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ABSTRACT: We present a surface-accelerated string method (SASM) to efficiently optimize low-

dimensional reaction pathways from the sampling performed with expensive quantum mechani-

cal/molecular mechanical (QM/MM) Hamiltonians. The SASM accelerates the convergence of

the path by using the aggregate sampling obtained from the current and previous string iterations,

whereas approaches like the string method in collective variables (SMCV) or the modified string

method (MSM) update the path only from the sampling obtained from the current iteration. Fur-

thermore, the SASM decouples the number of images used to perform sampling from the number

of synthetic images used to represent the path. The path is optimized on the current best estimate

of the free energy surface obtained from all available sampling, and the proposed set of new sim-

ulations are not restricted to be located along the optimized path. Instead, the umbrella potential

placement is chosen to extend the range of the free energy surface and improve the quality of the

free energy estimates near the path. In this manner, the SASM is shown to improve the explo-

ration for a minimum free energy pathway in regions where the free energy surface is relatively

flat. Furthermore, it improves the quality of the free energy profile when the string is discretized
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with too few images. We compare the SASM, SMCV, and MSM using 3 QM/MM applications: a

ribozyme methyltransferase reaction using 2 reaction coordinates, the 2′-O-transphosphorylation

reaction of Hammerhead ribozyme using 3 reaction coordinates, and a tautomeric reaction in B-

DNA using 5 reaction coordinates. We show that SASM converges the paths using roughly 3 times

less sampling than the SMCV and MSM methods. All three algorithms have been implemented in

the FE-ToolKit package made freely available.

1 Introduction

The ability to model chemical reactions in the condensed phase1 using molecular simulations has

far-reaching implications to the study of catalysis in biological systems.2,3 Advances in fast, ac-

curate quantum mechanical force fields4,5 and machine learning models6–11 have greatly extended

the scope of applications that can be routinely addressed. Nonetheless, simulations of complex

reaction pathways remain computationally intensive, and ongoing development of new methods to

improve the robustness and computational cost are important.

Reaction mechanisms can be characterized by calculating a free energy surface in a set of rel-

evant reaction coordinates, the determination of the minimum free energy profile (MFEP) through

the surface, and identification of key stationary points along the MFEP. Many methods for calculat-

ing free energy surfaces have been developed. These approaches can be categorized as:12 methods

which analyze equilibrium statistics obtained from umbrella sampling,13–16 methods which ana-

lyze nonequilibrium statistics17–19 based on the work of Jarzynski,20 and methods that integrate

auxiliary degrees of freedom, such as λ-dynamics21–24 and metadynamics.25,26 Similarly, there are

two general approaches for locating a minimum free energy path.27 The first approach is to sample

the reaction over a wide range of reaction coordinate values to obtain a relatively complete picture

of the free energy surface through which a path can be optimized. The second, and more cost-

effective, approach is to use a chain-of-states method, such as nudged elastic band28 or the string

method,29,30 to direct the sampling toward the MFEP, thereby reducing the amount of effort spent
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simulating irrelevant, high-energy regions of the free energy surface.

Many variations of the string method31–38 have been developed that are capable of being ap-

plied to large-scale problems, like protein folding.33,34 These applications often describe the path

using a large number of reaction coordinates,39 direct comparison of Cartesian coordinates,29 path

collective variables,27,40 the use of the hills method,25,41 or machine learning techniques.42 Al-

though string method development was originally motivated by the desire to use many reaction

coordinates,31,32,35 many examples can be found of their use in quantum mechanical/molecular

mechanical (QM/MM) applications involving only a few reaction coordinates.43–49 String meth-

ods, such as the one presented in Ref. 35, are particularly appealing because it is performed with

standard umbrella sampling with harmonic biasing potentials, which are widely supported across

simulation packages. Because QM/MM sampling is very costly, the present work seeks to optimize

the string method described in Ref. 35 specifically for cases involving QM/MM simulations with

a few reaction coordinates. The new method reduces the number of string iterations required to

reach convergence because it uses the current estimate of the unbiased free energy to accelerate the

exploration of flat regions of the surface. In this respect, the new method draws inspiration from

ideas behind the metadynamics approach;25,26 however, the new method only requires sampling

obtained using standard harmonic biasing potentials.

We describe a new surface-accelerated string method (SASM) and compare it to two similar al-

gorithms: the string method in collective variables31,32 (SMCV), and the modified string method35

(MSM). We have implemented all 3 of these methods in the ndfes software46 freely distributed

within the FE-ToolKit package.50 The FE-ToolKit package has also been incorporated in the open

source AmberTools simulation suite.51 There are several key differences between the SASM and

related string methods. First, the SASM is a hybrid of the two approaches for locating a MFEP

(chain-of-states method versus calculation of a multidimensional free energy surface). Whereas

the SMCV and MSM update the path from the sampling obtained in the most recent string iter-

ation, the SASM optimizes the path on the current estimate of the multidimensional free energy

surface calculated from the aggregate sampling of all string iterations. Second, the SASM decou-
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ples the number of images used to represent the path from the number of simulated images. The

SMCV and MSM methods construct a new path by fitting a curve that interpolates a set of discrete

control points obtained from a corresponding number of simulated images; therefore, if there was

an insufficient number of images, the path may cut corners. By decoupling the representation of

the path from the number of simulated images, the level of detail used to describe the path is not

limited by the number of simulations. Third, unlike the SMCV and MSM, the SASM does not

require the images to be simulated along the current estimate of the path. We take advantage of

this by introducing alternating stages of “exploration” and “refinement” steps. The exploration

steps propose new simulations offset from the path in the direction that the path is moving, and

the refinement steps place simulations along the path in a manner that improves the phase space

overlap.

We compare the progress of the string optimizations using the SMCV, MSM, and SASM with

respect to the number of simulations per string, the sampling per simulation, and the spline rep-

resentation of the path (either piecewise linear or Akima spline paths) in 3 applications. The first

application uses 2 reaction coordinates to describe a ribozyme undergoing a methyl transfer reac-

tion (MTR1)52–54 (PDB ID 7V9E). The second application uses 3 reaction coordinates to model the

2′-O-transphosphorylation reaction of Hammerhead ribozyme (HHr)55 (PDB ID 2OEU). The third

application uses 5 reaction coordinates to optimize a tautomeric reaction pathway in B-DNA (PDB

ID 113D).56 Schematics of the 3 systems are shown in Figure 1. We demonstrate that the SASM

converges the MFEP faster than the SMCV and MSM when we vary the amount of sampling. The

SASM avoids artifacts that can occur in the path “reparametrization step” of the SMCV and MSM.

Finally, we show that the SASM method will sample the path in an efficient manner that achieves

good overlap between the biased simulations when the number of simulations is reduced.
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Figure 1: (a) The MTR1 ribozyme, HHr ribozyme, and a B-DNA with a GT wobble pair examined in this
work. The rectangles highlight the active site region. (b) The reaction mechanisms and reaction coordinates.
The B-DNA system is a tautomer reaction which transfers the T21 N3 proton to position O4 and reorganiza-
tion of the G:T hydrogen bond network. The shown atomic configurations correspond to the reactant state.
The black and gray atoms denote the QM region and nearby MM atoms, respectively.
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2 Methods

2.1 String Method in Collective Variables

This section summarizes the SMCV method, which was originally described in Refs. 31 and 32.

