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Abstract— Commodity ultra-high-frequency (UHF) RFID
authentication systems only provide weak user authentication,
as RFID tags can be easily stolen, lost, or cloned by attackers.
This paper presents the design and evaluation of SmartRFID,
a novel UHF RFID authentication system to promote commod-
ity crypto-less UHF RFID tags for security-sensitive applica-
tions. SmartRFID explores extremely popular smart devices and
requires a legitimate user to enroll his smart device along with
his RFID tag. Besides authenticating the RFID tag as usual,
SmartRFID verifies whether the user simultaneously possesses
the associated smart device with both feature-based machine
learning and deep learning techniques. The user is considered
authentic if and only if passing the dual verifications. Compre-
hensive user experiments on commodity smartwatches and RFID
devices confirmed the high security and usability of SmartRFID.
In particular, SmartRFID achieves a true acceptance rate of
above 97.5% and a false acceptance rate of less than 0.7% based
on deep learning. In addition, SmartRFID can achieve an average
authentication latency of less than 2.21 s, which is comparable
to inputting a PIN on a door keypad or smartphone.

Index Terms— UHF RFID, smart device, smartwatch, authen-
tication, access control.

I. INTRODUCTION

R
ADIO Frequency Identification (RFID) technology has

been widely used in personnel/object identification and

access control. A typical RFID system consists of RFID

readers, a backend server, and RFID tags with each assigned

to a unique user. An RFID reader keeps sending radio signals

to detect and query any RFID tag within its transmission

range. Once receiving an RFID reader’s query, an RFID tag
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responds with the stored authentication information which can

be a simple Electronic Product Code (EPC) or a cryptographic

message. The RFID reader forwards the response to the back-

end server for final verification. A valid response corroborates

the legitimacy of the RFID tag carrier who is then permitted

access to the protected area or system such as a building/room,

computer system, or parking lot.

Passive ultra-high frequency (UHF) RFID is dominating

the RFID market [1]. A UHF RFID system operates the

frequency band between 860MHz and 960MHz. UHF RFID

readers transmit modulated RF signals to interrogate tags.

Passive UHF RFID tags are batteryless and communicate with

RFID readers by backscattering their signals. Specifically, the

passive UHF tag receives the energy via signals propagated

from the reader antenna. Once the signals reach the tag, the

energy travels through the tag antenna to activate the chip

or integrated circuit (IC). The remaining energy is modulated

with the chip data and sent back via the tag antenna to the

reader antenna in the form of electromagnetic waves. The

response is then detected and decoded at the reader. In contrast

to low-frequency and high-frequency tags, passive UHF tags

have a much longer reading distance up to 12m and are also

much cheaper. Passive UHF tags are thus favorable choices

in many contexts such as in hospitals for the nursing staff

pushing a stretcher to transport a patient across different areas,

in a logistics center for employees moving pallets, in office

buildings for people with a physical impairment, and in large

indoor environments to track the whereabouts of users.

Using passive UHF RFID in security-sensitive applications

has been largely hindered by the lack of cryptographic support

on most commodity products. As far as we know, NXP’s

UCODE DNA RAIN RFID tags [2] are the only products

that support cryptographic authentication checks. These tags

cost about $1 each [3] and are much more expensive than

regular crypto-less tags typically costing 5¢ to 15¢ . Therefore,

crypto-less passive UHF RFID tags are still the mainstream

products in the RFID market. We focus on such tags and

may omit the term “crypto-less passive UHF” whenever no

confusion may arise hereafter. The security of passive UHF

RFID systems has been receiving growing attention from the

academia and industry. For instance, some recent publications

in IEEE TWC [4], [5], [6] propose elegant solutions to

different RFID security issues. As another example, given that

the RSSI and phase information of backscattered RFID signals

are available on commodity RFID readers [7], RFID signals
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have been explored to recognize human gestures to achieve

gesture-based user authentication [8], [9], [10]. This paper also

explores the rich information contained in backscattered RFID

signals to design more secure RFID authentication systems.

Commodity RFID authentication systems are particularly

vulnerable to adversarial RFID tags, each of which refers to

a legitimate RFID tag or its clone controlled by the adversary.

