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Primary productivity response to climatic drivers varies temporally, indicating
state-dependent interactions between climate and productivity. Previous studies pri-
marily employed equation-based approaches to clarify this relationship, ignoring the
state-dependent nature of ecological dynamics. Here, using 40 y of climate and produc-
tivity data from 48 grassland sites across Mongolia, we applied an equation-free, nonlin-
ear time-series analysis to reveal sensitivity patterns of productivity to climate change and
variability and clarify underlying mechanisms. We showed that productivity responded
positively to annual precipitation in mesic regions but negatively in arid regions, with
the opposite pattern observed for annual mean temperature. Furthermore, productivity
responded negatively to decreasing annual aridity that integrated precipitation and tem-
perature across Mongolia. Productivity responded negatively to interannual variability
in precipitation and aridity in mesic regions but positively in arid regions. Overall,
interannual temperature variability enhanced productivity. These response patterns are
largely unrecognized; however, two mechanisms are inferable. First, time-delayed climate
effects modify annual productivity responses to annual climate conditions. Notably, our
results suggest that the sensitivity of annual productivity to increasing annual precipita-
tion and decreasing annual aridity can even be negative when the negative time-delayed
effects of annual precipitation and aridity on productivity prevail across time. Second,
the proportion of plant species resistant to water and temperature stresses at a site
determines the sensitivity of productivity to climate variability. Thus, we highlight the
importance of nonlinear, state-dependent sensitivity of productivity to climate change
and variability, accurately forecasting potential biosphere feedback to the climate system.

aridification | climate extreme | convergent cross-mapping | droughtlegacy |
empirical dynamic modeling

Climate warming, precipitation changes, and increasing aridity are major facets of con-
temporary and future climate change across terrestrial ecosystems (1-4), particularly in
drylands that cover ~45% of Earth’s land surface and support >2 billion people (5).
Ongoing climate change has led to increasing climate variability via increased frequency
of extreme climatic events, such as droughts and heat waves (1, 2, 6). Empirical studies
have primarily used linear or occasionally nonlinear equation—based approaches to
long-term (>10 y) observational data (7-11) to determine how climate change and vari-
ability affect plant primary productivity (hereafter, productivity), which is a key ecosystem
process regulating the global carbon cycle (12). In recent years, abrupt changes in plant
productivity driven by increasing aridity across space (13) and time (14) in drylands have
been more common, highlighting dryland vulnerability to future aridification (2, 3). Some
of these studies have further quantified the sensitivity of productivity to climate change
and variability at large spatial scales to forecast potential biosphere feedback to the climate
system (7, 9—11). Nevertheless, such quantifications have largely relied on a linear approach
wherein the linear regression slope of productivity against climate variables was used to
represent sensitivity (8—11). Furthermore, most precipitation—productivity relationships
at any given site are weak and account for a relatively small percentage of variation over
time (15). However, because natural systems are often complex and dynamic (16, 17),
alternative approaches are needed to determine the relationship between productivity and
climate at a site over time. Herein, we used an equation-free, data-driven approach incor-
porating complex nonlinear dynamics (16, 18) to reveal how productivity responds to
variability in precipitation, temperature, and aridity over 40 y at 48 sites across Mongolia.
Such spatial and temporal information is widely lacking; hence, it is crucial to improve
forecasts of dryland sensitivity to future climate change.

The effects of climatic drivers on productivity fluctuate over time (8, 19, 20); therefore,
system behavior is state-dependent (i.e., nonlinear). State dependency is a defining hall-
mark of complex nonlinear systems, where the relationships among interacting variables
vary in time according to different states of the dynamical system (16, 17, 21). For example,
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increasing precipitation can increase productivity during some
years but decrease productivity during other years because of var-
ying system states and depending on the state of a third variable,
such as temperature (19, 22). Consequently, “mirage correlations”
are common in long time-series data, wherein linear correlations
between variables can appear and disappear or even change sign
across time (16, 17, 23) (8] Appendix, Fig. S1 A-D). This may
lead to the previous notion that productivity is less sensitive to
climate variations at a site over time, compared with across sites
along a mean annual precipitation (MAP) gradient (24, 25). In
addition, previous studies often reported a considerably weaker
or nonsignificant temporal linear relationship between productiv-
ity and temperature, compared with that between productivity
and precipitation (10, 26), emphasizing the primary role of pre-
cipitation in driving annual changes in productivity. Notably,
however, even the absence of a linear correlation (S/ Appendix,
Fig. S1D) does not imply lack of causal effects of climatic drivers
other than precipitation on productivity (16). Such nonlinear
dynamic properties of a system cannot be described by predefined
linear or nonlinear equations (16, 17), that is, nonlinearity in this
case is not defined by asking whether the underlying equations
are linear or nonlinear (17). Statistical power to test the effects
and relative importance of precipitation and temperature as well
as changes in their interannual variabilities on productivity over
time is thus limited by previous linear or nonlinear parametric
approaches.