Let x and q(x) be the 3N array of atomic positions and Ndim reaction coordinate values, respectively.

Umbrella sampling is performed at Nimg images along the path using a biased potential energy

function, Un.

Un(x) = U(x) +W(q(x); kn,qn) (1)

Image n is biased by a potential W that is parametrized by Ndim harmonic force constants kn and

equilibrium positions qn. In other words, Ndim is the size of the reduced dimensional space of

reaction coordinates.

W(q(x); kn,qn) =
1
2

Ndim
∑

d=1

knd (qd(x) − qnd)2 (2)

The algorithm for calculating the SMCV consists of the following steps.

1. Sample each of the Nimg images along the path for some amount of time, ∆t. The images

differ by their biasing potentials, which center the harmonic potentials at discrete points

along the current estimate of the path, qn.

2. Analyze the sampling to update (evolve) the reaction coordinate values, qc,n. The “control

points”, qc,n are discrete estimates along the new path, but they do not necessarily uniformly

discretize it. The calculation of the control points is sometimes called the “evolution step”.

3. Construct a parametric curve that interpolates the control points. The parametric curve is the

new estimate of the path.

4. Uniformly discretize the parametric curve to obtain the biasing potential centers for the next

iteration. The construction of a new curve and its discretization is sometimes called the

“reparametrization step”.
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The SMCV evolution step is given by eq. 3, where q
(k)
nd

is the value of the reaction coordinate d

of image n at string iteration k, and q
(k+1)
c,nd

is a control point used to define the parametric curve in

string iteration k + 1, discussed in the next section. Each image is simulated for a length of time

∆t, and 〈·〉kn,qn
denotes a time average obtained from image n.

q
(k+1)
c,nd
= q

(k)
nd
−
∆t

γ

Ndim
∑

d′=1

Mdd′(k(k)
n ,q

(k)
n )∇Gd′(k(k)

n ,q
(k)
n ) (3)

∇Gd(k(k)
n ,q

(k)
n ) approximates the free energy gradient about the point q

(k)
n in dimension d.

∇Gd(kn,qn) = −
〈

∂W(q(x); kn,qn)
∂qnd

〉

kn,qn

(4)

M is closely related to a product of mass weighted Wilson B-matrices;57 that is to say, ∇aq is the

gradient of the reaction coordinate value with respect to the atomic positions of atom a and ma is

an atomic mass.

Mdd′(kn,qn) =
〈 N
∑

a=1

∇aqd(x) · ∇aqd′(x)
ma

〉

kn,qn

(5)

γ is a friction coefficient, a parameter of the method. The numerical stability of the SMCV critically

depends on the ratio ∆tγ−1. In Ref. 32, it was found that the method was stable when choosing

γ = 1500 ps−1 when ∆t = 20 fs. In the present work, we adjust γ to maintain this same ratio when

∆t is varied. The construction of parametric curves and their uniform discretization are described

in the next section.

2.2 Parametric Curves and the Reparametrization Step

We represent a continuous path as a parametric curve of reaction coordinates, q(p), where p ∈ [0, 1]

is a progress variable such that p = 0 and p = 1 denote two ends of the path. In other words, the

path at string iteration k, q(k)(p) is an array of Ndim one-dimensional splines that are chosen such

that each spline interpolates the Nimg control points, q
(k)
c,nd

located at a common set of progress
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control values, p
(k)
c,n.

q
(k)
d

(p) ≡ qd(p; q
(k)
c,d,p

(k)
c ) (6)

In the context of the SMCV (or similar string methods), the control points are the new estimates of

the reaction coordinates after the evolution step (eq. 3). In some cases, one may choose to reduce

the numerical noise in the path by first applying a smoothing procedure, in which case the control

points are the reaction coordinate values after smoothing. The results presented in this work use

a smoothing algorithm implemented in the ndfes software when the parametric curve is modeled

with Akima spline functions,58 but we do not apply smoothing to the control points when using

piecewise linear paths. The details of the smoothing algorithm are described in the Supporting

Information.

The parametric curve depends on the progress control values, which are interpreted as frac-

tional arc lengths through the curve. If the path is a piecewise linear function connecting the con-

trol points, then the progress control values can be calculated from the Euclidean distance between

adjacent points, as shown in eq. 7.

p(k)
c,n ≈































0, if n = 1
∑n

m=2

√

∑Ndim
d=1

(

q
(k)
md
−q

(k)
m−1,d

)2

∑
Nimg
m=2

√

∑Ndim
d=1

(

q
(k)
md
−q

(k)
m−1,d

)2
, otherwise

(7)

Alternatively, if the parametric curve is a set of Akima spline functions58 (or any smooth interpo-

lating function), then eq. 7 is only an approximation of the fractional arc lengths. Accurate values

of the progress control values can be found by iteratively solving eq. 8, initiated from eq. 7.

p(k,i+1)
c,n =

∫ p
(k,i)
c,n

0

√

∑Ndim
d=1

(

∂qd(p;q(k)
c,d ,p

(k,i)
c )

∂p

)2

dp

∫ 1

0

√

∑Ndim
d=1

(

∂qd(p;q(k)
c,d ,p

(k,i)
c )

∂p

)2

dp

(8)

We terminate the iterative solution when
∑Nimg

m=1

(

p
(k,i+1)
c,m − p

(k,i)
c,m

)2
< 10−16.

Given the the parametric spline representation of the path, the uniformly discretized images for

8



string iteration k + 1 is shown in eq. 9, where pn = (n − 1)/(Nimg − 1).

q
(k+1)
nd
= qd(pn; q

(k+1)
c,d ,p

(k+1)
c ) (9)

2.3 Modified String Method

The modified string method (MSM) was originally presented in Ref. 35; it differs from the SMCV

only by replacing the evolution step (eq. 3) with eq. 10.

q
(k+1)
c,nd
= 〈qd(x)〉

k
(k)
n ,q

(k)
n

(10)

In other words, the control points for the new path are the mean observed positions of the reac-

tion coordinates from the simulations performed along the current path. Upon finding the control

points, a new parametric curve is fit. The curve is uniformly discretized to define the new positions

of the biasing potentials.

2.4 Surface-Accelerated String Method

The surface-accelerated string method (SASM) constructs a Ndim dimensional free energy surface

from the available sampling and optimizes a path on that surface. A decision is then made to

place a new set of simulations, which may or may not be along the optimized path. When the new

simulations are placed along the path, we refer to it as a “refinement step”. Alternatively, we allow

for “exploration steps” that offset the simulations from the path in the direction that the path is

moving.

The algorithm for calculating the SASM consists of the following steps.

1. Sample each of the Nimg images for some amount of time.

2. Construct a Ndim dimensional unbiased free energy surface by analyzing the aggregate sam-

pling produced from all simulations and string iterations. This is the best estimate of the free
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energy surface from the available sampling. The Ndim dimensional space is discretized into

bins, and the free energy value and the number of observed samples in each bin are tabulated.