In particular, RFID-based ID badges can be easily lost/stolen

and possessed by the adversary. In addition, most commodity

RFID tags do not support cryptographic operations. A capable

adversary can overhear the unencrypted reader-tag communi-

cations and then exploit the sniffed tag information to make

clones. The adversary can use an adversarial RFID tag to

impersonate the legitimate user and gain access to protected

physical or electronic resources. As a case study, we easily

cloned the UHF RFID tags in the parking decals and used

them to successfully enter the gated garage of our institution.

Given the growing ubiquity of human-carried smart devices

such as smartphones and smartwatches, it is a natural ques-

tion whether smart devices can be explored to protect RFID

authentication systems from adversarial RFID tags. One plau-

sible solution is to directly use a commercial two-factor

authentication system such as Duo [11]. In particular, a Duo-

like technique would involve the user holding the smart device,

unlocking the screen, finding the Duo app, and manually

approving a login notification that is pushed by the backend

RFID server after validating the tag information. Involving

non-trivial user effort, this approach has poor usability espe-

cially for people with fat fingers or weak vision and greatly

diminishes the convenience of UHF RFID authentication.

Additionally, it is shown in [12] that the average authentication

time for the Duo-like approach is about 16.1 s. Furthermore,

the Duo-like approach is vulnerable to synchronized jam-

ming attacks [13]. Another plausible solution is to verify the

physical proximity of the user’s enrolled smart device and

the RFID reader via a short-range wireless channel such as

NFC or Bluetooth. This method, however, requires additional

NFC or Bluetooth capabilities that are not available on most

commodity RFID readers. Additionally, it requires pairing the

smart device with the RFID reader, which may severely hinder

its usability especially if the legitimate user needs to access

many protected areas (e.g., a nurse in a big hospital) with

each having a distinct RFID reader. Moreover, this method is

vulnerable to known wireless man-in-the-middle and relaying

attacks between the smart device and RFID reader [14], [15],

[16], [17], which make it difficult to verify their physical

proximity. It is also worth noting that such attacks render

it infeasible to use smart devices alone for proximity-based

access control to protected electrical and physical resources.

In this paper, we propose SmartRFID, a smart device-aided

RFID authentication system to promote commodity RFID tags

for otherwise inapplicable security-sensitive applications. Each

legitimate SmartRFID user registers his/her RFID tag and also

smart device during system enrollment. In each subsequent

authentication instance, SmartRFID verifies two factors for any

RFID user: (1) the tag Electronic Product Code (EPC) as in a

traditional RFID authentication system and (2) the physical

proximity of the paired RFID tag and smart device. The

user is considered authentic if and only if both authentication

factors can be validated. Although SmartRFID explores user-

carried smart devices as well, it involves minimal user effort,

is much less time-consuming and invulnerable to synchronized

jamming attacks in contrast to the Duo-like solution; it is not

subject to wireless MiM attackers either.

SmartRFID checks the coexistence of the paired RFID tag

and smart device by verifying the correlation between the

smart device’s inertial accelerometer data and the backscat-

tered RFID signals. Each legitimate user in SmartRFID is

required to tap or shake the RFID tag multiple times for

a short duration (say, 2 s) with the same hand holding the

paired smart device. The intentional hand movement can be

detected by the smart device’s inertial accelerometer. It can

also induce phase changes in the backscattered RFID signals

that are readily available on commodity RFID readers. The

backend server collects and compares the acceleration and

phase data. If a strong acceleration-phase correlation could be

found, the backend server trusts that the user simultaneously

holds the paired tag and smart device and thus considers

him/her authentic.

There are two main obstacles to implement SmartRFID.

• First, a capable attacker can perform synchronized

hand movement with the victim user who may often

unknowingly wave his/her smart device. This synchroniza-

tion attack is feasible if the attacker can visually observe the

victim user either in person (e.g., as a malicious co-worker)

or through a live video feed from a spy camera. The attacker

can then pass authentication due to the strong acceleration-

phase correlation. SmartRFID thwarts this attack by requiring

that each user signal his/her authentication intention with a

sequence of taps or shakes on the RFID tag. In contrast to

totally random hand movement, such intentional hand gestures

are much less unlikely to accidentally perform by the legiti-

mate user. Additionally, our method has high usability because

both taps and shakes are very easy to perform. We develop

novel machine learning-driven algorithms to recognize each

individual tap or shake gesture from noisy acceleration and

RFID-phase data, respectively.