A critical step to account for the state dependency of nonlinear
dynamic systems is to perform more accurate forecasting of dry-
land sensitivity to climate change and variability. Empirical evi-
dence has shown that annual productivity responds positively to
increasing annual precipitation and decreasing aridity and that
the magnitude in such responses increases in more arid regions
(7, 8, 10). Yet, increasing annual precipitation and decreasing
aridity do not necessarily enhance annual productivity according
to varying system states. In drylands, the state dependency of the
system can also arise from the time-delayed effects of annual
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variation in precipitation and aridity on primary production,
which are referred to as legacy effects (11, 15, 27). Anomalous dry
years can have negative effects on productivity following drought
(15, 27), and a subsequent wet year after a dry year may not
necessarily increase productivity as expected (SI Appendix,
Fig. S1E). When negative legacy effects of precipitation on pro-
ductivity prevail across time, the sensitivity of annual productivity
to annual precipitation can sometimes be negative. The effects of
increasing annual mean temperature on annual productivity could
be positive or negative, depending on the vegetation response to
warming-induced changes in water availability and lengthening
of the growing season (19, 22, 26, 28). A regional ecosystem
model in drylands predicted that an extended growing season
because of warming can increase productivity despite increasing
aridity (22). In contrast, some studies reported that warming
effects on productivity can be negative in grasslands dominated
by C3 species, which are generally less resistant to temperature
and water stresses than grasslands dominated by C4 species
(26, 29). Although empirical evidence is limited (7, 9, 11), the
overall effects of interannual climatic variability on mean produc-
tivity over a certain period will depend on the relative magnitude
of positive and negative ecosystem responses (including immediate
and delayed responses) to annual climate conditions (11). Previous
studies suggested positive effects of interannual precipitation var-
iability in drylands with <300 mm MAP (9, 11), but this may
need to be revisited after incorporating nonlinear dynamics.

We applied empirical dynamic modeling (EDM) (16, 18), an
equation-free, data-driven approach to aboveground net primary
productivity (ANPP) and climate data from over 40 y (1978 to
2017) at 48 grassland sites (i.e., ~1,920 records of ANPP and
climate) that cover extensive gradients in the long-term MAP and
mean annual temperature (MAT) across Mongolia (Fig. 1 A and
B and SIAppendix, Fig. S2 and Table S1). Such long-term
ground-based data enable a direct coupling of climate and pro-
ductivity and should be suitable for the quantification of nonlinear
dynamics in drylands. First, we examined the overall effects and
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Fig. 1. Geographic patterns of climate and the strength of the causal effects of climate variables on aboveground net primary productivity (ANPP) across 48
meteorological sites in Mongolia. (A) Long-term (1978 to 2017) MAP and (B) MAT across sites (indicated by black circles). Geographic patterns in MAP and MAT
were visualized using spatial interpolation via ordinary kriging. (C and D) The cross-map skill p (indicating the causal strength) for observed ANPP predicting climate
variables with maximum time-series length at each site was shown as joint violin and box plots to present the kernel probability density of the values and the
interquartile range and median of the values. (C) The causal strength of annual precipitation, annual temperature, summer temperature, and SPEI on ANPP. (D)
The causal strength of interannual precipitation variability, interannual temperature variability, interannual summer temperature variability, and interannual
SPEI variability on mean ANPP in 6-y moving windows. Interannual variabilities of precipitation, temperature, summer temperature, and SPEl were calculated
as the coefficient of variation of annual precipitation, and SDs of annual mean temperature, summer mean temperature and annual SPEI, respectively. Cross-
mapping significance was determined by comparing p with the maximum time-series length as well as convergence (a difference between p at the maximum and
minimum time-series lengths) between original and surrogate time-series data (we used 1,000 surrogate time-series data obtained by randomizing the phases of
a Fourier transform of climate variables; refer to Materials and Methods for details). The P-value was estimated for each site as the number of surrogates showing
a higher p with the maximum time-series length as well as a higher convergence, divided by the total number of surrogates. The metasignificance (meta P-value
below each violin plot) was then calculated using a recently proposed method to combine the P-values [harmonic mean P-values (28)]. Different letters above
violin plots indicate significant differences in the causal strength among climate variables by paired Wilcoxon tests (P < 0.05).
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relative importance of annual precipitation, annual mean temper-
ature, summer mean temperature, and annual aridity for the water
year (September—August), as well as their interannual variabilities
on productivity. Second, we compared an EDM approach with a
linear approach in quantifying the sensitivity of productivity to
climate change and variability across sites.

We hypothesized that negative legacy effects of annual precip-
itation on productivity would prevail across time under high
interannual precipitation variability in the drier southern half of
Mongolia (15). We expected that the increasing proportion of
annual species that survived the dry period as seeds in drier grass-
lands (30, 31) would explain the predominance of negative effects
of drought legacy. In contrast, positive legacy effects of annual
precipitation would be common, and/or the magnitude of positive
effects of precipitation would be immediate and relatively large
in the wetter northern half of Mongolia (11, 15). This might result
in a shift from positive to negative in the sensitivity of productivity
to increasing annual precipitation and decreasing annual aridity
along climatic gradients (Fig. 1 A and B) in Mongolia. We
expected an opposite pattern in the sensitivity of productivity to
increasing annual temperature. Indeed, experimental evidence
from northern Mongolian grasslands (32, 33) suggested that veg-
etation in cold environments would generally have low resistance
to warming-induced soil water deficiency, and productivity would
thus respond negatively to increasing temperature. Given that the
proportion of C4 species that have higher resistance to water stress
than C3 species increased with aridity in Mongolia (34), the neg-
ative effects of increasing temperature might be limited in south-
ern Mongolian grasslands. Productivity sensitivity to interannual
climatic variability would also reflect shifts in the dominance of
drought resistance (26, 29) and avoidance (30, 31, 35) traits in
vegetation along the north—south climatic gradient in Mongolia
(34). We expected that the balance between productivity gain
caused by positive climate extremes and loss caused by negative
climate extremes would change depending on vegetation gradients
across Mongolia, which may lead to contrasting patterns in the
sensitivity of productivity to interannual climate variability (9,
11). Using the EDM approach, we detected geographic patterns
in the sensitivity of productivity to climate across Mongolia and
identified potential mechanisms underlying ecosystem sensitivity
to year-to-year variability in climate.

