" channels are expressed in both MTs and AP
(Fig. 3). Additionally, to investigate the abundance of VGIC
transcripts in a quantitative manner, we determined that in BW-
exposed larvae, KCNQ1 (~2-fold), nalcn (~4-fold) and TRP/pyrexia 1
(~2-fold) demonstrated lower mRNA abundance in AP (Fig. 4), while
Cayl (~2-fold), Nalcn (~3-fold), TRP/pyrexia 2 (~2-fold) and TRPA1
(~4-fold) were lower in mRNA abundance in the MTs (Fig. 5). In
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Fig. 2. Summary of lab-generated RNAseq data for the current study. (A) Clustering and heatmap of Malpighian tubule (MT) replicate samples of FW-
reared and BW-exposed Ae. aegypti larvae demonstrating that when analyzed for all gene expression, FW (Ct1-3) and BW (BW1-3) samples cluster with
replicates from their respective groups. (B) Volcano plots show differential expression of individual transcripts as determined by the fold-change (FC) in
Deseq?2 analysis in R plotted against the P-value of the change and is indicated logarithmically as log,FC in yellow when [log,FC|>2. Changes with P
adjusted for the false discovery rate (P,qj)<0.05 are indicated in red. Changes in green indicate both [log,FC|>2 and P,<0.05. (C) Heatmap of voltage-gated
ion channel expression in the MTs of FW-reared and BW-exposed larvae. Expression of select voltage-gated ion channels (VGICs) confirmed by at least one

more method in the current study is indicated.
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Fig. 3. VGICs are expressed in MTs and anal papillae (AP) of larval Ae. aegypti. RT-PCR detection of transcripts encoding Aedes VGICs; actin RT-PCR
was used as positive control. Negative control (no template) in every PCR was also loaded onto the gel (blank). The 500 bp marker is indicated (ladder) for
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contrast, BW exposure upregulated TRP/painless 2 (~4-fold) and
TRPAI (~2-fold) in AP (Fig. 4), and KCNQI1, TRP/painless 1 and
TRP/painless 3 (~3.5-fold) in MTs (Fig. 5). We wused
immunolocalization to confirm the protein products of target VGICs
are in the osmoregulatory epithelia, and found luminal Cay1, water-
facing Nalcn and TRP/Painless, and distal KCNHS in AP epithelia
(Fig. 6), and all four VGICs in the apical (luminal) membrane of
principal cells in MT epithelia (Fig. 7). Of special interest was the
pharmacological inhibition of Cayl in larval and adult MTs, in
agreement with previous studies on larval lepidopterans, which led to
depolarization of V. in larvae and adults, as well as depolarization of
V1 in adults only (Fig. 8). These data bring forth evidence of the
presence of VGICs in non-innervated, non-contractile epithelia of
mosquito larvae, and their functional relevance to the regulation of

epithelial ion transport and salt and water balance of the animal.
Whether detected VGICs directly participate in directional ion
transport and/or setting of V;,, in MTs and AP of larval mosquitoes,
or whether they are simply used respond to V;,, changes preceding the
reactionary change in ion transport (e.g. environmental, or systemic
ion levels that epithelia are exposed to, or mechanosensation cues) will
require further mechanistic study.

lon loading and general transcriptomic changes in the MTs of
BW-exposed larvae

VGICs may provide a mechanism for rapidly adjusting ion transport in
MTs and AP. In de. aegypti, ion transport in MTs and AP can alter
quite rapidly with salinity exposure (Wigglesworth, 1933; Donini
et al., 2007; Surendran et al., 2018a,b). Changes in ultrastructure, ion
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Fig. 4. Transcript abundance of several VGICs altered significantly in the AP of larvae following 24 h exposure to BW. Transcript abundance of
KCNQ1, Nalcn, TRPIpainless 2, TRPIpyrexia 1 and TRPA1 changed in the AP of Ae. aegypti exposed to BW for 24 h. All data are presented as mean
valuests.e.m. (N=5-6). An asterisk indicates a significant difference due to BW exposure as determined by Student'’s t-test against the FW group.

and water transport needed to compensate for passive diffusional ion
loss in the hypo-osmotic medium of FW are minimized in favor of iso-
osmotic BW needs of the animal (Durant et al., 2021; Ramasamy
etal., 2021). MTs of BW-exposed Ae. aegypti secrete less K but the
same amount of Na* (Donini et al., 2006). In general, fluid secretion
by the MTs is regulated by hormones (e.g. kinin, CAPA) and the
intracellular second messengers Ca®>" and cyclic nucleotides (Donini
etal., 2006). Similarly, AP in BW-exposed larvae reduce Na* and C1~
uptake from FW following 6 h of BW exposure (Donini et al., 2007).