3. Create a smooth representation of the free energy surface, such that the free energy value

and gradient can be readily computed at any point in the space of reaction coordinates.

4. Use the free energy surface to optimize a MFEP in the space of reaction coordinates. This

optimization procedure does not involve the generation of additional sampling. Instead, the

optimization is performed on a fixed free energy surface using a series of “synthetic string

iterations”, described below.

5. If the current iteration is an even integer, then place the new simulations along the path. If

the current iteration is an odd integer, then allow the new set of simulations to be displaced

from the path by some amount in the direction that the path is moving.

The unbiased free energy can be calculated using established methods, such as the variational

free energy profile method,46,59,60 the multistate Bennett acceptance ratio (MBAR) method,61 or

the unbinned weighted histogram (UWHAM) method.62,63 As discussed in Ref. 46, a smooth rep-

resentation of the free energy surface can be made using one of many methods, including the use of

Cardinal B-Splines,64 radial basis functions,65,66 or Gaussian process regression.67 In the present

work, we calculate the free energy surface by solving the MBAR/UWHAM equations to reweight

the biased sampling. The samples are histogrammed, and the free energy of each bin is tabulated.

We use fourth-order Cardinal B-splines to represent the surface as a smooth function. A math-

ematical description of the B-spline interpolation is provided in the Supporting Information for

completeness. The free energy values are formally defined only in those regions whose histogram

bins are occupied by at least one sample. In practice, we exclude all bins containing fewer than 10

samples because their free energy values are often unreliable.

To optimize a path on a fixed free energy surface, we adapt the MSM by replacing eq. 10 with
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eq. 11, where F(q) is the value of the unbiased free energy at q.

q(k+1,s+1)
c,n = arg min

q

{

F(q) +W(q; k̄,q(k+1,s)
n )

}

(11)

q(k+1,s+1)
n = q(pn; q(k+1,s+1)

c ,p(k+1,s+1)
c ) (12)

The q
(k,s)
c,nd

values are the control points of the synthetic images used to describe the path. Specifi-

cally, n indexes the synthetic image, d indexes the dimension, k is the string iteration, and s is the

synthetic iteration. The number of synthetic images, Nsimg, does not need to be the same as the num-

ber of images used to perform explicit simulations, Nimg. In the present work, we use Nsimg = 100

to describe the path. The k̄ quantity appearing in eq. 11 is an Ndim×1 array of force constants, cho-

sen to be the average of the Nimg simulations; that is, k̄d = N−1
img

∑Nimg

n=1 k
(k)
nd

. Equation 11 is analogous

to the MSM, but instead of performing a biased simulation of 3N atomic coordinates to obtain the

reaction coordinate distribution means, one performs a minimization directly on a biased Ndim free

energy surface. In other words, eq. 11 is a synthetic iteration that allows us to repeatedly propagate

the string without producing additional sampling. The path is optimized with Nsiter iterations (or

until convergence is sufficiently met), such that q
(k+1)
opt (p) ≡ q(p; q

(k+1,Nsiter)
c ,p

(k+1,Nsiter)
c ) is the best

estimate of the MFEP from the available sampling. The optimized synthetic control points also

serve as the initial guess for the path in the next string iteration: q
(k+1,0)
c,n = q

(k,Nsiter)
c,n .

By optimizing the MFEP on the current estimate of the free energy surface, the Nimg real images

are no longer responsible for describing the path. Instead, their sole responsibility is to provide

sampling to improve the the quality and range of the free energy surface. For this purpose, the

SASM evolution step (eq. 13) includes two modifications relative to a simple uniform discretiza-

tion.

q(k+1)
n = q

(k+1)
opt (pn + ∆p(k+1)) + ∆q(k+1)

n (13)

The first modification is a shifting of the progress control points when discretizing the para-
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metric curve,

pn + ∆p(k+1) =



















































































































pn,0, if N(pn,0) = 0

pn,−1/3, else if N(pn,−1/3) = 0

pn,+1/3, else if N(pn,+1/3) = 0

pn,0, else if mod(k,3) = 0

pn,−1/3, else if mod(k,3) = 1

pn,+1/3, else if mod(k,3) = 2

(14)

where pn,0 is a uniform discretization, and pn,+1/3 and pn,−1/3 shift the discretization by 1/3 of the

distance to a neighboring image.

pn,x = max
(

0,min
(

1,
n − 1 + x

Nimg − 1

))

(15)

N(p) is the number of samples that have been observed at the point q
(k+1)
opt (p). In other words,

the first 3 cases in eq. 14 check whether there are gaps in the sampling along the path. If there

is a gap, then sampling at that position is prioritized. The last 3 cases in eq. 14 are a schedule

that is followed when no gaps in the sampling are detected. The schedule alternates between these

displacements during the course of the string optimization to help ensure that one obtains sufficient

sampling along the path in the event that one underestimated an appropriate value of Nimg.

The second modification is the introduction of ∆q
(k+1)
n which displaces the image in the direc-

tion of the path’s movement.

∆q(k+1)
n =











































































0, if mod(k,4) = 0

[1 − δ0,N(pn+∆p(k+1))]h1
∆q

(k+1)
min,n

|q
(k+1)
min,n |
, if mod(k,4) = 1

0, if mod(k,4) = 2

[1 − δ0,N(pn+∆p(k+1))]h2
∆q

(k+1)
min,n

|q
(k+1)
min,n |
, if mod(k,4) = 3

(16)
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We refer to ∆q
(k+1)
n = 0 as a refinement step that places the simulations along the path, and the

other cases are exploration steps intended to better describe the free energy surface in the vicinity

of path in the direction of its movement. The exploration steps accelerate the evolution of the

string through flat areas of the free energy surface. The leading Kronecker delta function causes

the exploration step to be skipped if a gap in the sampling was previously detected in eq. 14. The

exploration direction is determined from the difference between the optimized paths of the current

and previous iterations.

∆q
(k+1)
min,n = q

(k+1)
opt (pn + ∆p(k+1)) − q

(k)
opt(p∗) (17)

The value of p∗ is the point on the previous path that is closest to the point pn + ∆p(k+1) on the

current path.

p∗ = arg min
p

∣

∣

∣q
(k+1)
opt (pn + ∆p(k+1)) − q

(k)
opt(p)

∣

∣

∣

2
(18)

The hm values are the magnitude of the displacement, where wd is a width assigned to each dimen-

sion. In the present work, we use wd = 0.15 Å for all dimensions, which is also the width of the

histogram bins used to construct the free energy surface.

hm = min

















mw1

|∆q
(k+1)
min,n|

|∆q
(k+1)
min,n,1|

, · · · ,mwNdim

|∆q
(k+1)
min,n|

|∆q
(k+1)
min,n,Ndim

|

















(19)

If one imagines the point at pn + ∆p(k+1) as being located at the corner of a voxel, then eq. 19 can

be interpreted as choosing the magnitude to be the maximum displacement that does not exceed

the range of m voxels.