Results and Discussion

We used convergent cross-mapping (CCM) (16), an EDM
method for detecting causality in nonlinear dynamic systems, to
examine the degree to which precipitation, temperature, and arid-
ity, and their variabilities, forced ANPP across the 48 sites. The
basic idea of this method is that if a candidate effect, variable Y,
can predict the current or previous state of a candidate cause,
variable X, then X causally influences Y. The cross-map skill was
evaluated using Pearson’s correlation coeflicient (p) between the
cross-map estimates and observations. Note that the values of the
selected best O (the tuning parameter indicating nonlinearity of
the dynamical system) in the S-maps were >0 in most cases of our
CCMs (81 Appendix, Table S3), indicating that grassland produc-
tivity generally displayed nonlinear dynamics across the study area
(17, 18).

Annual precipitation, annual mean temperature, summer mean
temperature, and annual aridity [quantified as a 12-mo integrated
standardized precipitation evapotranspiration index; SPEI (36)]
showed significant causal forcing across Mongolia (Fig. 1C and
SI Appendix, Table S4). The results were metasignificant for all
climate variables, as determined using a recently proposed method
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to combine the P-values [harmonic mean P-values (37)]. The
strength of the causal effect of annual mean temperature on ANPP
was less, on average, than that of annual precipitation, summer
mean temperature, and SPEI (Fig. 1C). There were no significant
differences between the strengths of the causal effects of annual
precipitation, summer mean temperature, and SPEI on ANPP.
Previous studies reported a considerably weaker effect of temper-
ature on productivity than precipitation in drylands (10, 24),
probably because of the state-dependent behavior of drylands
across time. However, our analysis incorporated the state depend-
ency highlights the importance of summer mean temperature as
well as that of annual precipitation and aridity in driving annual
ANPP At most sites, climate variables affected ANPP with a time
delay of 1 to 3 y (81 Appendix, Table S4).

All interannual climate variabilities causally influenced mean
ANPP in a 6-y moving window across Mongolia (Fig. 1D). Inter-
annual variabilities in precipitation, temperature, summer temper-
ature, and SPEI were calculated as the coefficient of variation of
annual precipitation, and SDs of annual mean temperature, sum-
mer mean temperature, and annual SPEI, respectively. The results
were metasignificant based on the harmonic mean P-values. In this
case, the strength of the causal effects of interannual variability in
temperature and summer temperature on ANPP was stronger, on
average, than that of interannual variations in precipitation and
SPEI on ANPP (Fig. 1D), which were not significantly different.
At most sites, climate variability affected mean ANPP with a delay
of 1 to 3 moving windows (87 Appendix, Table S5). These results
were robust because they were qualitatively similar to the results
observed with 5- or 4-y moving window (S7 Appendix, Fig. S5 and
Tables S6 and S7).

The considerable, but until now underappreciated, importance
of temperature and its interannual variability in driving dryland
productivity are particularly notable given that the future increase
in aridity will be driven by a steady increase in global surface
temperature in response to elevated atmospheric CO, levels
(2, 3, 38). Our observational records indicated increasing aridity
over time because of continued warming (87 Appendix, Fig. S3 B,
C, and E). We also observed increases in interannual variabilities
in temperature and aridity (SI Appendix, Fig. S3 G and H). Plant
growth in cold climates across Mongolia (8] Appendix, Table S1)
can be stimulated in warmer years by an extended growing season
(22, 39, 40) (as suggested by increases in summer mean temper-
ature and growing degree days over time; S/ Appendix, Fig. S3 C
and D) and by ameliorated water availability in wetter years (41).
Taken together, our study provided general evidence that grassland
productivity was significantly driven by both precipitation and
temperature at annual and interannual time scales.

Next, we assessed the sensitivity of ANPP to climate and its
variability at each site using scenario exploration analysis with
multivariate EDM (17, 42, 43). For each historical time point
(i.e., a year or moving window), we predicted hypothetical changes
in ANPP (AANPP) with small perturbations (AZ) in climate
variables or their variabilities. A higher positive AANPP/AZ value
suggested a more sensitive positive causal effect of climatic drivers
and vice versa. The calculated values at each historical time point
were averaged across the time series to determine the system-level
sensitivity of ANPP over the observation period.

