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ABSTRACT

The Genome-to-Phenome (G2P) problem is one of the highest-priority challenges in applied biology. Ecophysiological crop models (ECM)
and genomic prediction (GP)models are quantitative algorithms, which, when given information on a genotype and environment, can produce
an accurate estimate of a phenotype of interest. In this article, we discuss how the GP algorithms can be used to estimate genotype-specific
parameters (GSPs) in ECMs to develop robust prediction methods. In this approach, the numerical constants (GSPs) that ECMs use to distin-
guish and characterize crop cultivars/varieties are treated as quantitative traits to be predicted by genomic prediction models from underlying
genetic information. In this article we provide information on which GP methods appear favorable for predicting different types of GSPs, such
as vernalization sensitivity or potential radiation use efficiency. For each example GSP, we assess a number of GPmethods in terms of their suit-
ability using a set of three criteria grounded in genetic architecture, computational requirements, and the use of prior information. In general,
we conclude that the most useful algorithms were dependent on both the nature of the particular GSP and the GP methods considered.

KEYWORDS: Ecophysiological model; Genomic prediction model; Genotype-specific parameters.

1. INTRODUCTION
It is widely agreed that agricultural crop production is not on
track to meet the production doubling needed by 2050 for hu-
manity to avoid major food security disruption (Godfray et al.,
2010). Recognized mitigation strategies include (1) acceler-
ating genetic gains and (2) employing improved in-field pro-
duction management methods such as precision agriculture.
Both of these approaches require an enhanced ability to pre-
dict the behaviors of novel genetic lines subjected to innovative
management programs in potentially non-analog environments.
Acquiring such a predictive ability defines the genome-to-
phenome (G2P) problem – declared by the US National
Research Council to be one of the highest-priority challenges

in applied biology (Council, 2009). Breeding programs require
predictions to efficiently decide on which crosses to make.
Farmers need genetically-informed analytics to predict the out-
comesofmanagementoptions amongwhich theyhave to choose
and apply in their unique field environments.

Most generally, a solution to the G2P prediction problem
will be a quantitative algorithm, which, when given information
on a genotype and environment, can produce an accurate esti-
mate of a phenotype of interest. That said, at present, there are
three major and virtually disjoint algorithmic schools for phe-
notype prediction. These are, from oldest to youngest, quantita-
tive genetics (QG; Fisher, 1919, - see commentary by Moran
et al. (1966); Lynch and Walsh, 1998), ecophysiological mod-
eling (ECM; Bouman et al., 1996; Hanks and Ritchie, 1991;
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Thornley and Johnson, 1990), and systems biology (SB; Gould
et al., 2006; Locke et al., 2005; Voit, 2017; Alon, 2006). Despite
the fact that the three paradigms are ostensibly describing the
same systems, they strongly separate along various dimensions
resulting in very little overlap between their respective scien-
tific communities, thus virtually eliminating any opportunity for
broad synergism.

The first such great divide is between those models grounded
in differential equations (ECM and SB) and those taking alge-
braic approaches (QG). ECM and SBmethods find it quite easy
to calculate time series behaviors like daily values of leaf area
or hour-by-hour levels of clock gene expression. QG is typically
limited to process endpoint predictions whose accuracy can suf-
fer because time-dependent factors contributing to the results
are either glossed over or only represented by average values
(e.g. mean growing season temperature).

A second dimension is subject matter focus. QG seeks to re-
late genotypes to phenotypes directly via general linear models.
This works well as heritability increases but QG models have
difficulty representing interaction effects – doing so is cumber-
some, involves equationswithmany terms, and results in a loss of
statistical power. Because it is the oldest of the three approaches
there is a vast literature on different specific techniques, their
strengths, and weaknesses (Walsh and Lynch, 2018; Lynch and
Walsh, 1998; Falconer and Mackay, 1996). In sharp contrast,
ECMs are very good at representing the temporal interactions of
mechanistic physiological processes, for example, photosynthe-
sis and growth, but are limited in accomodating genetics. There
are now ECMs for all major crops, many minor ones, and even
a range of economic weed species (Jones et al., 2003; Hoogen-
boom et al., 2019; Keating et al., 2003; Debaeke et al., 1997;
Kiniry et al., 1992; Williams et al., 1989). Systems biology (SB)
models view interacting networks of genes, their products, or
other metabolites from the perspectives of biochemical kinet-
ics and/or signal processing circuitry (Voit, 2017; Alon, 2006).
Figure 2 in Hammer et al. (2019) set forth a notion wherein
SB-level events can have “shorter” or “longer” “distances” to
whole-plant phenotypes. Typical examples would be, respec-
tively, flowering time (Gursky et al., 2018; Wang et al., 2014)
and yield.The authors suggest that QG and SBmodels are more
likely to be usefully predictive over short phenotypic distances
but cannot reach the more distant traits for which models of
ecophysiological processes will probably be more helpful. Thus,
solving the G2P problems requires melding the skills of models
at both end of the distance spectrum.

While there are exceptions (e.g. Chew et al., 2017) most of
the example fusions have been between ECMs and QG (White
and Hoogenboom, 1996; Reymond et al., 2003; Hammer et al.,
2006; Technow et al., 2015; Messina et al., 2018) and we fo-
cus herein on this combination - especially the highly effective
subset of the latter called genomic prediction, GP. This is com-
plicated by the very different data, object, study types, etc. that
separate the two classes of models. ECMs typically seek to pre-
dict the time series behavior of an idealized single plant in a spe-
cific, circumscribed site. Spatial variation (even within different
parcels of the samefield) is handled as separate environments. As
such, the data requirements calibrating and/or running ECMs
require - in the words of a helpful reviewer - comprehensive,

multi-stagemeasurements. Because of their 40-60 years of devel-
opment, ECMs can also output hundreds of separate variables,
most of which are only of interest to researchers. In contrast, GP
models integrate data from dozens or hundreds of genetically
different lines, often collected at single points in time such as at
harvest but from multi-environment trials spread out over large
geographic regions. On their output side, however, GP models
typically only attempt to predict a very small number of variables
of interest to commercial end-users.

