DeePMD-kit v2: A software package for Deep Potential models

Jinzhe Zeng,! Duo Zhang,?3* Denghui Lu,® Pinghui Mo,® Zeyu Li,” Yixiao Chen,?
Maridn Rynik,® Li'ang Huang,'® Ziyao Li,}*'3 Shaochen Shi,'? Yingze Wang,!33
Haotian Ye,” Ping Tuo,? Jiabin Yang,'* Ye Ding,'® 16 Yifan Li,}” Davide Tisi,'®° Qiyu
Zeng,?® Han Bao,?'?2 Yu Xia,'? Jiameng Huang,® 23 Koki Muraoka,?* Yibo Wang,3
Junhan Chang,3 13 Fengbo Yuan,® Sigbjgrn Lgland Bore,?® Chun Cai,? 3 Yinnian Lin,?®
Bo Wang,?” Jiayan Xu,?® Jia-Xin Zhu,?°® Chenxing Luo,3® Yuzhi Zhang,® Rhys E. A.
Goodall,3! Wenshuo Liang,® Anurag Kumar Singh,3? Sikai Yao,® Jingchao Zhang,33
Renata Wentzcovitch,3%3* Jiequn Han,3® Jie Liu,® Weile Jia,?!*?? Darrin M. York,!
Weinan E,3¢2 Roberto Car,'” Linfeng Zhang,®?2 and Han Wang®":®

D Laboratory for Biomolecular Simulation Research, Institute for Quantitative
Biomedicine and Department of Chemistry and Chemical Biology,

Rutgers University, Piscataway, New Jersey 08854, United States

2 AT for Science Institute, Beijing 100080, P.R. China

3 DP Technology, Beijing 100080, P.R. China

Y Academy for Advanced Interdisciplinary Studies, Peking University,

Beiging 100871, P.R. China

S)HEDPS, CAPT, College of Engineering, Peking University, Beijing 100871,

P.R. China

6) College of Electrical and Information Engineering, Hunan University, Changsha,
P.R. China

" Yuanpei College, Peking University, Beijing 100871, P.R. China

8)

Program in Applied and Computational Mathematics, Princeton University,
Princeton, New Jersey 08540, United States

9 Department of Experimental Physics, Comenius University, Mlynskd Dolina F2,
842 48 Bratislava, Slovakia

10) Center for Quantum Information, Institute for Interdisciplinary

Information Sciences, Tsinghua University, Beijing 100084,

E] P.R. China

E) Center for Data Science, Peking University, Beijing 100871,
o2 P.R. China
<0 12) ByteDance Research, Zhonghang Plaza, No. 43, North 3rd Ring West Road,
N\

ot 1

AlP
Publishing

T

.

Haidian District, Beijing, P.R. China

13) College of Chemistry and Molecular Engineering, Peking University,
Beiging 100871, P.R. China

YW Baidu Inc., Beijing, P.R. China

%) Key Laboratory of Structural Biology of Zhejiang Province,

School of Life Sciences, Westlake University, Hangzhou, Zhejiang,

P.R. China

16) Westlake AI Therapeutics Lab, Westlake Laboratory of Life Sciences and
Biomedicine, Hangzhou, Zhejiang, P.R. China

1) Department of Chemistry, Princeton University, Princeton, New Jersey 08544,
United States

18) SISSA, Scuola Internazionale Superiore di Studi Avanzati, 34136, Trieste,
Ttaly

) Laboratory of Computational Science and Modeling, Institute of Materials,
Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne,

Switzerland

20) Department of Physics, National University of Defense Technology, Changsha,
Hunan 410073, P.R. China

21) State Key Lab of Processors, Institute of Computing Technology,

Chinese Academy of Sciences, Beijing, P.R. China

22) University of Chinese Academy of Sciences, Beijing,

P.R. China

23) School of Electronics Engineering and Computer Science, Peking University,

Beiging 100871, P.R. China
24 Department of Chemical System Engineering, The University of Tokyo,

7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

%) Hylleraas Centre for Quantum Molecular Sciences and Department of Chemistry,
University of Oslo, PO Box 1033 Blindern, 0315 Oslo,

Norway

26 Wangazuan Institute of Computer Technology, Peking University, Beijing 100871,
P.R. China

27 Shanghai Engineering Research Center of Molecular Therapeutics & New Drug

2

AlP
Publishing

T

.

Development, Shanghai Key Laboratory of Green Chemistry € Chemical Process,
School of Chemistry and Molecular Engineering, East China Normal University,
Shanghai 200062, P.R. China

28) School of Chemistry and Chemical Engineering, Queen’s University Belfast,
Belfast BT9 5AG, U.K.

29) State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM,
College of Chemistry and Chemical Engineering, Xiamen University,

Xiamen 361005, P.R. China

30 Department of Applied Physics and Applied Mathematics, Columbia University,
New York, NY 10027, United States

31 Independent Researcher, London, UK

32) Department of Data Science, Indian Institute of Technology Palakkad, Kerala,

India

SBINVIDIA AI Technology Center (NVAITC), Santa Clara, CA 95051,
United States

34) Department of Earth and Environmental Sciences, Columbia University,

New York, NY 10027, United States

) Center for Computational Mathematics, Flatiron Institute, New York, NY 10010,
United States

36) Center for Machine Learning Research and School of Mathematical Sciences,

Peking University, Beijing 100871, People’s Republic of China

37 Laboratory of Computational Physics, Institute of Applied Physics
and Computational Mathematics, Fenghao Fast Road 2, Beijing 100094,
P.R. China

(*Electronic mail: wang_han@iapcm.ac.cn)

(*Electronic mail: linfeng.zhang.zlf@gmail.com)

3

mailto:wang_han@iapcm.ac.cn
mailto:linfeng.zhang.zlf@gmail.com

AlP
Publishing

T

.

DeePMD-kit is a powerful open-source software package that facilitates molecular
dynamics simulations using machine learning potentials (MLP) known as Deep Po-
tential (DP) models. This package, which was released in 2017, has been widely
used in the fields of physics, chemistry, biology, and material science for studying
atomistic systems. The current version of DeePMD-kit offers numerous advanced
features such as DeepPot-SE, attention-based and hybrid descriptors, the ability to
fit tensile properties, type embedding, model deviation, Deep Potential - Range Cor-
rection (DPRc), Deep Potential Long Range (DPLR), GPU support for customized
operators, model compression, non-von Neumann molecular dynamics (NVNMD),
and improved usability, including documentation, compiled binary packages, graph-
ical user interfaces (GUI), and application programming interfaces (API). This ar-
ticle presents an overview of the current major version of the DeePMD-kit package,
highlighting its features and technical details. Additionally, the article presents a
comprehensive procedure for conducting molecular dynamics as a representative ap-
plication, benchmarks the accuracy and efficiency of different models, and discusses

ongoing developments.

Publishing

AIP

N

I. INTRODUCTION

In recent years, the increasing popularity of machine learning potentials (MLP) has rev-

olutionized molecular dynamics (MD) simulations across various fields, including neural

7,20-24

network potentials (NNP)¥19 message passing models , and other machine learning

25-28

models Numerous software packages have been developed to support the use of

MLPs.132941 One of the main reasons for the widespread adoption of MLPs is their ex-
ceptional speed and accuracy, which outperforms traditional molecular mechanics (MM)
and ab initio quantum mechanics (QM) methods.*?%3 As a result, MLP-powered MD sim-

ulations have become ubiquitous in the field and are increasingly recognized as a valuable

tool for studying atomistic systems.**?°

DeePMD-kit is an open-source software package that facilitates molecular dynamics
(MD) simulations using neural network potentials. The package was first released in
2017% and has since undergone rapid development with contributions from many devel-

opers. DeePMD-kit implements a series of MLP models known as Deep Potential (DP)

9,10,51-55

models, which have been widely adopted in the fields of physics, chemistry, biology,

and material science for studying a broad range of atomistic systems. These systems include

57-61 62-72 10,73

metallic materials®®, non-metallic inorganic materials water organic systems
b) b)

53,74-77 78-81 82,83 84-88

solutions , gas-phase systems , macromolecular systems, and interfaces

Furthermore, DeePMD-kit is capable of simulating systems containing almost all periodic

8

table elements®, operating under a wide range of temperature and pressure,®® and can

73,90 76,78

handle drug-like molecules, ions, """ transition states, and excited states.”! As a
result, DeePMD-kit is a powerful and versatile tool that can be used to simulate a wide
range of atomistic systems. Here, we present three exemplary instances that highlight its
diverse applications.

Theoretical investigation of the water phase diagram poses a significant challenge due to

9293 Conse-

the requirement for a highly accurate model of water interatomic interactions
quently, it serves as an exceptionally stringent test for the model’s accuracy and provides
a means to validate the software implementation necessary for molecular dynamics simula-
tions used in phase diagram calculations?®. Zhang et al. 8 utilized DeePMD-kit to construct
a deep potential model for the water system, covering a range of thermodynamic states

from 0 to 2400 K and 0 to 50 GPa. The model was trained on density functional theory

AlP
Publishing

T

.

data generated using the SCAN approximation of the exchange-correlation functional and
exhibited consistent accuracy (with an RMSE of less than 1 meV/H20) within the rele-
vant thermodynamic range. Moreover, it accurately predicted fluid, molecular, and ionic
phases and all stable ice polymorphs within the range, except for phases III and XV. The
study extensively investigated the two first-order phase transitions from ice VII to VII” and
VII” to ionic fluid and the atomistic mechanism of proton diffusion, leveraging the model’s

capability and high accuracy in predicting water molecule ionization.

Another challenging area is condensed-phase MD simulations, as long-range interactions
are critical for modeling heterogeneous systems in the condensed phase. Electrostatic in-

teractions are the longest but also are well-understood, and linear-scaling methods exist for

95,96 197,98

their efficient computation at the point charge®, multipole®®? and quantum mechanica
levels. Fast semiempirical quantum mechanical methods can be developed?'%° that can ac-
curately and efficiently model charge densities and many-body effects in the long-range but
may still lack quantitative accuracy in the mid-range (typically less than 8 A). This limits the
predictive capability of the methods in condensed-phase simulations. Zeng et al.®® created
a new A-MLP method called Deep Potential - Range correction (DPRc) to integrate with
combined quantum mechanical /molecular mechanical (QM/MM) potentials, which corrects
the potential energy from a fast, linear-scaling low-level semiempirical QM /MM theory to
a high-level ab initio QM /MM theory. Unlike many of the emerging A-MLPs that correct
internal QM energy and forces, the DPRc¢ model corrects both the QM-QM and QM-MM
interactions of a QM /MM calculation in a manner that conserves energy as MM atoms enter
(or leave) the vicinity of the QM region. This enables the model to be easily integrated as
a mid-ranged correction to the potential energy within molecular simulation software that
uses non-bonded lists, i.e., for each atom, a list of other atoms within a fixed cut-off dis-
tance (typically 8-12 A). The trained DPRc model with a 6 A range-correction was applied
to simulate RNA 2-O-transphosphorylation reactions in solution in long timescales™ and
obtain better free energy estimates with the help of the generalization of the weighted ther-
modynamic perturbation (gwTP) method!®!. Very recently, Zeng et al.™ train a A-MLP
correction model called Quantum Deep Potential Interaction (QDm) for drug-like molecules
including tautomeric forms and protonation states, which was found to be superior to other

semiempirical methods and pure MLP models.”

The third important application is large-scale reactive MD simulations over a nanosec-

Publishing

AIP

N

ond time scale, which enable the construction of interwoven reaction networks for complex

92 instead of focusing on studying a single reaction. These simulations

reactive systems!
require the potential energy model to be accurate and computationally efficient, covering
the chemical space of possible reactions. Zeng et al.™ introduced a Deep Potential model
for simulating 1-ns methane combustion reactions and identified 798 different chemical re-

3

actions in both space and time using the ReacNetGenerator package!®®. The concurrent

4 was adopted and proved crucial in exploring known and unknown

learning procedure!”
chemical space during the complex reaction process. Subsequent work conducted by the re-
search team extended these simulations to more complex reactive systems, including linear

80,105

alkane pyrolysis™, decomposition of explosive , and the growth of polycyclic aromatic

hydrocarbon®.

Compared to its initial release?®, DeePMD-kit has evolved significantly, with the current
version (v2.2.1) offering an extensive range of features. These include DeepPot-SE, attention-
based, and hybrid descriptors'®51:5254 the ability to fit tensorial properties!?®197 type
embedding, model deviation'®1% Deep Potential - Range Correction (DPRc)%*" Deep

Potential Long Range (DPLR)%, graphics processing unit (GPU) support for customized

9 0

operators’® model compression''’, non-von Neumann molecular dynamics (NVNMD)!!!,
and various usability improvements such as documentation, compiled binary packages,
graphical user interfaces (GUI), and application programming interfaces (API). This arti-
cle provides an overview of the current major version of the DeePMD-kit, highlighting its
features and technical details, presenting a comprehensive procedure for conducting molec-
ular dynamics as a representative application, benchmarking the accuracy and efficiency of

different models, and discussing ongoing developments.

II. FEATURES

In this section, we introduce features from the perspective of components (shown in
Fig. 1). A component represents units of computation. It is organized as a Python class

inside the package, and a corresponding TensorFlow static graph will be created at runtime.

7

AlP
é—_ Publishing

TensorFlow Graph

Inference
Model
Coordinates Descriptor Fitting network
Atomic types » (Local frame, » (Energy, Tensorial,
Boundary DeepPot-SE, etc.) etc.)
A \ 4
L 4 Fitting properties
. : Modifier (DPLR, |_) (E,F, etc)
> Type embedding Interpolation, etc.)

Trainer

Reference fitting
properties

Optimizer < Loss <

FIG. 1. The components of the DeePMD-kit package. The direction of the arrow indicates the

dependency between the components. The blue box represents an optional component.

A. Models

A Deep Potential (DP) model, denoted by M, can be generally represented as
Yi = M(@i, {z} jen); 0) = F(D(@i, {2} jenii); 04); 05), (1)

where y; is the fitting properties, F is the fitting network (introduced in Section II A 3), D
is the descriptor (introduced in Section ITA2). & = (r;, «;), with r; being the Cartesian
coordinates and «; being the chemical species, denotes the degrees of freedom of the atom
i. The indices of the neighboring atoms (i.e. atoms within a certain cutoff radius) of atom
i are given by the notation n(i). Note that the Cartesian coordinates can be either under
the periodic boundary condition (PBC) or in vacuum (under the open boundary condition).
The network parameters are denoted by 8 = {64, 0;}, where 8, and 6 yield the network
parameters of the descriptor (if any) and those of the fitting network, respectively. From

Eq. (1), one may compute the global property of the system by

Y= Z’yi, (2)

AlP
Publishing

T

.

where N is the number of atoms in a frame. For example, if y; represents the potential
energy contribution of atom ¢, then y gives the total potential energy of the frame. In the
following text, IV, is the expected maximum number of neighboring atoms, which is the same
constant for all atoms over all frames. A matrix with a dimension of N, will be padded if

the number of neighboring atoms is less than N..

1. Neural networks
A neural network (NN) function A is the composition of multiple layers £®:

In the DeePMD-kit package, a layer £ may be one of the following forms, depending on

whether a ResNet!'!? is used and the number of nodes:

WO P(xTw+b) +x, ResNet and Ny = Ny,
y=L(x;w,b) =1 %o o(x’w + b) + {x,xz}, ResNet and N, = 2Ny, (4)
WO d(xTw + b), otherwise,

where & € R™ is the input vector and y € R™ is the output vector. w € RM*N2 and
b € R™ are weights and biases, respectively, both of which are trainable. @ € R"? can be
either a trainable vector, which represents the “timestep” in the skip connection, or a vector
of all ones 1 = {1,1,...,1}, which disables the timestep. ¢ is the activation function. In
theory, the activation function can be any form, and the following functions are provided
in the DeePMD-kit package: hyperbolic tangent (tanh), rectified linear unit (ReLU)3,
ReL U6, softplus'*, sigmoid, Gaussian error linear unit (GELU)Y® and identity. Among
these activation functions, ReLU and ReLU6 are not continuous in the first-order derivative,

and others are continuous up to the second-order derivative.

2. Descriptors

DeePMD-kit supports multiple atomic descriptors, including the local frame descriptor,
two-body and three-body embedding DeepPot-SE descriptor, the attention-based descriptor,

and the hybrid descriptor that is defined as a combination of multiple descriptors. In the

AlP
Publishing

T

.

following text, we use D' = D(x;, {€;}jen); 04) to represent the atomic descriptor of the
atom 7.

a. Local frame. The local frame descriptor D' € RN*{1:4} (sometimes simply called
the DPMD model), which is the first version of the DP descriptor?; is constructed by using

either full information or radial-only information

Loz vy Zi} o full
AN Tij Tij Tij Tij ’ ’
(D), = (5)
{1} radial-only,
ng
where (x;;,yi;, ;) are three Cartesian coordinates of the relative position between atoms ¢
and j, i.e. r;; = r; —r; = (T, Yij, z;;) in the local frame, and r;; = |r;;| is its norm. In

Eq. (5), the order of the neighbors j is sorted in ascending order according to their distance

to the atom 7. 7;; is transformed from the global relative coordinate r?j through

rij = ’I‘?j . Ri, (6)
where

R; = {ei, e, €3} (7)

is the rotation matrix constructed by
en = e(Tiaw), (8)
€2 = G(Ti,b(i) - (Ti,b(i) - ej1)e;r), (9)
€i3 = €1 X €3, (10)
where e(r;;) = 7;;/r;; denotes the operation of normalizing a vector. a(i) € n(i) and

b(i) € n(i) are the two axis atoms used to define the axes of the local frame of atom i,
which in general, are the two closest atoms, independently of their species, together with
the center atom 1.

The limitation of the local frame descriptor is that it is not smooth at the cutoff radius
and the exchanging of the order of two nearest neighbors (i.e. the swapping of a(i) and
b(i)), so its usage is limited. We note that the local frame descriptor is the only non-smooth
descriptor among all DP descriptors, and we recommend using other descriptors for the

usual system.