We detected a clear geographic pattern in the predicted map using
kriging (Fig. 2A4), showing a positive effect of annual precipitation on
ANPP in the northern half and negative effect in the southern half
of Mongolia. The sensitivity of ANPP to changes in annual precipi-
tation was significantly positively related to long-term MAP and
negatively related to long-term MAT at each site (S Appendix, Fig. S6
A and B). The negative effect of precipitation on productivity could
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Fig. 2. Maps of the sensitivity of aboveground net primary productivity (ANPP) to changes in annual precipitation, annual mean temperature, summer mean
temperature, and annual SPEI. The system-level sensitivity of ANPP was interpolated among 48 sites via ordinary kriging. (A-D) Maps of the sensitivity of ANPP
to each climate variable evaluated using scenario exploration analysis (i.e., a nonlinear approach). (E-H) Maps of the sensitivity of ANPP to each climate variable

evaluated using a GLS regression (i.e., a linear approach).

be attributed to the time-delayed effects of precipitation on produc-
tivity (11, 15, 27), which are negative after a dry year or positive after
awetyear (11, 15). Indeed, we generally detected time-delayed effects
ranging from 1 to 3 y across the study area (S] Appendix, Table S4).
Negative time-delayed effects are more intense and dominant over
the observation period in the highly arid southern half of Mongolia.
We observed an increase in the proportion of annual species that are
capable of surviving drought as seeds (30, 31) as long-term MAP
decreased and the MAT increased across Mongolia (S Appendix,
Fig. S4 E and F). This explains the predominance of negative
time-delayed effects of annual precipitation in the southern half of
Mongolia. Conversely, positive time-delayed effects are more com-
mon, and/or the magnitude of positive effects is more immediate and
greater in the northern half of Mongolia.

40f9 https://doi.org/10.1073/pnas.2305050120

In contrast, ANPP responded negatively to annual mean tem-
perature in the north-eastern part and positively in the rest of
Mongolia (Fig. 2B). Although the pattern in the sensitivity of
ANPP to summer mean temperature slightly differed from that
to annual mean temperature (Fig. 2C), we observed a positive
relationship between the sensitivity of ANPP to summer mean
temperature and long-term MAT at each site (S/ Appendix,
Fig. S6F). Both results highlight the contrasting responses of
ANPP to temperature between warmer and colder regions in
Mongolia. Plant growth in cold climates across Mongolia
(81 Appendix, Table S1) can be stimulated by lengthening the
growing season in warmer years (22, 39). However, the total
response of productivity to changes in temperature depends on
the degree to which the extended growing season interacts with
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warming-induced stress (22, 26, 29). In north-eastern Mongolia,
vegetation exposed to colder temperatures and increased precipi-
tation may generally have low resistance to soil water deficiency
caused by warming-induced evapotranspiration. This creates
drought stress in warmer years (29, 32, 33), resulting in the neg-
ative response of productivity to increasing temperature. In con-
trast, the arid and warmer grasslands in Mongolia are more
frequently exposed to drought stress and are dominated by vege-
tation that is resistant to such harsh climate conditions (26, 29).
Therefore, we propose that the negative effects of increasing tem-
perature are limited in these arid and warmer grasslands. We
observed that the proportion of C4 species that generally have
higher resistance to warming-induced drought stress (29, 44, 45)
increased along the climatic gradients in Mongolia (SI Appendix,
Fig. S4 A and B), which was consistent with a previous report
(34) that supports these arguments. Currently, there are large
uncertainties on the effects of increasing temperature on pro-
ductivity, which can be attributed to limitations associated with
the number of experiments (41, 46), long-term observations
(47), and models (22). Our study provides long-term, large-scale
empirical assessments of productivity sensitivity to temperature
changes in drylands.

Generally, an increase in SPEI (i.e., decreasing aridity), an index
that integrates precipitation and temperature, negatively affected
ANPP across Mongolia (Fig. 2D). Although the overall negative
effect of SPEI on productivity is counterintuitive, given the
well-known positive relationship between decreased aridity and
productivity in drylands (8, 10, 22, 23), we propose that the
vegetation across Mongolian grasslands is governed by negative
time-delayed effects (i.c., drought legacy) (11, 15) of aridity. In
addition, the magnitude of negative effects of SPEI on productiv-
ity varied spatially, suggesting that the strength of time-delayed
effects differed with areas. We thus suggest that the amelioration
of soil water deficiency resulting from the balance between pre-
cipitation and temperature in a given year does not necessarily
enhance annual productivity.

The sensitivity of ANPP to interannual precipitation variability
exhibited a clear geographic pattern, going from negative in the
north-eastern part to positive in the other regions of Mongolia
(Fig. 34). We observed a slightly decreasing trend in the sensitivity
of ANPP to interannual SPEI variability along the site precipita-
tion gradient (S Appendix, Fig. S7G). Sensitivity of ANPP to
interannual SPEI variability demonstrated a clear geographic pat-
tern similar to that of interannual precipitation variability
(Fig. 3D). Previous studies suggested that the response of produc-
tivity to interannual precipitation variability switches from nega-
tive to positive at a long-term MAP of ~300 mm, with more
positive responses at drier sites (9, 11). Even below this threshold
(most of our sites received < 300 mm; S/ Appendix, Table S1),
ecosystem sensitivity to interannual variability in precipitation
and aridity exhibited a contrasting geographic pattern reflecting
shifts in dominance of drought resistance (26, 29, 34) and avoid-
ance (30, 31) traits in vegetation along the north—south climatic
gradient in Mongolia (87 Appendix, Fig. S4). The balance between
productivity gain caused by positive extremes and loss caused by
negative extremes would change depending on such vegetation
shifts, resulting in contrasting patterns of productivity responses
to interannual variability in precipitation and aridity (9, 11).

