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Abstract— Commodity ultra-high-frequency (UHF) RFID
authentication systems only provide weak user authentication,
as RFID tags can be easily stolen, lost, or cloned by attackers.
This paper presents the design and evaluation of SmartRFID,
a novel UHF RFID authentication system to promote commod-
ity crypto-less UHF RFID tags for security-sensitive applica-
tions. SmartRFID explores extremely popular smart devices and
requires a legitimate user to enroll his smart device along with
his RFID tag. Besides authenticating the RFID tag as usual,
SmartRFID verifies whether the user simultaneously possesses
the associated smart device with both feature-based machine
learning and deep learning techniques. The user is considered
authentic if and only if passing the dual verifications. Compre-
hensive user experiments on commodity smartwatches and RFID
devices confirmed the high security and usability of SmartRFID.
In particular, SmartRFID achieves a true acceptance rate of
above 97.5% and a false acceptance rate of less than 0.7% based
on deep learning. In addition, SmartRFID can achieve an average
authentication latency of less than 2.21 s, which is comparable
to inputting a PIN on a door keypad or smartphone.

Index Terms— UHF RFID, smart device, smartwatch, authen-
tication, access control.

I. INTRODUCTION

ADIO Frequency Identification (RFID) technology has

been widely used in personnel/object identification and
access control. A typical RFID system consists of RFID
readers, a backend server, and RFID tags with each assigned
to a unique user. An RFID reader keeps sending radio signals
to detect and query any RFID tag within its transmission
range. Once receiving an RFID reader’s query, an RFID tag
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responds with the stored authentication information which can
be a simple Electronic Product Code (EPC) or a cryptographic
message. The RFID reader forwards the response to the back-
end server for final verification. A valid response corroborates
the legitimacy of the RFID tag carrier who is then permitted
access to the protected area or system such as a building/room,
computer system, or parking lot.

Passive ultra-high frequency (UHF) RFID is dominating
the RFID market [1]. A UHF RFID system operates the
frequency band between 860 MHz and 960 MHz. UHF RFID
readers transmit modulated RF signals to interrogate tags.
Passive UHF RFID tags are batteryless and communicate with
RFID readers by backscattering their signals. Specifically, the
passive UHF tag receives the energy via signals propagated
from the reader antenna. Once the signals reach the tag, the
energy travels through the tag antenna to activate the chip
or integrated circuit (IC). The remaining energy is modulated
with the chip data and sent back via the tag antenna to the
reader antenna in the form of electromagnetic waves. The
response is then detected and decoded at the reader. In contrast
to low-frequency and high-frequency tags, passive UHF tags
have a much longer reading distance up to 12m and are also
much cheaper. Passive UHF tags are thus favorable choices
in many contexts such as in hospitals for the nursing staff
pushing a stretcher to transport a patient across different areas,
in a logistics center for employees moving pallets, in office
buildings for people with a physical impairment, and in large
indoor environments to track the whereabouts of users.

Using passive UHF RFID in security-sensitive applications
has been largely hindered by the lack of cryptographic support
on most commodity products. As far as we know, NXP’s
UCODE DNA RAIN RFID tags [2] are the only products
that support cryptographic authentication checks. These tags
cost about $1 each [3] and are much more expensive than
regular crypto-less tags typically costing 5¢ to 15¢ . Therefore,
crypto-less passive UHF RFID tags are still the mainstream
products in the RFID market. We focus on such tags and
may omit the term “crypto-less passive UHF” whenever no
confusion may arise hereafter. The security of passive UHF
RFID systems has been receiving growing attention from the
academia and industry. For instance, some recent publications
in IEEE TWC [4], [5], [6] propose elegant solutions to
different RFID security issues. As another example, given that
the RSSI and phase information of backscattered RFID signals
are available on commodity RFID readers [7], RFID signals
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have been explored to recognize human gestures to achieve
gesture-based user authentication [8], [9], [10]. This paper also
explores the rich information contained in backscattered RFID
signals to design more secure RFID authentication systems.
Commodity RFID authentication systems are particularly
vulnerable to adversarial RFID tags, each of which refers to
a legitimate RFID tag or its clone controlled by the adversary.
In particular, RFID-based ID badges can be easily lost/stolen
and possessed by the adversary. In addition, most commodity
RFID tags do not support cryptographic operations. A capable
adversary can overhear the unencrypted reader-tag communi-
cations and then exploit the sniffed tag information to make
clones. The adversary can use an adversarial RFID tag to
impersonate the legitimate user and gain access to protected
physical or electronic resources. As a case study, we easily
cloned the UHF RFID tags in the parking decals and used
them to successfully enter the gated garage of our institution.
Given the growing ubiquity of human-carried smart devices
such as smartphones and smartwatches, it is a natural ques-
tion whether smart devices can be explored to protect RFID
authentication systems from adversarial RFID tags. One plau-
sible solution is to directly use a commercial two-factor
authentication system such as Duo [11]. In particular, a Duo-
like technique would involve the user holding the smart device,
unlocking the screen, finding the Duo app, and manually
approving a login notification that is pushed by the backend
RFID server after validating the tag information. Involving
non-trivial user effort, this approach has poor usability espe-
cially for people with fat fingers or weak vision and greatly
diminishes the convenience of UHF RFID authentication.
Additionally, it is shown in [12] that the average authentication
time for the Duo-like approach is about 16.1s. Furthermore,
the Duo-like approach is vulnerable to synchronized jam-
ming attacks [13]. Another plausible solution is to verify the
physical proximity of the user’s enrolled smart device and
the RFID reader via a short-range wireless channel such as
NFC or Bluetooth. This method, however, requires additional
NFC or Bluetooth capabilities that are not available on most
commodity RFID readers. Additionally, it requires pairing the
smart device with the RFID reader, which may severely hinder
its usability especially if the legitimate user needs to access
many protected areas (e.g., a nurse in a big hospital) with
each having a distinct RFID reader. Moreover, this method is
vulnerable to known wireless man-in-the-middle and relaying
attacks between the smart device and RFID reader [14], [15],
[16], [17], which make it difficult to verify their physical
proximity. It is also worth noting that such attacks render
it infeasible to use smart devices alone for proximity-based
access control to protected electrical and physical resources.
In this paper, we propose SmartRFID, a smart device-aided
RFID authentication system to promote commodity RFID tags
for otherwise inapplicable security-sensitive applications. Each
legitimate SmartRFID user registers his/her RFID tag and also
smart device during system enrollment. In each subsequent
authentication instance, SmartRFID verifies two factors for any
RFID user: (1) the tag Electronic Product Code (EPC) as in a
traditional RFID authentication system and (2) the physical
proximity of the paired RFID tag and smart device. The
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user is considered authentic if and only if both authentication
factors can be validated. Although SmartRFID explores user-
carried smart devices as well, it involves minimal user effort,
is much less time-consuming and invulnerable to synchronized
jamming attacks in contrast to the Duo-like solution; it is not
subject to wireless MiM attackers either.