10

AlP
Publishing

T

.

b. Two-body embedding DeepPot-SE. The two-body embedding smooth edition of the
DP descriptor D! € RM*M< g usually named DeepPot-SE descriptor!®. It is noted that the
descriptor is a multi-body representation of the local environment of the atom . We call
it “¢two-body embedding” because the embedding network takes only the distance between
atoms i and j (see below), but it is not implied that the descriptor takes only the pairwise
information between i and its neighbors. The descriptor, using either full information or
radial-only information, is given by

1 AV »X} AY s}
4 L(GHTRI(R . full,
DZ _ Nc() () < (11)

7 2 (G radial-only,
where R* € RVe*{14} i the coordinate matrix, and each row of R’ can be constructed as

A { s(ry;) s(rig)eig s(rig)yij s(rij)zij }, full
(R); = (12)
{ s(ri;) } radial-only,

where r;; = r; —r; = (24, Yij, 2;;) is the relative coordinate and r;; = ||7;;|| is its norm. The

switching function s(r) is defined as

|—=

L r<rg,
s(r) = § 2[x3(—62% + 152 — 10) + 1], ry<r <r, (13)
0’ T Z Te,

where x = == switches from 0 at r, to 1 at the cutoff radius r. and [m3(—6x2+15m—10)+1}
switches from 1 at 75 to 0 at .. The switching function s(r) is smooth in the sense that the
second-order derivative is continuous. The derivation process of the fifth-order polynomial
[2%(—62? + 152 — 10) + 1] can be found in Appendix A.

Each row of the embedding matrix G € RY*M consists of M nodes from the output

layer of an NN function N, 5 of s(r;;):
(G); = Nea(s(ryy)), (14)

where the NN function N was given in Eq. (4), and the subscript “e,2” is used to distinguish
the NN from other NNs used in the DP model. In Eq. (14), the network parameters are not
explicitly written. G € R¥e*M< only takes first M. columns of G* to reduce the size of D'.
rs, e, M and M_ are hyperparameters provided by the user. Compared to the local frame

descriptor, the DeepPot-SE is continuous up to the second-order derivative in its domain.

11

AlP
Publishing

T

.

c. Three-body embedding DeepPot-SE. The three-body embedding DeepPot-SE de-
scriptor incorporates bond-angle information, making the model more accurate®'. The de-
scriptor D¢ can be represented as

;1

D:NC2

(RY(R)") : G, (15)

where R’ is defined by Eq. (12). Currently, only the full information case of R is supported
by the three-body embedding. Similar to Eq. (14), each element of G¢ € RNXNeXM comes
from M nodes from the output layer of an NN N, 3 function:

(G)gn = Nea((0:)), (16)

where (6;);: = (R"); - (R")x considers the angle form of two neighbours (j and k). The
notation “:” in Eq. (15) indicates the contraction between matrix R (R%)? and the first two
dimensions of tensor G*. The network parameters are also not explicitly written in Eq. (16).

d. Handling the systems composed of multiple chemical species. For a system with
multiple chemical species (|{e;}| > 1), parameters of the embedding network N, (23 are as

follows chemical-species-wise in Eqgs. (14) and (16):

(G"); = Ng5™ (s(riy)) or (G'); = NZ5(s(ry)), (17)
(G")jk = N ((6:) 1) (18)

Thus, there will be N? or N; embedding networks where N; is the number of chemical species.
To improve the performance of matrix operations, n(i) is divided into blocks of different
chemical species. Each matrix with a dimension of N, is divided into corresponding blocks,
and each block is padded to N¢” separately. The limitation of this approach is that when
there are large numbers of chemical species, such as 57 elements in the OC2M dataset!!6:117,
the number of embedding networks will become 3249 or 57, requiring large memory and
decreasing computing efficiency.

e. Type embedding. To reduce the number of NN parameters and improve comput-

ing efficiency when there are large numbers of chemical species, the type embedding A is

introduced, represented as a NN function N; of the atomic type a:
A" = N, (one_hot(a)), (19)

where «; is converted to a one-hot vector representing the chemical species before feeding

to the NN. The NN function N was given in Eq. (4). Based on Eqs. (14) and (16), the type

12

AlP
Publishing

T

.

embeddings of central and neighboring atoms A* and A’ are added as an extra input of the

embedding network N {2 3}:
(G); = Nea({s(ry), AL AY) or (GY); = Nea({s(ry), A'}), (20)
(G")jk = Nea({(0:)j0, A7, A™}). (21)
In this way, all chemical species share the same network parameters through the type em-

bedding.
f. Attention-based descriptor. Attention-based descriptor D' € RM*M< which is pro-

posed in pretrainable DPA-152 model, is given by
i I i pi\T A
D' = (@ RRYG, (22)

where G represents the embedding matrix G after additional self-attention mechanism?!'®

and R’ is defined by the full case in the Eq. (12). Note that we obtain G* from Eq. (20)
using the type embedding method by default in this descriptor.
To perform the self-attention mechanism, the queries Q' € RNeXdr keys ICH € RNeXdk

and values Vi € RNeXdv are first obtained:

— ~—
xS ©
o~ ~
—_ —
o <
Il I
= O
/N 7 N
~— o
QO QO
S S
T |
= =
SN— SN—
< <
N~ —
S —~
[N} DO
=~ w
N— N—

V), =i (), (25)

where);, K;, V; represent three trainable linear transformations that output the queries
and keys of dimension d, and values of dimension d,, and [is the index of the attention
layer. The input embedding matrix to the attention layers, denoted by G%°, is chosen as the
two-body embedding matrix (14).

119,120

Then the scaled dot-product attention metho is adopted:

A(Qi’l, Ici,l’ 1}1‘,[7 Ri,l) = (Qi’l, K:i’l, Ri,l) Vi,l’ (26)

where ¢ (Q", KM, R™) € RNe*Ne js attention weights. In the original attention method,

one typically has ¢ (Q", K*) = softmax (L\/%Z)T) with v/d;, being the normalization

temperature. This is slightly modified to incorporate the angular information:

Qi,l(lci,l)T

© (QZ‘J; lCivl’ Ri’l) = SOftmaX < \/d_k

) O R (R, (27)

13

AlP
Publishing

T

.

and ® means

g . . . g
where R € RM>3 denotes normalized relative coordinates |, R; = T
ij

element-wise multiplication.
Then layer normalization is added in a residual way to finally obtain the self-attention

local embedding matrix G = G« after L, attention layers:

G = GH1 4 LayerNorm(A(QM, K, Vit RiY). (28)

g. Hybrid descriptor. A hybrid descriptor Dflyb concatenates multiple kinds of descrip-

tors into one descriptor:*

Diy={Di D) ... Di }. (29)

The list of descriptors can be different types or the same descriptors with different parame-

ters. This way, one can set the different cutoff radii for different descriptors.

h. Compression. The compression of the DP model uses three techniques, tabulated
inference, operator merging, and precise neighbor indexing, to improve the performance of

model training and inference when the model parameters are properly trained!!?.

For better performance, the NN inference can be replaced by tabulated function evalu-
ations if the input of the NN is of dimension one. The embedding networks N, defined
by (14) and N,z defined by (16) are of this type. The idea is to approximate the output
of the NN by a piece-wise polynomial fitting. The input domain (a compact domain in R)
is divided into L. equally spaced intervals, in which apply a fifth-order polynomial ¢! ()

approximation of the m-th output component of the NN function:

gin(x) = almx5 + bfﬂx4 + cfnx?’ + dfan + einx + f,ln, x € |2, 2141), (30)

where [= 1,2, ..., L. is the index of the intervals, x4, ..., 2z, 1, +1 are the endpoints of the

intervals, and al , bl cl d' el ~and f' are the fitting parameters. The fitting parameters

14

Publishing

AIP

T

.

can be computed by the equations below:

1
ain = W[mhm,l - 6(y:n,l+1 + y:n,l)Axl + (yf%,m - y;,z)Ale]: (31)
]
1
b, = m[_%hm,l + (14y,, 101 + 16y,) Az + (=24, 141 + 3y;),1,l)Ax12]’ (32)
!
1
Clm = W[mhm,l - (8y;n,l+1 + 12?%,1)A33l + (y;;,url - 31/;7/1,l)A$12]> (33)
]
1
dlm - §y;)/1,la (34)
ein = y;n,la (35)
Fin = Ymts (36)
where Ax; = ;41 — ; denotes the size of the interval. hp,; = Ymit1 — Ymi- Ymi = Ym(21),
Yt = Ym(2) and y , =y, (7;) are the value, the first-order derivative, and the second-

order derivative of the m-th component of the target NN function at the interval point
xy, respectively. The first and second-order derivatives are easily calculated by the back-

propagation of the NN functions.

In the standard DP model inference, taking the two-body embedding descriptor as an
example, the matrix product (G')TR requires the transfer of the tensor G' between the
register and the host/device memories, which usually becomes the bottle-neck of the com-
putation due to the relatively small memory bandwidth of the GPUs. The compressed DP
model merges the matrix multiplication (G*)TR with the tabulated inference step. More
specifically, once one column of the (G*)7 is evaluated, it is immediately multiplied with one
row of the environment matrix in the register, and the outer product is deposited to the
result of (G)TR. By the operator merging technique, the allocation of G* and the memory
movement between register and host/device memories is avoided. The operator merging of

the three-body embedding can be derived analogously.

The first dimension, N, of the environment (R') and embedding (G') matrices is the
expected maximum number of neighbors. If the number of neighbors of an atom is smaller
than N,., the corresponding positions of the matrices are pad with zeros. In practice, if the
real number of neighbors is significantly smaller than N., a notable operation is spent on
the multiplication of padding zeros. In the compressed DP model, the number of neighbors

is precisely indexed at the tabulated inference stage, further saving computational costs.

15

AlP
Publishing

T

.

3. Fitting networks

The fitting network can fit the potential energy of a system, along with the force and the
virial, and tensorial properties such as the dipole and the polarizability.

a. Fitting potential energies. In the DP model (1), we let the fitting network Fy maps
the descriptor D' to a scalar, where the subscript “0” means that the output is a zero-order
tensor (i.e. scalar). The model can then be used to predict the total potential energy of the

system by
E=) E =) F(D), (37)

where the output of the fitting network is treated as the atomic potential energy contribution,
i.e. F;. The output scalar can also be treated as other scalar properties defined on an atom,
for example, the partial charge of atom 1.

In some cases, atomic-specific or frame-specific parameters, such as electron temperature'?!,
may be treated as extra input to the fitting network. We denote the atomic and frame-
specific parameters by P? € R (with N, being the dimension) and Q@ € R (with N,

being the dimension), respectively.
E; = F({D', P, Q}). (38)

The atomic force F; and the virial tensor 2 = (Z,5) (if PBC is applied) can be derived
from the potential energy F:

E a — (39)
Zag = — —_— 4
af ah’ya h%@)? (0)

where r; , and F;, denotes the a-th component of the coordinate and force of atom . h,p
is the S-th component of the a-th basis vector of the simulation region.

b. Fitting tensorial properties. 'To represent the first-order tensorial properties (i.e. vec-
tor properties), we let the fitting network, denoted by F7, output an M-dimensional vector;
then we have the representation,

N. M
T = 3 30 3 (G (Fi(D Dy @ = 1,23, (1

j=1 m=1

16

AlP
Publishing

T

.

We let the fitting network J5 output an M-dimensional vector, and the second-order tenso-

rial properties (matrix properties) are formulated as

M

N. N.
(! aﬁ—%ZZZ i (R e (R 51 (G (Fo (D)), 0, = 1,23, (42)
Ne =i

m=1

where G" and R’ can be found at Eq. (14) and (12) (full case), respectively. Thus, the tensor
fitting network requires the descriptor to have the same or similar form as the DeepPot-SE
descriptor. The NN functions F; and F, was given in Eq. (4). The total tensor T (total
dipole T™ or total polarizability T®) is the sum of the atomic tensor:

T=)T. (43)

The tensorial models can be used to calculate IR spectrum!®® and Raman spectrum!’”.

c. Handling the systems composed of multiple chemical species. Similar to the embed-
ding networks, if the type embedding approach is not used, the fitting network parameters
are chemical-species-wise, and there are NNV; sets of fitting network parameters. For perfor-
mance, atoms are sorted by their chemical species «; in advance. Take an example, the

atomic energy E; is represented as follows based on Eq. (38):
= F5' (D). (44)

When the type embedding is used, all chemical species share the same network parameters,

and the type embedding is inserted into the input of the fitting networks in Eq. (38):

E; = Fo({D', A}). (45)

4. Deep Potential Range Correction (DPRc)

Deep Potential - Range Correction (DPRc)®7" was initially designed to correct the po-
tential energy from a fast, linear-scaling low-level semiempirical QM /MM theory to a high-
level ab initio QM /MM theory in a range-correction way to quantitatively correct short and
mid-range non-bonded interactions leveraging the non-bonded lists routinely used in molec-
ular dynamics simulations using molecular mechanical force fields such as AMBER.!?? In

this way, long-ranged electrostatic interactions can be modeled efficiently using the particle

17

AlP
Publishing

T

.

mesh Ewald method!'?? or its extensions for multipolar®% and QM/MM??"% potentials. In
a DPRc model, the switch function in Eq. (13) is modified to disable MM-MM interaction:
0, if i e MM A j € MM,
SpPRre(Tij) = (46)
s(rij), otherwise,
where sppre(75) is the new switch function and s(r;;) is the old one in Eq. (13). This ensures

the forces between MM atoms are zero, i.e.

OF
——— =0, ieMMAjeMM. (47)
87"2‘3‘

F, =
The fitting network in Eq. (38) is revised to remove energy bias from MM atoms:

Fo(DY), if i € QM,
. (D) Q (48)

Fo(D) — Fo(0), if i € MM,

where 0 is a zero matrix. It is worth mentioning that usage of DPRc is not limited to its

initial design for QM /MM correction and can be expanded to any similar interaction!?.

5. Deep Potential Long Range (DPLR)

The Deep Potential Long Range (DPLR) model adds the electrostatic energy to the total

energy”*:

E = Epp + Eele, (49)

where Epp is the short-range contribution constructed as the standard energy model in
Eq. (37) that is fitted against (E* — Eqe). Fee is the electrostatic energy introduced by a
group of Gaussian distributions that is an approximation of the electronic structure of the

system, and is calculated in Fourier space by

_ 1 exp(—m*m?*/B%)
Eele - W Z m2 S (m)v (50)
m#0,|lm|| <L

where [is a freely tunable parameter that controls the spread of the Gaussians. L is the

cutoff in Fourier space and S(m), the structure factor, is given by
S(m) _ Zqief%mmri + anef%rzmwn’ (51)

18

AlP
Publishing

T

.

where © = v/—1 denotes the imaginary unit, r; indicates ion coordinates, ¢; is the charge
of the ion i, and W, is the n-th Wannier centroid (WC) which can be obtained from a
separated dipole model in Eq. (42). It can be proved that the error in the electrostatic
energy introduced by the Gaussian approximations is dominated by a summation of dipole-
quadrupole interactions that decay as r—*, where r is the distance between the dipole and

quadrupole®.

6. Interpolation with a pairwise potential

In applications like the radiation damage simulation, the interatomic distance may be-
come too close, so that the DFT calculations fail. In such cases, the DP model that is an
approximation of the DFT potential energy surface is usually replaced by an empirical po-
tential, like the Ziegler-Biersack-Littmark (ZBL)'™* screened nuclear repulsion potential in
the radiation damage simulations!?®. The DeePMD-kit package supports the interpolation

between DP and an empirical pairwise potential
E; = (1 —w)EP" +w, B}, (52)

where the w; is the interpolation weight and the EP*" is the atomic contribution due to the

pairwise potential uP#"(r), i.e.

EPY =y uP T (ry). (53)

jen(i)
The interpolation weight w; is defined by
1, 0 < Ta,
wi = S ud(—6u? + 15u; — 10) + 1, 1, < 03 < 7, (54)
0, a; 2 T,

where u; = (0;—14)/(ry—7r4). The derivation process of Eq. 54 can be found in Appendix A.
In the range [r,, 3], the DP model smoothly switched off and the pairwise potential smoothly

switched on from 7, to r,. The o; is the softmin of the distance between atom ¢ and its

neighbors,
> rige il
_Jjen(@)
S ST 55)
jen(i)

19

AlP
Publishing

T

.

where the scale a; is a tunable scale of the interatomic distance 7;;. The pairwise potential
uP¥(r) is defined by a user-defined table that provides the value of uP" on an evenly

discretized grid from 0 to the cutoff distance.

B. Trainer

Based on DP models M defined in Eq. (1), a trainer should also be defined to train
parameters in the model, including weights and biases in Eq. (4). The learning rate ~y, the
loss function L, and the training process should be given in a trainer.

1. Learning rate

The learning rate v decays exponentially:

y(r) =40t (56)

where 7 € N is the index of the training step, 7° € R is the learning rate at the first step,

stop _rst%p
r:(”) | 57)

~0
where 75°P € N, 4P ¢ R, and s € N are the stopping step, the stopping learning rate, and

and the decay rate r is given by

the decay steps, respectively, all of which are hyperparameters provided in advance.

2. Loss function

The loss function L is given by a weighted sum of different fitting property loss L,:
1
L(x;0,7) = EZan(T)Ln(wk;e), (58)
keB n

where B is the mini-batch of data. & = {x*} is the dataset. = = (x},..., %) is a single
data frame from the set and is composed of all the degrees of freedom of the atoms. 7

denotes the property to be fit. For each property, p, is a prefactor given by

imi T start J\T
pa(7) =, t(l—%)w; t%, (59)

20

AlP
Publishing

T

.

start limit

where pi*™® and p,™" are hyperparameters that give the prefactor at the first training step
and the infinite training steps, respectively. v(7) is the learning rate defined by Eq. (56).
The loss function of a specific fitting property L, is defined by the mean squared error
(MSE) of a data frame and is normalized by the number of atoms N if) is a frame property
that is a linear combination of atomic properties. Take an example, if an energy model is
fitted as given in Eq. (37), the properties n could be energy F, force F'| virial B, relative

energy AE™, or any combination among them, and the loss functions of them are

Li(w:0) = (B (w;6) ~ B°)’ (60)
Lr(w:0) = 5 i > (Falas6) = 1" (o1)
Le(@:0) = 51 ;eaﬁ(w; 0) — =1, (62)
Lan(:0) - i(A’Em: 6) — AE")? (63)

(A3

where Fj , is the a-th component of the force on atom £, and the superscript “x” indicates
the label of the property that should be provided in advance. Using N ensures that each
loss of fitting property is averaged over atomic contributions before they contribute to the
total loss by weight.