Increased hemolymph levels of Na* and CI~ in BW-exposed
larvae with no significant change in K" are in line with previous

reports of acute BW exposure of freshwater obligate mosquito larvae
(Patrick and Bradley, 2000; Patrick et al., 2001; Donini et al., 2006,
2007). Ton loading of the hemolymph has been shown to lead to
changes in ions used in diuresis. Alterations of K* transport may be
utilized to either conserve Na* under FW (Na*-deprived) conditions
or eliminate more Na" in saline (Na*-rich) conditions (Donini et al.,
2006). Simply put, the use of more K* to draw water osmotically into
MTs (which may require alterations in K* transport mechanisms)
spares hemolymph Na* from being lost during diuresis.

General transcriptomic response of larval MTs to BW exposure
indicate significant restructuring of ion transport machinery and its
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Fig. 5. Transcript abundance of several VGICs altered significantly in the MTs of larvae following 24 h exposure to BW. Transcript abundance of Ca,1,

KCNQ1, Nalcn, TRPIpainless 1, TRPIpainless 3, TRPIpyrexia 2 and TRPA1 changed in the MTs of Ae. aegypti exposed to BW for 24 h. All data are presented
as mean valuests.e.m. (N=5). An asterisk indicates a significant difference due to BW exposure as determined by Student’s t-test against the FW group.

FW BW

regulation. The roles of many of these proteins (e.g. V-type H'-  and MAPKK) in the regulation of ion transport in larval mosquitoes
ATPase, aquaporins, cyclic nucleotide and Ca®' signaling, septate  (readers interested in these are directed to Table S1 for further details).
junctions) in ion and fluid secretion by MTs of insects are well

established (e.g. Patrick et al., 2006; Piermarini et al., 2010; Piermarini ~ Multiple VGICs that are expressed in MTs and AP epithelia
and Gillen, 2015; Piermarini et al., 2017a,b; Misyura et al., 2020;  alter in transcript abundance following exposure to BW
Duong et al., 2022; Donini et al., 2006; Beyenbach et al., 2009; In line with previous transcriptomic studies on osmoregulatory
Tonescu and Donini, 2012; Tiburcy et al., 2013; Efetova et al., 2013;  epithelia of other insects, multiple VGICs were detected in the MTs
Gioino et al., 2014; Sajadi et al., 2018; Weng et al., 2008; Calkinsand and AP of larval de. aegypti (Kolosov et al., 2019; Kolosov and
Piermarini, 2017; Jonusaite et al., 2017; Kolosov et al., 2018b).  O’Donnell, 2019; Kapoor et al., 2021; Durant et al., 2021). In the
However, to the best of our knowledge, much less is known about the ~ MTs of larval lepidopterans, Cay 1 and HCN1 channels have been
specific roles of many hormones and signaling pathways (e.g. GRK  shown to regulate cation transport — both classes of VGICs are
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A

Fig. 6. Inmunolocalization of select VGICs in the
AP of larval Ae. aegypti. (A,B) Paraffin-embedded
sections through the longitudinal plane demonstrate
basolateral (luminal) Cay1 staining in AP. (C,D) Whole-
mount immunohistochemistry shows Nalcn to be
expressed in the apical (water-facing) membrane of AP.
(E,F) Whole-mount immunohistochemistry showing
localization of KCNHS8 to the distal-most region of the
AP. (G,H) Paraffin-embedded sections through the
transverse plane demonstrate apical (water-facing)
membrane localization of TRP/Painless. A-H are
representative images (left, brightfield; right,
immunostaining). The VGIC of interest is stained in red,
nuclear DAPI staining can be seen in blue. Scale bars:
A,B,G,H, 30 ym; C-F, 20 uym. tr, tracheae.