SmartRFID checks the coexistence of the paired RFID tag
and smart device by verifying the correlation between the
smart device’s inertial accelerometer data and the backscat-
tered RFID signals. Each legitimate user in SmartRFID is
required to tap or shake the RFID tag multiple times for
a short duration (say, 2s) with the same hand holding the
paired smart device. The intentional hand movement can be
detected by the smart device’s inertial accelerometer. It can
also induce phase changes in the backscattered RFID signals
that are readily available on commodity RFID readers. The
backend server collects and compares the acceleration and
phase data. If a strong acceleration-phase correlation could be
found, the backend server trusts that the user simultaneously
holds the paired tag and smart device and thus considers
him/her authentic.

There are two main obstacles to implement SmartRFID.

e First, a capable attacker can perform synchronized
hand movement with the victim user who may often
unknowingly wave his/her smart device. This synchroniza-
tion attack is feasible if the attacker can visually observe the
victim user either in person (e.g., as a malicious co-worker)
or through a live video feed from a spy camera. The attacker
can then pass authentication due to the strong acceleration-
phase correlation. SmartRFID thwarts this attack by requiring
that each user signal his/her authentication intention with a
sequence of taps or shakes on the RFID tag. In contrast to
totally random hand movement, such intentional hand gestures
are much less unlikely to accidentally perform by the legiti-
mate user. Additionally, our method has high usability because
both taps and shakes are very easy to perform. We develop
novel machine learning-driven algorithms to recognize each
individual tap or shake gesture from noisy acceleration and
RFID-phase data, respectively.

e Second, the acceleration and phase data are of dif-
ferent types and cannot be directly compared. We tackle
this challenge by first extracting two time series of data from
the acceleration and phase data, respectively. Then we explore
and compare two methods to verify their correlation. The first
method explores conventional machine learning techniques—
including Support Vector Machine (SVM), Random Forest
(RF), and k-nearest neighbors (k-NN)—to build a feature-
based correlation detection module. The second method uses a
two-branch deep neural network with two CNN (Convolutional
Neural Network) layers and one LSTM (Long Short-Term
Memory) layer in each branch.

We prototype SmartRFID on commodity smartwatches and
UHF RFID systems and evaluate its security and usability
through detailed user experiments involving 20 volunteers.
The true and false acceptance rates with the feature-based
correlation detection module are 97.3% and 3.5%, respectively,
and those with the deep correlation network are 97.56% and
0.66%, respectively. Additionally, the feature-based correlation
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detection module achieves an Area Under The Curve (AUC)
score as high as 0.995 and an equal error rate (EER) as low as
0.018, while the deep correlation network module achieves an
AUC score as high as 0.998 and EER as low as 0.017. We also
show that SmartRFID can achieve an average authentication
latency of less than 2.21s, which is comparable to inputting
a PIN on a door keypad or smartphone. Finally, a user survey
confirms that SmartRFID is very easy and convenient to use.

SmartRFID can significantly boost the security of commod-
ity UHF RFID authentication systems with high usability and
deployability. In terms of security, in addition to cloning or
stealing the legitimate RFID tag, the attacker needs to steal
the associated smart device which is carried by the user (e.g.,
on the wrist), is normally protected by a login password, and
receives stronger user attention/protection. In addition, how
the legitimate user interacts with his/her smart device and
RFID tag can be a self-chosen gesture password difficult for
the attacker to guess or emulate. With regard to usability
and deployability, smart devices required by SmartRFID have
been prevalent in daily life and most target application contexts
of UHF RFID systems. For example, many organizations (e.g.,
the authors’ affiliation) enforce Duo-like mobile two-factor
authentication and require each affiliate to have a smartphone-
like smart device. So SmartRFID does not involve any extra
smart device other than what the user already has in most
cases. Furthermore, SmartRFID users only need to perform
simple tap or shake gestures with their smart devices, and the
resulting acceleration data are automatically uploaded to the
system server through a software module on the smart device.

The rest of this paper is organized as follows. Section II
outlines the system model and workflow. Section III presents
the adversary model. Section IV details the SmartRFID design.
Section V presents the evaluation results. Section VI reviews
the related work. Section VII concludes this paper.

II. SYSTEM MODEL AND OVERVIEW

SmartRFID aims to add a second authentication factor to a
commodity UHF RFID authentication system which consists
of a server, RFID readers, and passive crypto-less UHF RFID
tags. For convenience only, we use Bob as an exemplary
legitimate user to outline the system model and operations.
Bob has an ID badge with an embedded RFID tag and wears
it on a lanyard or clips it to his clothes. We do not differentiate
the ID badge with the RFID tag hereafter. Bob also has a smart
device (e.g., a smartphone, smartwatch, or fitness tracker) with
a standard accelerometer. He installs a SmartRFID app on the
smart device and also creates his app username and password
for the server to recognize him. Bob enrolls both his smart
device and RFID tag with the server.

We assume that the server can always communicate with
Bob’s smart device either through a direct WiFi or cellular
channel or with the RFID reader as a relay. All the commu-
nication messages between Bob’s smart device and the server
are actually handled by the SmartRFID app. So we assume a
secure end-to-end TLS-like channel between the SmartRFID
app and server. When the server receives authenticated mes-
sages from a SmartRFID app instance logged into under Bob’s
username and password, it trusts that the messages are indeed
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Fig. 1.  Workflow of SmartRFID.

from Bob’s smart device. This assumption is also required by
a Duo-like two-factor authentication system [11].

Fig. 1 shows the SmartRFID system workflow. Each step
are detailed in late sections.

1. The RFID reader acquires the tag information with a
traditional RFID interrogation protocol such as EPC Gen
2 and sends it to the backend server for verification.

2. After validating the tag information, the server notifies
the RFID reader to report the phase information of
backscattered signals and Bob’s smart device to record
its acceleration data.

3. Bob taps or shakes his tag randomly or according to a
predetermined pattern within a short duration with the
same hand holding or wearing the paired smart device.

4. The RFID reader and Bob’s smart device submit phase
data and acceleration data to the server, respectively.

5. The server checks the correlation between received
phase and acceleration data with either of two
approaches or both. The first approach uses a feature-
based correlation detector based on traditional machine
learning techniques, and the second uses a deep correla-
tion network built upon deep learning techniques. If the
server finds a strong acceleration-phase data correlation,
it considers the RFID user indeed Bob and grants him
access to protected physical or electronic resources (e.g.,
a building, server room, computer, or vehicle) Bob is
entitled to use. Otherwise, the user is denied access.

SmartRFID is intended to be highly usable by minimizing
the additional effort required of RFID users. In particular,
Bob does not need to perform any action other than taping
or shaking his RFID tag. All the communications between the
server and the SmartRFID app are automatically conducted
without involving Bob’s effort. For example, Bob does not
need to manually initiate the authentication session or respond
to the server’s acceleration-data collection request via the app.
In addition, Bob need not know when the server starts to
collect phase and accelerometer data.