If part of atoms is more important than others, for example, certain atoms play an
essential role when calculating free energy profiles or kinetic isotope effects®®™, the MSE of

atomic forces with prefactors ¢ can also be used as the loss function:

Ui(x:0) = o Zqu Fra(x;0) — F;)% (64)
k=1 «

The atomic forces with larger prefactors will be fitted more accurately than those in other

atoms.

If some forces are quite large, for example, forces can be greater than 60 eV/ A in high-

78,79

temperature reactive simulations , one may also prefer the force loss is relative to the

magnitude instead of Eq. (61):

N 2
Lp(@:0)= =Y. 3 (= CAN
r(®0) = o (|Fy |+ > (65)

k=1 «

21

AlP
Publishing

T

.

where v is a small constant used to protect an atom where the magnitude of Fy is small
from having a large L'.. Benefiting from the relative force loss, small forces can be fitted

more accurately.

3. Training process

During the training process, the loss function is minimized by the stochastic gradient

descent algorithm Adam!?%. Ideally, the resulting parameter is the minimizer of the loss
function,
0" = argmin lim L(x;0,71). (66)
[’ T—-+00

In practice, the Adam optimizer stops at the step 7gop, and the learning rate varies according

to the scheme (56). Tyop is @ hyperparameter usually set to several million.

4. Multiple tasks training

The multi-task training process can simultaneously handle different datasets with prop-
erties that can not be fitted in one network (e.g. properties from DFT calculations under
different exchange-correlation functionals or different basis sets). These datasets are denoted

by M), . .., 2™ For each dataset, a training task is defined as
mgin LOx®:00 1), t=1,... n,. (67)

During the multi-task training process, all tasks share one descriptor with trainable param-
eters 8,4, while each of them has its own fitting network with trainable parameters O}t), thus
oY = {0, Oj(f)}. At each training step, a task is randomly picked from 1,...,n;, and the
Adam optimizer is executed to minimize L) for one step to update the parameter 8% If
different fitting networks have the same architecture, they can share the parameters of some

layers to improve training efficiency.

C. Model deviation

Model deviation €, is the standard deviation of properties y inferred by an ensemble of

models My,..., M, that are trained by the same dataset(s) with the model parameters

22

AlP
Publishing

T

.

initialized independently. The DeePMD-kit supports y to be the atomic force F; and the
virial tensor E. The model deviation is used to estimate the error of a model at a certain
data frame, denoted by «, containing the coordinates and chemical species of all atoms. We

present the model deviation of the atomic force and the virial tensor

eral) = V@ 00) — (R 00)), (65)
czail(®) = 1o\ (Easl@:00) — (Easl@:00)2), (69)

where 6 is the parameters of the model M, and the ensemble average (-) is estimated by

Nm

(y(@:6,)) = i Syl 60). (70)

Small ep,; means the model has learned the given data; otherwise, it is not covered, and the

training data needs to be expanded. If the magnitude of F; or E is quite large, a relative

model deviation €p ;e OF €= 450 can be used instead of the absolute model deviation:™

_ lenu@)
i) s) T
6E,oz[o’,rel(w) = |< EE’aﬁ(w) (72)

E(z; 0r))|+v’

where v is a small constant used to protect an atom where the magnitude of F; or = is small
from having a large model deviation.

Statistics of ep; and ez o3 can be provided, including the maximum, average, and minimal
model deviation over the atom index ¢ and over the component index «, 3, respectively. The
maximum model deviation of forces €p max in a frame was found to be the best error indicator

in a concurrent or active learning algorithm.!94108

III. TECHNICAL IMPLEMENTATION

In addition to incorporating new powerful features, DeePMD-kit has been designed with
the following goals in mind: high performance, high usability, high extensibility, and commu-
nity engagement. These goals are crucial for DeePMD-kit to become a widely-used platform
across various computational fields. In this section, we will introduce several technical im-

plementations that have been put in place to achieve these goals.

23

AlP
f—‘E: Publishing

() DeePMD-kit

|
CUDA/ROCm Toolkit «——— CUDA/ROCm library — C++API <
f f f
Core C++ library <€ CAPI D
3 P Third-party packages _Use
> TensorFlow C++ APl €«———Customized operators Header-only C++ AP| < (e.g. LAMMPS) €
A t T
v User
TensorFlow Python €«—— | Computing graphs <€«—— Python API <
APl v1 A
i TDefine |
V *
NumPy/H5Py Model definitions < Command line <
interface

FIG. 2. The architecture of the DeePMD-kit code. The red boxes are modules within the DeePMD-
kit package (the green box), the orange box is computing graphs, the blue boxes are dependencies
of the DeePMD-kit, and the yellow box is third-party packages integrated with DeePMD-kit,
including LAMMPS, i-PI, GROMACS, AMBER, OpenMM, ABACUS, ASE, MAGUS, DP-Data,
DP-GEN, and MLatom. Customized operators are operators that are not offered by TensorFlow,
including atomic environmental matrix, interpolation with a pairwise potential, and tabulated
inference of the embedding matrix. The direction of the black arrow A — B indicates that module

A is dependent on module B. The red and purple arrows represent “define” and “use”, respectively.

A. Code architecture

The DeePMD-kit utilizes TensorFlow’s computational graph architecture to construct its
DP models'?”, which are composed of various operators implemented with C++-, including
customized ones such as the environment matrix, Ewald summation, compressed operator,
and their backward propagations. The auto-grad mechanism provided by TensorFlow is used
to compute the derivatives of the DP model with respect to the input atomic coordinates and
simulation cell tensors. To optimize performance, some of the critical customized operators
are implemented for GPU execution using CUDA or ROCm toolkit libraries. The DeePMD-
kit provides Python, C++, and C APIs for inference, facilitating easy integration with third-
party software packages. As indicated in Figure 2, the code of the DeePMD-kit consists of

the following modules:

24

AlP
Publishing

T

.

The core C++ library provides the implementation of customized operators such as
the atomic environmental matrix, neighbor lists, and compressed neural networks. It is
important to note that the core C++ library is independently built and tested without

TensorFlow’s C++ interface.

The GPU library (CUDA'?® or ROCm'#), an optional part of the core C++ library,
is used to compute customized operators on GPU devices other than CPUs. This
library depends on the GPU toolkit library (NVIDIA CUDA Toolkit or AMD ROCm
Toolkit) and is also independently built and tested.

The DP operators library contains several customized operators not supported by
TensorFlow!?”. TensorFlow provides both Python and C++ interfaces to implement
some customized operators, with the TensorFlow C++ library packaged inside its

Python package.

The “model definitions” module, written in Python, is used to generate comput-
ing graphs composed of TensorFlow operators, DP customized operators, and model
parameters organized as “variables”. The graph can be saved into a file that can
be restored for inference. It depends on the TensorFlow Python API (version 1,
tf.compat.v1) and other Python dependencies like the NumPy!3® and H5Py!'3! pack-

ages.

The Python application programming interface (API) is used for inference and can
read computing graphs from a file and use the TensorFlow Python API to execute the
graph.

The C++ API, built upon the TensorFlow C++ interface, does the same thing as the
Python API for inference.

The C API is a wrapper of the C++ API and provides the same features as the C++
API. Compared to the C++4 API, the C API has a more stable application binary

interface (ABI) and ensures backward compatibility.

The header-only C++ API is a wrapper of the C API and provides the same interface
as the C++ API. It has the same stable ABI as the C API but still takes advantage
of the flexibility of C++.

25

AlP
Publishing

T

.

e The command line interface (CLI) is provided to both general users and developers
and is used for both training and inference. It depends on the model definition module

and the Python API.

The CMake build system!3? manages all modules, and the pip and scikit-build!®* packages
are used to distribute DeePMD-kit as a Python package. Standard Python unit testing

k34 is used for unit tests on all Python codes, while GoogleTest software!®® is

framewor
used for tests on all C++ codes. GitHub Actions automates build, test, and deployment

pipelines.

B. Performance
1. Hardware acceleration

In the TensorFlow framework, a static graph combines multiple operators with inputs
and outputs. Two kinds of operators are time-consuming during training or inference.
The first one is TensorFlow’s native operators for neural networks (see Section II A1) and
matrix operations, which have been fully optimized by the TensorFlow framework itself!?”
for both CPU and GPU architectures. Second, the DeePMD-kit’s customized operators
are for computing the atomic environment (Eq. (6) and (12)), for interpolation with a
pairwise potential, and for the tabulated inference of the embedding matrix (Eq. (30)).
These operators are not supported by the TensorFlow framework but can be accelerated
using OpenMP!36 CUDA!?8 and ROCm!?? for parallelization under both CPUs and GPUs,
except the features without GPU supports listed in Appendix II.

The operator of the environment matrix includes two steps!®’: formatting the neighbor
list and computing the matrix elements of R. In the formatting step, the neighbors of the
atom ¢ are sorted according to their type «;, their distance 7;; to atom ¢, and finally their

index j. To improve sorting performance on GPUs, the atomic type, distance, and index

are compressed into a 64-bit integer S € N used for sorting:
S = a; x 10" + [ry; x 10%] x 10° + 4. (73)

The sorted neighbor index is decompressed from the sorted S and then used to format the

neighbor list.

26

AlP
Publishing

T

.

2. MPI implementation for multi-device training and MD simulations

Users may prefer to utilize multiple CPU cores, GPUs, or hardware across multiple nodes
to achieve faster performance and larger memory during training or molecular dynamics
(MD) simulations. To facilitate this, DeePMD-kit has added message-passing interface
(MPI) implementation'3"!3® for multi-device training and MD simulations in two ways,

which are described below.

Multi-device training is conducted with the help of Horovod, a distributed training

framework!3?.

Horovod works in the data-parallel mode by equally distributing a batch
of data among workers along the axis of the batch size B.}" During training, each worker
consumes sliced input records at different offsets, and only the trainable parameter gradi-
ents are averaged with peers. This design avoids batch size and tensor shape conflicts and
reduces the number of bytes that need to be communicated among processes. The mpidpy
package'4! is used to remove redundant logs.

Multi-device MD simulations are implemented by utilizing the existing parallelism fea-
tures of third-party MD packages. For example, LAMMPS enables parallelism across CPUs
by optimizing partitioning, communication, and neighbor lists.!4?> AMBER builds a similar
neighbor list in the interface to DeePMD-kit.?3:5%143 DeePMD-kit supports local atomic en-
vironment calculation and accepts the neighbor list n(i) from other software to replace the
native neighbor list calculation.!® In a device, the neighbors from other devices are consid-
ered “ghost” atoms that do not contribute atomic energy FE; to this device’s total potential

energy E.

3. Non-von Neumann molecular dynamics (NVNMD)

When performing molecular dynamics (MD) simulations on CPUs and GPUs, a large
majority of time and energy (e.g., more than 95%) is consumed by the DP model inference.
This inference process is limited by the “memory wall” and “power wall” bottlenecks of
von Neumann (vN) architecture, which means that a significant amount of time and energy
(e.g., over 90%) is wasted on data transfer between the processor and memory. As a result,

it is difficult to improve computational efficiency.

To address these challenges, non-von Neumann molecular dynamics (NVNMD) uses a

27

AlP
Publishing

T

.

non-von Neumann (NvN) architecture chip to accelerate inference. The NvN chip contains
processing and memory units that can be used to implement the DP algorithm. In the
NvN chip, the hardware algorithm runs fully pipelined. The model parameters are stored in
on-chip memory after being loaded from off-chip memory during the initialization process.
Therefore, two components of data shuttling are avoided: (1) reading/writing the inter-
mediate results from/to off-chip memory and (2) loading model parameters from off-chip
memory during the calculation process. As a result, the DP model ensures high accuracy
with NVNMD, while the NvN chip ensures high computational efficiency. For more details,
see Ref. 111.

C. Usability
1. Documentation

DeePMD-kit’s features and arguments have grown rapidly with more and more devel-
opment. To address this issue, we have introduced Sphinx'** and Doxygen'#’ to man-
age and generate documentation for developers from docstrings in the code. We use the
DArgs package (see Section IIIE) to automatically generate Sphinx documentation for
user input arguments. The documentation is currently hosted on Read the Docs (https:
//docs.deepmodeling.org/projects/deepmd/). Furthermore, we strive to make the error
messages raised by DeePMD-kit clear to users. In addition, the GitHub Discussion forum
allows users to ask questions and receive answers. Recently, several tutorials have been

published®®5® to help new users quickly learn DeePMD-kit.

2. FEasy wnstallation

As shown in Figure 2, DeePMD-kit has dependencies on both Python and C++ libraries
of TensorFlow, which can make it difficult and time-consuming for new users to build Ten-
sorFlow and DeePMD-kit from the source code. Therefore, we provide compiled binary

packages that are distributed via pip, Conda (DeepModeling and conda-forge!*°

channels),
Docker, and offline packages for Linux, macOS, and Windows platforms. With the help
of these pre-compiled binary packages, users can install DeePMD-kit in just a few minutes.

These binary packages include DeePMD-kit’s LAMMPS plugin, i-PI driver, and GROMACS

28

https://docs.deepmodeling.org/projects/deepmd/
https://docs.deepmodeling.org/projects/deepmd/

AlP
Publishing

T

.

patch. As LAMMPS provides a plugin mode in its latest version, DeePMD-kit’s LAMMPS
plugin can be compiled without having to re-compile LAMMPS.'*2 We offer a compiled bi-
nary package that includes the C API and the header-only C++ API, making it simpler to
integrate with sophisticated software like AMBER.?3:5%:143

3. User interface

DeePMD-kit offers a command line interface (CLI) for training, freezing, and testing
models. In addition to CLI arguments, users must provide a JSON'" or YAML!® file
with completed arguments for components listed in Section II. The DArgs package (see
Section IIT E) parses these arguments to check if user input is correct. An example of how to
use the user interface is provided in Ref. 55. Users can also use DP-GUI (see Section II1E)

to fill in arguments in an interactive web page and save them to a JSON7 file.

DeePMD-kit provides an automatic algorithm that assists new users in deciding on several
arguments. For example, the automatic batch size B determines the maximum batch size
during training or inferring to fully utilize memory on a GPU card. The automatic neighbor
size N, determines the maximum number of neighbors by stating the training data to reduce
model memory usage. The automatic probability determines the probability of using a

system during training. These automatic arguments reduce the difficulty of learning and

using the DeePMD-kit.

4. Input data

To train and test models, users are required to provide fitting data in a specified format.
DeePMD-kit supports two file formats for data input: NumPy binary files!*® and HDF5
files'*®. These formats are designed to offer superior performance when read by the program
with parallel algorithms compared to text files. HDF5 files have the advantage of being able
to store multiple arrays in a single file, making them easier to transfer between machines.
The Python package “DP-Data” (see Section IITE) can generate these files from the output

of an electronic calculation package.

29

blishing

=

<a
|

5. Model visualization

DeePMD-kit supports most of the visualization features offered by TensorBoard!?”

, such
as tracking and visualizing metrics, viewing the model graph, histograms of tensors, sum-

maries of trainable variables, and debugging profiles.

D. Extensibility
1. Application programming interface and third-party software

DeePMD-kit offers various APIs, including the Python, C++, C, and header-only C++
API, as well as a command-line interface (CLI), as shown in Figure 2. These APIs are pri-
marily used for inference by developers and high-level users in different situations. Sphinx!4*
generates the API details in the documentation.

These APIs can be easily accessed by various third-party software. The Python API, for
instance, is utilized by third-party Python packages, such as ASE'’ MAGUS'"! and DP-
Data (see Section IITE). The C++, C, or header-only C++ API has also been integrated
into several third-party MD packages, such as LAMMPS!¥2152 i P53 GROMACS!,
AMBER?35%143 - OpenMM 5156 and ABACUSY". Moreover, the CLI is called by vari-
ous third-party workflow packages, such as DP-GEN'®® and MLatom?® . While the ASE
calculator, the LAMMPS plugin, the i-PI driver, and the GROMACS patch are developed
within the DeePMD-kit code, others are distributed separately. By integrating these APIs
into their programs, researchers can perform simulations and minimization, without being
restricted by DeePMD-kit’s software features.” %8415 Additionally, they can combine DP
models with other potentials outside the DeePMD-kit package if necessary.?® 73159
Molecular dynamics, a primary application for DP models, is facilitated by several third-

party packages that interface with the DeePMD-kit package, offering a wide range of sup-

ported features:

e LAMMPS!? is seamlessly integrated with the DeePMD-kit through a dedicated plugin
developed within the DeePMD-kit project. This plugin supports MPI, as discussed in
Section III B2, and provides essential functionalities such as force calculations. Addi-

tionally, it enables on-the-fly computation of model deviation, as shown in eqs. (68)

30

blishing

=

<a
|

to (72), during concurrent learning. The plugin can obtain atomic and frame-specific
parameters in Eq. (38) from various sources, including constants, electronic tempera-
tures calculated by LAMMPS, or any compute style from LAMMPS. LAMMPS also
supports calculating classical point charges’ long-range (Coulomb) interaction using
the Ewald summation and the fast algorithm particle-particle particle-mesh Ewald
(PPPM). The k-space part of these methods, involving the Fourier space transforma-

160 (

tion of Gaussian charge distributions to compute the Coulomb interaction™®” (as shown

in Eq. (50)), is utilized by the DPLR method to handle the long-range interaction.

i-PI'53 is integrated with the DeePMD-kit through a dedicated driver provided within
the DeePMD-kit project. The driver enables the path integral molecular dynamics
(PIMD) driven by the i-PI engine and is compatible with the MolSSI Driver Interface
(MDI) package!'® and a similar interface in the ASE package'®®. However, the commu-
nication between the i-PI driver and the engine relies on UNIX-domain sockets or the
network interface, which can limit performance. To overcome this limitation, develop-
ers have incorporated PIMD features into the LAMMPS package, allowing seamless
integration with the DeePMD-Kkit.

AMBER! is integrated with the DeePMD-kit package through the customized source
code.” The AMBER/DeePMD-kit interface allows effective QM/MM+DPRc¢ simula-
tions using the DPRc model®®. The interface extends beyond QM/QM interactions
and includes a range correction for QM /MM interactions. The DeePMD-kit pack-
age only infers the selected QM region (assigned by an AMBER mask) and its MM
buffer within the cutoff radius of the QM region. Like the LAMMPS integration, this
interface supports MPI, as discussed in Section III B 2, and allows for on-the-fly com-
putation of model deviation during concurrent learning. The AMBER/DeePMD-kit
interface also enables alchemical free energy simulations to be performed, leverag-
ing AMBER’s GPU-accelerated free energy engine'?? and new features'¢21%4 for MM
transformations, and using indirect MM—QM /A-MLP methods!®® to correct the end

states to the higher level.