Lumen

Q

activated by changes in V,,, while HCN channels are additionally
gated by cyclic nucleotides. Thus, the presence of these VGICs in
MTs and AP of Ae. aegypti larvae may provide an additional
connection of ion transport with Ca®" levels, cyclic nucleotide
levels and V.

Two types of previously undescribed channels were detected in
AP and/or MTs in the current study but did not alter in mRNA
abundance following BW exposure — HCN2 and para. HCN
channels, permeable to both Na* and K*, are unique among VGICs
in that they have a reverse voltage dependence that leads to
activation upon hyperpolarization and are additionally activated
by cyclic nucleotides, where the latter overrides the former
(Wahl-Schott and Biel, 2009). Cyclic nucleotides are known to
enhance and reduce fluid secretion in the MTs of larval and adult
Ae. aegypti, respectively (Donini et al., 2006; Sajadi et al., 2018).

HCN channels can provide an additional link between direct
activation of ion transport and second messenger-based hormone
action. In larval Trichoplusia ni, when HCN1 channels are blocked
in MTs, ion transport switches direction from K" secretion to K*
reabsorption (Kolosov et al., 2019). Thus, HCN2 channels in Ae.
aegypti may also be connected with the regulation of ion transport,
which will require further detailed investigation.

para (short for paralytic) is a gene encoding a voltage-activated
Na* channel of insects (Warmke et al., 1997). Functional voltage-
gated Na" channels have been described in other animal epithelia,
e.g. human intestinal epithelia, MTs of caterpillars (Barshack et al.,
2008; Kolosov and O’Donnell, 2019). The presence of voltage-
dependent Na* channels in the MTs and AP may provide a rapid
link between V,, and Na* permeability in these osmoregulatory
epithelia.
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Fig. 7. Inmunolocalization of select VGICs in
the MTs of larval Ae. aegypti. (A-D) Paraffin-
embedded sections through the longitudinal plane
demonstrate apical (luminal) staining of (A,B)
Nalcn and (C,D) TRP/Painless in MTs. (E,F)
Whole-mount immunohistochemistry showing
apical (luminal) localization of KCNH8. A-F are
representative images. The VGIC of interest is
stained in red, nuclear DAPI staining can be seen
in blue. Scale bars: A,B, 100 um; C,D, 60 um; E,F,
40 um. PC, principal cell; SC, secondary cell.
Scale bars: 30 pm.

Apically located voltage-gated Cay1 channel may regulate
ion transport in the MTs of larval and adult Ae. aegypti

Of special interest is the presence of Cay channels in the MTs —
these channels are key transducers of V,,, changes into intracellular
Ca?" concentration changes that initiate intracellular physiological
response (Catterall, 2011). At highly polarized V,,, Cay1 channels
are normally closed. They are activated (opened) at depolarized
Ve, allowing Ca’?" into the cell and initiating an intracellular
response. Intracellular Ca®* is a diuretic second messenger in
insect MTs. In MTs of larval 7. ni, Cayl channels have been
shown to connect cation transport with V;, via Ca?" signaling
(Kolosov et al., 2021). Pharmacological inhibition of Cayl
channels in the MTs of larval and adult de. aegypti in the
current study had a similar effect on V,,,, depolarizing V., to the
previously published data in larval 7. ni (Kolosov et al., 2021).
Interestingly, in larval MTs, V. decreased significantly without
accompanying changes in V4, indicating that most of the measured
membrane potential change may have taken place in the apical

membrane. In contrast, in adults, both V4, and V, seemed to have
contributed to the measured changes in V., offering potential
insight into which transporters (apical and/or basolateral ) may be
regulated by Cay1.