To this point in time, there has been an active community
working on combining ECMs and GP, but – in comparison to
the world-wide scale of crop breeding and cropmodeling efforts
– it is rather small. Their approach treats the constant param-
eters (called “genotype-specific parameters”, GSPs) that ECMs
use to distinguish and characterize crop cultivars/varieties as
quantitative traits to be predicted by QG models from un-
derlying genetic information. A good entry point into recent
(and preceding) literature on this methodology is Technow
et al. (2015) who presented an example integration of a maize
crop growth model (CGM, a synonym for ECM) with whole
genome prediction (WGP) using approximate Bayesian com-
putation and synthetic data. Their work was followed up by
Cooper et al. (2016) wherein the CGM-WGP model was ap-
plied to a real maize dataset and Messina et al. (2018), where
the CGM-WGP model was extended for a wider application in
multiple environments using a hierarchical Bayesian approach.
Voss-Fels et al. (2019) reviewed the numerous challenges
facing genomic selection and suggested that improved pre-
dictive potential can be likely be achieved by integrating en-
vironmental descriptors and crop models with classic GS
models to address deficiencies in the predicting performance
in future environments. Diepenbrock et al. (2022) showed that
CGM–WGP was more predictively skilled than a commonly
usedWGPmethod for untested genotypes evaluated in untested
environments. The CGM-WGP approach in Technow et al.
(2015) is thoroughly illustrated by Cooper et al. (2021) us-
ing a hierarchical crop model combined with an infinitesimal
GP model. The article provides a robust conceptual framework
of how breeding programs and crop simulation modeling ap-
proaches complement each other to achieve shorter breeding
cycles and improved genetic gains. Very recently, Messina et al.
(2022a) examined the parameters of a simple model to dis-
sect the relationships between maize yield & yield potential
vs. yield stability across environments in the context of selec-
tion for drought tolerance and Messina et al. (2022b) presented
and evaluated a CGM-WGP prediction algorithm for multi-trait
prediction.

Because of limited overlap between the ECM and GP com-
munities as well as their modeling approach differences pointed
out earlier, the capabilities of ECMs are unknown to the bulk
of QG experts as is the range of QG techniques available to ex-
tend ECMs into full G2P predictors. Equally unknown are the
features of GP approaches among ecophysiological crop mod-
elers. As a move toward closing this information gap, we will,
herein, establish GSP categories based on their likely genetic ar-
chitectures with exemplar GSPs for each category. Using a set of
three criteria grounded in architecture, computational require-
ments, and use of prior information, we shall evaluate a number
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of QG prediction methods in terms of their suitability for each
category/exemplar.

The intended audience for this paper will have more familiar-
ity with ECMs thanQGmethods.That said, we will (1) summa-
rize theGSP concept for those not having encountered it before.
This will be followed by (2) an explanation of prominent QG
methods in some detail, (3) a specification of the criteria to be
used in evaluating their applicability, and (4) the GSP examples.

1.1. What areGSPs?
When one fits the regression line y = mx + b using

paired (xi, yi) data, statisticians refer to the symbols m and b as
“parameters”. They are constants (i.e., not dependent on i),
where i indexes theobservations. In contrast, the symbols x and y
are, respectively, the independent and the dependent “variables”
– that is, they (at least in principle) take on different values for
different i’s. While both elementary and rather abstract, these
statements provide a starting point toward understanding GSPs
as used within the ECM community.

A crucial distinction between ECMs and models like the
above regression equation is that ECMs predict time-varying
values. To do so they embody both algebraic equations and dif-
ferential equations which relate the rates of change of modeled
quantities to other variables (i.e. time-varying) and parameters
(i.e. constants) present in the ECM. Inmathematical vernacular,
an ECM is a set of differential algebraic equations, commonly
abbreviated as “DAE”.

Over time, the main strategy that has been used to improve
ECMs has been reductionism. That is, ECM submodels have
been made more elaborate with the addition of more detailed
processes, more equations, and more parameters. This begs the
question as towhether this reductionismhas some natural floor?
That is, “Is there some aspect of biology that is intrinsically
constant?” For any given individual, the answer is “Yes” – its
genetic constitution, i.e. genotype, is fixed at fertilization and
does not change although different portions of an individual’s
genome might be (in)active in different environments and/or
time points.

But this does not mean that effective modeling can only be
done at that ultimate lowest level. After all, it simply cannot be
said that ECMs have been devoid of utility for the 60 years since
their inception. Plants are, after all, macroscopic objects that,
of necessity, obey the mathematical laws of physics and chem-
istry at all levels, a fact that most ECMs exploit. The question
then becomes how to best couple simplifying regularities ex-
isting at the genetic level. A greatly illustrative example points
the way. A central component in many ECMs describes the rate
of leaf expansion (LER). This can be influenced by a number
of processes including the rate at which photosynthesis creates
new raw materials, the proportion of that new production al-
located to leaf growth, coupled with a proportionality factor
(specific leaf area, SLA) relating the latter amount to leaf area
(Yin et al., 1999). Another scheme is to assume that new pho-
tosynthate is not limiting, in which case leaf expansion is pri-
marily driven by the net storage of incompressible water passing
through the plant and the pressures it generates. Note that both
of these conceptions are bound by the laws of mass and energy
conservation.

The latter approachwas used inReymond et al. (2003) via the
equation

dL
dt

= (T − T0)(a + b VPD + c𝜓) (1)

where dL

dt
is theLER; (T−T0)a is the effect ofmeristem tempera-

ture (T) onLERwithT0 being the base temperature; VPD is the
atmospheric vapor pressure deficit; and𝜓 is soil water potential.
Simply stated, the model states that VPD and𝜓 create a physical
gradient causing water to flow through the plant, some of which
causes the leaves to expand analogously to water balloons, in a
temperature-sensitive fashion.