III. ADVERSARY MODEL

Rather than providing very strong security, SmartRFID aims
to secure commodity RFID authentication systems which are
otherwise vulnerable to tag spoofing and cloning. We thus
consider a reasonable adversary, denoted by A, that possesses
an authentic copy of Bob’s RFID tag, be it lost, stolen,
or cloned. We assume that Bob’s smart device is protected by
a password as in common scenarios. Consider a smartwatch as
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an example. Each time Bob puts on his smartwatch, he must
input the password to unlock it and activate all the apps
therein—including the SmartRFID app—which remain active
until the smartwatch leaves Bob’s wrist and are then automat-
ically locked. Therefore, A still cannot bypass SmartRFID by
stealing both Bob’s smartwatch and RFID tag as long as the
smartwatch’s password mechanism is secure.

A is assumed to know how SmartRFID works and uses
the RFID tag to initiate an authentication session. A aims to
impersonate Bob for gaining illegitimate access to a protected
area or system. Since the tag information (e.g., EPC) is
authentic and verifiable, the backend server proceeds to pull
the accelerometer data from Bob’s smart device and the phase
data from the RFID reader A is interacting with. We assume
that 4 can observe Bob’s hand movement in real time either
in person (e.g., as a malicious bystander, shoulder surfer,
or coworker) or through a live feed from a spy camera,
so A can perform synchronized hand movement on the RFID
tag. If the server verifies a strong acceleration-phase data
correlation to mistake .4 for Bob, A succeeds.

We have two additional assumptions. First, the server cannot
use secure localization techniques to tell whether Bob’s smart
device, the RFID tag under his name and used by .4, and the
RFID reader A attempts to cheat are at the same location.
The reason is that secure localization techniques often rely on
many assumptions which may not hold in practice. Second,
we do not consider denial-of-service attacks on SmartRFID,
in which A seeks to induce wrong phase measurements and
thus authentication failures by signal interference.

IV. SMARTRFID SYSTEM DESIGN

In this section, we first describe two permissible hand
gestures in SmartRFID—taps and shakes—which serve as
the basic line of defense. Then we overview the SmartRFID
modules. Finally, we detail the design of each module.

A. Intentional Gestures in SmartRFID

Passive UHF RFID tags communicate with the RFID reader
by backscattering the reader’s signals. The backscattered sig-
nal’s phase is available on commodity RFID readers such
as Impinj R420 [7]. According to [18], the phase can be
expressed as ¢ = (4Lcd£ + Oreader + (bcard) mod 27, where
2d is the round-trip propagation distance between the reader
and card, f is the signal frequency, ¢ is the speed of light,
Oreader denotes the phase rotation due to the reader’s transmit
and receive circuits, and ¢c,q represents the phase rotation
caused by the RFID card’s reflection characteristics. Tapping
or shaking the RFID card can change its circuit impedance
and also signal propagation, leading to some additional phase
rotation which is explored in SmartRFID.

In SmartRFID, each legitimate user signals his authentica-
tion intention by performing specific hand gestures. Assume
that Bob touches his RFID tag with the same hand holding the
associated smart device. Such physical interactions can induce
both phase and acceleration data changes that can be strongly
correlated. A common user’s hand/arm movement is mostly
unintentional and slow with a repeatable pattern (e.g., walking
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or running). If SmartRFID allows random hand movement
during an authentication session, the adversary A would
have abundant opportunities to visually observe Bob and
then perform synchronized hand movement with the cloned
or stolen RFID tag to successfully impersonate Bob with a
higher chance. So SmartRFID requires each legitimate user to
perform intentional hand movement comprising either shakes
or taps to explicitly indicate his authentication intention.

e Tap: Use the hand holding or wearing the associated
smart device to place a finger a few centimeters (e.g.,
2 cm) above the RFID tag, then quickly touch the tag,
and lift the finger.

e Shake: Quickly move the RFID tag up and down with the
hand holding or wearing the associated smart device.

These two hand gestures both have been widely adopted
in various applications on touchscreen devices and virtual
reality equipment. Therefore, RFID users can perform them
effortlessly. Fig. 2 and Fig. 3 show the processed 3-axis
acceleration data and unwrapped phase data of each intentional
gesture naturally performed by a volunteer. We use [tstart, tend]
to represent a tap or shake event, where tstar¢ and tenq denote
the time that the user starts and finishes a tap or shake gesture.
We can observe that each gesture can induce significant phase
and acceleration changes. Moreover, the two gestures lead to
distinct phase and acceleration data patterns, so they can be
reliably identified from highly noisy phase and accelerometer
data. In addition, we can see that the phase change induced by
shaking a tag exhibits three possible patterns relating to how
the tag is shaken, as shown in Fig. 3. These observations all
drive our system design illustrated later.
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B. SmartRFID System Modules

SmartRFID comprises four main modules shown in Fig. 4.
In the Data Acquisition module, the server instructs the
RFID reader and the enrolled smart device to record and
submit phase and acceleration data, respectively. In the Data
Preprocessing module, the server uses various techniques to
process the noisy raw phase and acceleration data. In the
Intentional-Gesture Recognition module, the server extracts
and recognizes tap and shake gestures from the processed
phase and acceleration data, respectively, to determine whether
a user performs intentional hand movement. In particular,
it extracts a timestamp vector that records the start and
end time of each recognized tap or shake gesture, as well
as a fine-grained data vector that contains all the processed
phase/acceleration data associated with intentional hand move-
ment. In the final Correlation Detection module, the system
explores two different approaches to check whether there
is a strong phase-acceleration data correlation. The feature-
based correlation detection submodule examines the correla-
tion between the phase and acceleration timestamp vectors
with feature-based machine learning techniques. The deep
correlation network checks if the two fine-grained data vec-
tors have a strong correlation with deep learning techniques.
SmartRFID declares the user (in)authentic based on either
module or both according to the system preference.

C. Data Acquisition

An authentication session starts when the reader receives a
tag response to its query. In particular, the reader keeps sending
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queries to detect nearby tags. When the user (legitimate or not)
approaches the reader, he performs intentional hand movement
per the SmartRFID requirement until passing authentication
or failing after a long time. The tag automatically answers
the reader’s query by backscattering its stored authentication
information (e.g., the unique EPC). The reader-tag communi-
cations follow a standard EPC Gen2 RFID protocol.

After receiving the tag response via the reader, the server
searches its database. If a matching user (i.e., Bob in our
example) is found, the server sends a “Start Sensing” com-
mand to both the reader and Bob’s enrolled smart device.
The overall latency from the RFID tag responding until the
“Start Sensing” command reaches the reader and smart device
is usually very short and well below 0.5 s per the EPC Gen2
standard and our experiments. So it is safe to assume that
Bob just starts performing hand interactions with his tag. Once
receiving “Start Sensing”, the RFID reader and smart device
begin to record and submit the phase and acceleration data,
respectively. The server issues a “Stop Sensing” command to
the reader and smart device after authenticating the user or
failing to do so after a sufficiently long time (say, 5s).

D. Data Preprocessing

After receiving raw phase and acceleration data, the server
feeds them into the Data Preprocessing module. Since the data
are of different types, they are separately handled.