We observed an increasing trend in the sensitivity of ANPP to
interannual temperature variability along the site precipitation
gradient (87 Appendix, Fig. S7 C and E; however, the trend in the
sensitivity of ANPP to interannual summer temperature variability
against long-term MAP was marginal, = 0.067). The predicted
map indicated more positive sensitivity of ANPP to interannual
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temperature and summer temperature variability in northern than
in southern Mongolia (Fig. 3 B and C). Across Mongolia, with
increasing interannual temperature variability, the magnitude of
the positive effects in warmer and wetter years caused by a longer
growing season and improved water availability (39-41) was larger
than the negative effects in warmer and drier years that constrained
plant physiological activity (41). Although the degree to which
the sensitivity of ANPP to climate variability differed slightly,
depending on the size of the moving window (SI Appendix,
Figs. S8 and S9), the geographical pattern of the sensitivity of
ANPP to interannual variability in both temperature and SPEI
was relatively robust to changes in the size of the moving win-
dow. Nonetheless, uncertainties still remain with regard to eco-
system sensitivity to climate variability in very dry grasslands,
such as those in Mongolia. Longer time series that include a
greater number of extreme climatic events are needed to generate
data-driven confirmation of the effects of climate variability on
primary production.

Further, we showed large discrepancies (Figs. 2 and 3) between
predictions of dryland sensitivity to climatic change and variability
based on our approach (i.e., scenario exploration), compared with
those based on traditional regression analyses (8, 10, 11). Notably,
when we used a linear approach, the observed geographic patterns
of productivity sensitivity to annual climate variations are largely
in line with well-documented patterns (7, 8, 10). Although the
CCM for the causal effect of annual precipitation on ANPP did
not perform better than a simple linear model, our CCMs gener-
ally performed better than simple linear models based on predic-
tion accuracy in most cases (S/ Appendix, Tables S4-S7). However,
because ANPP essentially displayed nonlinear dynamics across
Mongolia (SI Appendix, Table S3), a linear approach is in principle
ill-posed, and a significant linear correlation does not imply causa-
tion. Indeed, the detection of significant causal effects of climate
variables on ANPP did not necessarily match with the significance
detected by the linear models (S7 Appendix, Tables S4-S7). This
highlights the need to fully capture the nonlinear, state-dependent
sensitivity of productivity to climate change and variability across
time (21, 43, 48) when quantifying system-level sensitivity. We
thus demonstrated dryland sensitivity to climate change (Fig. 2
A-D) and variability (Fig. 3 A-D) using an EDM framework (16,
18) that acknowledges the complex nonlinear dynamics of eco-
logical systems. Generally, dryland productivity often displays
state-dependent behavior, as presented in S/ Appendix, Table S3,
thus making inferences regarding dryland sensitivity to climate
change and variability from linear models, in particular, more
challenging.

Using an equation-free, nonlinear time-series analyses (16) and
the most extensive (48 sites) field-based data of climate and pro-
ductivity collected over the longest period (over 40 y) to date, our
study provided findings on dryland sensitivity to climate change
and variability. Although dryland sensitivity patterns that we found
are largely unrecognized and partly counterintuitive, at least two
underlying mechanisms are inferable. First, a time-delayed climate
effect modifies the responses of annual productivity to annual cli-
mate conditions. Second, the proportion of plant species resistant
to water and temperature stresses at a given site determines pro-
ductivity sensitivity to variation in climate. Our results also high-
lighted that the effects of climate on vegetation should be evaluated
across multiple time scales (i.e., annual and interannual time scales)
by incorporating the potential occurrence of time-delayed effects.
To fully understand the sensitivity of global drylands to climate
change and variability using an EDM approach, there is a need
for prolonged long time-series data (16, 17) spanning across the
globe; therefore, more extensive analysis is warranted in future
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Fig. 3. Maps of the sensitivity of mean aboveground net primary productivity (ANPP) to changes in climate variability (interannual precipitation variability,
interannual temperature variability, interannual summer temperature variability, and interannual SPEI variability) in 6-y moving windows. Interannual variabilities
of precipitation, temperature, summer temperature, and SPEI were calculated as the coefficient of variation of annual precipitation, and SDs of annual mean
temperature, summer mean temperature and annual SPEI, respectively. The system-level sensitivity of ANPP was interpolated among 48 sites via ordinary
kriging. (A-D) Maps of the sensitivity of ANPP to climate variabilities evaluated using scenario exploration analysis (i.e., a nonlinear approach). (E-H) Maps of the

sensitivity of ANPP to climate variabilities evaluated using a GLS regression (i.e., a linear approach).