The quantities a, b, and c are themodel parameters. Reymond
et al. (2003) used QG methods to find quantitative trait loci
(QTL) for these parameters. The most important aspect of this
work is that, unlike theQTL for SLA, the ones for these parame-
ters did not depend on the environments used to isolate them –
that is, they only depended on plant genotype, which, as noted
above, is fixed at fertilization. Thus, these parameters are rightly
called genotype-specific and are powerful tools for prediction.

Thus, a goal for ECM modeling becomes formulating ECMs
whose parameters have this property and then using QG to link
them to the genome. For a given variety (even one that does not
yet exist), one can then (1) use themarkers at theQTLpositions
to predict the GSPs, (2) insert those values into the ECM, (3)
run it with inputs of weather, soils, and production input data
characterizing the sites and (possibly alternative) management
practices of interest, and (4) predict the performance of that
genotype under previously untested conditions (e.g. a specific
grower’s unique farm or a projected future climate).

Of course, QTLs are only one QG approach and, indeed, far
from the best. For example, QTL analysis aims to find sets of in-
dividual markers that have statistically significant effects on the
trait of interest. In contrast, GP methods are based on the desire
to successfully make predictions rather than to identify associa-
tions.That is, the assumption that the entire assembly of makers
might contain useful information even when individual markers
or small subsets of them fall short of statistical significance. Fol-
lowing that tenant and to repeat the aim of this paper in more
specific terms, it is to provide information onwhichGPmethods
appear favorable for predicting GSPs of different types.

1.2. Genomic predictionmodels
The capacity of generating rich, multidimensional genomic

variants has invited breeders to take advantage of whole-genome
approaches to obtain the genomic estimated breeding values
(GEBVs) of individuals to facilitate the identification of poten-
tial parents for the next generation based solely on genotypic
information of existing lines- amethodoriginally called genomic
selection (GS;Meuwissen et al., 2001; Crossa et al., 2010; de los
Campos and Rodriguez, 2013). At its inception, Meuwissen
et al. (2001) assumed that many genes each exerted small phe-
notypic effects (i.e. what is called an “infinitesimal polygenic ge-
netics architecture”) and provided a mixedmodel for best linear
unbiased prediction (BLUP; together with two other Bayesian
estimators). These methods motivate a data-driven approach to
estimating totalGEBVs fromallmarkers simultaneouslywithout
relying on any specific genetic knowledge.
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Since then, numerous improvements have been proposed to
increase predictability for various crop systems leading to sev-
eral GP algorithms for GS. For example, Thavamanikumar et al.
(2015), Wimmer et al. (2013), and Ishwaran and Rao (2010)
demonstrated that ridge regression best linear unbiased predic-
tion (RRBLUP), also called ridge regression (RR; Hoerl and
Kennard, 1970), can be a good choice in general due to its ro-
bustness and computational efficiency. Further, de los Campos
and Rodriguez (2013), Daetwyler et al. (2010), andHayes et al.
(2010) presented methods employing variable selection, such
as Bayesian LASSO (BL; Park and Casella, 2008), and claimed
superiority to RRBLUP for traits influenced by a small number
of genes with large effects (e.g., grain hardness trait in wheat).
However, evidence of epistatic effects on polygenic traits is vast
and well documented (Holland, 2010, 2006). For such pheno-
types, nonparametric methods, like reproducing kernel Hilbert
space (RKHS; Gianola et al., 2006; Gianola and Van Kaam,
2008), and random forests (RF; Breiman, 2001), have been con-
sidered as alternatives to modeling complex interactions under
the assumption that they can capture non-additive effects and
the signals from high-order interactions (Heslot et al., 2012;
Pérez-Rodríguez et al., 2012).

The first two models suggested by Meuwissen et al. (2001)
have expanded into the Bayesian alphabet (Gianola et al., 2009)
comprising a suite of linear models used in genomic prediction.
Conventionally, each model is denoted by a particular letter or
combination of letters and symbols (i.e. Bayes A, Bayes B, and
Bayes C𝜋) meant to indicate the usage of a specific conditional
prior unique to that linear model. The former, (e.g., Bayes A)
reduces the effects of some markers toward zero; and the lat-
ter (e.g., Bayes B and Bayes C) only retain a subset of mark-
ers, assuming the remaining ones to have zero effects. By and
large, these Bayesian models can also be divided into two cate-
gories along a different dimension - those that exploit variable
shrinkage and ones that attempt variable selection.

“Shrinkage” is a global variance reduction technique that can
be applied during the fitting phase of an estimator to bias the pa-
rameters towards zero by a particular amount, yielding a reduced
sensitivity to outliers, robustness to multicollinearity, and more
accurate predictions. Reducing the variance of the estimator in-
duces a regularizing effect on the model which can be especially
beneficial for overparameterized systems with many predictors.
Shrinkage is a prominent component in GP and has seen exten-
sive use in various formulations of the additive model. Charles
Roy Henderson originally described the Best Linear Unbiased
Predictor (BLUP) model for the estimation of random effects
under a shrinkage framework (Henderson, 1963, 1984). While
shrinkage principally operates on the marker effects as a regu-
larization technique, in GP models it also acts as an avenue to
impose genetic assumptions about the trait in question. Indeed,
in the original work, Meuwissen et al. (2001) expanded on this
by introducing twoBayesian linearmodels, Bayes A andBayes B,
that reflected differing assumptions about the genetic architec-
ture underlying trait variability. Bayes B, for example, operates
as a variable selection model by selecting only a subset of mark-
ers to be includedwhile shrinking the remainingmarkers to have
zero effect under the assumption that only a small number of ge-
netic factors influence the given trait. A successful application of

this can be seen with the oligogenic architecture of plant height
in wheat in a given population, which lends itself to the Bayes B
model, where the additive genetic variation for this trait can be
mostly represented by only 4major QTLs (DeWitt et al., 2021).
The flexibility provided by different formulations of shrinkage
has led to a large set of applicable models designed to predict
traits with a variety of genetic architectures.