As shown in Fig. 4, the raw phase data go through phase
unwrapping and Savitzky-Golay filtering in sequence. In par-
ticular, the signal phases reported by the reader are wrapped
around [0, 27] and thus cannot truly reflect how they change
over time. So we correct each wrapped phase angle (measured
in radians) by adding or subtracting 27 if absolute jumps
between consecutive phase values are greater than or equal
to m. Then we use a Savitzky-Golay smoothing filter [19] to
smooth the unwrapped phase data and also remove random
noise. This filter performs a local polynomial regression in a
subset of adjacent points based on least squares fitting. It can
preserve some important distribution features such as relative
maxima, making it more suitable than other filtering methods
for our case.

For the acceleration data, we adopt a band-pass filter to
eliminate noise and interference. The frequency of uncon-
trolled shakes and burst noise is generally much higher than
that of hand movement. Additionally, the frequency of inter-
ference caused by gravity is very low. According to [20],
0.5 Hz is sufficient to eliminate the gravity’s impact from raw
acceleration data. Moreover, since average human reaction
time is about 284 ms [21], an user can perform a tap or
shake gesture no more than five times per second. Therefore,
we apply a Butterworth filter with cutoff frequencies of 0.5 Hz
and 5 Hz to all three axes of acceleration data to remove the
noise and interference caused by gravity.

E. Intentional-Gesture Recognition

This module aims to recognize individual tap or shake
gestures from the processed phase and acceleration data. The
following three steps are performed in sequence.
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Step 1 (Data Segmentation): This step aims to segment the
processed phase and acceleration data into individual tap or
shake gestures. The output is a timestamp sequence containing
the start and end timestamps of each tap or shake gesture.
Due to space constraints and similar observations, we give
two intentional hand movement patterns performed within a
short period (say, 4s) as examples: (1) Tap-4: tap an RFID
tag four times, and (2) Shake-4: shake an RFID tag four
times.

1) Acceleration-Data Segmentation: An individual tap ges-
ture involves the user first putting his finger a few centimeters
above the RFID tag, then starting to move until touching the
tag, and finally raising his finger back to near the starting point.
During this process, the user’s hand speed first increases from
zero and then decreases to zero when his finger touches the
tag; afterwards, it increases and then decreases to zero again
when his finger returns to near the starting point. Therefore,
the start and end time of a tap gesture is the first and third time
when the hand speed is zero. We have similar observations
for each shake gesture.

However, we cannot directly leverage the speed data derived
from 3-axis acceleration data to identify the start and end time
of each tap or shake gesture. The reason is that the directly
derived speed data are very noisy and inaccurate in most
cases due to accelerometer measurement errors and cumulative
errors caused by integration. Although the direct speed data
are not quite useful, we can still find some good samples to
help us locate “zero” (speed) points. For this purpose, we first
estimate the hand speed at each timestamp from 3-axis accel-
eration data. In particular, we calculate velocity by integrating
acceleration along each axis and thus get three velocity vectors
[z, vy, v;]. Then we calculate the hand speed as the square
root value of the velocity data as s = \/vz? + vy? + v,2. The
lower panels in Fig. 5(a) and Fig. 5(b) show the hand-speed
changes when a user performs Tap-4 and Shake-4, respectively.
Subsequently, we find all “zero” points between the begin
and finish time of the intentional hand movement and then
remove those irrelevant ones when the hand is static for a
sufficiently long time (e.g., between ¢35 and ¢3). So we can get
a set of relevant “zero” points and extract their timestamps. For
example, in the lower panel of Fig. 5(a), we have a timestamp
vector [tf)egin, §.5, 65,15, 8,12, . . ., tien]- According to our
observation, we choose the first and third elements of every
three adjacent elements as the start and end time of each tap
gesture and thus obtain a sequence of timestamps for Tap-4
as [t ogins 155 13, 15, 15, 17, 17, 10 Similarly, we can get a
timestamp vector for Shake-4 as shown in Fig. 5(b).

We proceed to identify the corresponding “zero” points.
As shown in Fig. 5, the start and end timestamps of each
tap or shake gesture in the speed curve correspond to some
turning points like ¢§ and 9, (the upper panel in Fig. 5(a)).
According to our preliminary experiments, the first and last tap
(or shake) gestures both have four or five turning points, while
the two middle ones can both have three, four or five turning
points. The examples in Fig. 5 show five turning points for
the first gesture, four and three for the two middle ones, and
four for the last one. Based on these observations, we design
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Fig. 5. Processed acceleration and speed data.

an iterative approach to extract a start and end time of each
intentional gesture from the processed acceleration data.

We first select the axis that is the most sensitive to inten-
tional hand movement as the main axis for data segmentation.
In particular, we compute the standard deviation (STD) of
acceleration data along each axis and then select the axis
that has the largest STD as the main axis. Next, we try to
find the turning points that are related to each tap or shake
gesture by using the acceleration data along the main axis.
Specifically, we compute the first derivative of the acceleration
data and find all turning points which we use to segment the
data. Then we compute the acceleration difference between
the first and last points for each segment. Afterwards, we find
those segments whose acceleration difference is larger than an
empirical threshold value 7 and use their first and last points as
candidate turning points. Subsequently, we iteratively identify
the start and end time of each gesture from the candidate
set. In particular, since the first gesture of intentional hand
movement has at least four turning points, we select the
first and fourth ones from the candidate set as its potential
start and end points. Then the following iterative process
is executed. We check if the acceleration difference of the
following segmentat is above a threshold 6. If so, we use
timestamps of the two points as the start and end time of
the gesture; we also use the first and third turning points of
the next three as the potential start and end points of the
next gesture. Otherwise, the end timestamp of the following
segment is considered the end time of the gesture, and the
potential start and end points of the next gesture is set to the
first and fourth points of the next four.
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Fig. 6. Processed phase data of Tap-4 and Shake-4.

Fig. 5 shows an example. We get a sequence of
timestamps from processed acceleration data as T, =
(L, th), (t2,42), ..., (t?,t™)], where % and ¢} (1 < i < n)
denote the start and end timestamps of the ¢th tap or shake,
respectively. Furthermore, we extract a three-row acceleration
data matrix A between ¢! and ¢” to represent intentional hand
movement, in which each row corresponds to the processed

timestamped acceleration data of one axis.

2) Phase-Data Segmentation: As shown in Fig. 3(a), a tap
gesture induces an inverted bell-shaped phase pattern. Addi-
tionally, our experiments reveal that a shake gesture may lead
to three phase patterns: a bell shape (shake-1), two consecutive
bell shapes (shake-II), and an inverted bell shape (shake-III).
Figs. 3(b) to 3(d) shows three examples of a Shake-4 event,
each comprising shake-1, shake-11, and shake-1III patterns only.
In practice, a Shake-4 event may induce an arbitrary combina-
tion of the three phase patterns. In addition, each bell-shaped
or inverted bell-shaped phase pattern has three turning points,
as shown in Fig. 6.