• Second, the acceleration and phase data are of dif-

ferent types and cannot be directly compared. We tackle

this challenge by first extracting two time series of data from

the acceleration and phase data, respectively. Then we explore

and compare two methods to verify their correlation. The first

method explores conventional machine learning techniques—

including Support Vector Machine (SVM), Random Forest

(RF), and k-nearest neighbors (k-NN)—to build a feature-

based correlation detection module. The second method uses a

two-branch deep neural network with two CNN (Convolutional

Neural Network) layers and one LSTM (Long Short-Term

Memory) layer in each branch.

We prototype SmartRFID on commodity smartwatches and

UHF RFID systems and evaluate its security and usability

through detailed user experiments involving 20 volunteers.

The true and false acceptance rates with the feature-based

correlation detection module are 97.3% and 3.5%, respectively,

and those with the deep correlation network are 97.56% and

0.66%, respectively. Additionally, the feature-based correlation
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detection module achieves an Area Under The Curve (AUC)

score as high as 0.995 and an equal error rate (EER) as low as

0.018, while the deep correlation network module achieves an

AUC score as high as 0.998 and EER as low as 0.017. We also

show that SmartRFID can achieve an average authentication

latency of less than 2.21 s, which is comparable to inputting

a PIN on a door keypad or smartphone. Finally, a user survey

confirms that SmartRFID is very easy and convenient to use.

SmartRFID can significantly boost the security of commod-

ity UHF RFID authentication systems with high usability and

deployability. In terms of security, in addition to cloning or

stealing the legitimate RFID tag, the attacker needs to steal

the associated smart device which is carried by the user (e.g.,

on the wrist), is normally protected by a login password, and

receives stronger user attention/protection. In addition, how

the legitimate user interacts with his/her smart device and

RFID tag can be a self-chosen gesture password difficult for

the attacker to guess or emulate. With regard to usability

and deployability, smart devices required by SmartRFID have

been prevalent in daily life and most target application contexts

of UHF RFID systems. For example, many organizations (e.g.,

the authors’ affiliation) enforce Duo-like mobile two-factor

authentication and require each affiliate to have a smartphone-

like smart device. So SmartRFID does not involve any extra

smart device other than what the user already has in most

cases. Furthermore, SmartRFID users only need to perform

simple tap or shake gestures with their smart devices, and the

resulting acceleration data are automatically uploaded to the

system server through a software module on the smart device.

The rest of this paper is organized as follows. Section II

outlines the system model and workflow. Section III presents

the adversary model. Section IV details the SmartRFID design.

Section V presents the evaluation results. Section VI reviews

the related work. Section VII concludes this paper.

II. SYSTEM MODEL AND OVERVIEW

SmartRFID aims to add a second authentication factor to a

commodity UHF RFID authentication system which consists

of a server, RFID readers, and passive crypto-less UHF RFID

tags. For convenience only, we use Bob as an exemplary

legitimate user to outline the system model and operations.

Bob has an ID badge with an embedded RFID tag and wears

it on a lanyard or clips it to his clothes. We do not differentiate

the ID badge with the RFID tag hereafter. Bob also has a smart

device (e.g., a smartphone, smartwatch, or fitness tracker) with

a standard accelerometer. He installs a SmartRFID app on the

smart device and also creates his app username and password

for the server to recognize him. Bob enrolls both his smart

device and RFID tag with the server.

We assume that the server can always communicate with

Bob’s smart device either through a direct WiFi or cellular

channel or with the RFID reader as a relay. All the commu-

nication messages between Bob’s smart device and the server

are actually handled by the SmartRFID app. So we assume a

secure end-to-end TLS-like channel between the SmartRFID

app and server. When the server receives authenticated mes-

sages from a SmartRFID app instance logged into under Bob’s

username and password, it trusts that the messages are indeed

Fig. 1. Workflow of SmartRFID.

from Bob’s smart device. This assumption is also required by

a Duo-like two-factor authentication system [11].

Fig. 1 shows the SmartRFID system workflow. Each step

are detailed in late sections.

1. The RFID reader acquires the tag information with a

traditional RFID interrogation protocol such as EPC Gen

2 and sends it to the backend server for verification.

2. After validating the tag information, the server notifies

the RFID reader to report the phase information of

backscattered signals and Bob’s smart device to record

its acceleration data.