Thus, the selection of a model, along with its corresponding
prior, is also meant to reflect the underlying genetic architec-
ture of the trait in question and to potentially improve predic-
tive performance. Bayes LASSO, for example, assumes a double
exponential prior for marker effects, introducing aggressive
shrinkage towards zero for weakly related parameters (Park and
Casella, 2008) under the assumption that the trait is mostly de-
termined by large-effect markers. The Bayes B model, on the
other hand, incorporates a mixture distribution to apply strong
shrinkage towards a point mass of zero for the effects of a sub-
set ofmarkers,mechanistically suggesting that thismarker subset
does not impact the predicted traitwhatsoever(Meuwissen et al.,
2001). Bayes B has been successfully applied to grain yield pre-
diction inwheat (Haile et al., 2021; Zhao et al., 2013;Haile et al.,
2018), tick resistance in cattle (Cardoso et al., 2015), and grain
yield in maize (Li et al., 2020a), largely achieving competitive
results.

The flexibility provided by the various formulations of the ad-
ditive model under the Bayesian alphabet framework has made
them an especially popular option for predicting complex traits
in both livestock (Wang et al., 2019b; van den Berg et al., 2020;
El Jabri et al., 2019) and crops (Kwong et al., 2017; Deomano
et al., 2020; Shikha et al., 2017). Empirically, the original BayesA
and Bayes B models frequently outperform traditional BLUP
models in benchmarks (Hamidi Hay and Roberts, 2017; San-
tos et al., 2015; Lopes et al., 2021; Palaiokostas et al., 2018).
Furthermore, the development of more sophisticated Bayesian
linear models, like the Bayes C𝜋 model (Habier et al., 2011),
has expanded the alphabet and addressed weaknesses found in
earlier techniques (in this case the ability to designate an un-
known mixture probability in Bayes B). In addition, for traits
with higher heritability and fewer QTLs, the Bayes U model
that utilizes a “global-local” shrinkage prior (a U shape Horse-
shoe prior) (Carvalho et al., 2010; Pong-Wong and Woolliams,
2014) has been considered, owing to the property of the con-
tinuous shrinkage global-local prior that can adaptively shrink
noise to zerowhile leaving the effects of important loci unshrunk
(Ge et al., 2019).

While the success of Bayesian alphabet models has been rec-
ognized, they remain limited by only modeling additive genetic
variance. Recently, interest has shifted to semi-parametric mod-
els that can account fornon-additive genetic variation, like repro-
ducing kernel Hilbert spaces regression (Gianola et al., 2006),
which has occasionally demonstrated superior prediction accu-
racy (Pérez-Rodríguez et al., 2012). In a novel application of ge-
nomic prediction,Wang et al. (2019a) provided a framework for
predicting genotype-specific parameters in a Brassica rapa leaf
growth model. In their evaluation of eight genomic prediction
models, including three Bayesian alphabet models, RKHS was
found to outperform the other algorithms for all GSPs tested,
likely indicating that non-additive models may be required to
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accurately reflect the interacting complexities of crop model
parameters.

There are a number of interrelated factors commonly dis-
cussed in the GS performance literature. These include:

1. the size of the training population, relatedness between
training and validation populations (Rincent et al., 2012;
Akdemir et al., 2015; Isidro et al., 2015;Michel et al., 2017;
Neyhart et al., 2017)

2. marker density (Daetwyler et al., 2010; de Oliveira et al.,
2018)

3. trait heritability (Heffner et al., 2009)
4. target trait’s genetic architecture and the distribution of

linkage disequilibrium (LD) between genetic markers and
the underlying QTLs (Desta and Ortiz, 2014)

5. and finally, the genotype-by-environment interaction
(Crossa et al., 2017)

In the original GS paper, Meuwissen et al. (2001) considered
thenumbers ofQTLs and relativemagnitudeof genetic effects to
prediction performance and indicated that, without interaction
terms, improved accuracy can be expected when the distribu-
tion of genetic effects is known. Similarly, including the effect of
major genes showed an advantage forGSperformance in simula-
tion and empirical studies (Rice and Lipka, 2019; Sarinelli et al.,
2019; Zaïm et al., 2020); however, this advantage begins to di-
minish when the number of QTLs is greater than 10 (Bernardo,
2014). In the cases where full-sib families are used, the per-
formance of the GS algorithm evaluated by cross-validations
within the population would be determined by the presence of
major genes, or whether or not marker density is enough to cap-
ture the LD with QTLs (Howard et al., 2014). Using a dou-
ble haploid population, prediction accuracy was examined for
four phenotypes (grain yield, protein content, grain hardness
trait like kernel weight, and adjusted sedimentation value) (Hu
et al., 2019). The results showed that BL and RF produce the
most stable predictability in all comparisons when considering
only the cross-validation by Pearson’s correlation as the accuracy
measure (Hu et al., 2019). As a classic polygenic trait, the pre-
dictability of grain yield varied significantly across different field
seasons. Amongst the prediction algorithms examined, the pre-
dictionperformanceofRRBLUPandRKHSvariedmore among
replicates than others.

BL and RRBLUP are both linear models that assume the lin-
earity of marker effects. The difference between these two is the
shrinkage of marker effects - RRBLUP assumes equal variance
and shrinks all the marker effects to the same level, whereas BL
can actually shrink some coefficients exactly to zero, performing
as a variable selection method. With a relatively smaller sample
size than the DH population addressed in Hu et al. (2019), we
suspect that the superior performance of BLwas due to its ability
to capture the non-uniform distribution of marker effect across
the genome (Daetwyler et al., 2010), while avoiding overfitting.
Using a large European winter wheat population of 2,325 com-
mercial lines in He et al. (2016), the polygenic nature of grain
yield is more likely to be captured by the sample size, and as a re-
sult, these associated issues of RRBLUP seemed to be alleviated,
thus showing comparable prediction ability.