OpenMM1 a widely adopted molecular dynamics engine, integrates with the DeePMD-
kit through an OpenMM plugin. This plugin enables standard molecular dynamics

31

AlP
Publishing

T

.

simulations with DP models and supports hybrid DP/MM-type simulations. In hy-
brid simulations, the system can be simulated with a fixed DP region or adaptively

changing regions during the simulation!®.

e GROMACS™ is integrated with the DeePMD-kit through a patch to GROMACS. The
patch enables DP/MM simulations by assigning the atom types inferred by DeePMD-
kit.

e ABACUS' supports the C and C++ interfaces provided by DeePMD-kit. In addi-
tion, ABACUS supports various molecular dynamics based on different methods, such
as classical molecular dynamics using LJ pair potential and first-principles molecu-
lar dynamics based on methods like KSDFT, SDFT, and OFDFT. The possibility of
combining the DeePMD-kit with these methods requires further exploration.

These integrations and interfaces with existing packages offer researchers the flexibility to
utilize the DeePMD-kit in conjunction with other powerful tools, enhancing the capabilities

of molecular dynamics simulations.

2. Customized plugins

DeePMD-kit is built with an object-oriented design, and each component discussed in
Section II corresponds to a Python class. Omne of the advantages of this design is the
availability of a plugin system for these components. With this plugin system, developers
can create and incorporate their customized components, without having to modify the
DeePMD-kit package. This approach expedites the realization of their ideas. Moreover, the
plugin system facilitates the addition of new components within the DeePMD-kit package
itself.

E. DeepModeling Community

DeePMD-kit is a free and open-source software licensed under the LGPL-3.0 license, en-
abling developers to modify and incorporate DeePMD-kit into their own packages. Serving
as the core, DeePMD-kit led to the formation of an open-source community named Deep-

Modeling in 2021, which manages open-source packages for scientific computing. Since

32

AlP
Publishing

T

.

then, numerous open-source packages for scientific computing have either been created
or joined the DeepModeling community, such as DP-GEN!% DeePKS-kit'%, DMFF!7,
ABACUSY", DeePH!'®®, and DeepFlame!%®, among others, whether directly or indirectly
related to DeePMD-kit. The DeepModeling packages that are related to DeePMD-kit are
listed below.

1. Deep Potential GENerator (DP-GEN)!%® is a package that implements the concurrent
learning procedure'® and is capable of generating uniformly accurate DP models with
minimal human intervention and computational cost. DP-GEN2 is the next generation

of this package, built on the workflow platform Dflow.

2. Deep Potential Thermodynamic Integration (DP-T1i) is a Python package that enables
users to calculate free energy, perform thermodynamic integration, and determine

pressure-temperature phase diagrams for materials with DP models.

3. DP-Data is a Python package that helps users convert atomistic data between different
formats and calculate atomistic data through electronic calculation and MLP packages.
It can be used to generate training data files for DeePMD-kit and visualize structures
via 3Dmol.js!"®. The package supports a plugin system and is compatible with ASE!,
allowing it to support any data format without being limited by the package’s code.

4. DP-Dispatcher is a Python package used to generate input scripts for high-performance
computing (HPC) schedulers, submit them to HPC systems, and monitor their
progress until completion. It was originally developed as part of the DP-GEN
package!®, but has since become an independent package that serves other pack-

ages.

5. DArgs is a Python package that manages and filters user input arguments. It provides

a Sphinx!'** extension to generate documentation for arguments.

6. DP-GUT is a web-based graphical user interface (GUT) built with the Vue.js framework!™
It allows users to fill in arguments interactively on a web page and save them to a

JSON™T file. DArgs is used to provide details and documentation of arguments in the

GUL

33

Publishing

AIP

N

—>| Training
A4

Exploration
A4
Initial sampling Yes

No

Labeling

FIG. 3. The general workflow of performing deep potential molecular dynamics in the manner of

concurrent learning.

IV. EXAMPLE APPLICATION: MOLECULAR DYNAMICS

This section introduces a general workflow for performing deep potential molecular dy-
namics using concurrent learning!™ from scratch, as depicted in Figure 3. The target sim-
ulation can encompass various conditions, such as temperature, pressure, and classical or
path-integral dynamics, with or without enhanced sampling methods, in equilibrium or non-
equilibrium states, and at different scales and time scales. It is important to note that this

section does not serve as a user manual or tutorial or delve into specific systems.

The initial step involves preparing the initial dataset. This dataset is typically generated
by sampling from small-scale, short-time MD simulations conducted under the same condi-
tions as the target simulations. The simulation level can vary, ranging from ab initio'™ to
semi-empirical®® or force fields™, depending on the computational cost. Subsequently, these

configurations are relabeled using high-accuracy ab initio methods.

Once the initial data is ready, the next step involves performing concurrent learning
cycles, which are crucial for improving the accuracy of the target simulation. Each cycle
comprises three steps: training, exploration, and labeling. In the training step, DeePMD-kit
trains multiple models (typically four models) using the existing target data collection with
short training steps. These models can be initialized from different random seeds or from
the models trained in the previous iteration. In the exploration step, one of the models

is employed to perform the target simulation and sample the configurational space. If the

34

AlP
Publishing

T

.

target simulation involves a non-equilibrium process, the simulation time can gradually
increase with concurrent learning cycles. Configurations (or a subset of atoms within the
configurations to reduce computational cost™) are randomly selected from configurations

that satisfy the condition:

{Rn‘n € Icand; Icand = {n|910w S €F, max < ehigh}} (74)

where € max Was given in Section IIC, 6, should be set to a value higher than most of
€F max i the existing target data collection, and 6y, is typically set to a value approximately
0.15eV/ A higher than 6,,,,. These threshold values ensure only configurations not yet added
to the target data collection will be selected. The selected configurations are labeled using
consistent ab initio methods and added to the target data collection in the labeling step,
proceeding to the next iteration.

If the ratio of accurate configurations (€p max < iow) in a simulation converges (remains
unchanged in subsequent concurrent learning cycles), it can be considered as the target
simulation, and the iteration can be stopped. Such a simulation trajectory can be further
analyzed.

The above workflow can be executed manually or using the DP-GEN package!®® auto-

matically.

V. BENCHMARKING

We performed benchmarking on various potential energy models with different descriptors
on multiple datasets to showcase the precision and performance of descriptors developed
within the DeePMD-kit package. The datasets, the models, the hardware, and the results

will be described and discussed in the following sections.

A. Datasets

The datasets we used included water®%%, copper (Cu)!%, high entropy alloys (HEA)5%173,
OC2M subset in Open Catalyst 2020 (OC20)'6:117 Small-Molecule/Protein Interaction
Chemical Energies (SPICE)'™, and dipeptides subset in SPICE!™ as shown in Table I

and listed below:

35

TABLE I. Datasets used to benchmark.

Dataset # of frames Elements DFT level Reference
Water 140000 H, O PBEO+TS/PAW (Ecutor = 1565 eV) 9,62
Copper 15366 Cu PBE/PAW (E .yt = 650 eV) 108
8160 Ta, Nb, W, Mo, V, Al PBE/PAW (E yto = 1200 V) 52,173
0oC2M 2000000 Ag, Al, As, Au, B, Bi, C, Ca, RPBE/PAW (E utot = 350 V) 116,117

Cd, Cl, Co, Cr, Cs, Cu, Fe,
Ga, Ge, H, Hf, Hg, In, Ir, K,
Mg, Mn, Mo, N, Na, Nb, Ni,
O, Os, P, Pb, Pd, Pt, Rb, Re,
Rh, Ru, S, Sb, Sc, Se, Si, Sn,
Sr, Ta, Tc, Te, Ti, T, V, W,
Y, Zn, Zr

SPICE 1132808 H, Li, C, N, O, F, Na, Mg, P, wB97TM-D3BJ/def2-TZVPPD 174

S, CL K, Ca, Br, I

Dipeptides 33850 H, C, N, O, S wBITM-D3BJ /def2-TZVPPD 174

e The water dataset contains of 140000 configurations collected from path-integral

AlP
Publishing

T

.

ab initio MD simulations and classical ab initio MD simulations for liquid water
and ice. Configurations were labeled using the hybrid version of Perdew-Burke-
Ernzerhof (PBE0)!™+ Tkatchenko-Scheffler(TS) functional and Projector augmented-
wave (PAW) method!™. The energy cutoff was set to 115 Ry (1565 eV).

The copper dataset consists of 15366 configurations in FCC, HCP, BCC crystal. MD
simulations sampled the configurations across a temperature range of 50 to 2579 K and

2 was employed

a pressure range of 1 to 5x10* Bar. The concurrent learning scheme!
to select the critical configurations that improved the accuracy of an ensemble of
models used to estimate the model prediction error. The Perdew-Burke-Ernzerhof

(PBE) functional'™ and PAW method were used with an energy cutoff of 650 eV.

The High Entropy Alloys (HEA) dataset comprises six elements: Ta, Nb, W, Mo,
V, and AIP?!7. These elements occupy a 2 X 2 x 2 Body Centered Cubic (BCC)

lattice consisting of 16 atoms in a random arrangement. The concentrations of Ta,

36

Nb, W, Mo, and V encompass the entire composition space, while Al is considered an
additive, with its maximum quantity being less than six. MD simulations sampled the
configurations across a temperature range of 50 to 388.1 K and a pressure range of 1
to 5x10* Bar. The concurrent learning scheme!™ was employed to select the critical
configurations that improved the accuracy of an ensemble of models used to estimate
the model prediction error. The dataset comprises 8160 configurations labeled by the

177 of the exchange-correlation. The

density functional theory with PBE approximation
PAW method was used with an energy cutoff of 1200 eV and a k-space sampling grid

size of 0.12 A~1.

The OC2M subset!!” in the Open Catalyst 2020 (OC20) dataset takes 2 million config-
urations from the OC20 dataset!'® and includes 57 elements. OC20 consists of 1 281 040
configurations across a wide swath of materials, surfaces, and adsorbates and is labeled
by the revised PBE functional'”” under the periodic boundary condition. The PAW
method was employed with an energy cutoff of 350 eV.

The Small-Molecule/Protein Interaction Chemical Energies (SPICE)!™ dataset is a
drug-like dataset that includes various subsets: dipeptides, solvated amino acids, Pub-
Chem molecules, DES370K dimers, DES370K monomers, and ion pairs. The dataset
is composed of 1132808 non-period configurations labeled at the wB97M-D3BJ /def2-
TZVPPD level'™1™ Tt consists of 15 elements and contains charged configurations.
We adopted the same method as described in Ref. 174 to consider each unique com-

bination of element and formal charge as a different atom type.

The dipeptides subset in SPICE'™ comprises all possible dipeptides formed by the
20 natural amino acids and their common protonation variants. This subset contains
33 850 configurations with elements including H, C, N, O, and S, corresponding to the

amino acids.

The above datasets are representative as they contain liquids, solids, and gases, configu-

rations in both periodic and non-periodic boundary conditions, configurations spanning a

wide range of temperatures and pressures, and ions and drug-like molecules in different pro-

Publishing

AIP

tonation states. The study of all these systems is essential in the field of chemical physics.

T

.

37

blishing

=

<a
|

We split all the datasets into a training set containing 95% of the data and a validation

set containing the remaining 5% of the data.

B. Models and hardware

We compared various descriptors, including the local frame (loc_frame), two-body
embedding full-information DeepPot-SE (se_e2_a), a hybrid descriptor with two-body em-
bedding full- and radial-information DeepPot-SE (se_e2_a+se_e2.r), a hybrid descrip-
tor with two-body embedding full-information and three-body embedding DeepPot-SE
(se_e2_a+se_e3), and an attention-based descriptor (se_atten). In all models, we set 7
to 0.5 A, M. to 16, and L, to 2, if applicable. We used (25,50,100) neurons for two-body
embedding networks N.», (2,4,8) neurons for three-body embedding networks N, 3, and
(240,240,240,1) neurons for fitting networks Fy. In the full-information part (se_e2_a) of
the hybrid descriptor with two-body embedding full-information and radius-information
DeepPot-SE (se_e2_a+se e2 r) and the two-body embedding part (se_e2_a) of the hybrid
descriptor with two-body full-information and three-body DeepPot-SE (se_e2_a+se_e3), we
set r, to 4 A. For the OC2M system, we set 7. to 9 A, while under other situations, we set
r. to 6 A.

We trained each model for a fixed number of steps (1000000 for water, Cu, and dipep-
tides, 16 000000 for HEA, and 10000000 for OC2M and SPICE) using neural networks in
double floating precision (FP64) and single floating precision (FP32) separately. We used
the LAMMPS package'*? to perform MD simulations for water, Cu, and HEA with as many
atoms as possible. We compared the performance of compressed models with that of the
original model where applicable.!%. The platforms used to benchmark performance included
128-core AMD EPYC 7742, NVIDIA GeForce RTX 3080 Ti (12 GB), NVIDIA Tesla V100
(40 GB), NVIDIA Tesla A100 (80 GB), AMD Instinct MI250, and Xilinx Virtex Ultrascale+
VU9P FPGA for NVNMD only!'!'. We note that currently, the model compression feature
only supports se_e2_a, se_e2_r, and se_e3 descriptors, and NVNMD only supports regular
se_e2_ a for systems with no more than 4 chemical species in FP64 precision. The model
compression feature for se_atten is under development.

It is important to note that these models are designed for the purpose of comparing

different descriptors and floating-point number precisions supported by the package under

38

TABLE II. Root mean square errors (RMSE) in the energy per atom (E, meV /atom) and forces
(F, meV/A) for water, Cu, HEA, OC2M, dipeptides, and SPICE validation sets. The underline

donates the best model in an indicator.

loc_frame se_e2_a se_e2_a+se_e2.r| se_e2_atse_e3| se_atten
System Indicator
FP64 FP32| FP64 FP32| FP64 FP32 FP64 FP32 |FP64 FP32

E RMSE 0.7 0.7 1.0 1.0 0.9 1.0 1.0 1.0 1.5 1.2
Water

F RMSE| 40.0 39.2| 49.0 48.4| 4%.6 50.0] 46.5 45.9| 44.4 42.3

E RMSE| 12.7 19.2 3.0 2.8 4.8 4.9 2.5 2.6 3.2 3.6
Cu

F RMSE| 84.7 105| 17.7 17.9| 21.4 22.0| 16.8 16.6| 16.9 16.9

E RMSE 154 15.3| 13.5 14.5] 12.1 17.2 5.5 6.4
HEA

F RMSE .. . 134 137 163 158 136 1801 90.7 98.3

E RMSE ... 15.1 14.3
oCc2M I

F RMSE 155 148

E RMSE 9.5 9.6| 12.5 11.7] 14.9 16.8| 12.8 12.7
Dipeptides

F RMSE e ... 979 97.7] 98.6 101 160 2221 99.7 96.7

E RMSE ...| 80.9 783
SPICE -

F RMSE 233 234

the same conditions, with the aim of recommending the best model to use. However, it should
be emphasized that the number of training steps is limited, and hyperparameters, such as the
number of neurons in neural networks, are not tuned for any specific system. Therefore, it is
not advisable to utilize these models for production purposes, and it would be meaningless
to compare them with the well-established models reported in other references®5%198:174,
Furthermore, it is not recommended to compare these models with models produced by
other packages, as it can be challenging to establish a fair comparison. For instance, ensur-
ing that hyperparameters in different models are precisely the same or making all models

consume the same computational resources across different packages is not straightforward.

C. Results and discussion

We present the validation errors of different models in Table II, the training and MD
performance on various platforms in Table III and IV, as well as the maximum number of

atoms that a platform can simulate in Table V. None of the models outperforms the others

39

ng

lish

AlP
Z= Pub

5

TABLE III. Training performance (ms/step) for water, Cu, HEA, OC2M, dipeptides, and SPICE

systems.

“FP64” means double floating precision, “FP32” means single floating precision, and

“FP64c” and “FP32c” mean the compressed training!'!? for double and single floating precision,

respectively.