3. Bob taps or shakes his tag randomly or according to a

predetermined pattern within a short duration with the

same hand holding or wearing the paired smart device.

4. The RFID reader and Bob’s smart device submit phase

data and acceleration data to the server, respectively.

5. The server checks the correlation between received

phase and acceleration data with either of two

approaches or both. The first approach uses a feature-

based correlation detector based on traditional machine

learning techniques, and the second uses a deep correla-

tion network built upon deep learning techniques. If the

server finds a strong acceleration-phase data correlation,

it considers the RFID user indeed Bob and grants him

access to protected physical or electronic resources (e.g.,

a building, server room, computer, or vehicle) Bob is

entitled to use. Otherwise, the user is denied access.

SmartRFID is intended to be highly usable by minimizing

the additional effort required of RFID users. In particular,

Bob does not need to perform any action other than taping

or shaking his RFID tag. All the communications between the

server and the SmartRFID app are automatically conducted

without involving Bob’s effort. For example, Bob does not

need to manually initiate the authentication session or respond

to the server’s acceleration-data collection request via the app.

In addition, Bob need not know when the server starts to

collect phase and accelerometer data.

III. ADVERSARY MODEL

Rather than providing very strong security, SmartRFID aims

to secure commodity RFID authentication systems which are

otherwise vulnerable to tag spoofing and cloning. We thus

consider a reasonable adversary, denoted by A, that possesses

an authentic copy of Bob’s RFID tag, be it lost, stolen,

or cloned. We assume that Bob’s smart device is protected by

a password as in common scenarios. Consider a smartwatch as
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an example. Each time Bob puts on his smartwatch, he must

input the password to unlock it and activate all the apps

therein—including the SmartRFID app—which remain active

until the smartwatch leaves Bob’s wrist and are then automat-

ically locked. Therefore, A still cannot bypass SmartRFID by

stealing both Bob’s smartwatch and RFID tag as long as the

smartwatch’s password mechanism is secure.

A is assumed to know how SmartRFID works and uses

the RFID tag to initiate an authentication session. A aims to

impersonate Bob for gaining illegitimate access to a protected

area or system. Since the tag information (e.g., EPC) is

authentic and verifiable, the backend server proceeds to pull

the accelerometer data from Bob’s smart device and the phase

data from the RFID reader A is interacting with. We assume

that A can observe Bob’s hand movement in real time either

in person (e.g., as a malicious bystander, shoulder surfer,

or coworker) or through a live feed from a spy camera,

so A can perform synchronized hand movement on the RFID

tag. If the server verifies a strong acceleration-phase data

correlation to mistake A for Bob, A succeeds.

We have two additional assumptions. First, the server cannot

use secure localization techniques to tell whether Bob’s smart

device, the RFID tag under his name and used by A, and the

RFID reader A attempts to cheat are at the same location.

The reason is that secure localization techniques often rely on

many assumptions which may not hold in practice. Second,

we do not consider denial-of-service attacks on SmartRFID,

in which A seeks to induce wrong phase measurements and

thus authentication failures by signal interference.

IV. SMARTRFID SYSTEM DESIGN

In this section, we first describe two permissible hand

gestures in SmartRFID—taps and shakes—which serve as

the basic line of defense. Then we overview the SmartRFID

modules. Finally, we detail the design of each module.

A. Intentional Gestures in SmartRFID

Passive UHF RFID tags communicate with the RFID reader

by backscattering the reader’s signals. The backscattered sig-

nal’s phase is available on commodity RFID readers such

as Impinj R420 [7]. According to [18], the phase can be

expressed as φ = (4πdf
c

+ φreader + φcard) mod 2π, where

2d is the round-trip propagation distance between the reader

and card, f is the signal frequency, c is the speed of light,

φreader denotes the phase rotation due to the reader’s transmit

and receive circuits, and φcard represents the phase rotation

caused by the RFID card’s reflection characteristics. Tapping

or shaking the RFID card can change its circuit impedance

and also signal propagation, leading to some additional phase

rotation which is explored in SmartRFID.

In SmartRFID, each legitimate user signals his authentica-

tion intention by performing specific hand gestures. Assume

that Bob touches his RFID tag with the same hand holding the

associated smart device. Such physical interactions can induce

both phase and acceleration data changes that can be strongly

correlated. A common user’s hand/arm movement is mostly

unintentional and slow with a repeatable pattern (e.g., walking

Fig. 2. Acceleration of intentional gestures.