2. ASSESSMENTCRITERIA
From here forward, we assume that the modeler has an ECM
and has selected a group of GSPs to work within the context
of some suitable population of genotypes. While, in principle,
the researcher might desire to construct GPmodels for all of the
model’s GSPs, this might not be necessary. For example, a global
sensitivity analysis (e.g. via the variance-based Fourier ampli-
tude sensitivity testing, a.k.a. “FAST”) might reveal a subset of
the parameters that are quite influential in determining the trait
of interest. Were that the case, parsimony (not to mention com-
putational efficiency) would suggest focusing GP modeling on
that smaller set. Moreover, we also assume that the GSPs chosen
are identifiable. It is not necessarily the case that this is automat-
ically true for any givenGSP in any particular ECM, even among
widely accepted and broadly used models (Lamsal et al., 2018).

In order to evaluate various GP algorithm types for particular
applications, we defined three assessment criteria (AC) to assess
each algorithm for its suitability:

AC1) Handling a spectrum of genetic architectures from oli-
gogenic to polygenic

AC2) Inclusion into a single-stage versus a multi-stage estima-
tion process

AC3) Capacity to incorporate prior knowledge/information

In the case of AC1, we recognize that many GP algorithms
are designed with assumptions about the genetic architecture
underlying a particular trait of interest. Specifically, we are
focused here on the question of whether a trait has a few ma-
jor genes controlling the trait (oligogenic) or a large number of
genesmost of which have small effects (polygenic).We presume
that assumptions about genetic architecture made in the devel-
opment of these algorithms will make some algorithms more
suitable for cases in which the genetic architecture underlying
theGSPof interestmatches the original assumptions underlying
the algorithm.

The second criterion (AC2) is meant to deal with the prac-
tical matter of computational complexity and efficiency of the
estimation process. Previous efforts in GP and GSP estimation
can be classified into two main groups: one-stage and two-stage
estimation. In the one-stage approach, GSPs and the trained GP
model meant to predict them are simultaneously fitted. In this
approach, each iteration of the algorithm requires an evaluation
of the ECM for each genotype and environment (Fig. 1). An ex-
ampleof theone-stage estimationmethod includesMessina et al.
(2018). In contrast, the two-stage approach estimates values for
the GSPs first and then the GP model is subsequently fitted by
the GP algorithm (Fig. 1). A two-stage estimation method is
utilized in Toda et al. (2022).

The third criterion (AC3) takes aim at the fact that the levels
of knowledge about various processes and the genetics driving
them vary depending on the species and process being studied.
In cases where much is known about some subset of these, it
is inefficient to force the GP algorithm to relearn what we al-
ready know. In such cases, it would be preferable to inform the
algorithm about what is already known through the use of prior
knowledge or information. This might take the form of priors
with non-zero expected values formarkers or geneswhere effects
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Figure 1. Illustration of one- and two-stage genotype specific parameter (GSP) estimation linked with genomic prediction (GP). Panel A
shows the one-stage process in which each iteration of a GP training algorithm requires an evaluation of the ecophysiological crop model
(ECM). Panel B shows the two-stage process in which values for GSPs are first estimated in Stage 1. These estimated GSP values are then
treated as “Observed” GSPs for subsequent GP model training with one or more algorithms in Stage 2.

are known or in the form of structural priors in which separate
prior variances might be specified for markers within vs outside
regions previously identified by QTL or other analyses to be re-
gions of importancewithin the genome.Thus,wedeem it impor-
tant and relevant to assess GP algorithms in terms of their ability
to incorporate such prior information.

3. DISCUSSION
The parameters in crop models are usually calibrated for each
genotype across all environments by iterative trial and error pro-
cedures via different optimization algorithms (Akhavizadegan
et al., 2021). In this study, we present genomic prediction mod-
els as a potential methodology to estimate the GSPs in crop
models. We discuss and characterize the applicability of sev-
eral GP algorithms under different scenarios as no one GP al-
gorithm is the best fit across different species and traits (Azodi
et al., 2019). Below, we present a discussion within each of
the three assessment criteria we have established with example
GSPs.

3.1. Handling a spectrumof genetic architectures (AC1)
As illustrated in Fig. 2, the success of GP algorithms largely

depends on the genetic architecture of a trait. Marker-assisted

selection (MAS) methods lie in the “simpler” end of
algorithms being suitable for predicting traits governed by few
genes.On the other hand, non-parametric prediction algorithms
such as RKHS are flexible and can be more suitable for
predicting traits with complex genetic architectures and strong
gene-environment interactions (absent by definition in GSPs),
as demonstrated in studies byHu et al. (2023), Costa-Neto et al.
(2021), and Gianola (2021). However, in practice, more than
one GP models are necessary to fit to determine a method for
best prediction. In the following paragraphs, we discuss the po-
tential relations between the range of GP algorithms and trait
genetic architecture complexities. This discussion will help to
narrow down the range of GPmodels that need to be fit depend-
ing on the phenotypic trait. To infer a trait’s genetic architecture,
weuse informationonnumber and sizeofQTLs fromQTLstud-
ies. For traitswith limitedQTLstudies,weutilize informationon
trait heritability.
Flowering time: Flowering time in wheat is governed by few

major QTLs making it an oligogenic trait (DeWitt et al., 2021).
Although considerably influenced by the environment, this trait
has a simple genetic architecture governed by a small set of
known genes with epistatic interactions. Algorithms that allow
variable shrinkages such as Bayesian family and non-parametric
methods are suitable in such cases. The non-parametric al-
gorithms potentially capture the complex interactions making
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Figure 2. Conventional genomic prediction algorithms using cultivar genomic markers