KCNQ1 channel is downregulated in AP and upregulated in
MTs of BW-exposed larvae

KCNQ/Ky7 channels are found in several animal epithelia,
including human airway epithelial cells (Mondejar-Parrefio et al.,
2020), intestinal epithelia (Preston et al., 2010) and kidney
(Abbott, 2015), where they are connected with transepithelial K*
transport and the generation and maintenance of resting V,, and
ionomotive driving force (Demolombe et al., 2001). KCNQ
channels are unique in the way that they can be modulated to lose
their voltage dependence and remain constitutively active, are
inhibited by external K and can be modulated by intracellular
Ca?" and cAMP levels (Schroeder et al., 2000; Abrahamyan et al.,
2023; van der Horst et al., 2020). There are pronounced differences
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Fig. 8. Voltage-gated calcium channel Cay1 is
expressed in the apical membrane of
principal cells in the MTs of Ae. aegypti
larvae and adults, where its inhibition leads
to membrane depolarization. (A) Western
blotting showing immunoreactivity of Cay1 in a
representative larval MT homogenate. (B-D)
Paraffin-embedded sections through the
transverse plane demonstrate apical (lumen-
facing) localization of Cay/1 in the MTs of (B)
larvae, (C) sugar-fed adults and (D) blood-fed
adults. Note the increased Cay1 signal in the
hindgut (HGL, hindgut lumen). (E)
Pharmacological inhibition of Cay1 with
nifedipine resulted in depolarization of
transepithelial membrane potential (V) in larvae
and adults, as well as depolarization of
basolateral membrane potential (V) in adults.
Asterisks indicate MT lumen in B-D, and a
C _— D - significant difference due to Cay/1 inhibition in E,

= Qe 3% 4 24 as determined by Student’s t-test against the
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Na* leak channel Nalcn is downregulated in MTs and AP of
BW-exposed larvae

MTs of FW-reared larvae produce the same amount of fluid with the
same amount of Na* to BW-reared larvae, while AP actively take up
more environmental Na® from surrounding FW (Donini and
O’Donnell, 2005; Donini et al., 2006). Previous research has also
shown that Na* is absorbed by the AP from surrounding FW with
the help of electrodiffusive entry using inside-negative apical
membrane potential (Edwards, 1983), which later was shown to
involve V-type H"-ATPase (Patrick et al., 2006) and Na* channels
(Del Ducacetal., 2011) in the apical (water-facing) membrane of AP.
This specifically agrees with a previous study by Del Duca et al.
(2011), who showed that a Na* channel blocker phenamil stops
Na“ uptake but that a Na'/H' exchanger blocker [5-(N,N-
hexamethylene)-amiloride] does not. Nalcn identified in this
study can contribute to channel-based absorption of Na* from FW
by AP. How exactly Nalcn contributes to Na* secretion in the MTs
will require further detailed study. Alternatively, it may not
participate in directional Na* transport in the MTs, and instead
serve as a Na* sensor, contributing to the maintenance of V;, and
connecting it to Na* transport. In general, Nalcn is a VGIC selective
for monovalent cations (Na" and K") expressed in excitable and
non-excitable tissues (e.g. pancreatic f cells) (Monteil et al., 2023;
Swayne et al.,, 2010; Xie et al., 2020). Heterozygous Nalcn
knockout mice demonstrate increased blood [Na*] with a possible
association between Nalcn and K* excretion in humans (Sinke et al.,
2011; Kho et al., 2020).

TRP channel mRNA abundance is altered in MTs and AP of
BW-exposed larvae

All six TRP channels detected in MTs and AP of larval Ae. aegypti
belong to the TRPA channel subfamily. mRNA abundance of every
TRP channel in the current study was significantly different
between FW-reared and BW-exposed larvae in at least one of the
examined tissues. TRP channels are cation-permeable (Na*, K*,
Ca®") voltage-dependent channels (Yue and Xu, 2021). TRP
channels are activated through a range of gating mechanisms (V,
depolarization, ligands, etc.) (Venkatachalam and Montell, 2007).
TRPA channels demonstrate wide tissue expression profiles
(Cheng and Zheng, 2021), connecting them to the function of
many excitable and non-excitable tissues, e.g. nerve endings of
human urothelium (Vanneste et al., 2021); human lung epithelia
(Ko et al., 2020), non-neuronal pancreatic islet cells, airway
epithelia, and skin epidermis (Nilius et al., 2012), where it has
been connected with inflammatory and cytokine release; and
enteroendocrine cells of pig gut and Drosophila gut epithelia (Van
Liefferinge et al., 2020; Gong et al., 2023). In human and rat
colonic mucosa, TRPA1 has been connected with ion secretion
(Talavera et al., 2020).