Fig. 3. Phase of intentional gestures.

or running). If SmartRFID allows random hand movement

during an authentication session, the adversary A would

have abundant opportunities to visually observe Bob and

then perform synchronized hand movement with the cloned

or stolen RFID tag to successfully impersonate Bob with a

higher chance. So SmartRFID requires each legitimate user to

perform intentional hand movement comprising either shakes

or taps to explicitly indicate his authentication intention.

• Tap: Use the hand holding or wearing the associated

smart device to place a finger a few centimeters (e.g.,

2 cm) above the RFID tag, then quickly touch the tag,

and lift the finger.

• Shake: Quickly move the RFID tag up and down with the

hand holding or wearing the associated smart device.

These two hand gestures both have been widely adopted

in various applications on touchscreen devices and virtual

reality equipment. Therefore, RFID users can perform them

effortlessly. Fig. 2 and Fig. 3 show the processed 3-axis

acceleration data and unwrapped phase data of each intentional

gesture naturally performed by a volunteer. We use [tstart, tend]
to represent a tap or shake event, where tstart and tend denote

the time that the user starts and finishes a tap or shake gesture.

We can observe that each gesture can induce significant phase

and acceleration changes. Moreover, the two gestures lead to

distinct phase and acceleration data patterns, so they can be

reliably identified from highly noisy phase and accelerometer

data. In addition, we can see that the phase change induced by

shaking a tag exhibits three possible patterns relating to how

the tag is shaken, as shown in Fig. 3. These observations all

drive our system design illustrated later.
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Fig. 4. SmartRFID system modules.

B. SmartRFID System Modules

SmartRFID comprises four main modules shown in Fig. 4.

In the Data Acquisition module, the server instructs the

RFID reader and the enrolled smart device to record and

submit phase and acceleration data, respectively. In the Data

Preprocessing module, the server uses various techniques to

process the noisy raw phase and acceleration data. In the

Intentional-Gesture Recognition module, the server extracts

and recognizes tap and shake gestures from the processed

phase and acceleration data, respectively, to determine whether

a user performs intentional hand movement. In particular,

it extracts a timestamp vector that records the start and

end time of each recognized tap or shake gesture, as well

as a fine-grained data vector that contains all the processed

phase/acceleration data associated with intentional hand move-

ment. In the final Correlation Detection module, the system

explores two different approaches to check whether there

is a strong phase-acceleration data correlation. The feature-

based correlation detection submodule examines the correla-

tion between the phase and acceleration timestamp vectors

with feature-based machine learning techniques. The deep

correlation network checks if the two fine-grained data vec-

tors have a strong correlation with deep learning techniques.

SmartRFID declares the user (in)authentic based on either

module or both according to the system preference.

C. Data Acquisition

An authentication session starts when the reader receives a

tag response to its query. In particular, the reader keeps sending

queries to detect nearby tags. When the user (legitimate or not)

approaches the reader, he performs intentional hand movement

per the SmartRFID requirement until passing authentication

or failing after a long time. The tag automatically answers

the reader’s query by backscattering its stored authentication

information (e.g., the unique EPC). The reader-tag communi-

cations follow a standard EPC Gen2 RFID protocol.

After receiving the tag response via the reader, the server

searches its database. If a matching user (i.e., Bob in our

example) is found, the server sends a “Start Sensing” com-

mand to both the reader and Bob’s enrolled smart device.

The overall latency from the RFID tag responding until the

“Start Sensing” command reaches the reader and smart device

is usually very short and well below 0.5 s per the EPC Gen2

standard and our experiments. So it is safe to assume that

Bob just starts performing hand interactions with his tag. Once

receiving “Start Sensing”, the RFID reader and smart device

begin to record and submit the phase and acceleration data,

respectively. The server issues a “Stop Sensing” command to

the reader and smart device after authenticating the user or

failing to do so after a sufficiently long time (say, 5 s).

D. Data Preprocessing

After receiving raw phase and acceleration data, the server

feeds them into the Data Preprocessing module. Since the data

are of different types, they are separately handled.