them suitable to model epistatic genes (Salehi et al., 2021; Mo-
men et al., 2018; Howard et al., 2014). Bayes B, which applies
aggressive shrinkage to zero-effect for most markers, was found
to be the most accurate model to predict time to young mi-
crospore, a flowering time-related trait in wheat (Thavamaniku-
mar et al., 2015). In a study by Pérez-Rodríguez et al. (2012)
which compared different GP methods, non-parametric meth-
ods such as RKHS were found to more closely predict days to
heading inwheatwhich usually indicates a high degree of genetic
interaction. In a commonly used crop model DSSAT-CERES-
wheat, the flowering time parameters are P1V and P1D which
represent vernalization and photoperiod sensitivity coefficients
(Jones et al., 2003).These parameters, when correctly estimated,
are genotype-specific and independent of the environment. The
genetic architecture of flowering time varies between different
species. Flowering time inmaize is governed bymanyQTLs and
is considered a polygenic trait with additive marker effects (Li
et al., 2016; Buckler et al., 2009). Such a trait would be best pre-
dicted by linear algorithms such as RRBLUP since it assumes
homogeneousmarker effects across loci (Meuwissenet al., 2001;
Wang et al., 2018).
Kernel weight: Kernel weight is one of the primary yield com-

ponents of grain yield. In cereals, the potential kernel weight
is considered to have high heritability and thus relatively sta-
ble across environments. The trait is governed by many QTLs
in the three major cereal crops, wheat (Cao et al., 2020), maize
(Liu et al., 2020; Zhang et al., 2020; Liu et al., 2017; Raihan
et al., 2016), and rice (Li et al., 2020b; Roy and Shil, 2020;
Zhang et al., 2016) with additive gene effects. The prediction
accuracies of different genomic prediction models are reported
to be similar across parametric and non-parametric models in
wheat (Haile et al., 2021), rice (Yu et al., 2022), and maize (Liu
et al., 2018) for kernel weight. In cropmodels, different parame-
ters related to grain characteristics are often used. The GSPs G1
and G2 in DSSAT-CERES-wheat represent kernel number per
unit canopy weight at anthesis and standard kernel size under
optimum conditions, respectively (Attia et al., 2016).
Leaf area: Leaf area parameters such as potential maximum

leaf area and leaf growth rate determine leaf size and growth
rate which determines the photosynthetic potential of a plant. In
wheat, the uppermost (flag) leaf contributes about 50% of pho-
tosynthates for grain filling (El Wazziki et al., 2015; Evans and
Rawson, 1970). Fourteen additiveQTLs related to flag leaf char-
acteristicswere reported forwheatwhereby eachQTLexplained
2.78% to13.32%(Yanet al., 2020). In a studybyDuet al. (2019),

29 QTLs for flag leaf length were identified among which one
QTL consistently explained more than 30% of phenotypic vari-
ation across two experiment years. For the flag leaf area, theQTL
with the greatest effect explained 10.31% and 23.46% across the
two years. A similar conclusion of detectable genetic control was
also supported in maize (Cui et al., 2017). In another study in
maize, 15QTLswere identified for the leaf area,which jointly ex-
plained 65.4% of the total phenotypic variation (Li et al., 2016).
Tian et al. (2011) concluded that leaf traits are mostly governed
by small effects with little interaction. The QTL studies indicate
that these traits are moderately heritable and could be reason-
ably predicted with GP models with genotypic information for
a given population and environment. However, QTLs are usu-
ally specific to a population and environment which limits our
ability to predict for a novel environment, unless the G × E
effect is explicitly included in the model (Hu et al., 2019).
Predicting traits related to leaf characteristics that are environ-
mentally independent and genotype-specific such as maximum
leaf size (a GSP) would allow us to utilize the parameter tomake
predictions across the different environments. Genomic predic-
tion algorithms that address additive genetic variances such as
RRBLUP and Bayes LASSOmight be adequate to predict GSPs
related to leaf traits since they show little epistasis (Tian et al.,
2011). On the other hand, since the measurable leaf traits in the
field are considerably influenced by the environment, estimat-
ing GSPs related to leaf traits with an ECM through a predic-
tive equation for the measurable traits that embody GSPs might
be a more successful approach. In addition, due to the cumber-
some and destructive nature of data collection, conventionally,
leaf traits aremeasured in a small populationof genotypes. Rapid
and non-destructive high throughput phenotypingmethods can
help expand themapping population for such traits that are chal-
lenging tomeasure in the field. For example, remote sensingwith
aerial-based platformshave been successfully used to collect data
on leaf area index over the growing season in several crops (Wu
et al., 2022;Hasanet al., 2019; SimicMilas et al., 2018).Different
leaf area parameters are oftenused by process-based cropmodels
such as SIZELF inCROPGRO-soybean (Boote et al., 2003) and
LAImx in EPIC (Williams et al., 1989) representing maximum
leaf size.
Water use efficiency (WUE): WUE is a genetically complex

trait considerably influenced by environment and management.
While being a genetically complex trait, WUE has been noted to
bemoderately heritable.WUE is studied at different levels: crop -
agronomic WUE, plant - transpiration efficiency (TE), and
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leaf - instantaneous water use efficiency (IWUE). At the plant
level, carbon isotope elements are often used as surrogate traits
for TE and have a high broad sense heritability (Sorgini et al.,
2021; Vadez et al., 2014). A study by Sorgini et al. (2021) identi-
fied 28 QTLs across different carbon isotope elements in maize.
At the leaf level, a study by Lopez et al. (2019) identified four ge-
nomic regions associated with IWUE in soybean and suggested
the use of Bayesian genomic prediction methods for genotypic
selection and prediction for intrinsic WUE. On the contrary, it
is challenging to identify the genetic drivers of WUE at the crop
level due to the G × E interactions affecting biomass and water
use under field conditions. In a controlled environment exper-
iment in Setaria, WUE was reported to be highly heritable and
polygenic (Feldman et al., 2018). Genetic manipulations to im-
prove WUE are mostly attempted through manipulation of leaf
photosynthesis and stomatal conductance and their relationship
as reviewed in Leakey et al. (2019). Prediction of WUE compo-
nents such as IWUE, TE, and carbon isotope elements is more
likely to be successful with genomic prediction than the overall
agronomic WUE because of their higher heritability and stabil-
ity across environments. Examples of parameters related to crop
water use in cropmodels areWP in AquaCrop which represents
water productivity or biomass accumulated per unit of transpi-
ration (Steduto et al., 2009) and TE in APSIM-NWheat which
represents transpiration efficiency (Keating et al., 2001).
Radiation use efficiency (RUE): RUE is a complex trait af-