Based on these observations, we design the phase-data seg-
mentation algorithm as follows. In the first step, we use similar
operations in the previous algorithm to find all turning points
and extract the timestamp of the first and third ones as the start
and end time of each (inverted) bell-shaped pattern. For the
Tap-4 event, we can directly use the start and end time of each
inverted bell-shaped pattern as the start and end timestamps
of each tap. For the Shake-4 event, it is not straightforward
to determine if two adjacent bell-shaped patterns correspond
to one shake-II case or two shake-I cases. To solve this issue,
we first output a set of timestamp sequence that represents

a possible segmentation: S, {Tp,,Tp,,---,Tp,}. where
T,, = [fit, &0 2 §2 ,ti”, té”] Then we infer the max-

imum length of S;,. Given m bell-shaped patterns, the number
of shake-1 and shake-11 lie in [0, % ]] and [m — [F |, m],
respectively. Given ¢ shake-1I, the numbfr of shake-11is m—21,
so the maximum length of S, is EE)J ("”i_i). In addition,
we can use other information such as the maximum and
minimum number of intentional gestures to further shorten the
list. The most feasible phase sequence in .5, is to be chosen
in Step 3.
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TABLE I
LIST OF FEATURES

# Feature Name Description
1 Mean = N Z 1 d()
2 Standard deviation = \/ LN N (d(@) — p)?
3 Mean absolute deviation Dy = & 21:1 | d(i) — p |
TSN (=3
4 Skewness § = N i1 @izp) -
(/F N, [i-p)?)3
T T
. 727',: (di_#)
5 Kurtosis k= —(ﬁNZf\L;(di*#)QP
6 Root-Mean-Square (RMS) drms = \/ % va: 1l di 12
7 Max dmaz = max(d)
8 Min dmin = min(d)
9 Number of peaks Cpeaks = peaks(d)
10 | Number of valleys Coalleys = valley(d)
11 | Variance v = Nl—l Zf\;l | di — |2
12 | Energy Ey = Zf\;1 | d; |2
13 | Peak difference dp = dmaz — dmin
14 | Pearson correlation coefficient = M
ACH

Step 2 (Gesture Identification): We utilize feature-based
machine learning techniques to identify tap or shake gestures
from the phase and acceleration data segments.

3) Feature Extraction: We explore 13 features in total
(#1 to #13 in Table I) to represent the phase segment.
In  addition, we extract #1 to #13 features for each
axis and compute the Pearson correlation coefficient (PCC)
(#14 feature) between every two axes for the acceleration
data segment. Hence, we can obtain a 13-feature vector and
a 42-feature vector from the phase and acceleration data
segments, respectively.

4) Intentional-Gesture Detector:: Since we cannot collect
profiles of all potential gestures, we adopt one-class support
vector machine (OC-SVM) [22] to train two gesture detectors
to determine if a phase or acceleration data segment represents
an intentional gesture (i.e., tap or shake). OC-SVM maps input
data into a higher dimensional feature space via a kernel and
finds the maximal margin hyperplane which best separates
the training data from the origin. It has been successfully
applied in a wide variety of application areas such as anomaly
detection [23]. In this paper, we select a Radial Basis Function
(RBF) kernel and a sigmoid kernel for the phase and acceler-
ation data, respectively.

5) Tap or Shake Classifier:: Once a data segment is identi-
fied as an intentional gesture, we further build classifiers from
training datasets with known labels to infer its gesture type
as either tap or shake. In particular, since the two intentional
gestures can induce four possible phase patterns (see Fig. 3),
we train a multi-class classifier to recognize the gesture for
each phase segment. In addition, we use a binary classi-
fier to recognize the gesture for each acceleration segment.
SmartRFID can work with many existing machine learn-
ing techniques. In this paper, we consider three lightweight
supervised machine learning techniques, including Support
Vector Machine (SVM), Random Forest (RF), and k-nearest
neighbors (k-NN). The performance of these techniques are
compared in Section V.
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Step 3 (Phase-Sequence Selection): Since the Phase-Data
Segmentation submodule outputs a set S, of potential
timestamp sequences, SmartRFID needs to determine which
one is feasible. We leverage the timestamp sequence 7, and its
corresponding gesture-type vector from the acceleration data
to find the most feasible timestamp sequence in S,. More
specifically, we first identify a subset from .S, denoted by
Szla’ such that each sequence in 51/) has the same gesture-type
vector as that of 7T,. Since the phase-data and acceleration-
data collection processes may not be perfectly synchronized,
we further derive a relative-time sequence for 7}, and also one
for each sequence in S/, in which each element is updated
by subtracting the first timestamp. Next, we compute three
metrics between the relative-time sequence of 7T, and that of
each sequence in S}, including the PCC, average element-wise
difference, and the element-wise difference variance. Then
a phase sequence in S with a higher PCC, lower average
element-wise difference, and lower element-wise difference
variance is ranked higher for each metric accordingly. Finally,
we select the sequence in S), with the highest average rank
as the most feasible phase-data sequence, denoted by 7, =
[t1£2,42,...,47,1"]. As in Acceleration-Data Segmentation,
we also generate a fine-grained phase data vector ¢ that
includes all the processed timestamped phase data between
t! and 7 to fully characterize intentional hand movement.

F. Correlation Detection

Finally, we explore two different ways to check the corre-
lation between the phase sequence and acceleration sequence,
based on traditional feature-based machine learning methods
and deep learning techniques, respectively.

1) Feature-Based Correlation Detection: We use traditional
machine learning classifiers to check if 7}, and T, correlate.
Since the phase and acceleration data are supposed to be
induced by the same intentional hand movement, the duration
of each gesture and interval between two adjacent gestures
should be highly consistent in 7, and T,. As in Phase-
Sequence Selection, we first obtain the two relative-time data

sequences, denoted by T, = [O,t},,fﬁ/,fg,, . ..,fg,,fg,] and
Tr =[0,tL,,t%,t2,...,t7,t%]. Then we compute the differ-

ence between 177 and T as D = [0,1}, — tL, .2, — 12, ¢ —
tg,, ceey AZ/ — 10, AZ/ — t7]. Next, based on aforementioned
observation, we extract the mean, standard deviation, mean
absolute deviation, max, and min from D to generate a feature
vector for (T,,T,). Afterwards, we use the resulting feature
vector to train a binary classifier based on any established
machine learning technique such as SVM, RF, and k-NN
which are compared in Section V. During each authentication
session, the server explores the same process to extract a
feature vector and then test it with the classifier.