“EPYC” performed on 128 AMD EPYC 7742 cores, “3080 Ti” performed on an

NVIDIA GeForce RTX 3080 Ti card, “V100” performed on an NVIDIA Tesla V100 card, “A100”

performed on an NVIDIA Tesla A100 card, and “MI250” performed on an AMD Instinct MI250

Graphics Compute Die (GCD).

loc_frame se_e2_a se_e2 atse e2r se_e2_a+se_e3 se_atten
System Hardware
FP64 FP32|FP64 FP32 FP64c FP32c|FP64 FP32 FP64c FP32¢|FP64 FP32 FP64c FP32c|FP64 FP32
EPYC 14.7 9.20| 97.3 45.0 284 16.2| 63.7 325 29.9 154| 141 852 34.0 20.6| 1210 383
3080 Ti 7.00 4.80| 246 10.3 9.70 6.40| 26.3 11.6 12.0 8.20| 52.8 17.2 16.3 6.80| 199 26.9
Water V100 7.90 850 11.1 820 590 480 13.6 109 6.90 6.40| 23.5 14.0 8.60 7.30| 69.6 31.7
A100 10.7 10.0/ 8.20 9.30 4.90 5.70| 14.5 10.8 7.80 6.30| 24.5 12.0 7.50 7.20| 30.8 21.2
MI250 11.7 109| 203 13.1 7.70 7.00| 273 19.7 11.5 10.9| 278 27.7 128 11.2| 125 31.7
EPYC 490 3.30| 33.7 128 800 5.40| 199 10.0 10.5 530 45.5 242 9.10 6.50| 226 89.1
3080 Ti 3.20 2.20f 6.50 5.10 4.60 3.90| 870 6.30 5.90 3.40| 11.8 4.80 7.20 5.70| 36.8 8.80
Cu V100 3.20 3.80| 420 4.80 3.20 3.70/ 6.50 5.30 5.50 4.10| 7.90 5.60 6.00 5.80| 15.6 11.9
A100 4.00 3.90| 3.80 3.70 3.10 3.00| 540 5.30 4.10 4.10| 8.00 5.60 4.80 4.60| 11.6 11.2
MI250 4.80 4.90| 6.90 6.40 5.10 5.00{ 9.10 9.40 7.40 7.00| 499 10.1 8.00 7.30| 23.6 18.6
EPYC 534 30.5 194 12.2| 523 29.3 27.7 16.7| 83.7 51.1 26.6 15.7 159 60.1
3080 Ti 384 252 11.2 9.10| 714 41.8 163 12.7) 93.6 41.0 19.7 15.0/ 359 9.10
HEA V100 33.2 29.8 11.8 11.1] 63.2 474 175 16.5| 65.5 49.6 274 18.7| 15.6 11.9
A100 30.5 28.6 109 10.4| 51.6 67.4 169 21.2| 61.7 52.9 18.6 18.8| 11.7 11.5
MI250 48.8 427 185 18.0 72.3 69.3 28.7 27.3| 134 884 327 32.3| 21.6 195
EPYC 2070 625
3080 Ti 352 46.0
OC2M V100 120 52.8
A100 51.4 30.9
MI250 171 55.7
EPYC 49.7 30.5 21.2 19.4| 52.0 353 30.1 21.2) 89.5 61.1 35.0 21.2| 214 91.5
3080 Ti 54.8 39.5 173 11.3| 90.0 643 19.0 15.3] 131 67.7 254 19.2| 26.1 12.0
Dipeptides| V100 54.1 52.6 14.8 14.8| 88.0 84.3 205 21.7) 96.2 103 30.1 30.8| 14.3 10.6
A100 50.2 50.8 14.3 14.3| 89.0 759 20.7 19.9| 91.1 82.7 26.6 26.7| 13.2 11.1
MI250 66.2 67.8 23.1 229| 117 112 35.0 324 155 129 459 44.9| 19.6 16.8
EPYC 244 98.0
3080 Ti 35.4 15.3
SPICE V100 173 159
A100 11.9 12.2
MI250 29.0 24.1

40

ng

lish

AlP
Z= Pub

5

TABLE IV. MD performance (us/step/atom) for water, Cu, and HEA systems. “FP64” means
double floating precision, “FP32” means single floating precision, and “FP64c” and “FP32¢” mean
the compressed model''Y for double and single floating precision, respectively. “EPYC” performed
on 128 AMD EPYC 7742 cores, “3080 Ti” performed on an NVIDIA GeForce RTX 3080 Ti card,
“V100” performed on an NVIDIA Tesla V100 card, “A100” performed on an NVIDIA Tesla A100
card, “MI250” performed on an AMD Instinct MI250 Graphics Compute Die (GCD), and “VU9P”
performed NVNMD!"! on a Xilinx Virtex Ultrascale+ VU9IP FPGA board.

loc_frame se_e2._a se_e2_atse_e2.r se_e2_atse_e3 se_atten
System| Hardware
FP64 FP32|FP64 FP32 FP64c FP32c|FP64 FP32 FP64c FP32c|FP64 FP32 FP64c FP32c|FP64 FP32
EPYC 1.25 0.699| 19.3 873 3.89 261| 833 343 3.78 1.86| 37.2 151 5.04 3.63| 221 83.8
3080 Ti 129 8.63| 29.0 421 9.71 1.73] 20.8 343 9.06 1.99| 69.5 10.5 185 2.89| 294 32.3
V100 16.1 16.8| 825 4.59 194 1.51| 6.21 3.53 222 1.62| 222 11.3 3.31 2.41| 91.2 37.2
Water A100 35.7 33.9| 437 3.01 156 1.42| 411 244 2.07 1.53] 12.5 717 2.64 2.25| 35.6 224
MI250 40.2 39.6| 7.74 396 1.74 1.41| 6.03 3.20 2.00 1.54] 30.5 18.8 3.51 2.64| 55.0 30.2
vuU9IP 10.306
EPYC 1.14 0.702| 22.2 9.38 3.43 2.04| 11.9 528 3.09 1.56| 479 19.5 420 2.73| 200 62.1
3080 Ti 149 8098| 30.5 4.18 852 1.51| 188 3.15 798 1.81| 746 11.2 14.7 232 294 33.0
V100 15.7 15.7| 873 4.81 1.56 1.27| 5.71 3.18 1.84 1.38| 24.3 122 260 1.83| 91.1 37.3
o A100 36.9 36.9| 441 265 136 1.15| 3.35 2.15 1.63 142 13,5 749 215 1.78| 36.2 21.0
MI250 39.0 39.1| 827 4.13 1.37 1.21| 5.62 298 1.59 1.35] 26.9 12.6 2.56 2.00| 55.4 29.5
vVU9IP]0.310
EPYC 328 130 T7.04 458 153 764 683 3.80| 81.0 33.4 856 5.68| 156 45.9
3080 Ti] 653 9.72 105 2.551) 36.1 6.83 11.9 3.24) 171 249 29.6 537 290 32.8
HEA V100 201 109 288 239| 123 6.86 123 2.85| 55.2 284 942 547 91.2 374
A100 co. ... 104 6.09 213 1.83] 7.25 548 298 2.83| 30.1 17.1 4.21 4.22] 35.0 20.0
MI250 201 116 457 4.22) 16.2 120 7.01 6.44| 76.0 449 9.09 7.61] 55.7 30.5

in terms of accuracy for all datasets. The non-smooth local frame descriptor achieves the
best accuracy for the water system, with an energy RMSE of 0.689 meV /atom and a force
RMSE of 39.2 meV/ A. Moreover, this model exhibits the fastest computing performance
among all models on CPUs, although it has not yet been implemented on GPUs as shown
in Appendix II. The local frame descriptor, despite having higher accuracy in some cases,
has limitations that hinder its widespread applicability. One such limitation is that it is not
smooth. Additionally, this descriptor does not perform well for the copper system, which

was collected over a wide range of temperatures and pressures!®®. Another limitation is that

41

shing

[
]

AIP
Publi

N\

L=

TABLE V. The maximum number of atoms (10%) that a GPU card can simulate for water, Cu, and
HEA systems. “FP64” means double floating precision, “FP32” means single floating precision,
and “FP64c¢” and “FP32c” mean the compressed model''? for double and single floating precision,
respectively. “3080 Ti” performed on an NVIDIA GeForce RTX 3080 Ti card (12 GB), “V100”
performed on an NVIDIA Tesla V100 card (40 GB), and “A100” performed on an NVIDIA Tesla
A100 card (80 GB).?

se_e2_a se_e2_atse e2.r se_e2_at+se_e3 se_atten
System| Hardware
FP64 FP32 FP64c FP32¢|FP64 FP32 FP64c FP32¢c|FP64 FP32 FP64c FP32c|FP64 FP32

3080 Ti 27 51 127 141 44 74 94 128 10 21 86 95 3 7
Water | V100 73 135 415 493| 114 196 274 430 28 55 250 265 9 19
A100 189 332 987 1128| 288 488 651 900 76 147 618 736| 22 49

3080 Ti 18 35 214 202 40 77 125 151 7T 14 83 144 3 7
Cu V100 54 106 606 635| 122 183 337 461 19 39 271 330 9 19
A100P 141 244 1534 1615| 286 453 706 1074 50 99 697 867 22 49

3080 Ti 11 19 60 69 21 33 47 59 5 9 42 52 3 7
HEA | V100 30 53 175 184 57 87 131 166 13 25 117 142 9 19

A100 76 132 447 468| 140 218 323 408 35 66 292 365 22 48

& The results on the MI250 card are not reported since the ROCm Toolkit reported a Segmentation fault

when the number of atoms increased.

b Two MPI ranks were used since integer overflow occurred in TensorFlow when the number of elements

in an operator exceeded 23!.

it requires all systems to have similar chemical species to build the local frame, which makes
it challenging to apply in datasets like HEA, OC2M, dipeptides, and SPICE.

On the other hand, the DeepPot-SE descriptor offers greater generalization in terms of
both accuracy and performance. The compressed models are 1x-10x faster than the original
for training and inference, and the NVNMD is 50x-100x faster than the regular MD, both
of which demonstrate impressive computational performance. It is expected that the MD
performance of the uncompressed water se_e2_a FP64 model (8.25 us/step/atom on a single
V100 card) is close to the MD performance reported in Ref. 42 (8.19 us/step/atom per V100
card), and the MD performance of the compressed model (1.94 us/step/atom) is about 3x
faster in this case. In addition, the compressed model can simulate 6x atoms in a single card

compared to the uncompressed model. The three-body embedding descriptor theoretically

42

Publishing

AIP

N

contains more information than the two-body embedding descriptor and is expected to be
more accurate but slower. While this is true for the water and copper systems, the expected
order of accuracy is not clearly observed for the HEA and dipeptides datasets. Further
research is required to determine the reason for this discrepancy, but it is likely due to the
loss not converging within the same training steps when more chemical species result in more
trainable parameters. Furthermore, the performance on these two datasets slows down as

there are more neural networks.

The attention-based models with the type embedding exhibit better accuracy for the
HEA system and equivalent accuracy for the dipeptides system. These models also have the
advantage of faster training on GPUs, with equivalent accuracy for these two systems, by
reducing the number of neural networks. However, this advantage is not observed on CPUs
or MD simulations, as attention layers are computationally expensive, which calls for future
improvements. Furthermore, when there are many chemical species, the attention-based
descriptor requires less CPU or GPU memory than other models since it has fewer neural
networks. This feature makes it possible to apply to the OC2M dataset with over 60 species
and the SPICE dataset with about 20 species.

It is noteworthy that in nearly all systems, FP32 is 0.5x to 2x faster than FP64 and
demonstrates similar validation errors. In this case, since we only apply FP32 into neural
networks but keep precision in other components, the model precision is also well-known
as “mixed precision”. This result is consistent with the fact that mixed precision has been
widely adopted in other packages3?142. Therefore, FP32 should be widely adopted in most
applications. Moreover, FP32 enables high performance on hardware with poor FP64 per-

formance, such as consumer GPUs or CPUs.

VI. SUMMARY

DeePMD-kit is a powerful and versatile community-developed open-source software pack-
age for molecular dynamics (MD) simulations using machine learning potentials (MLPs).
Its excellent performance, usability, and extensibility have made it a popular choice for
researchers in various fields. DeePMD-kit is licensed under the LGPL-3.0 license, which
allows anyone to use, modify, and extend the software freely. Thanks to its well-designed
code architecture, DeePMD-kit is highly customizable and can be easily extended in var-

ious aspects. The models are organized as Python modules in an object-oriented design

43

blishing

=

<a
|

and saved into the computing graphs, making it easier to add new models. The computing
graph is composed of TensorFlow and customized operators, making it easier to optimize
the package for a particular hardware architecture and certain operators. The package also
has rich and flexible APIs, making it easier to integrate with other molecular simulation
packages. DeePMD-kit is open to contributions from researchers in computational science,
and we hope that the community will continue to develop and enhance its features in the

future.

DATA AVAILABILITY

DeePMD-kit is openly hosted at the GitHub repository https://github. com/deepmodeling/

deepmd-kit. The datasets, the models, the simulation systems, and the benchmark-
ing scripts used in this study can be downloaded from the GitHub repository https:
//github.com/deepmodeling-activity/deepmd-kit-v2-paper. Other data that support
the findings of this study are available from the corresponding author upon reasonable

request.

ACKNOWLEDGMENTS

The authors thank Yihao Liu, Xinzijian Liu, Haidi Wang, Hailin Yang, and the GitHub
user ZhengdQin for their code contribution to DeePMD-kit, Zhi X. Chen, Jincai Yang, and
Tong Zhu for suggestions to the manuscript, and Ming Li for designing the highlight image.
D.T. is grateful to Stefano Baroni, Riccardo Bertossa, Federico Grasselli, and Paolo Pegolo
for enlightening discussions throughout the completion of this work. ChatGPT was used
to edit the language with the prompt “polish in English” and its outputs were manually
reviewed. The work of J.Z. and D.M.Y. is supported by the National Institutes of Health
(Grant No. GM107485 to D.M.Y.) and the National Science Foundation (Grant No. 2209718
to D.M.Y.). J.Z. is grateful for the Van Dyke Award from the Department of Chemistry
and Chemical Biology, Rutgers, The State University of New Jersey. The work of Y.C.,
Yifan Li, and R.C. is supported by the “Chemistry in Solution and at Interfaces” (CSI)
Center funded by the United States Department of Energy Award DE-SC0019394. The
work of M.R. is supported by the VEGA Project No. 1/0640/20 and by the Slovak Re-

44

https://github.com/deepmodeling/deepmd-kit
https://github.com/deepmodeling/deepmd-kit
https://github.com/deepmodeling-activity/deepmd-kit-v2-paper
https://github.com/deepmodeling-activity/deepmd-kit-v2-paper

AlP
Publishing

T

.

search and Development Agency under Contract No. APVV-19-0371. The work of Q.Z. is
supported by the Science and Technology Innovation Program of Hunan Province under
Grant No. 2021RC4026. The work of S.L..B. was supported by the Research Council of
Norway through the Centre of Excellence Hylleraas Centre for Quantum Molecular Sciences
(grant number 262695). The work of C.L. and R.W. is supported by the United States
Department of Energy (DOE) Award DE-SC0019759. The work of H.W. is supported by
the National Key R&D Program of China under Grant No. 2022YFA1004300, and the Na-
tional Natural Science Foundation of China under Grant No. 12122103. Computational
resources were provided by the Bohrium Cloud Platform at DP technology; the Office of
Advanced Research Computing (OARC) at Rutgers, The State University of New Jersey;
the Advanced Cyberinfrastructure Coordination Ecosystem: Services & Support (ACCESS)
program, which is supported by National Science Foundation grants #2138259, #2138286,
#2138307, #2137603, and #2138296 (supercomputer Expanse at SDSC through allocation
CHE190067); the Texas Advanced Computing Center (TACC) at the University of Texas
at Austin, URL: http://www.tacc.utexas.edu (supercomputer Frontera through allocation
CHE20002); the AMD Cloud Platform at AMD, Inc; and the Princeton Research Computing
resources at Princeton University, which is a consortium of groups led by the Princeton In-
stitute for Computational Science and Engineering (PICSciE) and the Office of Information
Technology’s Research Computing.

Appendix A: Fifth-order polynomial interpolation

Define a piecewise-defined function f(z), where f(x) is a fifth-order polynomial in the

range [0,1), and is a constant in other intervals:

1, x <0
f@)=Qar® + bt +cxd+dal+ex+f, 0<z<]l, (A1)
0, x> 1.

45

AlP
Publishing

T

.

Let f(x), its first-order derivative f'(x), and its second-order derivative f”(x) are continuous

at r =0and x =1,
hmxﬁo_ f(IL’) - limxﬁ(ﬁ‘ f(x)a
lim, ,o- f'(x) = lim, o+ f' (),

hmx_mf f//(x) =]-imil?—)0+ f”(l’),

(A2)
lim,_,1- f(x) = lim,_;+ f(x),
lim, ;- f/(x) = lim,_,1+ f'(x),
lim, ;- f"(x) = lim,_,,+ f(x).
Solve Eq. (A2), and the solution is
4=—6b=15c=—-10,d=0,e =0, f = 1. (A3)
The final forum of f(z) is
1, <0
f@) =19 625 + 1524 — 1023 +1, 0<uz <1, (A4)
0, x> 1.

II. FEATURES WITHOUT GPU SUPPORT
At present, the following features do not have GPU support:

e The local frame descriptor in egs. (5) to (10).

Interpolation with a pairwise potential in egs. (52) to (55).

Calculating the maximum number of neighbors N, within the cutoff radius from the

given data.

Model deviation in egs. (68) to (72).

All NVNMD-specific features.

The KSpace solver for DPLR in the LAMMPS plugin.

46

blishing

=

<a
|

REFERENCES

1J. Behler and M. Parrinello, “Generalized neural-network representation of high-
dimensional potential-energy surfaces,” Physical review letters 98, 146401 (2007).

2A. P. Barték, M. C. Payne, R. Kondor, and G. Csanyi, “Gaussian Approximation Po-
tentials: The Accuracy of Quantum Mechanics, without the Electrons,” Phys. Rev. Lett.
104, 136403 (2010).

3J. Behler, “Atom-centered Symmetry Functions for Constructing High-dimensional Neural
Network Potentials,” J. Chem. Phys. 134, 074106 (2011).

M. Gastegger, L. Schwiedrzik, M. Bittermann, F. Berzsenyi, and P. Marquetand,
“wACSF—Weighted atom-centered symmetry functions as descriptors in machine learn-
ing potentials,” The Journal of chemical physics 148, 241709 (2018).

°S. Chmiela, A. Tkatchenko, H. E. Sauceda, 1. Poltavsky, K. T. Schiitt, and K.-R. Miiller,
“Machine learning of accurate energy-conserving molecular force fields,” Sci. Adv. 3,
1603015 (2017).

SK. T. Schiitt, F. Arbabzadah, S. Chmiela, K. R. Miiller, and A. Tkatchenko, “Quantum-
chemical insights from deep tensor neural networks,” Nat. Commun. 8, 13890 (2017).

"K. Schiitt, H. Sauceda, P. Kindermans, A. Tkatchenko, and K. Miiller, “SchNet - A Deep
Learning Architecture for Molecules and Materials,” J. Chem. Phys. 148, 241722 (2018).

8X. Chen, M. S. Jgrgensen, J. Li, and B. Hammer, “Atomic Energies from a Convolutional
Neural Network,” J. Chem. Theory Comput. 14, 3933-3942 (2018).

9L. Zhang, J. Han, H. Wang, R. Car, and W. E, “Deep potential molecular dynamics: a
scalable model with the accuracy of quantum mechanics,” Phys. Rev. Lett. 120, 143001
(2018).

0L, Zhang, J. Han, H. Wang, W. Saidi, R. Car, and W. E, “End-to-end symmetry pre-
serving inter-atomic potential energy model for finite and extended systems,” in Ad-
vances in Neural Information Processing Systems 31, edited by S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (Curran Associates, Inc.,
2018) pp. 4436-4446.

Y. Zhang, C. Hu, and B. Jiang, “Embedded Atom Neural Network Potentials: Efficient
and Accurate Machine Learning with a Physically Inspired Representation,” J. Phys.
Chem. Lett. 10, 49624967 (2019).