studies. In particular, it is necessary to clarify whether the
state-dependent, nonlinear responses of productivity to climate
change and variability are specific to cold and water-limited dry-
lands, such as Mongolia. In addition, global-scale manipulative
experiments incorporating climatic extremes (49-51) and model
simulations (9, 22) are required to elucidate the fundamental
mechanisms underlying the observed patterns in dryland sensitivity
to climate. Another consideration is the need for an explicit sta-
tistical test on the synergistic causal effects of temperature and
precipitation on productivity under further methodological devel-
opment, as the CCM permits the identification of causal relation-
ships between two time-series variables (16, 17, 52). Because
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grazing is the dominant land use in drylands and can interact with
climate to impact ecosystem functioning (53), future studies
should also evaluate how grazing mediates dryland responses to
climate change and variability. Given the free-range livestock man-
agement strategy in Mongolia, this approach might be the key to
effectively address and adapt to challenges associated with climate
change and variability; however, it requires a holistic understanding
of the impacts of grazing and climate change on drylands (54, 55).
Nonetheless, our spatially explicit regional assessment and visual-
ization of how productivity responds to climate change and vari-
ability can be used for validation as well as for important
improvements incorporating nonlinear vegetation dynamics in
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global ecosystem models. Finally, our findings emphasize the
importance of considering nonlinear dynamics of drylands to
accurately forecast potential biosphere feedback to the climate
system.

Materials and Methods

Datasets. The Information and Research Institute of Meteorology, Hydrology, and
Environment (IRIMHE) of Mongolia monitored climate variables (daily mean air
temperature and precipitation) and ANPP at 48 meteorological observation sites.
These sites are widely distributed across Mongolian grasslands (spanning 2,160
km in linear distance from the western to eastern Mongolia and 1,050 km from
the northern to southern Mongolia; S/ Appendix, Fig. S2 and Table S1) in 1978
t0 2017 (note: at some sites, the time series started after 1979). ANPP was calcu-
lated as the mean of aboveground plant biomass harvested from four "1 x 1T m"
quadrats randomly placed within each station at the beginning, middle, and
end of August, within the peak season of plant growth (56, 57). At each harvest,
the locations of the sampling quadrats were moved within each site to avoid the
effects of harvesting on the ANPP measures. In addition, we harvested only the
current-year shoot of the shrub species to ensure that harvested plant materials
can approximate ANPP. Although the number of samples at one time was rel-
atively small, repeated measurements of aboveground plant biomass during
the peak growing season would allow the estimation of ANPP at each site. Each
station was fenced to avoid damage to observation equipment by livestock. Our
time-series analyses require continuous and equidistant data (16, 17); there-
fore, we imputed missing values for ANPP up to a maximum of five consecutive
years using a Kalman smoother algorithm (58). Sites that had more than five
consecutive missing years were removed from the analysis, resulting in 48 of 70
candidate meteorological sites. Toward lower latitude sites, the long-term MAP
generally decreased whereas the MATincreased (Fig. 1A and Band S/ Appendix,
Table S1). Mongolia is characterized by a dryland climate, and ~70% of annual
precipitation falls between June and August. In addition, we observed increasing
growing degree days with rising annual mean temperature and summer mean
temperature over time (S/ Appendix, Fig. S3). As such, our climate measures are
conducted on an annual basis, including extreme climatic events in summer, such
as drought and extreme precipitation over a long period of time. The vegetation
type across all sites was grasslands, including forest steppe, steppe, and desert
steppe (S/ Appendix, Table S1). Across the datasets of all the 48 sites, 92.7% of
ANPP values (ranging from 77.5 to 100%) remained fixed (not imputed) over
the time series (S/ Appendix, Table S1). There were no missing values for the
climate variables.

Data Processing. At each meteorological site, annual precipitation was calcu-
lated as the sum of daily precipitation across a year. Annual mean temperature
and summer mean temperature were calculated as the average of mean daily air
temperature across a year and the average of mean daily air temperature between
June and August (i.e., a growing season), respectively. Here, a year was defined
from the beginning of September in the preceding year to the end of August in
the focal year. We focused on the role of annual mean temperature as well as
summer mean temperature in driving ANPP in the following analyses. Previous
studies have suggested that both annual and summer temperatures can affect
plant productivity, especially in cold regions (26, 33, 59). We also calculated grow-
ing degree days (°) as the sum of mean daily temperature above 10 °in a year.

We calculated the aridity index, known as SPEI, which integrates both pre-
cipitation and temperature (36). To achieve this, we used monthly potential
evapotranspiration and precipitation data and calculated monthly SPEI with a
12-mo integration period, as previously suggested (10). Negative SPEI values
indicated more arid conditions. Next, we calculated the annual SPEI as the mean
of the monthly SPEI from the beginning of September in the preceding year to
the end of August in the focal year.

To quantify climate variabilities, we aggregated yearly data in 6-y moving
windows and calculated the coefficient of variation of annual precipitation and
SDs of annual mean temperature, summer mean temperature, and annual SPEI.
We used the SDs of annual mean temperature, summer mean temperature, and
annual SPEI to avoid interference caused by divisions by their mean values closer
to zero. The mean ANPP for each window was also calculated. This approach (11)
allowed us to directly test the causal effects of climate variability on plant primary
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productivity. We decided to use overlapping window analyses because nonover-
lapping windows reduce the time-series length and may undermine the efficacy
of time-series analysis (16, 17). The potential effects of the overlapping nature of
the data on our results were addressed by developing a null test with a surrogate
time-series (refer to the next section). To examine the robustness of our results
to different time windows, we repeated the time-series analysis using data with
4-and 5-y moving windows.