2.5 Computational Details

All QM/MM simulations in this work were performed with the sander molecular dynamics soft-

ware51 using a 1 fs integration time step. The SHAKE algorithm68 was used to fix MM bonds

involving hydrogen. The covalent bonds at the QM/MM boundary were capped with the hydrogen

link-atom approach.69,70 Electrostatics were calculated with the particle mesh Ewald method71–73
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adapted for use within semiempirical QM/MM simulations74,75 using tinfoil boundary conditions76,77

a 1 Å3 reciprocal space grid, and 10 Å real space cutoffs. The Lennard-Jones interactions were

similarly calculated to 10 Å and a long-range tail correction was included to account for the inter-

actions beyond the cutoff.78

The MTR1 ribozyme (PDB ID 7V9E54) consists of 2, 207 atoms with a net 66− charge. The

ribozyme was solvated with 18, 250 TIP4P/Ew waters, 113 sodium ions, and 47 chlorine ions in a

truncated octahedron with real space lattice vectors of length 90.2 Å resulting in 75, 367 particles

and an ion concentration of 140 mM. The ff99OL3 RNA force field79 and Joung and Cheatham80

monovalent ion parameters have been used. Details regarding the preparation and equilibration

of this system have already been reported elsewhere.81 In brief, the pressure and temperature

were equilibrated for 50 ns with the MM force field potential to maintain 1 atm and 298 K in

the isothermal-isobaric ensemble using the Berendsen barostat82 and Langevin thermostat83 with

a collision frequency of 5 ps−1. At this point, the MM force field was replaced with the DFTB3

QM/MM potential using the “3ob” parameter set.84 The QM region consists of 48 atoms with net

1+ charge, as illustrated in Figure 1. A QM/MM simulation of the reactant state was equilibrated

for 12.5 ps in the canonical ensemble at 298 K. The DFTB3 QM/MM umbrella production sam-

pling was similarly performed at constant temperature with 200 kcal mol−1 Å−2 force constants on

the two reaction coordinates describing the transfer of a proton, ξ1 = RC10:N3-H − RO6mG:N1-H, and

methyl group, ξ2 = RO6mG:O6-C − RA63:N1-C as visualized in Figure 1.

The HHr ribozyme (PDB ID 2OEU55) consists of 2, 020 atoms with a net 62− charge. The

ribozyme was solvated with 13, 319 TIP4P/Ew waters, 5 magnesium ions (replacing the crystal

structure manganese ions), 86 sodium ions, and 34 chlorine ions in a truncated octahedron with

real space lattice vectors of length 81.7 Å resulting in 55, 421 particles and an ion concentration of

140 mM. The ff99OL3 RNA force field,79 Joung and Cheatham80 monovalent ion, and Li-Merz85

12-6-4 divalent ion parameters with Panteva86,87 corrections, which ensure balanced interactions

between metal ions and nucleic acids, have been used. Full details of the preparation and equili-

bration of this system has been reported elsewhere.88 In brief, the pressure and temperature were
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equilibrated for 100 ns with the MM force field potential to maintain 1 atm and 298 K in the

isothermal-isobaric ensemble. The MM force field was replaced with the AM1/d QM/MM po-

tential.89 The QM region consists of 85 atoms with net 1− charge. The QM region is illustrated

in Figure 1; for clarity, the Mg2+ and the 4 waters directly coordinating the Mg2+ were including

in the QM region. A QM/MM simulation of the reactant state was equilibrated for 50 ps in the

canonical ensemble at 298 K. All AM1/d QM/MM umbrella production sampling was performed

at constant temperature with 200 kcal mol−1 Å−2 force constants on the three reaction coordinates

describing the proton transfer from the nucleophile to the general base, ξ1 = RG12:N1-H − RC17:O2’-H,

and phosphoryl transfer, ξ2 = RP-O5’ − RC17:O2’-O5’. and the proton transfer from the general acid to

the leaving group, ξ3 = RG8:O2’-H − RO5’-H.

The B-DNA sequence (PDB ID 113D)56 consists of 762 atoms with a net 22− charge. The

ribozyme was solvated with 5, 151 TIP4P/Ew waters, 35 sodium ions, and 13 chlorine ions in a

truncated octahedron with real space lattice vectors of length 59.3 Å resulting in 21, 414 particles

and an ion concentration of 140 mM. The system was modeled with the OL5 DNA force field90 and

Joung and Cheatham80 monovalent ion parameter set. The system was prepared by minimizing the

solvent environment and hydrogen positions while restraining the DNA heavy atoms, followed by a

gradual heating of the system from 0 to 298 K over the course of 300 ps in the NVT ensemble, and

the system density was equilibrated at 1 atm for 8 ns in the NPT ensemble. The MM force field was

replaced with the AM1/d QM/MM potential,89 where the QM region (the G4 and T21 nucleobases

depicted in Figure 1) consists of 31 atoms with net neutral charge. A QM/MM simulation of the

reactant state was equilibrated for 50 ps in the canonical ensemble at 298 K. All AM1/d QM/MM

umbrella production sampling was performed at constant temperature with 200 kcal mol−1 Å−2

force constants for each of the reaction coordinates listed in Figure 1.

To start any string method, one must first construct a series of structures to be used as the

initial guess. For the MTR1 reaction, we consider two initial guesses: a concerted guess that

uniformly discretizes a line connecting the approximate position of the reactant state ξreact. =

(−1.4 Å, −2.5 Å) to the product state ξprod. = (1.4 Å, 2.5 Å), and a stepwise guess that uniformly
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discretizes a piecewise linear path connecting the reactant state, approximate intermediate state

ξinter. = (1.4 Å, −2.5 Å), and the product state. For the HHR reaction, the initial guess discretizes

a linear transformation between the approximate reactant state ξreact. = (−1 Å, −2 Å, −1 Å) to the

approximate product state ξprod. = (1 Å, 2 Å, 1 Å). Similarly, the initial guess for the B-DNA tau-

tomer reaction discretizes a linear transformation between the reactant ξreact.=(−0.86 Å, −0.60 Å,

−2.0 Å, −0.76 Å, −2.6 Å) and product states ξreact.=(0.67 Å, 0.78 Å, −0.82 Å, 0.84 Å, 0.22 Å). The

atomic coordinates were generated from a sequence of short (200 fs) simulations that restart each

image from the final structure of the previous image. After this scan was completed, each image

was independently equilibrated for an additional 4 ps. The final coordinates from these equilibra-

tions became the starting structures to initiate the string method.

The SMCV, MSM, and SASM were performed multiple times while varying the number of

images and length of production sampling. The MTR1 simulations performed for 4 ps/image

and 500 fs/image saved 400 samples/image and 250 samples/image, respectively. The HHr sim-

ulations performed for 625 fs/image and 312 fs/image saved 125 samples/image and 156 sam-

ples/image, respectively. The B-DNA simulations were performed for 1 ps/image and 200 sam-

ples/image were saved. In all cases, we analyze only the last 75% of saved samples when solving

the MBAR/UWHAM equations.