47

http://dx.doi.org/10.1103/PhysRevLett.104.136403
http://dx.doi.org/10.1103/PhysRevLett.104.136403
http://dx.doi.org/10.1126/sciadv.1603015
http://dx.doi.org/10.1126/sciadv.1603015
http://dx.doi.org/10.1038/ncomms13890
http://dx.doi.org/10.1021/acs.jctc.8b00149
http://papers.nips.cc/paper/7696-end-to-end-symmetry-preserving-inter-atomic-potential-energy-model-for-finite-and-extended-systems.pdf
http://papers.nips.cc/paper/7696-end-to-end-symmetry-preserving-inter-atomic-potential-energy-model-for-finite-and-extended-systems.pdf

blishing

=

<a
|

12J.S. Smith, O. Isayev, and A. E. Roitberg, “ANI-1: an extensible neural network poten-
tial with DFT accuracy at force field computational cost,” Chemical science 8, 3192-3203
(2017).

130. T. Unke and M. Meuwly, “PhysNet: a neural network for predicting energies, forces,
dipole moments, and partial charges,” Journal of chemical theory and computation 15,
3678-3693 (2019).

147 L. Glick, D. P. Metcalf, A. Koutsoukas, S. A. Spronk, D. L. Cheney, and C. D. Sherrill,
“AP-Net: An atomic-pairwise neural network for smooth and transferable interaction
potentials,” J. Chem. Phys. 153, 044112 (2020).

15T, Zubatiuk and O. Isayev, “Development of Multimodal Machine Learning Potentials:
Toward a Physics-Aware Artificial Intelligence,” Acc. Chem. Res. 54, 1575-1585 (2021).

16E. R. Khajehpasha, J. A. Finkler, T. D. Kiihne, and S. A. Ghasemi, “CENT2: Improved
charge equilibration via neural network technique,” Phys. Rev. B 105, 144106 (2022).

17X, Pan, J. Yang, R. Van, E. Epifanovsky, J. Ho, J. Huang, J. Pu, Y. Mei, K. Nam,
and Y. Shao, “Machine-Learning-Assisted Free Energy Simulation of Solution-Phase and
Enzyme Reactions,” J. Chem. Theory Comput. 17, 5745-5758 (2021).

185, Takamoto, C. Shinagawa, D. Motoki, K. Nakago, W. Li, I. Kurata, T. Watanabe,
Y. Yayama, H. Iriguchi, Y. Asano, T. Onodera, T. Ishii, T. Kudo, H. Ono, R. Sawada,
R. Ishitani, M. Ong, T. Yamaguchi, T. Kataoka, A. Hayashi, N. Charoenphakdee, and
T. Ibuka, “Towards universal neural network potential for material discovery applicable
to arbitrary combination of 45 elements,” Nature Communications 13, 2991 (2022).

YA, Musaelian, S. Batzner, A. Johansson, L. Sun, C. J. Owen, M. Kornbluth, and B. Kozin-
sky, “Learning local equivariant representations for large-scale atomistic dynamics,” Nat.
Commun. 14, 579 (2023).

20K Schiitt, O. Unke, and M. Gastegger, “Equivariant message passing for the prediction
of tensorial properties and molecular spectra,” in International Conference on Machine
Learning (PMLR, 2021) pp. 9377-9388.

21S. Batzner, A. Musaelian, L. Sun, M. Geiger, J. P. Mailoa, M. Kornbluth, N. Molinari,
T. E. Smidt, and B. Kozinsky, “E(3)-equivariant graph neural networks for data-efficient
and accurate interatomic potentials,” Nat. Commun. 13, 2453 (2022).

2M. Haghighatlari, J. Li, X. Guan, O. Zhang, A. Das, C. J. Stein, F. Heidar-Zadeh,

M. Liu, M. Head-Gordon, L. Bertels, et al., “Newtonnet: A newtonian message passing

48

http://dx.doi.org/10.1021/acs.accounts.0c00868
http://dx.doi.org/10.1103/PhysRevB.105.144106
http://dx.doi.org/ 10.1038/s41467-022-30687-9
http://dx.doi.org/ 10.1038/s41467-023-36329-y
http://dx.doi.org/ 10.1038/s41467-023-36329-y
http://dx.doi.org/ 10.1038/s41467-022-29939-5

blishing

=

<a
|

network for deep learning of interatomic potentials and forces,” Digital Discovery 1, 333—
343 (2022).

23]. Gasteiger, F. Becker, and S. Giinnemann, “Gemnet: Universal directional graph neural
networks for molecules,” Advances in Neural Information Processing Systems 34, 6790—
6802 (2021).

24C. Chen and S. P. Ong, “A universal graph deep learning interatomic potential for the
periodic table,” Nature Computational Science 2, 718-728 (2022).

R. Drautz, “Atomic cluster expansion for accurate and transferable interatomic poten-
tials,” Phys. Rev. B 99, 014104 (2019).

2D, P. Kovécs, C. van der Oord, J. Kucera, A. E. A. Allen, D. J. Cole, C. Ortner, and
G. Csanyi, “Linear Atomic Cluster Expansion Force Fields for Organic Molecules: Beyond
RMSE,” J. Chem. Theory Comput. 17, 7696-7711 (2021).

27R. Snyder, B. Kim, X. Pan, Y. Shao, and J. Pu, “Facilitating ji;ab initioj/i; QM /MM free
energy simulations by Gaussian process regression with derivative observations,” Phys.
Chem. Chem. Phys. 24, 25134-25143 (2022).

ZA. Thompson, L. Swiler, C. Trott, S. Foiles, and G. Tucker, “Spectral neighbor analysis
method for automated generation of quantum- accurate interatomic potentials,” Journal
of Computational Physics 285, 316-330 (2015).

2. Wang, L. Zhang, J. Han, and W. E, “DeePMD-kit: A deep learning package for many-
body potential energy representation and molecular dynamics,” Comput. Phys. Commun.
228, 178-184 (2018).

30K. T. Schiitt, P. Kessel, M. Gastegger, K. A. Nicoli, A. Tkatchenko, and K.-R. Miiller,
“SchNetPack: A Deep Learning Toolbox For Atomistic Systems,” J. Chem. Theory Com-
put. 15, 448-455 (2019).

31S. Chmiela, H. E. Sauceda, I. Poltavsky, K.-R. Miiller, and A. Tkatchenko, “sgdml:
Constructing accurate and data efficient molecular force fields using machine learning,”
Computer Physics Communications 240, 38-45 (2019).

32K. Lee, D. Yoo, W. Jeong, and S. Han, “SIMPLE-NN: An efficient package for training
and executing neural- network interatomic potentials,” Computer Physics Communica-
tions 242, 95-103 (2019).

33X. Gao, F. Ramezanghorbani, O. Isayev, J. S. Smith, and A. E. Roitberg, “Torchani:

A free and open source pytorch-based deep learning implementation of the ani neural

49

http://dx.doi.org/10.1103/PhysRevB.99.014104
http://dx.doi.org/ 10.1021/acs.jctc.1c00647
http://dx.doi.org/10.1039/D2CP02820D
http://dx.doi.org/10.1039/D2CP02820D
http://dx.doi.org/ 10.1016/j.jcp.2014.12.018
http://dx.doi.org/ 10.1016/j.jcp.2014.12.018
http://dx.doi.org/10.1016/j.cpc.2018.03.016
http://dx.doi.org/10.1016/j.cpc.2018.03.016
http://dx.doi.org/10.1021/acs.jctc.8b00908
http://dx.doi.org/10.1021/acs.jctc.8b00908
http://dx.doi.org/ 10.1016/j.cpc.2019.04.014
http://dx.doi.org/ 10.1016/j.cpc.2019.04.014

AlP
f‘"&: Publishing

network potentials,” Journal of chemical information and modeling 60, 3408-3415 (2020).

34S. Chmiela, H. E. Sauceda, 1. Poltavsky, K.-R. Miiller, and A. Tkatchenko, “sGDML:
Constructing accurate and data efficient molecular force fields using machine learning,”
Computer Physics Communications 240, 38-45 (2019).

35P. 0. Dral, F. Ge, B.-X. Xue, Y.-F. Hou, M. Pinheiro Jr, J. Huang, and M. Barbatti,
“MLatom 2: An Integrative Platform for Atomistic Machine Learning,” Top. Curr. Chem.
(Cham) 379, 27 (2021).

36A. Singraber, J. Behler, and C. Dellago, “Library-Based LAMMPS Implementation of
High-Dimensional Neural Network Potentials,” J. Chem. Theory Comput. 15, 1827-1840
(2019).

37Y. Zhang, J. Xia, and B. Jiang, “REANN: A PyTorch-based end-to-end multi-functional
deep neural network package for molecular, reactive, and periodic systems,” J. Chem.
Phys. 156, 114801 (2022).

38K. T. Schiitt, S. S. P. Hessmann, N. W. A. Gebauer, J. Lederer, and M. Gastegger,
“SchNetPack 2.0: A neural network toolbox for atomistic machine learning,” J. Chem.
Phys. (2023), 10.1063/5.0138367.

397. Fan, Y. Wang, P. Ying, K. Song, J. Wang, Y. Wang, Z. Zeng, K. Xu, E. Lindgren, J. M.
Rahm, A. J. Gabourie, J. Liu, H. Dong, J. Wu, Y. Chen, Z. Zhong, J. Sun, P. Erhart,
Y. Su, and T. Ala-Nissila, “GPUMD: A package for constructing accurate machine-
learned potentials and performing highly efficient atomistic simulations,” J. Chem. Phys.
157, 114801 (2022).

401, S. Novikov, K. Gubaev, E. V. Podryabinkin, and A. V. Shapeev, “The MLIP package:
moment tensor potentials with MPI and active learning,” Mach. Learn.: Sci. Technol. 2,
025002 (2021).

“1H. Yanxon, D. Zagaceta, B. Tang, D. S. Matteson, and Q. Zhu, “PyXtal_FF: a python li-
brary for automated force field generation,” Mach. Learn.: Sci. Technol. 2, 027001 (2021).

42\ Jia, H. Wang, M. Chen, D. Lu, L. Lin, R. Car, W. E, and L. Zhang, “Pushing the limit
of molecular dynamics with ab initio accuracy to 100 million atoms with machine learn-
ing,” in Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, SC '20 (IEEE Press, 2020).

437. Guo, D. Lu, Y. Yan, S. Hu, R. Liu, G. Tan, N. Sun, W. Jiang, L. Liu, Y. Chen,
L. Zhang, M. Chen, H. Wang, and W. Jia, “Extending the limit of molecular dynamics

20

http://dx.doi.org/ 10.1016/j.cpc.2019.02.007
http://dx.doi.org/10.1007/s41061-021-00339-5
http://dx.doi.org/10.1007/s41061-021-00339-5
http://dx.doi.org/10.1021/acs.jctc.8b00770
http://dx.doi.org/10.1021/acs.jctc.8b00770
http://dx.doi.org/10.1063/5.0080766
http://dx.doi.org/10.1063/5.0080766
http://dx.doi.org/ 10.1063/5.0138367
http://dx.doi.org/ 10.1063/5.0138367
http://dx.doi.org/10.1063/5.0106617
http://dx.doi.org/10.1063/5.0106617
http://dx.doi.org/ 10.1088/2632-2153/abc9fe
http://dx.doi.org/ 10.1088/2632-2153/abc9fe
http://dx.doi.org/10.1088/2632-2153/abc940

blishing

=

<a
|

with ab initio accuracy to 10 billion atoms,” in Proceedings of the 27th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, PPoPP 22 (Association
for Computing Machinery, New York, NY, USA, 2022) p. 205-218.

44J. Behler, “Perspective: Machine learning potentials for atomistic simulations,” J. Chem.
Phys. 145, 170901 (2016).

45K. T. Butler, D. W. Davies, H. Cartwright, O. Isayev, and A. Walsh, “Machine learning
for molecular and materials science,” Nature 559, 547-555 (2018).

46F Noé, A. Tkatchenko, K.-R. Miiller, and C. Clementi, “Machine Learning for Molecular
Simulation,” Annu. Rev. Phys. Chem. 71, 361-390 (2020).

470. T. Unke, S. Chmiela, H. E. Sauceda, M. Gastegger, I. Poltavsky, K. T. Schiitt,
A. Tkatchenko, and K.-R. Miiller, “Machine Learning Force Fields,” Chem. Rev. 121,
10142-10186 (2021).

M. Pinheiro Jr, F. Ge, N. Ferré, P. O. Dral, and M. Barbatti, “Choosing the right
molecular machine learning potential,” Chem. Sci. 12, 14396-14413 (2021).

498, Manzhos and T. Carrington Jr, “Neural Network Potential Energy Surfaces for Small
Molecules and Reactions,” Chem. Rev. 121, 10187-10217 (2021).

2

0], Zeng, L. Cao, and T. Zhu, “Neural network potentials,” in Quantum Chemistry in the
Age of Machine Learning, edited by P. O. Dral (Elsevier, 2022) Chap. 12, pp. 279-294.

P1X. Wang, Y. Wang, L. Zhang, F. Dai, and H. Wang, “A tungsten deep neural-network po-
tential for simulating mechanical property degradation under fusion service environment,”
Nucl. Fusion 62, 126013 (2022).

2D. Zhang, H. Bi, F.-Z. Dai, W. Jiang, L. Zhang, and H. Wang, “Dpa-1: Pretraining of
attention-based deep potential model for molecular simulation,” (2022).

53]. Zeng, T. J. Giese, S. Ekesan, and D. M. York, “Development of range-corrected deep
learning potentials for fast, accurate quantum mechanical/molecular mechanical simula-
tions of chemical reactions in solution,” Journal of Chemical Theory and Computation
17, 6993-7009 (2021).

41,. Zhang, H. Wang, M. C. Muniz, A. Z. Panagiotopoulos, R. Car, and W. E, “A deep
potential model with long-range electrostatic interactions,” J. Chem. Phys. 156, 124107
(2022).

®W. Liang, J. Zeng, D. M. York, L. Zhang, and H. Wang, “Learning deepmd-kit: A

guide to building deep potential models,” in A Practical Guide to Recent Advances in

51

http://dx.doi.org/ 10.1145/3503221.3508425
http://dx.doi.org/ 10.1145/3503221.3508425
http://dx.doi.org/ 10.1063/1.4966192
http://dx.doi.org/ 10.1063/1.4966192
http://dx.doi.org/10.1038/s41586-018-0337-2
http://dx.doi.org/10.1146/annurev-physchem-042018-052331
http://dx.doi.org/10.1021/acs.chemrev.0c01111
http://dx.doi.org/10.1021/acs.chemrev.0c01111
http://dx.doi.org/10.1039/d1sc03564a
http://dx.doi.org/10.1088/1741-4326/ac888b
http://dx.doi.org/10.48550/ARXIV.2208.08236
http://dx.doi.org/10.48550/ARXIV.2208.08236
http://dx.doi.org/10.1063/5.0083669
http://dx.doi.org/10.1063/5.0083669
http://dx.doi.org/10.1063/9780735425279_006
http://dx.doi.org/10.1063/9780735425279_006

blishing

=

<a
|

Multiscale Modeling and Simulation of Biomolecules, edited by Y. Wang and R. Zhou
(AIP Publishing, 2023) Chap. Chapter 6, pp. 6-1-6-20.

5T Wen, L. Zhang, H. Wang, W. E, and D. J. Srolovitz, “Deep potentials for materials
science,” Mater. Futures 1, 022601 (2022).

57S. K. Achar, L. Zhang, and J. K. Johnson, “Efficiently Trained Deep Learning Potential
for Graphane,” J. Phys. Chem. C 125, 14874-14882 (2021).

81,. Bonati and M. Parrinello, “Silicon Liquid Structure and Crystal Nucleation from
Ab Initio Deep Metadynamics,” Phys. Rev. Lett. 121, 265701 (2018).

], Wang, H. Shen, R. Yang, K. Xie, C. Zhang, L. Chen, K.-M. Ho, C.-Z. Wang, and
S. Wang, “A deep learning interatomic potential developed for atomistic simulation of
carbon materials,” Carbon 186, 1-8 (2022).

SR. Li, E. Lee, and T. Luo, “A unified deep neural network potential capable of predicting
thermal conductivity of silicon in different phases,” Materials Today Physics 12, 100181
(2020).

67, A. Balyakin, S. V. Rempel, R. E. Ryltsev, and A. A. Rempel, “Deep machine learning
interatomic potential for liquid silica,” Phys. Rev. E 102, 052125 (2020).

62H.-Y. Ko, L. Zhang, B. Santra, H. Wang, W. E, R. A. DiStasio Jr, and R. Car, “Isotope
effects in liquid water via deep potential molecular dynamics,” Molecular Physics 117,
3269-3281 (2019).

63J. Xu, C. Zhang, L. Zhang, M. Chen, B. Santra, and X. Wu, “Isotope effects in molecular
structures and electronic properties of liquid water via deep potential molecular dynamics
based on the SCAN functional,” Phys. Rev. B 102, 214113 (2020).

64C. Andreani, G. Romanelli, A. Parmentier, R. Senesi, A. I. Kolesnikov, H.-Y. Ko, M. F.
Calegari Andrade, and R. Car, “Hydrogen Dynamics in Supercritical Water Probed by
Neutron Scattering and Computer Simulations,” J. Phys. Chem. Lett. 11, 9461-9467
(2020).

65C. Zhang, L. Zhang, J. Xu, F. Tang, B. Santra, and X. Wu, “Isotope effects in x-ray
absorption spectra of liquid water,” Phys. Rev. B 102, 115155 (2020).

67T, E. Gartner 3rd, L. Zhang, P. M. Piaggi, R. Car, A. Z. Panagiotopoulos, and P. G.
Debenedetti, “Signatures of a liquid-liquid transition in an ab initio deep neural network

model for water,” Proc. Natl. Acad. Sci. U. S. A. 117, 2604026046 (2020).

52

http://dx.doi.org/10.1063/9780735425279_006
http://dx.doi.org/10.1063/9780735425279_006
http://dx.doi.org/10.1088/2752-5724/ac681d
http://dx.doi.org/ 10.1021/acs.jpcc.1c01411
http://dx.doi.org/10.1103/PhysRevLett.121.265701
http://dx.doi.org/10.1016/j.carbon.2021.09.062
http://dx.doi.org/10.1016/j.mtphys.2020.100181
http://dx.doi.org/10.1016/j.mtphys.2020.100181
http://dx.doi.org/ 10.1103/PhysRevE.102.052125
http://dx.doi.org/10.1080/00268976.2019.1652366
http://dx.doi.org/10.1080/00268976.2019.1652366
http://dx.doi.org/10.1103/PhysRevB.102.214113
http://dx.doi.org/ 10.1021/acs.jpclett.0c02547
http://dx.doi.org/ 10.1021/acs.jpclett.0c02547
http://dx.doi.org/10.1103/PhysRevB.102.115155
http://dx.doi.org/10.1073/pnas.2015440117

blishing

=

<a
|

57D. Tisi, L. Zhang, R. Bertossa, H. Wang, R. Car, and S. Baroni, “Heat transport in
liquid water from first-principles and deep neural network simulations,” Phys. Rev. B
104, 224202 (2021).