2) Deep Correlation Network: We also explore deep learn-
ing to build a deep correlation network to check the correlation
between the phase and acceleration data. Fig. 7 shows the
architecture of our deep correlation network whose inputs are
the first-order derivatives of the phase and acceleration data,
denoted by ¢’ and A’, respectively. We pad zeros in the end
(if needed) to make all the input vectors/matrices have the
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Fig. 7. Deep correlation network.

same length. The network has two branches that can extract
features from the phase and acceleration data, respectively.
Both network branches consist of two one-dimensional (1D)
convolutional layers and a Long Short Term Memory (LSTM)
layer. Each 1D convolutional layer is followed by a batch
normalization Layer, a Rectified Linear Unit (ReLU) activa-
tion layer, and a dropout layer. The two 1D convolutional
layers extract features from the input vector/matrix, and the
LSTM layer encodes the sequence of features to a vector
representation. The two branches produce two feature matrices
representing the two input data vectors, respectively. We then
compute the matrix product of the two feature matrices to
quantify their similarity in each time step. Afterwards, we per-
form a max pooling over the matrix product and then use
two fully connected (FC) layers with sigmoid activation to
produce a value between 0 and 1, which can be interpreted
as a correlation probability. If the output value is above 0.5,
we consider T}, and T, correlated and otherwise uncorrelated.

V. PERFORMANCE EVALUATION

In this section, we evaluate the usability and security of
SmartRFID. Following the adversary model in Section III,
we considered two types of attackers. Type-1 attackers
can observe the victim’s hand movement in real time and
then attempts synchronized hand movement with the victim.
Type-2 attackers can additionally record and practice the
victim’s hand movement multiple times beforehand.

A. Experiment Setup and Performance Metrics

We prototyped SmartRFID with commodity devices.
As shown in Fig. 8, we used an Impinj Speedway R420 RFID
reader equipped with a circularly polarized RFID antenna and
connected it to a Dell Precision laptop that acts as the backend
server. The RFID reader continuously sent queries at a rate of
100 reads/second. In addition, we used Zebra’s passive RFID
cards as users’ access cards in our experiments. But our system
is applicable to any other commodity RFID tags or cards such
as Aline ALN-9740 RFID tags and Omni-ID’s Adept 650P
RFID cards. To collect acceleration data, we implemented
Android application and Tizen application on Huawei Watch
2 that runs Android Wear 2.1 and Samsung Galaxy Watch
that runs Tizen 5.0, respectively. The accelerometer sampling
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Fig. 8. Experimental setup.

rate was set to 100 Hz. We also implemented a Java appli-
cation based on the Octane SDK together with the reader to
record the phase of the backscattered signals. The application
on the smartwatch and the phase-recording application are
both part of the Data Acquisition submodule in SmartRFID.
In addition, we implemented Data Preprocessing, Intentional-
Gesture Recognition, and Feature-based Correlation Detection
using Matlab on the laptop. Finally, we constructed the deep
correlation network in PyTorch 1.7 and trained the model on
Dell 7920 Tower with NVIDIA Quadro GP100 16GB GPU.

In SmartRFID, users need to perform intentional hand
movement which should be not only easy and quick to perform
by legitimate users but also hard to imitate by attackers.
We evaluated the following six types of intentional hand move-
ment events in our experiments: (1) Tap-4/5/6: tap an RFID
card four/five/six times, respectively; and (2) Shake-4/5/6:
shake an RFID card four/five/six times, respectively. In addi-
tion, there were random human activities such as walking
during the experiments.

The main performance metrics we use include the True
Acceptance Rate (TAR), False Acceptance Rate (FAR),
Receiver Operating Characteristics (ROC) curve, Equal Error
Rate (EER), and Area Under The Curve (AUC).

B. Data Collection

With the IRB approval from our institution, we recruited
20 participants for the experiments, including 3 females and
17 males aged between 20 and 35. We collected the following
three training datasets (Dataset I to III) and two test datasets
(Datasets IV and V).

1) Dataset-I for Intentional Gesture Recognition: We con-
structed a gesture-profile dataset to recognize tap and shake
gestures in intentional hand movement. In particular, we asked
a participant P to perform 1,000 taps and also 1,000 times of
each of Shake-I, Shake-II, and Shake-III gestures (see Fig. 3).
Then we fed the resulting raw phase and acceleration data
into the Data Preprocessing module to obtain the phase and
acceleration profiles of the tap and shake gestures, respectively.
Finally, we collected 4,000 phase data samples and also 4,000
acceleration data samples. The gesture-profile dataset is not
user-specific.

2) Dataset-1I for Feature-Based Correlation Detection: and
Dataset-III for Deep Correlation Network. We further asked
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‘P to perform each intentional hand movement 700 times to
collect phase and acceleration data samples. So we collected
4,200 positive paired phase-acceleration data samples, each of
which is labeled as 1. In addition, we asked P and another
participant P’ to perform each intentional hand movement
10 times. A phase data sample from P and an acceleration data
sample from P’ constitute an uncorrelated phase-acceleration
pair, leading to 60 x 60 = 3,600 negative paired phase-
acceleration samples. Furthermore, we asked P’ to act as a
Type-2 attacker and mimic the actions of P in real time.
P was required to perform each intentional hand movement
100 times, so we collected another 600 negative paired phase-
acceleration samples and thus 4,200 in total which are labeled
as 0. Next, we randomly chose 200 from the 700 positive
paired samples of each intentional hand movement and 1,200
negative paired samples from all negative paired samples. Then
we fed them into the Data preprocessing and Intentional-
Gesture Recognition modules to build Dataset-1I that contains
1,200 positive and 1,200 negative paired phase-acceleration
samples. In addition, we input all raw data into Data Pre-
processing and Intentional-Gesture Recognition modules to
extract pairs of phase and acceleration data vectors. The first
derivatives in such phase-acceleration vector pairs were used
to construct Dataset-III that have 4,200 positive and negative
paired phase-acceleration samples.

3) Dataset-V for Intentional-Gesture Detector: Five par-
ticipants were asked to perform four daily activities within
the transmission range of the RFID reader: walking, using a
computer, using a phone, and any other physical activities. All
such activities led to unintentional hand gestures other than
tap and shake gestures. Each participant wore the smartwatch
and a Vulcan RFID wristband to perform these activities.
After obtaining the raw data, we used the Data Preprocessing
module to remove noise. Then we used our iterative algorithm
and the Phase-Data Segmentation submodule to extract the
acceleration and phase data segments as negative samples.
We collected 800 negative gesture samples in total.

4) Dataset-VI for User and Attacker Emulation: All
volunteers acted as either legitimate users or attackers to
generate this dataset. Each volunteer was first asked to prac-
tice the aforementioned 6 intentional hand movement events
multiple times until he/she was familiar with them. After-
wards, we required them to perform each intentional hand
movement 20 times. So we collected 2,400 positive paired
phase-acceleration samples in total. In addition, 6 out of the
20 participants served as both Type-1 and Type-2 attackers.
Each attacker was physically co-located with the victim and
could clearly observe the victim’s hand movement. For each
volunteer, the other 5 were regarded as his/her victims. Each
victim-attacker pair performs each intentional hand movement
10 times, leading to 50 x 6 x 2 = 600 negative paired phase-
acceleration samples.