3 Results and Discussion

Here we compare the SMCV, MSM, and SASM string methods using three reactive chemical sys-

tems having varying number of reaction coordinates. 1. A 2D example of an artificially engineered

methyltransferase ribozyme (MTR1)52 that catalyzes the methylation of a target adenine. 2. A 3D

example of a naturally occurring hammerhead ribozyme (HHr)55 that catalyzes site-specific RNA

self-cleavage. 3. A 5D example of tautomerization in dG·dT wobble pairs that lead to misincorpo-

ration during replication.91
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3.1 MTR1 catalytic mechanism

Evolutionary theories based on an RNA world92,93 presumably would require RNA molecules to

catalyze C-C and C-N bond formation essential for nucleic acid synthesis and early metabolic

transformations. There are no known naturally occurring examples of RNA enzymes that have

this ability. Recently, a methyltransferase ribozyme (MTR1) has been evolved in vitro52 that binds

O6-methylguanine and catalyzes the methylation of a target adenine (A63) at the N1 position53,94

(Figure 1a). Computational enzymology studies performed by our group,81 in collaboration with

Huang, Lilley and co-workers,54 revealed a surprising sophisticated mechanism that involves a pro-

tonated cytosine residue that acts as an acid in order to facilitate site-specific C-N bond formation,

broadening the range of known RNA-catalyzed chemistry and further demonstrating versatility of

RNA catalysis.95 In the computational study, we employed an early version of the string method

and found it to be slowly convergent, making it extremely costly to perform ab initio QM/MM

simulations. Hence, we use this as our first test system for developing improved string methods

with accelerated convergence.

Figure 2 uses the MTR1 reaction to compare the progress of the SMCV, MSM, and SASM

at string iterations 5, 15, 30, and 50. Each optimization was performed twice, starting from con-

certed and stepwise initial paths. Each string iteration samples 32 images for 4 ps/image (128

ps/iteration). The free energy surface is a best estimate made from the aggregate sampling of all

iterations obtained from the 3 methods (38.4 ns of aggregate sampling). The black line is a ref-

erence MFEP, optimized on the aggregate free energy surface. The SMCV and MSM paths are

Akima splines fit to the 32 evolved images, whereas the SASM paths are Akima splines fit to 100

synthetic images.

The three methods approach the MFEP at different rates. The SMCV and MSM make good

progress during the first 15 iterations, but their progress stalls as they near the MFEP. This is due to

the free energy surface becoming relatively flat near the MFEP. In contrast, the SASM gets closer

to the MFEP at iteration 5 than the SMCV or MSM do at iteration 50. By placing the simulations

around the path, the SASM is capable of exploring flat surfaces more efficiently.
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Figure 2: Progress of the string methods at several iterations of the MTR1 reaction starting from concerted
(red lines) and stepwise (green lines) initial guess paths. The initial guesses are dashed lines. The colored
areas are the best estimate of the free energy surface, calculated from the aggregate sampling produced by
all string methods. The black line is the MFEP optimized on the best estimate of the surface. The insets are
the reference free energy values along the paths (kcal/mol).
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To test whether the conclusions drawn from Figure 2 are sensitive to the simulation time scale

(time/image), we re-performed the string methods using only 500 fs/image of sampling. The re-

sulting comparison (Supporting Information Figure S1) is nearly indistinguishable from Figure 2.

Figure 3 compares the string methods using fewer images and different spline representations

of the path. The optimizations start from a concerted path, and each iteration samples 8 images for

4 ps/image. The colored areas are the current estimate of the free energy surface from the sampling

produced by the current and previous iterations. The red line is the estimate of the path after the

evolution step. The “x” marks are the proposed set of umbrella potential locations. The black

line is the reference path shown in Figure 2. The insets display the free energy along the paths;

the red line is the free energy of the current path from the available sampling, and the black line

is the reference free energy along the reference path (made from 38.4 ns of aggregate sampling).

The rows labeled “Akima” and “Linear” construct the parametric curve from Akima splines and

piecewise linear functions, respectively. Whereas the SMCV and MSM paths are limited to 8

control points, the SASM path is constructed from Akima splines which interpolate 100 synthetic

images optimized on the free energy surface.

Figure 3 illustrates that the SMCV and MSM methods are sensitive to the parametric form of

the path when only a few (e.g., 8) images are simulated. Although the SMCV and MSM methods

properly evolve the control points, both methods encounter artifacts within the reparametrization

step when the path is modeled with Akima splines. The artifacts encountered by the SMCV are

quite severe; reparametrization of the curve causes some images to be propagated in a direction

away from the MFEP (Figure 3a-b), and the converged path differs significantly from the reference

path (Figure 3d). The MSM similarly encounters artifacts between iterations 15 and 50, and it

converges to an incorrect path (Figure 3l). The SMCV and MSM methods do approach the correct

MFEP when using piecewise linear curves, however (see Figure 3h and p). The SASM does not

exhibit artifacts using Akima splines because it is parametrized to 100 synthetic control points

rather than 8 control points. By using more control points to define the path, the SASM also avoids

corner cutting, which can be observed when using piecewise linear paths; for example, see the
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Figure 3: String iterations of MTR1 from a concerted (linear) initial guess (dashed red line). Each string is
composed of 8 images, and each image is sampled for 4 ps. The solid red line is the current string, and the
black “x” marks the next set of 8 simulations. The black line is a reference pathway, and the insets compare
the current estimate of the free energy profile to the reference profile (kcal/mol). Parts a-d and e-h are the
SMCV method using Akima and piecewise linear splines, respectively. Parts i-l and m-p similarly compare
the MSM method. Parts q-t are the SASM method with 100 synthetic images.
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intermediate state in Figure 3p.

When only 8 images are simulated, the progress of the SASM is modestly better than SMCV

(Linear) and MSM (Linear); however, the SASM does a much better job at producing samples to

analyze the free energy surface. As can be seen in the insets of Figures 3a-p, the limited number

of images causes the SMCV and MSM to produce sampling that does not well overlap, resulting

in noisy free energy profiles. In contrast, the SASM evolution step shifts the progress values to

improve the sampling between the set of uniformly discretized points, and the exploration steps

provide sampling around the path. Consequently, the SASM free energy profile after 15 iterations

reproduces the reference profile very well (Figure 3s). In fact, the SASM profile after 15 iterations

is better than the SMCV and MSM profiles after 50 iterations. The SASM placement algorithm

attempts to fill the gaps in the sampling, which is easiest to observe in Figure 3q. After sampling

the initial guess, the optimized path remains similar to the initial guess because all areas of the

surface which have not been sampled are assumed to have a high free energy. The first 3 cases in

eq. 14 propose new simulations in the unoccupied regions along the path.

3.2 HHr Mechanism

The hammerhead ribozyme (HHr)55,96–98 is a metal-dependent small endonucleolytic self-cleaving

RNA that has been extensively studied experimentally99–101,101,102 and computationally,103–109 and

is an archetype model for RNA catalysis. The active site adopts an L-platform/L-scaffold archi-

tecture110 with an L-pocket guanine residue that forms a divalent metal ion binding site enabling

electrostatic interactions88 to facilitate the reaction. The 2′O-transphosphorylation mechanism can

be described by three reaction coordinates, illustrated in Figure 1b.