fected by many variables such as crop management, climatic
conditions, and biotic and abiotic stresses (Ullah et al., 2019).
The genetic architecture of RUE is not yet well understood.
Complex traits such as yield and biomass are driven by many
genes in most crops making them polygenic; a similar phe-
nomenon can be expected for RUE. RUE is typically calculated
at the end of the growing season as a ratio of total biomass to in-
tercepted radiation, whereas in reality, RUE is expected to vary
over the growing season (Furbank et al., 2019). Broad sense
heritability estimates for RUE during different growth stages in
wheat were reported in a range of 0.11 to 0.42 with the high-
est heritability associated with RUE from canopy closure to
physiological maturity along with five marker-trait associations
(Molero et al., 2019). At the plant level, RUE is a representation
of photosynthetic capacity whereby it has a positive relationship
with leaf photosynthesis rate until a certain threshold (Cabrera-
Bosquet et al., 2016; Sinclair and Muchow, 1999). Understand-
ing the genetic architecture of leaf photosynthesis might be
helpful in identifying the genetic mechanisms that drive RUE.
Example parameters related to RUE in crop models are PARUE
in DSSAT and RUE in APSIM.

3.2. Inclusion into a single-stage versus amulti-stage
estimation process (AC2)

When considering one-stage and two-stage estimation ap-
proaches there are two primary considerations which distin-
guish them: 1) the number of evaluations of the ECM and 2)
themanner in which estimates/errors interact within/across the
stage(s). A primary appeal of the two-stage approach is the po-
tential reduction in the number of ECM evaluations needed for
estimation. Assuming that stable, unbiased estimates of GSPs
can be generated in the first step, the ECMneed not be evaluated

during the training of the GPmodel by the GP algorithm. Given
the computational costs of numerically integrating theECM, the
potential reduction in compute time could be substantial when
compared to a one-stage process. This benefit may be especially
important considering that the optimal GP algorithm for pre-
dicting a given trait is rarely (if ever) known a priori and thus
multiple GP algorithms must be trained and evaluated for the
same trait of interest. A two-stage process would allow multi-
ple GP algorithms to be applied to a set of GSP estimates with
only the computational cost of the additional GP model fitting
process.

However, achieving stable, unbiased GSP estimates might be
challenging in the presence of, on the one hand, interacting pa-
rameters without adequate information from the data leading to
model equifinality/non-identifiability or, on the other hand, lack
of model expressivity (i.e. the model cannot reproduce regions
of the state space within which certain observations lie; Lam-
sal et al., 2018). Either of these cases would introduce error into
the GSP estimates upon which the second stage of estimation
would be based.This error would add further noise to what is al-
ready a noisy signal thatGP algorithmsmust decode. Although a
one-stage estimationprocesswouldnot completely resolve these
issues in all situations, it could allow data from all genotypes to
simultaneously inform the estimation of GSPs as well as the GP
model weights that predict them. This phenomenon is widely
known within the field of quantitative genetics (Sorensen and
Gianola, 2007), andBayesian hierarchicalmodelingmore gener-
ally (Gelman et al., 2013), where it is referred to as information
borrowing.

For example, flowering time in wheat is a trait that is often
decomposed into vernalization and photoperiod sensitivity pa-
rameters (e.g. P1V and P1D in DSSAT-CERES-wheat or Rv
and Rp in APSIM-Wheat). The interacting effects of photope-
riod and vernalization sensitivities might make it challenging to
obtain stable estimates of these GSPs for any given genotype.
However, if the GSPs for all genotypes are estimated simultane-
ously with the GPmodel weights, the shared information across
genotypes may generate estimates of GSPs for individual geno-
types with greater certainty and, as a direct result, more coher-
ence with the degree of genetic similarity between genotypes.
As the GP model converges, more closely related genotypes
(e.g. individuals with the same alleles for vernalization genes)
would tend to have more similar estimates of GSPs (e.g. P1V
or Rv) and would thus allow the combined genetic and phe-
notypic data of the whole population to inform the GSP esti-
mates for a given genotype. Consequently, the estimates for any
given genotype would be partially constrained by those of re-
lated genotypes and thereby contribute towards obtaining stable
estimates.

Figure 3 illustrates this concept. Let the two parameters on
the x- and y-axes (𝛼 and 𝛽) represent hypothetical GSPs for ver-
nalization sensitivity and photoperiod sensitivity, respectively.
The contour lines in the figure represent regions of parameter
combinations with similar goodness-of-fit given the data avail-
able for each genotype. The shaded regions represent the ranges
of parameter combinations that have identical or nearly identi-
cal goodness-of-fit for that genotype. The orange and red con-
tours represent genetically similar individuals (i.e. they have
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Figure 3. Conceptual diagram showing information borrowing between similar genotypes. The two parameters (𝛼 and 𝛽) represent
hypothetical genotype specific parameters for vernalization sensitivity and photoperiod sensitivity, respectively. The orange and red contours
represent genetically similar individuals. The green contours represent a third genotype that is genetically distinct from the other two. The
contour lines represent regions of parameter combinations with similar goodness-of-fit within each genotype. The shaded regions represent
the ranges of parameter combinations that have identical or nearly identical goodness-of-fit within that genotype. The overlap between red and
orange regions represents a region of reduced uncertainty for each genotype (due to higher combined goodness-of-fit) when the close
relatedness of red and orange genotypes (as represented by genetic data) are considered.

most or all alleles in common for genes that control vernal-
ization and photoperiod sensitivities). The green contours rep-
resent a genotype that is genetically distinct from the other
two. In the case of a two-stage process, each genotype would
have a range of uncertainty about each parameter constrained
only by the information embedded within the data for that
genotype. However, in a one-stage estimation process, the ge-
netic data would inform the estimation algorithm of the close
relatedness of red and orange compared to other genotypes
(e.g. green). That is, in the estimation of the red GSPs, infor-
mation would be borrowed from data for orange and vice versa.
Consequently, the GSP estimates for red and orange would be
pulled towards each other into regions consistent with data from
both (as represented by the overlap in red and orange shad-
ing). The result would be reduced uncertainty in the estimates
of 𝛼 and 𝛽 for both red and orange genotypes relative to other
genotypes.