Long-Term Trends in Regional Climate. Long-term trends in climate var-
iables and their variabilities across Mongolia were visualized using a gener-
alized least-squares (GLS) regression with the site as a random effect and the
first-order autoregressive processes (AR1). Annual precipitation did not change
significantly across the 48 sites from 1978 to 2017 (S/ Appendix, Fig. S34). Over
the same period, annual mean temperature and summer mean temperature
increased (S Appendix, Fig. S3 B and (). Growing degree days also increased
steadily over time (S/Appendix, Fig. S3D). Because of rising temperature despite
no changes in precipitation amount, annual SPEI has declined, indicating that
aridity has increased over time (S/ Appendix, Fig. S3E). Furthermore, interannual
precipitation variability in 6-y moving windows showed no directional change
(S Appendix, Fig. S3F). Interannual variabilities of annual mean temperature
and SPEI have increased significantly over time (S/ Appendix, Fig. S3 G and H).

Vegetation Shifts along Climatic Gradients. Vegetation data are notavailable
for the same time-series of ANPP and climate because vegetation surveys were
not conducted simultaneously with ANPP measurements. Instead, we used recent
observational data of vegetation between 2012 and 2019 at or near the meteor-
ological sites (S/ Appendix, Table S2). The sampling locations near the meteoro-
logical sites were located on flat areas or gentle slopes where no livestock dung
or plants damaged by grazing was evident i.e., a similar condition to the fenced
meteorological sites). At each location, plant species composition was sampled
annually at the beginning of August between 2012 and 2019 (note: observa-
tion years slightly varied among the locations). Plant species composition was
determined along two 50-m permanent lines. Along each line, a 50-cm pole was
placed at 25-cmintervals i.e., 201 points in total), and all plantindividuals whose
leaves and/or stems touched the pole were identified, and the total number of
touches were counted. The abundance of each plant species was then determined
by dividing the total number of touches for each species by the total number of
points along a line. Data on plant species composition along the two lines were
pooled across observation years. To confirm the potential vegetation shifts along
climatic gradients across Mongolia (34), we used a generalized linear model with
a quasibinomial error structure and a logit link function to analyze the changes
inthe relative abundance of C3/C4 species, annual/perennial species, and grass/
forb/shrub species (defined based on the existing literature) (34, 60) according to
long-term MAP and MAT at each site (S Appendix, Fig. S4). In accordance with the
previous reportacross Mongolia (34), the relative abundance of C4 (S Appendix,
Fig. S4 Aand B) and annual species (S/ Appendix, Fig. S4 E and F) increased with
decreasing precipitation and increasing temperature.

Data Analysis. To determine the potential causal effects of climate variables and
theirvariabilities on ANPP and mean ANPP in moving windows, we used the EDM
method to detect causality[i.e., CCM (16)]. The basic concept of CCM is to use the
prediction between variables as a test for causality. If variable X (e.g., precipitation)
had a causal effect on variable Y (e.g., productivity), then the causal information
of variable X should be presentin Y.The attractor recovered for variable Y should
be able to predict the state of variable X. The prediction skill of cross-mapping
(cross-map skill) was measured using Pearson'’s correlation coefficient (p) between
the predicted and observed X values. This procedure was repeated using a subset
of the time series X with different lengths. When the cross-map skill from variable
Y to X improves with the time-series length (i.e., convergence), variable X has a
causal effect on Y (16). Theoretical details of the CCM algorithm can be found in
previous studies (16, 17).

Priorto CCM analysis, all time-series data were standardized to have zero mean
and unit variance. Throughout the analysis, the prediction skill was evaluated
based on Pearson’s correlation coefficient (p) using leave-one-out cross-validation.
First, we used the S-map (sequential locally weighted global linear maps) (18)
to determine the appropriate embedding dimension (E) and to check the non-
linearity (indicated by a nonlinear localization parameter 0) of the time series of
ANPP and mean ANPP in moving windows. According to Takens' Theorem, the
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true dynamics of the system can be reconstructed by a set of time-lagged coordi-
nates of a single time series (16, 17). The embedding dimension is the number
of time-lagged coordinates used for reconstructing the state space (16, 17). In
the majority of real-world scenarios, the embedding dimension is not known
beforehand and requires estimation. The appropriate embedding dimension
(E), that is the embedding dimension showing the best performance of EDM
predictions, depends on several factors, including system complexity, time-series
length, and noise (16). The S-map is a model-free method that predicts the near
future using local linear regression under a certain embedding dimension, and
is a tool for evaluating whether a system displays linear or nonlinear dynamics
over time (18). S-map forecasts the trajectory of a target system state by a locally
weighted linear regression using the all data points in the state space (17, 18).