Figure 4 extends the comparisons to the 3 dimensional HHr transphosphorylation reaction pro-

files. The dashed line is the concerted initial guess, and the remaining lines are the paths at a series

of string iterations. The reference path shown in each image is provided as a visual aid. The refer-

ence path is the SASM MFEP after 300 iterations using 32 images and 625 fs/image of sampling.

In other words, it is the MFEP optimized on the 3 dimensional surface produced from the analysis
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Figure 4: String iterations of HHr from a linear initial guess (dashed black line).
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of 6 ns of aggregate sampling. The string methods were performed multiple times by varying the

number of images and the amount of sampling. Each column of Figure 4 successively halves the

amount of sampling per string.

All of the string methods predict that the first stage of the reaction transfers a proton (the

ξ1 coordinate) from the O2′ to the N1 position of the G12 general base (Figure 1b). The more

interesting part of the comparison is the behavior of the paths in the ξ2-ξ3 plane, where ξ2 is the

phosphoryl transfer coordinate, and ξ3 measures the proton transfer between the O5′ and the G8

general acid. The SMCV fails to locate the MFEP after 300 iterations, although it is possible that

it may find the MFEP if iterated further.

The MSM locates the MFEP, but it requires many iterations. The MSM requires 150 iterations

to locate the MFEP when performed with 32 images and sampled for 625 fs/image (Figure 4d).

This corresponds to 3 ns of aggregate sampling. When the number of images is reduced to 16

(Figure 4e), the amount of sampling per iteration is reduced, but the MSM now requires 300

iterations (3 ns of aggregate sampling) to locate the MFEP. Further reduction in the amount of

sampling requires more than 300 MSM iterations (Figure 4f). Notice that the progress of the

MSM in Figures 4e-f does not significantly change from iterations 50 to 150, which would likely

cause one to incorrectly believe that the path has converged. In fact, previous application of the

MSM to the HHr reaction incorrectly concluded that the mechanism was concerted because of

this behavior,46 whereas the extended iterations presented in Figure 4 suggest that the MFEP is

stepwise. The fundamental reason why MSM progress stalls is because the free energy gradient

in the directions perpendicular to the path are quite small (Figure 5). The qualitative similarity

between the MSM path at iteration 50 to the paths produced by SMCV is suggestive that the

SMCV fails for a similar reason.

In this application, the SASM requires 3 times fewer iterations than MSM to reach convergence

when using the same amount of sampling. Only 50 SASM iterations are required to converge the

path using 32 images (Figure 4h) in comparison to 150 MSM iterations. When the number of im-

ages is reduced to 16 (Figure 4i), convergence is reached after 100 SASM iterations in comparison
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Figure 5: Two dimensional projection of the HHr free energy surface defined by the ξ1 = 0.95 Å plane. The
colored lines are the MSM paths at iterations 50, 100, and 150, and the black line is the SASM reference
curve after 300 iterations, as shown in Figure 4d. The colored areas are the free energy values calculated
from the aggregate sampling produced from 300 MSM and 300 SASM iterations (12 ns of sampling).

to 300 MSM iterations. The SASM requires fewer iterations because the synthetic string optimiza-

tions performed within the SASM can evolve the path to the fringes of the aggregate sampling, and

the exploration steps increase the range of the free energy surface that can be used.

3.3 B-DNA G·T Wobble Tautomer Reaction

Rare tautomeric forms of nucleobases can cause Watson-Crick-like (WC-like) mispairs in DNA,

and in turn lead to disease.111 In the WC model, nucleobase pairs are in their "keto" form,112 rather

then "imino" or "enol" form. Recently, tautomerization has been reported for a G-T wobble pair

(GenolT/U ↔GT enol/Uenol) in B-DNA detected by NMR91,113,114 and subsequently studied compu-

tationally.115 This tautomerization reaction can be described by 5 reaction coordinates (Figure 1c).

A pathway in 5D cannot be visualized in the same way as the 2D and 3D systems, hence

Figure 6a illustrates the convergence of the MFEP for the B-DNA tautomer reaction by calculating

the root mean square deviation (RMSD) between the current estimate of the path and the initial

guess using the 5 reaction coordinates. The SASM RMSD plateaus at 50 iterations, whereas the
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Figure 6: Convergence of the path describing the wGT→GT∗ tautomeric reaction in B-DNA. (a) The root
mean square deviation of the 5 reaction coordinates relative to the concerted (linear) initial guess. (b) The
ξ1 and ξ2 reaction coordinates along the initial and final pathways produced by the MSM and SASM. These
two coordinates describe the proton transfer between N3-O6 and O6-O4, respectively.

MSM requires 150 iterations to reach the same RMSD. Figure 6b shows the initial and final profiles

of the ξ1 = RN3-H3 − RO6-H3 and ξ2 = RO6-H3 − RO4-H3 reaction coordinates. The other 3 reaction

coordinates are excluded from the figure to improve legibility. The initial path directly transfers

the proton from N3 to the O4 position. The optimized paths instead transfer the proton from the

N3 to O6 while shifting the hydrogen bond pattern of the G:T basepair. This is followed by the

transfer of the proton from O6 to the O4 position. The SASM and MSM both produce the same

path after 150 iterations. In summary, this application shows that the SASM can be extended to 5

dimensions and it can converge the path in fewer iterations than the MSM.

3.4 Computational Cost

Table 1 compares the CPU resources needed to perform the string methods on the HHr system with

32 images and 625 fs/image of sampling and the B-DNA system with 32 images and 1 ps/image

of sampling. The measurements were performed on a single core of an Intel Xeon E5-2630 v3

processor, and the software was compiled with GCC 9.2.1. The timings can be decomposed into
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Table 1: The number of CPU days required to perform MSM and SASM on the HHr and B-DNA systems
for the specified number of iterations. Iteration 0 is the simulation and analysis of the initial path. Bold
entries denote converged paths.

HHr B-DNA
Iter. TMSM TSASM

TSASM
TMSM

TMSM TSASM
TSASM
TMSM

0 0.51 0.51 1.00 0.19 0.19 1.00
10 5.56 5.56 1.00 2.07 2.08 1.00
25 13.14 13.16 1.00 4.89 4.96 1.01
50 25.77 25.96 1.01 9.60 10.07 1.05

100 51.03 52.48 1.03 19.01 22.57 1.19
150 76.30 81.12 1.06 28.42 40.20 1.41

two components: the resources used to perform the QM/MM simulations Tsim, and the resources

used to perform the evolution step Tevo.

T (k) =
k
∑

k′=0

Tsim(k′) + Tevo(k′)

=(k + 1)Tsim +

k
∑

k′=0

Tevo(k′)

(20)

The MSM times only include the resources used to perform the QM/MM simulations; the string

evolution step (eq. 10) requires a negligible amount of effort, Tevo(k) ≈ 0. The cost of performing

MSM for the HHr and B-DNA systems are given by eqs. 21 and 22, respectively.