TRPA channels have been detected in MTs of 7. ni (Kolosov
et al., 2019), Pieris rapae (Mao et al., 2020) and Bactrocera
dorsalis (Su et al., 2018). TRPA1, TRP painless and TRP pyrexia
are more permeable to K™ than to Na*, with well-established roles in
nociception and thermotaxis in excitable tissues (Tracey et al., 2003;
Lee et al., 2005; Corfas and Vosshall, 2015). In contrast, and to the
best of our knowledge, the roles of TRP channels in epithelia of
MTs and AP have not been explored to date.

Significance and future directions

Aedes aegypti is an obligate FW mosquito. Increased appearance of
Aedes larvae in coastal BW regions worldwide in recent years is a
concern in terms of the increased spread of arboviral diseases

(Lee et al., 2019; Surendran et al., 2018b). Aedes aegypti
completing their life cycle in BW may provide a perennial
reservoir of arboviral transmission during dry seasons worldwide
(Surendran et al., 2018b). This trend has been exacerbated by global
climate change (Ramasamy and Surendran, 2012). The genomic
and physiological basis of salinity adaptation and blood feeding, as
well as short-term exposure to changing salinity in coastal waters are
just beginning to be explored by the scientific community (Esquivel
et al., 2016; Li et al., 2017; Ramasamy et al., 2021; Durant et al.,
2021). Completing their life cycle in BW is advantageous as it
presents larvae with an opportunity to relax osmotic/ionic stress.
Acute exposure to BW, however, does require adjustment of the
osmoregulatory apparatus, and thus constitutes osmoregulatory
stress.

Larvae living in water of rapidly changing salinity may benefit
from having a mechanism in their excretory tissues for rapidly
detecting such a change. Bioelectrical signals govern the cell
biology of all tissues, including non-excitable tissues, playing
important roles in processes such as regeneration and ion transport
(McLaughlin and Levin, 2018; Kapoor et al., 2021). Studies on
animal epithelia have reported expression of Ca?"-, Na'- and K*-
selective, as well as non-selective and cation-permeable VGICs in
epithelia of the lung, intestine (Barshack et al., 2008), kidney
(Siroky et al., 2017) and skin (Pitt et al., 2021). Many of these
channels are connected with intracellular Ca®* signaling, osmotic
stress response, extracellular ion sensing and modulation of
directional ion transport (Abbott, 2015; Bleich and Warth, 2000;
Demolombe et al., 2001; Morera et al., 2015; Nilius and
Droogmans, 2001; Schonherr et al., 2000; Shi et al., 1997,
Siroky et al., 2017; Yang and Cui, 2015; Zhu et al., 2010; Kolosov
et al., 2021). The presence of VGICs in epithelia may provide a
mechanism for the rapid detection of depolarizing stimuli (e.g.
mechanosensation of fluid flow, changing ion concentrations) that
leads to changes in V;,. MT epithelia of larval lepidopterans
(Kolosov et al., 2019; Kolosov and O’Donnell, 2019) and
mosquito larvae (current study) have been shown to express high
levels of mechanosensitive Piezo channels, which activate in
response to membrane stretch. Their activation may allow for
the activation of VGICs, and amplification of the signal via
TRP channels.

VGICs of mosquitoes are often targeted with insecticides,
repellents and anti-feedants because of their established role in
excitable tissues of insects (Salgado, 2017; Mack et al., 2021,
Inocente et al., 2018). However, the presence of VGICs in the
excretory and osmoregulatory epithelia of larvae and adults is
rarely considered. VGICs in osmoregulatory epithelia may
provide mosquito larvae with a mechanism for rapidly sensing
systemic and environmental disturbances in salt and water content.
Detailed examination of what every class of VGICs does in the
mosquito MTs and AP will require mechanistic study. Some
VGICs may directly participate in directional ion transport,
whereas others may act as ion sensors or V;, setters. Whether
VGICs remain voltage sensitive when expressed in non-excitable
epithelia will require further mechanistic study using heterologous
expression models.
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