We evaluated the predictability of the S-map for all possible combinations of
E = 2-8 (with an increment of 1) and © = 0-10 (with an increment of 0.1). We
selected the optimal values of £ and 0, under which the best prediction skill (p)
was obtained. The nonlinear localization parameter © determines the degree to
which the points are weighted when fitting a local linear map. When 6 = 0, all
points are equally weighted such that the local linear map is identical for different
points in the reconstructed state space (17, 18). In this case, the S-map is identical
to the global linear map. When © > 0, nearby points in the state space receive
a larger weight, and the local linear map can vary in the state space to accom-
modate state-dependent, nonlinear behavior (17, 18). The weighting function
in the S-map is defined as the form of an exponential decay kernel (18), w(d) =
exp (—6dld,,). Here, d is the Euclidean distance between the predictee and each
time point, and d,, is the mean Euclidean distance of all paired time points. We
confirmed that ANPP and mean ANPP in all (4-, 5-, and 6-y) moving windows
generally displayed nonlinear dynamics (S/ Appendix, Table S3).

The significance of CCM was judged by comparing the cross-map skill p
at the maximum time-series length as well as convergence (the difference
between p at the maximum and minimum time-series lengths) between the
original and surrogate time-series data (17, 61, 62). We randomly generated
1,000 surrogate time-series of causal climate variables by randomizing the
phases of a Fourier transform, which preserved the power spectra or autocor-
relation of the cross-mapping target time series (63). To apply CCM with the
original and surrogate time-series of climate variables to predict the time series
of productivity, we calculated the cross-map skill p at the minimum (optimal
embedding dimension £+1) and maximum time lengths for 1,000 surrogate
time-series and the original time series. The P-value was then estimated as the
number of surrogate time-series data showing a higher p with the maximum
time-series length as well as a higher convergence than those for the original
time-series data, divided by the total number of surrogate data (61). Here, we
added 1 to the numerator and denominator to correct for finite sampling. In
addition, because climate would exhibit time-delayed effects on productivity
(often termed legacy effects) (11,15, 27, 64), we considered time lags (time to
prediction tp of a potential causal time-series) in cross-mapping, i.e., lagged
CCM (52). We examined the time-delayed effect from 0 to —3 time lags (years
or moving windows). We report the best result (highest p with the maximum
time length) among the lagged CCM analyses (S/ Appendix, Tables S4-S7).

To determine the metasignificance of CCM tests across Mongolian grass-
lands, we applied a recently proposed method to combine P-values and har-
monic mean P-values (37). Note that the metasignificance may be relatively
conservative compared to other methods to combine P-values because this
method controls for family-wise error rate and, importantly, is robust to interde-
pendentsamples of P-values. In addition, we compared the cross-map skill with
the maximum time length among the causal climate variables using paired
Wilcoxon tests.

We further tested the directionality of the responses of plant productivity to cli-
mate variables using scenario exploration with multivariate EDM (17,42, 43, 65).
In nonlinear systems, drivers generally have an effect that is state-dependent;
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the strength and direction of the effect depend on the current state of the system
(17,21,42,65).

For each historical time point ¢ (a year or a moving window), we used S-maps
(18) to predict ANPP at time t + 1 with a small increase (+AZ/2) and a small
decrease (—AZ/2) in the climate variables at time t, Z(t). We used AANPP/AZ to
approximate the effects of climate variables at time t. A higher positive AANPP/AZ
value suggested a more sensitive positive causal effect of the climate variables,
and vice versa. We then determined the average of AANPP/AZ at each historical
time pointacross the time series to represent the system-level sensitivity of ANPP
to climate at each site, as proposed in a previous study (48). We used 50% of the
SD of the observed climate variables, Z(t), as AZ.This value corresponded to AZ =
15.6-48.4 mm (with a mean of 27.7 mm)and 0.37 to 0.73 © (with a mean of 0.51 ©)
across sites for annual precipitation and annual mean temperature, respectively.
These values were generally comparable to the prediction range of IPCC AR6
(66) that MAP and MAT between 2080 and 2100 increase by 10 to 30% and 1.5
to 5 °, respectively, over middle latitudes compared to MAP and MAT between
1850 and 1900.The magnitude of change, AZ, in scenario exploration can thus
be determined depending on the research contexts (17).

Because we treated time-series across all sites equivalently, we a priori selected
parameters in the S-map procedure that worked across all the time series, as
previously suggested (43): £ = 3 and 6 = 4 to predict ANPP changes against
small perturbations of climate in a given year,and £ = 3 and © = 0.3, to predict
mean ANPP changes against small perturbations of climate variabilities ata given
moving window.

To compare the results based on scenario exploration with those using a linear-
based approach, we used a GLS regression to quantify the responses of plant
productivity to climate variables. We estimated the sensitivity of productivity to
climate variations as the linear regression slope of productivity against climate
variables to be comparable with the methods used in previous studies (8, 10,
11, 24). Considering the autocorrelations among observations across time, we
included a term that corrected for first-order ART in the models. We used the
"gls” function in the "nime” package in R to perform these analyses. In addition,
we compared the prediction accuracy based on CCM and GLS, and we examined
the difference between terminal p from CCM and the prediction accuracy (a
correlation coefficient between observed and predicted values) from GLS using
paired Wilcoxon test.

Finally, we visualized the geographic patterns in the sensitivity of ANPP to
climate and its variability across Mongolia by interpolating the sensitivity val-
ues across sites. All spatial interpolations were performed with the "autoKrige”
function in the automap package in R. All other data analyses were performed
with R software (67) using the "rEDM," "harmonicmeanp,” “SPEI," "nlme," and
"automap” packages.

Data, Materials, and Software Availability. The datasets generated during
and/or analyzed during the current study are available through figshare (68).
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