T HHr
MSM(k) = (k + 1)(32 images)

(

0.625 ps
image

) (

1 CPU day
39.6 ps

)

(21)

T B-DNA
MSM (k) = (k + 1)(32 images)

(

1 ps
image

) (

1 CPU day
170 ps

)

(22)

The SASM timings also include the cost of the evolution step, which is further decomposed into

the resources used to solve the MBAR/UWHAM equations, TMBAR, and the cost of performing an

optimization on the resulting free energy surface, Topt.

TSASM(k) = TMSM(k) +
k
∑

k′=0

TMBAR(k′) + Topt(k′) (23)
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The solution of the MBAR/UWHAM equations formally scales O(NdimNsamplesNstates), where Nsamples

is the number of samples to be reweighted and Nstates is the number of states. The dimensionality

does not vary with string iteration, and Nsamples and Nstates are both proportional to the number of

iterations, leading to TMBAR(k) ≈ A(k + 1)2, where A is coefficient fit to the observed times. This

coefficient is 0.359 s and 0.876 s for the HHr and B-DNA systems, respectively. The quadratic

dependence of TMBAR(k) means that the aggregate cost for performing k string iterations scales cu-

bically. The cost of performing the optimization formally scales O(oNdim NsiterNsimg), where o is the

order of the Cardinal B-spline, Nsiter is the number of synthetic iterations, and Nsimg is the number

of synthetic images used to describe the path. These quantities are independent of string iteration,

so Topt(k) ≈ B, where B is 0.7 s and 19.5 s for the HHr and B-DNA systems, respectively.

The timings listed in Table 1 suggest that the SASM increases the computational cost by 1%-

5% relative to the MSM for the first 50 iterations. This small increase is reflected in the high com-

putational cost of performing QM/MM sampling. Although the SASM is more costly, it converges

in fewer iterations. The SASM reduces the cost of converging the path by factors of 2.9 and 2.8

for the HHr and B-DNA systems, respectively. The SASM becomes increasingly expensive with

respect to the number of iterations due to the cost of solving the MBAR/UWHAM equations from

the aggregate sampling. To prevent the method from becoming too costly at high iterations, one

could limit the analysis to the samples produced from the most recent 50 iterations, for example.

Figure 7 uses the first 50 SASM iterations of the B-DNA system to illustrate the cost of TMBAR

and Topt as the number of reaction coordinates is varied. Although the sampling was performed

with 5 reaction coordinates, we can measure TMBAR and Topt by ignoring 1-or-more of the reaction

coordinates during the analysis. As previously discussed, the solution of the MBAR/UWHAM

equations has a linear dependence on Ndim, and B-spline evaluations of the free energy surface has

an exponential dependence on Ndim. The dashed lines are linear and exponential fits to the observed

times. Figure 7 demonstrates that the SASM quickly becomes impractical when using more than 6

reaction coordinates due to high cost of evaluating the free energy of a high-dimensional surface.

Another aspect to consider is that each added dimension further subdivides the samples into differ-
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Figure 7: CPU time required to perform MBAR analysis (TMBAR) and path optimization (Topt) on the
resulting free energy surface. The observed times were measured using the B-DNA sampling at iteration 50.
The black and red dashed lines are linear and exponential fits to TMBAR and Topt, respectively.

ent histogram bins. For a fixed amount of sampling, each subdivision reduces the average number

of samples per occupied bin and thus increases the uncertainty of the free energy in that region.

For these reasons, we do not view the SASM as a replacement for the MSM when a large number

of reaction coordinates is needed. Instead, the SASM is a complimentary tool specifically tailored

to accelerate the convergence of low-dimensional pathways frequently encountered in QM/MM

applications. In these situations, the added expense of generating free energy surfaces and opti-

mizing paths from the available sampling is worthwhile to reduce the number of costly QM/MM

evaluations.

4 Conclusions

We applied the SMCV, MSM, and SASM methods to QM/MM sampling of the MTR1, HHr, and

B-DNA G·T mispair systems. These applications served to compare the behavior and performance

of the string methods using 2, 3, and 5 reaction coordinates. The SASM is a new method devel-
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oped in this work that is robust and has performance advantages for systems up to approximately

6-dimensions (Ndim ≤ 6). Rather than propagating the path from the sampling produced by the

most recent set of images, the SASM uses the aggregate sampling from all string iterations. The

sampling is used to construct the current best-estimate of a multidimensional free energy surface,

and a MFEP is optimized on the surface. Consequently, the simulated images are no longer re-

sponsible for describing the parametric form of the path; their sole responsibility is to improve the

quality and range of the sampling used to estimate the surface. The SASM exploits this freedom

by alternating between “exploration” and “refinement” steps to rapidly traverse flat regions of the

free energy surface.

Overall, the SMCV, MSM, and SASM methods are capable of converging to the correct MFEP

if the right control parameters are found. In some cases, spline artifacts can be observed with

the SMCV and MSM when only a few images (e.g., 8) are used. The SASM is found to be

more robust, and it often requires approximately 1/3 of the string iterations to converge the MFEP.

Analysis of computational timings indicate that the SASM increases the computational cost per

string iteration by 5% or less relative to the MSM, but this is more than offset by requiring fewer

iterations to reach convergence. The computational cost of representing a free energy surface with

more than 6 reaction coordinates quickly becomes prohibitive; therefore, the SASM is not a blanket

replacement for the MSM. Rather, it is a valuable tool that can be used to considerably accelerate

convergence in QM/MM applications using a modest number of reaction coordinates.

Supporting Information Available

Descriptions of the procedures used to smooth the control points and Cardinal B-spline evaluation

of the free energy, and a comparison of MTR1 profiles generated from reduced sampling. This

material is available free of charge via the Internet at http://pubs.acs.org/.
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(46) Giese, T. J.; Ekesan, Ş.; York, D. M. Extension of the Variational Free Energy Profile and

Multistate Bennett Acceptance Ratio Methods for High-Dimensional Potential of Mean

Force Profile Analysis. J. Phys. Chem. A 2021, 125, 4216–4232.

(47) Reinhardt, C. R.; Sayfutyarova, E. R.; Zhong, J.; Hammes-Schiffer, S. Glutamate Medi-

ates Proton-Coupled Electron Transfer Between Tyrosines 730 and 731 in Escherichia coli

Ribonucleotide Reductase. J. Am. Chem. Soc. 2021, 143, 6054–6059.

(48) Li, P.; Soudackov, A. V.; Hammes-Schiffer, S. Fundamental Insights into Proton-Coupled

Electron Transfer in Soybean Lipoxygenase from Quantum Mechanical/Molecular Mechan-

ical Free Energy Simulations. J. Am. Chem. Soc. 2018, 140, 3068–3076.

(49) Ganguly, A.; Boulanger, E.; Thiel, W. Importance of MM Polarization in QM/MM Studies

of Enzymatic Reactions: Assessment of the QM/MM Drude Oscillator Model. J. Chem.

Theory Comput. 2017, 13, 2954–2961.

(50) Giese, T. J.; York, D. M. FE-ToolKit: The free energy analysis toolkit.

https://gitlab.com/RutgersLBSR/fe-toolkit.