This general principle of information borrowing between re-
latedgenotypes is awidely known featureofBayesianmethods in
quantitative genetics, wherein various approaches exploit forms
of genetic covariance estimates derived from pedigree analy-
sis and genomic relationships (Sorensen and Gianola, 2007).
However, in any given case, the choice between the one- and
two-stage approaches depends on the tradeoff between the ac-
curacy gains of the former relative to its greater computational
requirements.

3.3. Capacity to incorporate prior knowledge/
information (AC3)

Theprior knowledge we have about a particular trait’s genetic
architecture not only depends on the trait but also on the size
of the population from which they are measured. If one is work-
ing with GSPs or traits that are not commonly measured in large
breeding populations, the knowledge we have about the GSP is
limited by the small population size.

For example, leaf area traits are typically collected from small-
scale experiments with fewer genotypes i.e. a small population,
and thus the genetic architecture of leaf area inferred from these
data might be apparently simple; but, it may not be an accurate
representationof the true genetic architectureof the trait. In such
cases of small populations, it’s appropriate to use simple predic-
tion algorithms since it is likely that only the prominent major
genetic effects will be recoverable from the data. Nevertheless,
while dealing with such situations, careful consideration should
be given to the inferences as they may not be general enough
to extend to other populations. High-throughput phenotyping
methods, that can measure leaf area and related traits in large
populations in a small amount of time, will prove helpful in fur-
ther understanding the genetic architecture of GSPs related to
leaf area traits.

In contrast, data on flowering time is widely collected in large
breeding populations, as a result of which we could have a more
comprehensive understanding of its genetic architecture when
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genomic information is also available. In addition, pedigree
information on the population is also more readily available for
such traits that aremeasured across generations in breeding pop-
ulations. The pedigree information can be included in some GP
models such as single-step genomic BLUP, where the pedigree-
based numerator relationship matrix (A matrix) and a genomic
relationship matrix (G) are simultaneously used (Legarra et al.,
2009; Aguilar et al., 2010; Christensen and Lund, 2010).

TheBayesian formulations of theGPmodels allow us tomore
directly incorporate the genetic information on model parame-
ters through the specification of a prior distribution. The most
frequently used GP models with a Bayesian formulation are
the Bayes alphabet and non-parametric models such as RKHS.
Prior distribution in RKHS is specified for the degrees of ge-
netic similarities, whereas, in Bayesian alphabet models, priors
are specifiedonmarker effects anddifferent approaches are taken
to formulate the priors. Indeed, as described above in relation
to shrinkage and model selection, the differences between the
Bayes alphabets are primarily a result of their different prior
structures at either the level of data or variance or both. For ex-
ample, the prior distribution for Bayes A and Bayes B differ at
the level of variance. For both models, the prior at the data level
is a student-t distribution with mean zero and variance 𝜎2

g i. At
the variance level, the same prior (scaled inverse chi-sq distribu-
tionwith scale parameter S anddegrees of freedom𝜈) is assigned
to all marker effects in Bayes A. In Bayes B, however, a mixture
prior is assigned such that the prior has a high probability mass
at 𝜎2

g i = 0 and the scaled inverse chi-sq prior at 𝜎2
g i > 0. This

indicates that Bayes A assumes all markers explain the genetic
variance to some effect thusmaking it suitable to predict traits or
GSPs governed by small-effect additive genes. On the contrary,
the mixture prior in Bayes B means that a proportion of mark-
ers has a non-zero probability of explaining the genetic variance,
and the rest marker effects are shrunk to zero. This shows that
BayesBwouldperformwell in predicting traits andGSPs that are
mainly governed by a few known genes. A description of priors
for differentBayes algorithmshasbeen illustrated inmanypapers
(Meher et al., 2022; Montesinos López et al., 2022; Wang et al.,
2018; Howard et al., 2014; Verbyla et al., 2010; Gianola et al.,
2009) after being first introduced by Meuwissen et al. (2001).

Thus, while selecting the GP algorithms to predict GSPs in
ecophysiological models, different types of prior knowledge of
the GSPs or traits related to them should be taken into account.
The size of the mapping population and genetic architecture is
important to consider not only while selecting algorithms, but
also while making inferences. The marker data on GSPs can be
directly included in the Bayesian alphabet GP algorithms in the
form of a prior distribution of marker effects.

4. CONCLUSIONS
In summary, combining GP estimation of environmentally sta-
ble ecophysiological model GSPs can facilitate the prediction
of important crop traits that are subject to G × E. The choice
of GP algorithms depends on several factors such as trait ge-
netic architecture, the composition of breeding populations, the

estimation process, and the ability to incorporate prior genetic
information. High throughput phenotyping methods help ex-
pand themapping population for difficult-to-measure traits such
as leaf area and allow us to better understand the genetic archi-
tecture of the trait. A two-stage estimation process is more com-
putationally efficient whereas a one-stage estimation process has
the ability to leverage genotypic data to obtain better estimates
of the GSPs due to information borrowing between genotypes.
Some Bayesian GP algorithms can include marker data on GSP
directly into the model through a prior distribution. A further
research area in Bayesian implementation could extend to speci-
fying priors in such a way that we take into account not only the
key genes in related biological pathways but also the knowledge
about functional genomic features.
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