%8C. Malosso, L. Zhang, R. Car, S. Baroni, and D. Tisi, “Viscosity in water from first-
principles and deep-neural-network simulations,” npj Computational Materials 8, 139
(2022).

%Y. Shi, C. C. Doyle, and T. L. Beck, “Condensed Phase Water Molecular Multipole
Moments from Deep Neural Network Models Trained on Ab Initio Simulation Data,” J.
Phys. Chem. Lett. 12, 10310-10317 (2021).

OF. Matusalem, J. Santos Rego, and M. de Koning, “Plastic deformation of superionic
water ices,” Proc. Natl. Acad. Sci. U. S. A. 119, €2203397119 (2022).

1Y Zhai, A. Caruso, S. L. Bore, Z. Luo, and F. Paesani, “A “short blanket” dilemma for a
state-of-the-art neural network potential for water: Reproducing experimental properties
or the physics of the underlying many-body interactions?” J Chem. Phys. 158, 084111
(2023).

™S. L. Bore and F. Paesani, “Quantum phase diagram of water,” ChemRxiv (2023),
10.26434 /chemrxiv-2023-kmmmyz.

3J. Zeng, Y. Tao, T. J. Giese, and D. M. York, “QD7m: A Quantum Deep Potential
Interaction Model for Drug Discovery,” J. Chem. Theory Comput. 19, 1261-1275 (2023).

(. Zhang, S. Yue, A. Z. Panagiotopoulos, M. L. Klein, and X. Wu, “Dissolving salt is
not equivalent to applying a pressure on water,” Nat. Commun. 13, 822 (2022).

M. Yang, L. Bonati, D. Polino, and M. Parrinello, “Using metadynamics to build neural
network potentials for reactive events: the case of urea decomposition in water,” Catalysis
Today 387, 143-149 (2022).

T. J. Giese, J. Zeng, S. Ekesan, and D. M. York, “Combined QM /MM, Machine Learning
Path Integral Approach to Compute Free Energy Profiles and Kinetic Isotope Effects in
RNA Cleavage Reactions,” J. Chem. Theory Comput. 18, 4304-4317 (2022).

™J. Liu, R. Liu, Y. Cao, and M. Chen, “Solvation structures of calcium and magnesium ions
in water with the presence of hydroxide: a study by deep potential molecular dynamics,”
Phys. Chem. Chem. Phys. 25, 983-993 (2023).

]. Zeng, L. Cao, M. Xu, T. Zhu, and J. Z. H. Zhang, “Complex reaction processes

in combustion unraveled by neural network-based molecular dynamics simulation,” Nat.

93

http://dx.doi.org/ 10.1103/PhysRevB.104.224202
http://dx.doi.org/ 10.1103/PhysRevB.104.224202
http://dx.doi.org/ 10.1038/s41524-022-00830-7
http://dx.doi.org/ 10.1038/s41524-022-00830-7
http://dx.doi.org/10.1021/acs.jpclett.1c02328
http://dx.doi.org/10.1021/acs.jpclett.1c02328
http://dx.doi.org/ 10.1073/pnas.2203397119
http://dx.doi.org/ 10.1063/5.0142843
http://dx.doi.org/ 10.1063/5.0142843
http://dx.doi.org/10.26434/chemrxiv-2023-kmmmz
http://dx.doi.org/10.26434/chemrxiv-2023-kmmmz
http://dx.doi.org/ 10.1021/acs.jctc.2c01172
http://dx.doi.org/10.1038/s41467-022-28538-8
http://dx.doi.org/10.1016/j.cattod.2021.03.018
http://dx.doi.org/10.1016/j.cattod.2021.03.018
http://dx.doi.org/10.1021/acs.jctc.2c00151
http://dx.doi.org/10.1039/d2cp04105g

blishing

=

<a
|

Commun. 11, 5713 (2020).

™]. Zeng, L. Zhang, H. Wang, and T. Zhu, “Exploring the Chemical Space of Linear
Alkane Pyrolysis via Deep Potential GENerator,” Energy & Fuels 35, 762-769 (2021).

80Q. Chu, K. H. Luo, and D. Chen, “Exploring Complex Reaction Networks Using Neural
Network-Based Molecular Dynamics Simulation,” J. Phys. Chem. Lett. 13, 4052-4057
(2022).

81B. Wang, J. Zeng, L. Cao, C.-H. Chin, D. York, T. Zhu, and J. Zhang, “Growth of
polycyclic aromatic hydrocarbon and soot inception by in silico simulation,” ChemRxiv
(2022), 10.26434/chemrxiv-2022-qp8fc.

827. Wang, Y. Han, J. Li, and X. He, “Combining the Fragmentation Approach and Neural
Network Potential Energy Surfaces of Fragments for Accurate Calculation of Protein
Energy,” J. Phys. Chem. B 124, 3027-3035 (2020).

83Y. Han, Z. Wang, Z. Wei, J. Liu, and J. Li, “Machine learning builds full-QM precision
protein force fields in seconds,” Brief. Bioinform. 22 (2021), 10.1093/bib/bbab158.

84M. F. Calegari Andrade, H-Y. Ko, L. Zhang, R. Car, and A. Selloni, “Free energy
of proton transfer at the water-TiO2 interface from ab initio deep potential molecular
dynamics,” Chem. Sci. 11, 2335-2341 (2020).

85M. Galib and D. T. Limmer, “Reactive uptake of N205 by atmospheric aerosol is domi-
nated by interfacial processes,” Science 371, 921-925 (2021).

86Y -B. Zhuang, R.-H. Bi, and J. Cheng, “Resolving the odd—even oscillation of water dis-
sociation at rutile TiO2(110)—water interface by machine learning accelerated molecular
dynamics,” J. Chem. Phys. 157, 164701 (2022).

87M. de la Puente, R. David, A. Gomez, and D. Laage, “Acids at the Edge: Why Nitric
and Formic Acid Dissociations at Air—Water Interfaces Depend on Depth and on Interface
Specific Area,” J. Am. Chem. Soc. 144, 10524-10529 (2022).

88S. P. Niblett, M. Galib, and D. T. Limmer, “Learning intermolecular forces at liquid-
vapor interfaces,” J. Chem. Phys. 155, 164101 (2021).

891, Zhang, H. Wang, R. Car, and W. E, “Phase Diagram of a Deep Potential Water
Model,” Phys. Rev. Lett. 126, 236001 (2021).

0J. Zeng, Y. Tao, T. J. Giese, and D. M. York, “Modern semiempirical electronic structure
methods and machine learning potentials for drug discovery: Conformers, tautomers, and

protonation states,” J. Chem. Phys. 158, 124110 (2023).

o4

http://dx.doi.org/ 10.1021/acs.energyfuels.0c03211
http://dx.doi.org/10.1021/acs.jpclett.2c00647
http://dx.doi.org/10.1021/acs.jpclett.2c00647
http://dx.doi.org/10.26434/chemrxiv-2022-qp8fc
http://dx.doi.org/10.26434/chemrxiv-2022-qp8fc
http://dx.doi.org/10.1021/acs.jpcb.0c01370
http://dx.doi.org/10.1093/bib/bbab158
http://dx.doi.org/10.1039/C9SC05116C
http://dx.doi.org/10.1063/5.0126333
http://dx.doi.org/10.1021/jacs.2c03099
http://dx.doi.org/10.1063/5.0067565
http://dx.doi.org/10.1103/PhysRevLett.126.236001
http://dx.doi.org/10.1063/5.0139281

AlP
f‘"&: Publishing

W -K. Chen, X.-Y. Liu, W.-H. Fang, P. O. Dral, and G. Cui, “Deep Learning for Nona-
diabatic Excited-State Dynamics,” J. Phys. Chem. Lett. 9, 6702-6708 (2018).

92C. Vega and J. Abascal, “Simulating water with rigid non-polarizable models: a general
perspective,” Physical Chemistry Chemical Physics 13, 19663-19688 (2011).

9E. Sanz, C. Vega, J. Abascal, and L. MacDowell, “Phase diagram of water from computer
simulation,” Physical review letters 92, 255701 (2004).

9T, Darden, D. York, and L. Pedersen, “Particle mesh Ewald: An N log(N) method for
Ewald sums in large systems,” J. Chem. Phys. 98, 10089-10092 (1993).

9T, J. Giese, M. T. Panteva, H. Chen, and D. M. York, “Multipolar Ewald methods, 1:
Theory, accuracy, and performance,” J. Chem. Theory Comput. 11, 436-450 (2015).

9%T J. Giese, M. T. Panteva, H. Chen, and D. M. York, “Multipolar Ewald methods,
2: Applications using a quantum mechanical force field,” J. Chem. Theory Comput. 11,
451-461 (2015).

9K. Nam, J. Gao, and D. M. York, “An efficient linear-scaling Ewald method for long-range
electrostatic interactions in combined QM /MM calculations,” J. Chem. Theory Comput.
1, 2-13 (2005).

9T J. Giese and D. M. York, “Ambient-Potential Composite Ewald Method for ab Initio
Quantum Mechanical /Molecular Mechanical Molecular Dynamics Simulation,” J. Chem.
Theory Comput. 12, 2611-2632 (2016).

9T J. Giese, M. Huang, H. Chen, and D. M. York, “Recent Advances toward a General
Purpose Linear-Scaling Quantum Force Field,” Acc. Chem. Res. 47, 2812-20 (2014).

1007 J. Giese and D. M. York, “Quantum mechanical force fields for condensed phase molec-
ular simulations,” J. Phys. Condens. Matter 29, 383002 (2017).

1017 J. Giese, J. Zeng, and D. M. York, “Multireference Generalization of the Weighted
Thermodynamic Perturbation Method,” J. Phys. Chem. A 126, 8519-8533 (2022).

1027 J. Martinez, “Ab Initio Reactive Computer Aided Molecular Design,” Acc. Chem. Res.
50, 652656 (2017).

103]. Zeng, L. Cao, C.-H. Chin, H. Ren, J. Z. H. Zhang, and T. Zhu, “ReacNetGenerator:
an automatic reaction network generator for reactive molecular dynamics simulations,”
Phys. Chem. Chem. Phys. 22, 683-691 (2020).

1041, Zhang, D.-Y. Lin, H. Wang, R. Car, and W. E, “Active learning of uniformly accurate
interatomic potentials for materials simulation,” Phys. Rev. Materials 3, 23804 (2019).

95

http://dx.doi.org/10.1021/acs.jpclett.8b03026
http://dx.doi.org/10.1021/ar500103g
http://dx.doi.org/10.1088/1361-648X/aa7c5c
http://dx.doi.org/ 10.1021/acs.jpca.2c06201
http://dx.doi.org/ 10.1021/acs.accounts.7b00010
http://dx.doi.org/ 10.1021/acs.accounts.7b00010
http://dx.doi.org/10.1039/C9CP05091D
http://dx.doi.org/ 10.1103/PhysRevMaterials.3.023804

blishing

=

<a
|

1051, Cao, J. Zeng, B. Wang, T. Zhu, and J. Z. Zhang, “Ab Initio Neural Network MD Sim-
ulation of Thermal Decomposition of High Energy Material CL-20/TNT,” Phys. Chem.
Chem. Phys. 24, 1180111811 (2022).

1061, Zhang, M. Chen, X. Wu, H. Wang, W. E, and R. Car, “Deep neural network for the
dielectric response of insulators,” Physical Review B 102, 041121 (2020).

107G, M. Sommers, M. F. C. Andrade, L. Zhang, H. Wang, and R. Car, “Raman spec-
trum and polarizability of liquid water from deep neural networks,” Physical Chemistry
Chemical Physics 22, 10592-10602 (2020).

108y, Zhang, H. Wang, W. Chen, J. Zeng, L. Zhang, W. Han, and W. E, “DP-GEN: A
concurrent learning platform for the generation of reliable deep learning based potential
energy models,” Comput. Phys. Commun. 253, 107206 (2020).

19D, Lu, H. Wang, M. Chen, L. Lin, R. Car, W. E, W. Jia, and L. Zhang, “86 PFLOPS Deep
Potential Molecular Dynamics simulation of 100 million atoms with ab initio accuracy,”
Computer Physics Communications 259, 107624 (2021).

HOD. Lu, W. Jiang, Y. Chen, L. Zhang, W. Jia, H. Wang, and M. Chen, “DP Compress: A
Model Compression Scheme for Generating Efficient Deep Potential Models,” J. Chem.
Theory Comput. 18, 5559-5567 (2022).

WP Mo, C. Li, D. Zhao, Y. Zhang, M. Shi, J. Li, and J. Liu, “Accurate and efficient
molecular dynamics based on machine learning and non von Neumann architecture,” npj
Comput Mater 8, 107 (2022).

12K, He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in deep residual networks,” in
Computer Vision — ECCV 2016 (Springer International Publishing, 2016) pp. 630-645.

13V, Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann machines,”
in Proceedings of the 27th International Conference on International Conference on Ma-
chine Learning, ICML’10 (Omnipress, Madison, WI, USA, 2010) p. 807-814.

H4X . Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural networks,” in Proceed-
ings of the Fourteenth International Conference on Artificial Intelligence and Statistics,
Proceedings of Machine Learning Research, Vol. 15, edited by G. Gordon, D. Dunson,
and M. Dudik (PMLR, Fort Lauderdale, FL, USA, 2011) pp. 315-323.

15D, Hendrycks and K. Gimpel, “Gaussian error linear units (GELUs),” (2020),
arXiv:1606.08415 [cs.LG].

o6

http://dx.doi.org/ 10.1039/D2CP00710J
http://dx.doi.org/ 10.1039/D2CP00710J
http://dx.doi.org/ 10.1016/j.cpc.2020.107206
http://dx.doi.org/10.1021/acs.jctc.2c00102
http://dx.doi.org/10.1021/acs.jctc.2c00102
http://dx.doi.org/10.1038/s41524-022-00773-z
http://dx.doi.org/10.1038/s41524-022-00773-z
http://dx.doi.org/10.1007/978-3-319-46493-0_38
https://proceedings.mlr.press/v15/glorot11a.html
https://proceedings.mlr.press/v15/glorot11a.html
http://arxiv.org/abs/1606.08415

blishing

=

<a
|

H6T, Chanussot, A. Das, S. Goyal, T. Lavril, M. Shuaibi, M. Riviere, K. Tran, J. Heras-
Domingo, C. Ho, W. Hu, A. Palizhati, A. Sriram, B. Wood, J. Yoon, D. Parikh, C. L.
Zitnick, and Z. Ulissi, “Open Catalyst 2020 (OC20) Dataset and Community Challenges,”
ACS Catal. 11, 6059-6072 (2021).

7], Gasteiger, M. Shuaibi, A. Sriram, S. Giinnemann, Z. Ulissi, C. L. Zitnick, and A. Das,
“GemNet-OC: Developing Graph Neural Networks for Large and Diverse Molecular Sim-
ulation Datasets,” (2022), arXiv:2204.02782 [cs.LG].

U8 A Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u. Kaiser, and
I. Polosukhin, “Attention is all you need,” in Advances in Neural Information Processing
Systems, Vol. 30, edited by I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett (Curran Associates, Inc., 2017).

U9A Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u. Kaiser, and
I. Polosukhin, “Attention is all you need,” in Advances in Neural Information Processing
Systems, Vol. 30, edited by I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett (Curran Associates, Inc., 2017).

120M.-T. Luong, H. Pham, and C. D. Manning, “Effective approaches to attention-based
neural machine translation,” (2015), arXiv:1508.04025 [cs.CL].

121y Zhang, C. Gao, Q. Liu, L. Zhang, H. Wang, and M. Chen, “Warm dense matter sim-
ulation via electron temperature dependent deep potential molecular dynamics,” Physics
of Plasmas 27, 122704 (2020).

1227 _S. Lee, D. S. Cerutti, D. Mermelstein, C. Lin, S. LeGrand, T. J. Giese, A. Roitberg,
D. A. Case, R. C. Walker, and D. M. York, “GPU-Accelerated Molecular Dynamics and
Free Energy Methods in Amberl8: Performance Enhancements and New Features,” J.
Chem. Inf. Model. 58, 2043-2050 (2018).

123]. Yang, Y. Cong, and H. Li, “A new machine learning approach based on range corrected
deep potential model for efficient vibrational frequency computation,” arXiv preprint
arXiv:2303.15969 (2023).

124] F. Ziegler and J. P. Biersack, “The stopping and range of ions in matter,” in Treatise on
Heavy-Ion Science: Volume 6: Astrophysics, Chemistry, and Condensed Matter, edited
by D. A. Bromley (Springer US, Boston, MA, 1985) pp. 93-129.

125H. Wang, X. Guo, L. Zhang, H. Wang, and J. Xue, “Deep learning inter-atomic potential
model for accurate irradiation damage simulations,” Applied Physics Letters 114, 244101

o7

http://dx.doi.org/10.1021/acscatal.0c04525
http://arxiv.org/abs/2204.02782
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
http://arxiv.org/abs/1508.04025
http://dx.doi.org/10.1007/978-1-4615-8103-1_3
http://dx.doi.org/10.1007/978-1-4615-8103-1_3

AlP
f‘"&: Publishing

(2019).

126K, DP and J. Ba, “Adam: A method for stochastic optimization,” in Proc. of the 3rd
International Conference for Learning Representations (ICLR) (2015).

127TM. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis,
J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia,
R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Mur-
ray, C. Olah, M. Schuster, J. Shlens, B. Steiner, 1. Sutskever, K. Talwar, P. Tucker, V. Van-
houcke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke,
Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous sys-
tems,” (2015), software available from tensorflow.org.

128]. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable parallel programming with
cuda: Is cuda the parallel programming model that application developers have been
waiting for?” Queue 6, 40-53 (2008).

129AMD Inc, “ROCm - Open Source Platform for HPC and Ultrascale GPU Computing,”
(2023).

1300, R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Courna-
peau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H.
van Kerkwijk, M. Brett, A. Haldane, J. F. del Rio, M. Wiebe, P. Peterson, P. Gérard-
Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E.
Oliphant, “Array programming with NumPy,” Nature 585, 357-362 (2020).