(51) Case, D. A.; Aktulga, H. M.; Belfon, K.; Cerutti, D. S.; Cisneros, G. A.; Cruzeiro, V.

W. D.; Forouzesh, N.; Giese, T. J.; Götz, A. W.; Gohlke, H.; Izadi, S.; Kasavajhala, K.;

Kaymak, M. C.; King, E.; Kurtzman, T.; Lee, T.-S.; Li, P.; Liu, J.; Luchko, T.; Luo, R.;

Manathunga, M.; Machado, M. R.; Nguyen, H. M.; O’Hearn, K. A.; Onufriev, A. V.; Pan, F.;

Pantano, S.; Qi, R.; Rahnamoun, A.; Risheh, A.; Schott-Verdugo, S.; Shajan, A.; Swails, J.;

Wang, J.; Wei, H.; Wu, X.; Wu, Y.; Zhang, S.; Zhao, S.; Zhu, Q.; Cheatham 3rd, T. E.;

Roe, D. R.; Roitberg, A.; Simmerling, C.; York, D. M.; Nagan, M. C.; Merz Jr, K. M.

AmberTools. J. Chem. Inf. Model. 2023, 63, 6183–6191.

35



(52) Scheitl, C. P. M.; Ghaem Maghami, M.; Lenz, A.-K.; Höbartner, C. Site-specific RNA

methylation by a methyltransferase ribozyme. Nature 2020, 587, 663–667.

(53) Scheitl, C. P. M.; Mieczkowski, M.; Schindelin, H.; Höbartner, C. Structure and mechanism

of the methyltransferase ribozyme MTR1. Nat. Chem. Biol. 2022, 18, 547–555.

(54) Deng, J.; Wilson, T. J.; Wang, J.; Peng, X.; Li, M.; Lin, X.; Liao, W.; Lilley, D. M. J.;

Huang, L. Structure and mechanism of a methyltransferase ribozyme. Nat. Chem. Biol.

2022, 18, 556–564.

(55) Martick, M.; Lee, T.-S.; York, D. M.; Scott, W. G. Solvent structure and hammerhead ri-

bozyme catalysis. Chem. Biol. 2008, 15, 332–342.

(56) Hunter, W. N.; Brown, T.; Kneale, G.; Anand, N. N.; Rabinovich, D.; Kennard, O. The

structure of guanosine-thymidine mismatches in B-DNA at 2.5-A resolution. J. Biol. Chem.

1987, 262, 9962–9970.

(57) Wilson, Jr., E. B.; Decius, J. C.; Cross, P. C. Molecular Vibrations; Dover Publications, Inc.:

New York, 1980.

(58) Akima, H. A New Method of Interpolation and Smooth Curve Fitting Based on Local Pro-

cedures. J. ACM 1970, 17, 589–602.

(59) Lee, T.-S.; Radak, B. K.; Pabis, A.; York, D. M. A new maximum likelihood approach

for free energy profile construction from molecular simulations. J. Chem. Theory Comput.

2013, 9, 153–164.

(60) Lee, T.-S.; Radak, B. K.; Huang, M.; Wong, K.-Y.; York, D. M. Roadmaps through free

energy landscapes calculated using the multidimensional vFEP approach. J. Chem. Theory

Comput. 2014, 10, 24–34.

(61) Shirts, M. R.; Chodera, J. D. Statistically optimal analysis of samples from multiple equi-

librium states. J. Chem. Phys. 2008, 129, 124105.

36



(62) Tan, Z.; Gallicchio, E.; Lapelosa, M.; Levy, R. M. Theory of binless multi-state free energy

estimation with applications to protein-ligand binding. J. Chem. Phys. 2012, 136, 144102.

(63) Zhang, B. W.; Xia, J.; Tan, Z.; Levy, R. M. A Stochastic Solution to the Unbinned WHAM

Equations. J. Phys. Chem. Lett. 2015, 6, 3834–3840.

(64) Milovanović, G. V.; Udovičić, Z. Calculation of coefficients of a cardinal B-spline. Applied

Mathematics Letters 2010, 23, 1346–1350.

(65) Hardy, R. L. Multiquadric equations of topography and other irregular surfaces. J. Geophys.

Res. 1971, 76, 1905–1915.

(66) Fornberg, B.; Wright, G. Stable computation of multiquadric interpolants for all values of

the shape parameter. Comput. Math. with Appl. 2004, 48, 853–867.

(67) Li, P.; Jia, X.; Pan, X.; Shao, Y.; Mei, Y. Accelerated Computation of Free Energy Profile at

ab Initio Quantum Mechanical/Molecular Mechanics Accuracy via a Semi-Empirical Refer-

ence Potential. I. Weighted Thermodynamics Perturbation. J. Chem. Theory Comput. 2018,

14, 5583–5596.

(68) Ryckaert, J. P.; Ciccotti, G.; Berendsen, H. J. C. Numerical Integration of the Cartesian

Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes. J.

Comput. Phys. 1977, 23, 327–341.

(69) Warshel, A.; Levitt, M. Theoretical studies of enzymic reactions: Dielectric, electrostatic

and steric stabilization of the carbonium ion in the reaction of lysozyme. J. Mol. Biol. 1976,

103, 227–249.

(70) Singh, U. C.; Kollman, P. A. A combined ab initio quantum mechanical and molecular me-

chanical method for carrying out simulations on complex molecular systems: Applications

to the CH3Cl+Cl− exchange reaction and gas phase protonation of polyethers. J. Comput.

Chem. 1986, 7, 718–730.

37



(71) Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.; Pedersen, L. G. A smooth

particle mesh Ewald method. J. Chem. Phys. 1995, 103, 8577–8593.

(72) Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: An N log(N) method for Ewald

sums in large systems. J. Chem. Phys. 1993, 98, 10089–10092.

(73) Petersen, H. G. Accuracy and efficiency of the particle mesh Ewald method. J. Chem. Phys.

1995, 103, 3668–3679.

(74) Nam, K.; Gao, J.; York, D. M. An efficient linear-scaling Ewald method for long-range elec-

trostatic interactions in combined QM/MM calculations. J. Chem. Theory Comput. 2005, 1,

2–13.

(75) Walker, R. C.; Crowley, M. F.; Case, D. A. The implementation of a fast and accurate

QM/MM potential method in Amber. J. Comput. Chem. 2008, 29, 1019–1031.

(76) Figueirido, F.; Del Buono, G. S.; Levy, R. M. On finite-size effects in computer simulations

using the Ewald potential. J. Chem. Phys. 1995, 103, 6133–6142.

(77) de Leeuw, S. W.; Perram, J. W.; Smith, E. R. Simulation of electrostatic systems in periodic

boundary conditions. I. Lattice sums and dielectric constants. Proc. R. Soc. London, Ser. A

1980, 373, 27–56.

(78) Giese, T. J.; York, D. M. A GPU-Accelerated Parameter Interpolation Thermodynamic In-

tegration Free Energy Method. J. Chem. Theory Comput. 2018, 14, 1564–1582.

(79) Zgarbová, M.; Otyepka, M.; Šponer, J.; Mládek, A.; Banáš, P.; Cheatham III, T. E.; Ju-
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