C. Model Training

We used Dataset-I to train two OC-SVM models for
the phase and acceleration data, respectively. Additionally,
we trained SVM, RF, and k-NN on Dataset-1 and Dataset-11
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for intentional gesture recognition and feature-based correla-
tion detection. We adopted 10-fold cross-validation to evaluate
each model. In particular, we applied OC-SVM and SVM
with four kernel functions, including linear, polynomial, RBF,
and sigmoid. We also used the grid search method to find
the best parameters. The implementations of OC-SVM and
SVM relied on LibSVM [24]. For RF, we tested the number
of decision trees ranging from 5 to 100. For k-NN, we tested
the number of neighbors ranging from 1 to 40 and various
distance metrics such as Standardized Euclidean distance. The
parameter settings are summarized as follows.

1) Tap/Shake Gesture Detector: We chose RBF and the
sigmoid function as kernel functions for phase and acceleration
data, respectively. We set the parameter v to 0.05 and v to
0.1 for phase data, and v to 0.1 and ~ to 0.4 for acceleration
data.

2) Tap/Shake Gesture Classifier: For SVM, we used the
polynomial function and RBF as the kernel functions for the
phase and acceleration data, respectively. We set vy to 3 and
degree to 3 for phase data, and y to 0.01 for acceleration data.
For RF, we set the number of decisions to 22 and 5 for the
phase and acceleration data. For k-NN, we chose Standardized
Euclidean distance as the distance metric for both data types.
The k value is set to 9 and 5 for phase and acceleration data,
respectively.

3) Feature-Based Correlation Detection: For SVM,
we selected RBF as the kernel function with v and ¢ set to
2 and 2'°, respectively. We also chose 31 decision trees for
the RF classifier. For k-NN, we used Manhattan distance as
distance metric and set k to 7.

4) Deep Correlation Network: We used dataset-1II to train
the deep correlation network. The number of hidden units
in each 1D convolutional layer and LSTM layer was set to
128. The kernel size of 1D convolutional layer was 3 with
stride of 1. The dropout rate was set to 0.2 for all dropout
layers and the max pooling window size was 10. We adopted
two FC layers with 120 and 80 units, respectively. We trained
the network by minimizing binary cross entropy between the
actual label and the output using the Adam optimizer. It took
approximately 20 minutes to train the deep neural network on
200 epochs.

D. Intentional-Gesture Recognition

We used Dataset-V and Dataset-VI to evaluate intentional-
gesture detectors. The TPRs are 94.17% and 99.88%
for phase-based and acceleration-based intentional-gesture
detectors, respectively, and the corresponding FPRs are
1.57% and 0.02%, respectively. The results show that our
intentional-gesture detectors can rule out unintentional ges-
tures, so SmartRFID can naturally detect attackers who per-
form random hand movement with overwhelming probability.
In addition, we applied intentional tap/shake gesture classifiers
on Dataset-VI to evaluate the classification accuracy that is
defined as the ratio of true positives plus true negatives to the
total number of samples. Table II shows that SVM outperforms
RF and NB for the phase data, and all the three classifiers can
achieve 100% accuracy for the acceleration data. We further
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TABLE 11
CLASSIFICATION ACCURACY FOR INTENTIONAL-GESTURE RECOGNITION

Data Type SVM RF KNN
Phase 98.875% | 97.75% | 97.12%
Acceleration | 100% 100% 100%
1
0.8
0.6
Soa
02
00 02 04 06 08 1
FAR KNN RF SVM
(a) ROC of SVM (b) EER
Fig. 9. ROC and EER comparison for feature-based correlation detection.
TABLE III
FAR FOR TYPE-1 AND TYPE-2 ATTACKERS
Tap-4 | Tap-5 | Tap-6 | Shake-4 | Shake-5 | Shake-6
Type-1 0% 0% 0% 0% 0% 0%
Type-2 1% 1% 1% 0% 0% 0%

compared the average prediction time and found that SVM
took less time than RF and NB. Therefore, we chose SVM as
the intentional tap/shake gesture classifier for both phase and
acceleration data in subsequent experiments.

E. Feature-Based Correlation Detection

We fed raw data samples from Dataset-VI into Data Pre-
processing and Intentional-Gesture Recognition modules to
extract timestamp vectors. We then compared the EERs of
SVM, RF, and kNN classifiers in Fig.9(b). Since the EER of
SVM is lower than those of RF and k-NN, we chose SVM for
the Feature-Based Correlation Detection module. Moreover,
Fig. 9(a) shows the ROC curve of the SVM classifier. Since
the ROC curve is located at the top-left corner, we can
simultaneously achieve a very high TAR and a very low FAR.
Specifically, the TAR of feature-based correlation detection is
97.3%. We also evaluated the resilience of the SVM classifier
to Type-1 and Type-2 attackers. The FARs under Type-1 and
Type-2 attackers are 0.78% and 6.3%, respectively. It is also
not surprising to see that Type-2 attackers have a higher suc-
cess rate than Type-2 attackers. To sum up, SmartRFID using
feature-based correlation detection can correctly distinguish
legitimate users from Type-1 and Type-2 attackers with very
high probability.

F. Deep Correlation Network

We evaluated the deep correlation network on
Dataset-VI. As in Section V-E, we obtained phase and
acceleration data vectors from the raw data. Then we
computed the first derivatives of both data vectors and
input them into the pre-trained deep correlation network to
check if the two data vectors correlate. Fig. 10(a) shows the
ROC curve of the deep correlation network. Specifically,
the TAR of the deep correlation network is 97.56%,
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Fig. 10. ROC and AUC of deep correlation network.

indicating that it can recognize legitimate users with very
high probability. In addition, the overall FAR of the deep
correlation network is 0.67%. In particular, the FARs under
Type-1 and Type-2 attackers are 0% and 1%, respectively.
The results demonstrate that the deep correlation network
can detect Type-1 and Type-2 attackers with overwhelming
probability.

Tap and shake gestures have slightly different perfor-
mance. As shown in Fig. 10(b), the shake gesture has better
performance than the tap gesture. One possible reason is
that the shake gesture can induce larger amplitude changes
than the tap gesture, which makes the correlation detec-
tion easier and the attacker emulation harder. Let us further
examine the ROC curves for all six types of intentional
hand movement. As shown in Fig. 10(c) and Fig. 10(d),
the deep correlation network performs better as the number
of taps or shakes increases. This indicates that the more
gestures the user performs, the easier for the deep corre-
lation network to check the acceleration-phase correlation,
the harder for attackers to mimic the victim’s intentional
hand movement. Moreover, Table III shows that all Type-1
attackers in our experiments can be detected by the deep
correlation network. Additionally, although Type-2 attackers
can occasionally mimic the victim’s tap-4/5/6 gestures, it is
still very difficult for them to bypass the deep correlation
network. Moreover, none of them can mimic the victim’s shake
gestures.