131A. Collette, Python and HDF5: unlocking scientific data (O’Reilly Media, Inc., 2013).

132K, Martin and B. Hoffman, Mastering CMake: Version 3.1 (Kitware Incorporated, 2015).

133] -C. Fillion-Robin, M. McCormick, O. Padron, M. Smolens, M. Grauer, and M. Sara-
han, “jefr/scipy-2018_scikit-build_talk: Scipy 2018 talk — scikit-build: A build system
generator for cpython c¢/c++/fortran/cython extensions,” (2018).

134G. Van Rossum and Python Development Team, The Python library reference (12th
Media Services, Suwanee, GA, 2018).

135Google Inc, “GoogleTest - Google Testing and Mocking Framework,” (2023).

1361,, Dagum and R. Menon, “OpenMP: an industry standard API for shared-memory pro-
gramming,” IEEE Computational Science and Engineering 5, 46-55 (1998).

37K, Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M. Squyres, V. Sahay,
P. Kambadur, B. Barrett, A. Lumsdaine, R. H. Castain, D. J. Daniel, R. L. Graham,

o8

https://www.tensorflow.org/
https://www.tensorflow.org/
http://dx.doi.org/10.1145/1365490.1365500
https://github.com/RadeonOpenCompute/ROCm
http://dx.doi.org/ 10.1038/s41586-020-2649-2
http://dx.doi.org/ 10.5281/zenodo.2565368
http://dx.doi.org/ 10.5281/zenodo.2565368
https://github.com/google/googletest
http://dx.doi.org/ 10.1109/99.660313

AlP
f‘"&: Publishing

and T. S. Woodall, “Open MPI: Goals, Concept, and Design of a Next Generation MPI
Implementation,” in Recent Advances in Parallel Virtual Machine and Message Pass-
ing Interface, edited by D. Kranzlmiiller, P. Kacsuk, and J. Dongarra (Springer Berlin
Heidelberg, Berlin, Heidelberg, 2004) pp. 97-104.

138W. Gropp, “MPICH2: A New Start for MPI Implementations”, booktitle="Recent Ad-
vances in Parallel Virtual Machine and Message Passing Interface,” (Springer Berlin
Heidelberg, Berlin, Heidelberg, 2002) pp. 7-7.

139A. Sergeev and M. Del Balso, “Horovod: fast and easy distributed deep learning in
tensorflow,” arXiv preprint arXiv:1802.05799 (2018).

0P Goyal, P. Dollar, R. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola, A. Tulloch,
Y. Jia, and K. He, “Accurate, large minibatch sgd: Training imagenet in 1 hour,” arXiv
preprint arXiv:1706.02677 (2017).

1T, Dalcin and Y.-L. L. Fang, “mpidpy: Status update after 12 years of development,”
Computing in Science & Engineering 23, 47-54 (2021).

142A . P. Thompson, H. M. Aktulga, R. Berger, D. S. Bolintineanu, W. M. Brown, P. S.
Crozier, P. J. in 't Veld, A. Kohlmeyer, S. G. Moore, T. D. Nguyen, R. Shan, M. J.
Stevens, J. Tranchida, C. Trott, and S. J. Plimpton, “Lammps - a flexible simulation
tool for particle-based materials modeling at the atomic, meso, and continuum scales,”
Computer Physics Communications 271, 108171 (2022).

43D, A. Case, K. Belfon, I. Y. Ben-Shalom, S. R. Brozell, D. S. Cerutti, T. E. Cheatham III,
V. W. D. Cruzeiro, T. A. Darden, R. E. Duke, G. Giambasu, , M. K. Gilson, H. Gohlke,
A. W. Goetz, R. Harris, S. Izadi, S. A. Izmailov, K. Kasavajhala, K. Kovalenko, R. Krasny,
T. Kurtzman, T. Lee, S. Le-Grand, P. Li, C. Lin, J. Liu, T. Luchko, R. Luo, V. Man,
K. Merz, Y. Miao, O. Mikhailovskii, G. Monard, , H. Nguyen, A. Onufriev, F. Pan,
S. Pantano, R. Qi, D. R. Roe, A. Roitberg, C. Sagui, S. Schott-Verdugo, J. Shen, C. L.
Simmerling, N. Skrynnikov, J. Smith, J. Swails, R. C. Walker, J. Wang, R. M. Wilson,
R. M. Wolf, X. Wu, Y. Xiong, Y. Xue, D. M. York, and P. A. Kollman, AMBER 20,
University of California, San Francisco, San Francisco, CA (2020).

T KOMIYA, G. Brandl, J.-F. B., T. SHIMIZUKAWA, J. L. Andersen, A. Turner, S. Finu-
cane, R. Lehmann, T. Kampik, J. Magin, jacobmason, J. Dufresne, J. Waltman, J. L. C.
Rodriguez, A. Ronacher, M. Geier, D. Shachnev, R. Ruana, P. Virtanen, danieleades,
F. Freitag, L. Maddox, M. Liska, H. Xu, N. K, E. Wieser, shirou, J. Maitin-Shepard,

29

http://dx.doi.org/ 10.1109/MCSE.2021.3083216
http://dx.doi.org/ https://doi.org/10.1016/j.cpc.2021.108171

blishing

=

<a
|

N. Kaneko, and cocoatomo, “sphinx-doc/sphinx: v7.0.0,” (2023).

15D, van Heesch, “Doxygen: Source Code Documentation Generator Tool,” (2022).

H6conda-forge community, “The conda-forge Project: Community-based Software Distribu-
tion Built on the conda Package Format and Ecosystem,” (2015).

WIER. Pezoa, J. L. Reutter, F. Suarez, M. Ugarte, and D. Vrgo¢, “Foundations of json
schema,” in Proceedings of the 25th International Conference on World Wide Web (In-
ternational World Wide Web Conferences Steering Committee, 2016) pp. 263-273.

1480, Ben-Kiki, C. Evans, and I. dot Net, “Yaml ain’t markup language (yaml™) version
1.2, (2009).

149Q. Koziol and D. Robinson, “HDF5,” (2018).

1%0A H. Larsen, J. J. Mortensen, J. Blomqvist, I. E. Castelli, R. Christensen, M. Dutak,
J. Friis, M. N. Groves, B. Hammer, C. Hargus, E. D. Hermes, P. C. Jennings, P. B. Jensen,
J. Kermode, J. R. Kitchin, E. L. Kolsbjerg, J. Kubal, K. Kaasbjerg, S. Lysgaard, J. B.
Maronsson, T. Maxson, T. Olsen, L. Pastewka, A. Peterson, C. Rostgaard, J. Schigtz,
O. Schiitt, M. Strange, K. S. Thygesen, T. Vegge, L. Vilhelmsen, M. Walter, Z. Zeng,
and K. W. Jacobsen, “The atomic simulation environment—a python library for working
with atoms,” Journal of Physics: Condensed Matter 29, 273002 (2017).

BIW. Laosi, H. Gao, Y. Han, C. Ding, P. Shuning, Y. Wang, J. Qiuhan, H.-T. Wang,
D. Xing, and J. Sun, “MAGUS: machine learning and graph theory assisted universal
structure searcher,” National Science Review (2023), 10.1093/nsr/nwad128.

152G, Plimpton, “Fast parallel algorithms for short-range molecular dynamics,” Journal of
Computational Physics 117, 1-19 (1995).

153V, Kapil, M. Rossi, O. Marsalek, R. Petraglia, Y. Litman, T. Spura, B. Cheng, A. Cuz-
zocrea, R. H. Meifiner, D. M. Wilkins, B. A. Helfrecht, P. Juda, S. P. Bienvenue, W. Fang,
J. Kessler, I. Poltavsky, S. Vandenbrande, J. Wieme, C. Corminboeuf, T. D. Kiihne, D. E.
Manolopoulos, T. E. Markland, J. O. Richardson, A. Tkatchenko, G. A. Tribello, V. V.
Speybroeck, and M. Ceriotti, “i-PI 2.0: A universal force engine for advanced molecular
simulations,” Computer Physics Communications 236, 214-223 (2019).

134M. J. Abraham, T. Murtola, R. Schulz, S. Pall, J. C. Smith, B. Hess, and E. Lindahl,
“GROMACS: High performance molecular simulations through multi-level parallelism

from laptops to supercomputers,” SoftwareX 1-2, 19-25 (2015).

60

http://dx.doi.org/ 10.5281/zenodo.7879479
http://www.doxygen.nl
http://dx.doi.org/10.5281/zenodo.4774217
http://dx.doi.org/10.5281/zenodo.4774217
http://dx.doi.org/10.11578/dc.20180330.1
http://stacks.iop.org/0953-8984/29/i=27/a=273002
http://dx.doi.org/ 10.1093/nsr/nwad128
http://dx.doi.org/ 10.1006/jcph.1995.1039
http://dx.doi.org/ 10.1006/jcph.1995.1039
http://dx.doi.org/10.1016/j.cpc.2018.09.020
http://dx.doi.org/ 10.1016/j.softx.2015.06.001

AlP
f‘"&: Publishing

155p Fastman, J. Swails, J. D. Chodera, R. T. McGibbon, Y. Zhao, K. A. Beauchamp, L.-P.
Wang, A. C. Simmonett, M. P. Harrigan, C. D. Stern, et al., “OpenMM 7: Rapid de-
velopment of high performance algorithms for molecular dynamics,” PLoS computational
biology 13, 1005659 (2017).

156Y. Ding and J. Huang, “Implementation and validation of an openmm plugin for the deep
potential representation of potential energy,” (2023).

157p_Li, X. Liu, M. Chen, P. Lin, X. Ren, L. Lin, C. Yang, and L. He, “Large-scale ab initio
simulations based on systematically improvable atomic basis,” Computational Materials
Science 112, 503-517 (2016).

158p. M. Piaggi, J. Weis, A. Z. Panagiotopoulos, P. G. Debenedetti, and R. Car, “Homoge-
neous ice nucleation in an ab initio machine-learning model of water,” Proc. Natl. Acad.
Sci. U. S. A. 119, €2207294119 (2022).

1998, K. Achar, J. J. Wardzala, L. Bernasconi, L. Zhang, and J. K. Johnson, “Combined
Deep Learning and Classical Potential Approach for Modeling Diffusion in UiO-66,” J.
Chem. Theory Comput. 18, 3593-3606 (2022).

160p. P. Ewald, “Die berechnung optischer und elektrostatischer gitterpotentiale,” Ann. Phys.
369, 253-287 (1921).

1617 A. Barnes, E. Marin-Rimoldi, S. Ellis, and T. D. Crawford, “The MolSSI Driver In-
terface Project: A framework for standardized, on- the-fly interoperability between com-
putational molecular sciences codes,” Computer Physics Communications 261, 107688
(2021).

162 -C. Tsai, T.-S. Lee, A. Ganguly, T. J. Giese, M. C. Ebert, P. Labute, K. M. Merz
Jr, and D. M. York, “AMBER Free Energy Tools: A New Framework for the Design of
Optimized Alchemical Transformation Pathways,” J. Chem. Theory Comput. 19, 640-658
(2023).

1637 S, Lee, H.-C. Tsai, A. Ganguly, and D. M. York, “ACES: Optimized Alchemically
Enhanced Sampling,” J. Chem. Theory Comput. 19, 472-487 (2023).

164 A Ganguly, H.-C. Tsai, M. Ferndndez-Pend4s, T.-S. Lee, T. J. Giese, and D. M. York,
“AMBER Drug Discovery Boost Tools: Automated Workflow for Production Free-Energy
Simulation Setup and Analysis (ProFESSA),” J. Chem. Inf. Model. 62, 60696083 (2022).

165 J. Giese and D. M. York, “Development of a Robust Indirect Approach for MM —
QM Free Energy Calculations That Combines Force-Matched Reference Potential and

61

https://github.com/JingHuangLab/openmm_deepmd_plugin
https://github.com/JingHuangLab/openmm_deepmd_plugin
http://dx.doi.org/ 10.1016/j.commatsci.2015.07.004
http://dx.doi.org/ 10.1016/j.commatsci.2015.07.004
http://dx.doi.org/ 10.1073/pnas.2207294119
http://dx.doi.org/ 10.1073/pnas.2207294119
http://dx.doi.org/ 10.1021/acs.jctc.2c00010
http://dx.doi.org/ 10.1021/acs.jctc.2c00010
http://dx.doi.org/10.1016/j.cpc.2020.107688
http://dx.doi.org/10.1016/j.cpc.2020.107688

blishing

=

<a
|

Bennett’s Acceptance Ratio Methods,” J. Chem. Theory Comput. 15, 5543-5562 (2019).

166y, Chen, L. Zhang, H. Wang, and W. E, “DeePKS-kit: A package for developing ma-
chine learning-based chemically accurate energy and density functional models,” Com-
puter Physics Communications 282, 108520 (2023).

167X, Wang, J. Li, L. Yang, F. Chen, Y. Wang, J. Chang, J. Chen, L. Zhang, and K. Yu,
“DMFF: An Open-Source Automatic Differentiable Platform for Molecular Force Field
Development and Molecular Dynamics Simulation,” (2022).

168H. Li, Z. Wang, N. Zou, M. Ye, R. Xu, X. Gong, W. Duan, and Y. Xu, “Deep-learning
density functional theory Hamiltonian for efficient ab initio electronic-structure calcula-
tion,” Nat Comput Sci 2, 367-377 (2022).

19R. Mao, M. Lin, Y. Zhang, T. Zhang, Z.-Q. J. Xu, and Z. X. Chen, “Deepflame: A
deep learning empowered open-source platform for reacting flow simulations,” (2022),
arXiv:2210.07094 [physics.flu-dyn].

10N, Rego and D. Koes, “3Dmol.js: molecular visualization with WebGL,” Bioinformatics
31, 13224 (2015).

E. You, “Vue.js - The Progressive JavaScript Framework,” (2023).

1721, Zhang, D.-Y. Lin, H. Wang, R. Car, and W. E, “Active learning of uniformly accurate
interatomic potentials for materials simulation,” Phys. Rev. Materials 3, 023804 (2019).

I8W. Jiang, D. Zhang, S. Yao, L. Zhang, H. Wang, and F. Dai, “Hybrid monte carlo-
molecular dynamics simulation of order-disorder transition in refractory high entropy

alloys using deep potential model reliable in the full concentration space,”

(2023).
1P Eastman, P. K. Behara, D. L. Dotson, R. Galvelis, J. E. Herr, J. T. Horton, Y. Mao,
J. D. Chodera, B. P. Pritchard, Y. Wang, G. De Fabritiis, and T. E. Markland, “SPICE,

in preparation

A Dataset of Drug-like Molecules and Peptides for Training Machine Learning Potentials,”
Sci. Data 10, 11 (2023).

1%5C. Adamo and V. Barone, “Toward reliable density functional methods without adjustable
parameters: The PBEO model,” J. Chem. Phys. 110, 6158-6170 (1999).

176, E. Blochl, “Projector augmented-wave method,” Physical review B 50, 17953 (1994).

177]. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made

simple,” Physical review letters 77, 3865 (1996).

62

http://dx.doi.org/10.1016/j.cpc.2022.108520
http://dx.doi.org/10.1016/j.cpc.2022.108520
http://dx.doi.org/10.1038/s43588-022-00265-6
http://arxiv.org/abs/2210.07094
http://dx.doi.org/10.1093/bioinformatics/btu829
http://dx.doi.org/10.1093/bioinformatics/btu829
https://vuejs.org
http://dx.doi.org/ 10.1103/PhysRevMaterials.3.023804
http://dx.doi.org/10.1038/s41597-022-01882-6
http://dx.doi.org/10.1063/1.478522

AlP
Publishing

L.

I8N, Mardirossian and M. Head-Gordon, “wB97M-V: A combinatorially optimized, range-
separated hybrid, meta-GGA density functional with VV10 nonlocal correlation,” J.
Chem. Phys. 144, 214110 (2016).

1A, Najibi and L. Goerigk, “DFT-D4 counterparts of leading meta-generalized-gradient
approximation and hybrid density functionals for energetics and geometries,” J. Comput.

Chem. 41, 2562-2572 (2020).

63

http://dx.doi.org/10.1063/1.4952647
http://dx.doi.org/10.1063/1.4952647
http://dx.doi.org/10.1002/jcc.26411
http://dx.doi.org/10.1002/jcc.26411

TensorFlow Graph

Inference
Model
Coordinates Descriptor Fitting network
Atomic types » (Local frame, » (Energy, Tensorial,
Boundary DeepPot-SE, etc.) etc.)
A Y
)7 Fitting properties
(E, F, etc.)

Modifier (DPLR,
Interpolation, etc.)

» Type embedding

A

Trainer

Optimizer < Loss <

Reference fitting
properties

AlIP
!f:‘_ Publishing

(§ DeePMD-Kit

CUDA/ROCM Toolkit |« CUDA/ROCm library C++API
A ¢ T
Core C++ library € C API
A A
—» TensorFlow C++ API| < Customized operators Header-only C++ API
A T A
| ;
TensorFlow Python < Computing graphs < Python API
API v1 < A A
| Define
Y \ 4
NumPy/H5Py Model definitions |« s

interface

Third-party packages
(e.g. LAMMPS)

Use

User

—> Training
s ‘r —\
Exploration
Y
[Initial sampling] Yesﬁ)[Analysis]
No
v
4[Labeling J

	DeePMD-kit v2: A software package for Deep Potential models
	Abstract
	Introduction
	Features
	Models
	Neural networks
	Descriptors
	Fitting networks
	Deep Potential Range Correction (DPRc)
	Deep Potential Long Range (DPLR)
	Interpolation with a pairwise potential

	Trainer
	Learning rate
	Loss function
	Training process
	Multiple tasks training

	Model deviation

	Technical implementation
	Code architecture
	Performance
	Hardware acceleration
	MPI implementation for multi-device training and MD simulations
	Non-von Neumann molecular dynamics (NVNMD)

	Usability
	Documentation
	Easy installation
	User interface
	Input data
	Model visualization

	Extensibility
	Application programming interface and third-party software
	Customized plugins

	DeepModeling Community

	Example application: molecular dynamics
	Benchmarking
	Datasets
	Models and hardware
	Results and discussion

	Summary
	Data Availability
	Acknowledgments
	Fifth-order polynomial interpolation
	Features without GPU support
	References

	Manuscript File
	Fig 1
	Fig 2
	Fig 3