As we can see, the deep correlation network is better in
distinguishing legitimate users from Type-1 and Type-2 attack-
ers. The reason is that feature-based correlation detection only
considers time information, while the deep correlation network
additionally considers the data-change pattern. We can also
notice that the deep correlation network needs more training
data than feature-based correlation detection. Which method(s)
to use in SmartRFID thus depends on practical security
requirements and the availability of training data.
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TABLE IV
USABILITY SCORES

Mean | Standard Deviation | Min | Median | Max
Ql 4.62 0.51 4 5 5
Q2 4.5 0.75 3 5 5
Q3 4.63 0.74 3 5 5
Q4 4.88 0.35 4 5 5

G. Authentication Latency

We also studied the authentication latency of SmartRFID.
The authentication latency can be broken into three parts:
the time to perform an intentional hand movement event, the
network delay to transmit accelerometer data to the server, and
the response time that the system needs to make a decision.
In our experiments, the average time for a tap and a shake
are about 271 ms and 408 ms, respectively. Additionally, the
average performing time of Tap-4/5/6 and Shake-4/5/6 events
ranges from 1.33s to 2.74s. The overall average performing
time is about 1.99s. Moreover, the average network delay
for transferring accelerometer data of 5s is about 48 ms.
Furthermore, the average response time for Tap-4/5/6 and
Shake-4/5/6 events varies between 0.157s and 0.176s. The
overall average response time is 0.167s. Hence, the average
authentication latency ranges from 1.535s to 2.964s. The
overall average authentication latency is 2.205s, which is
comparable to inputting a PIN on a door keypad.

H. Usability Studies

We also surveyed the same 20 volunteers about their experi-
ence using SmartRFID. Specifically, we asked each volunteer
(Q1) whether it is easy to learn using SmartRFID, (Q2) if
SmartRFID is easy to use, (Q3) if tap and shake gestures
are easy to perform, and (Q4) if intentional hand movement
is easy to memorize. Each participant was asked to give a
score ranging from one (lowest) to five (highest) for each
question and was not allowed to give all five. The average
scores are listed in Table IV. The results clearly indicate
that SmartRFID is very easy to use and more preferable than
traditional RFID-based authentication due to its high security.

VI. RELATED WORK
A. Mobile Authentication

There is prior work using smartwatch-like wrist wearables
as secure tokens for mobile authentication. ZEBRA [25]
continuously verifies a user’s identity when he/she works on
a computer by comparing two sequences of operations (e.g.,
typing and scrolling) captured by his/her wristband and the
computer. A user is authenticated if the majority of the two
operation sequences match. SAW [26] requires users to tap
a key on a keyboard multiple times or wiggle a mouse for
a few seconds with their wristband hand to unlock their
desktops. Users are considered legitimate if the difference
is less than a predefined threshold between the two time
sequences of keystrokes or wiggles that are extracted from the
desktop and the built-in motion sensors of their wristbands.
WristUnlock [27] asks a user to raise his/her smartphone
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naturally with his/her wristband hand to unlock the smartphone
by checking the correlation between acceleration data from
the wrist wearable and smartphone. As another example,
Pet-2-Auth [28] authenticates users on IoT devices that have
buttons, knobs, or touchscreen, such as Nest Thermostat and
Amazon Echo. Users click on buttons or twist knobs multiple
times with their wristband hands. Pet-2-Auth then uses a SVM
classifier to check the correlation between the two timestamp
sequences of these actions extracted from the user’s wristband
and the target IoT device. SmartRFID differs significantly from
the aforementioned work in the application context and data
processing techniques. Specifically, SmartRFID focuses on
commodity UHF RFID systems that have a very different user
interaction mode. In particular, RFID systems are not equipped
with any interaction interface, so we can only leverage raw
RFID signals. SmartRFID explores new algorithms to extract
intentional-gestures related data from noisy phase data and
uses SVM classifiers to recognize them. Moreover, we explore
and design a cross-modal deep neural network to check the
correlation between phase and accelerometer data.

Biometric authentication methods have been widely
explored for mobile authentication as well. They can be clas-
sified into two categories: physiological and behavioral [29].
Physiological biometric authentication relies on unique biolog-
ical traits such as retinas, irises, voices, facial characteristics,
and fingerprints to authenticate users. Behavioral biometric
authentication identifies users by their unique patterns exhib-
ited when they interact with a mobile device [30], [31], [32],
[33], [34], [35], [36]. These schemes all aim to secure smart
devices themselves and are orthogonal to SmartRFID which
explores commodity smart devices to secure commodity UHF
RFID systems.

B. RFID Security

RFID security has also been extensively studied. Many cryp-
tographic authentication protocols can prevent illegal reading
of tags [37], [38], [39], but these schemes cannot be applied
to commodity crypto-less UHF RFID tags. Czeskis [40] et al.
proposed to mitigate replay attacks by requiring RFID users to
handshake their cards with a build-in accelerometer during the
authentication session. RF-Cloak [41] protects RFID systems
from eavesdropping attacks by randomizing modulation and
wireless channels. Hu-Fu [42] is a physical-layer authenti-
cation method for passive RFID tags by leveraging induc-
tive coupling of two adjacent tags and signal randomization.
RF-Mehndi [43] authenticates an RFID card and its holder’s
identity simultaneously by exploring the backscattered signal
phase changes induced by the holder’s fingertip on a carefully
design passive tag array. More recently, RF-Rhythm [44] iden-
tifies an RFID user’s identity by requiring the user to perform
a sequence of taps on his/her card according to a self-chosen
secret melody. RCID [45] is a new fingerprinting scheme for
RFID tags based on wideband backscatter. WearRF-CLA [46]
combines wearables and RFID tags to achieve secure and
usable continuous location authentication. Orthogonal to the
above work, SmartRFID explores pervasive smart devices to
enhance the security of RFID authentication systems without
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requiring any hardware modification. In [4], Tan et al. design a
protocol to authenticate RFID tags. In [5], Saad et al. proposes
a new approach to inject noise-like signals at the reader end to
prevent attackers from eavesdropping tag information. In [6],
Tan et al. presents two protocols to accurately and efficiently
monitor the RFID tags for missing tags. By comparison,
SmartRFID does not require any modification on the reader
end. SmartRFID can be applied to generic UHF RFID systems
with user-carried commodity smart devices and RFID tags.

The schemes in [35] and [36] authenticate users by explor-
ing an off-body RFID tag array to sense users’ daily activities
such as door knocking or walking patterns. Both schemes
can be considered behavioral biometric RFID authentication
techniques and require each RFID user to get involved in
the intensive model-training process. In addition, they require
a customized off-body RFID tag array and thus cannot be
applied to generic UHF RFID systems. By comparison, the
model training in SmartRFID is generic to all users and
does not require individual user involvement. SmartRFID
also applies to generic UHF RFID systems with user-carried
commodity smart devices and RFID tags.

VII. CONCLUSION

In this paper, we presented the design and evaluation
of SmartRFID, a novel UHF RFID authentication system.
SmartRFID explores pervasive user-carried smart devices to
protect commodity crypto-less UHF RFID tags from spoofing
and cloning and thus greatly enhances their applicability to
security-sensitive contexts. We designed novel feature-based
machine learning techniques and also deep learning techniques
to check the coexistence of an RFID tag and its associ-
ated smart device on the RFID user. Comprehensive user
experiments on commodity RFID devices and smartwatches
confirmed the high security and usability of SmartRFID.
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