As shown in Fig. 4, the raw phase data go through phase

unwrapping and Savitzky-Golay filtering in sequence. In par-

ticular, the signal phases reported by the reader are wrapped

around [0, 2π] and thus cannot truly reflect how they change

over time. So we correct each wrapped phase angle (measured

in radians) by adding or subtracting 2π if absolute jumps

between consecutive phase values are greater than or equal

to π. Then we use a Savitzky-Golay smoothing filter [19] to

smooth the unwrapped phase data and also remove random

noise. This filter performs a local polynomial regression in a

subset of adjacent points based on least squares fitting. It can

preserve some important distribution features such as relative

maxima, making it more suitable than other filtering methods

for our case.

For the acceleration data, we adopt a band-pass filter to

eliminate noise and interference. The frequency of uncon-

trolled shakes and burst noise is generally much higher than

that of hand movement. Additionally, the frequency of inter-

ference caused by gravity is very low. According to [20],

0.5Hz is sufficient to eliminate the gravity’s impact from raw

acceleration data. Moreover, since average human reaction

time is about 284 ms [21], an user can perform a tap or

shake gesture no more than five times per second. Therefore,

we apply a Butterworth filter with cutoff frequencies of 0.5Hz
and 5 Hz to all three axes of acceleration data to remove the

noise and interference caused by gravity.

E. Intentional-Gesture Recognition

This module aims to recognize individual tap or shake

gestures from the processed phase and acceleration data. The

following three steps are performed in sequence.
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Step 1 (Data Segmentation): This step aims to segment the

processed phase and acceleration data into individual tap or

shake gestures. The output is a timestamp sequence containing

the start and end timestamps of each tap or shake gesture.

Due to space constraints and similar observations, we give

two intentional hand movement patterns performed within a

short period (say, 4 s) as examples: (1) Tap-4: tap an RFID

tag four times, and (2) Shake-4: shake an RFID tag four

times.

1) Acceleration-Data Segmentation: An individual tap ges-

ture involves the user first putting his finger a few centimeters

above the RFID tag, then starting to move until touching the

tag, and finally raising his finger back to near the starting point.

During this process, the user’s hand speed first increases from

zero and then decreases to zero when his finger touches the

tag; afterwards, it increases and then decreases to zero again

when his finger returns to near the starting point. Therefore,

the start and end time of a tap gesture is the first and third time

when the hand speed is zero. We have similar observations

for each shake gesture.

However, we cannot directly leverage the speed data derived

from 3-axis acceleration data to identify the start and end time

of each tap or shake gesture. The reason is that the directly

derived speed data are very noisy and inaccurate in most

cases due to accelerometer measurement errors and cumulative

errors caused by integration. Although the direct speed data

are not quite useful, we can still find some good samples to

help us locate “zero” (speed) points. For this purpose, we first

estimate the hand speed at each timestamp from 3-axis accel-

eration data. In particular, we calculate velocity by integrating

acceleration along each axis and thus get three velocity vectors

[vx, vy, vz ]. Then we calculate the hand speed as the square

root value of the velocity data as s =
√

vx
2 + vy

2 + vz
2. The

lower panels in Fig. 5(a) and Fig. 5(b) show the hand-speed

changes when a user performs Tap-4 and Shake-4, respectively.

Subsequently, we find all “zero” points between the begin

and finish time of the intentional hand movement and then

remove those irrelevant ones when the hand is static for a

sufficiently long time (e.g., between ts2 and ts3). So we can get

a set of relevant “zero” points and extract their timestamps. For

example, in the lower panel of Fig. 5(a), we have a timestamp

vector [tsbegin, t
s
1, t

s
2, t

s
3, t

s
4, t

s
5, t

s
5, . . . , t

s
finish]. According to our

observation, we choose the first and third elements of every

three adjacent elements as the start and end time of each tap

gesture and thus obtain a sequence of timestamps for Tap-4

as [tsbegin, t
s
2, t

s
3, t

s
5, t

s
5, t

s
7, t

s
7, t

s
finish]. Similarly, we can get a

timestamp vector for Shake-4 as shown in Fig. 5(b).

We proceed to identify the corresponding “zero” points.

As shown in Fig. 5, the start and end timestamps of each

tap or shake gesture in the speed curve correspond to some

turning points like ta4 and ta10 (the upper panel in Fig. 5(a)).

According to our preliminary experiments, the first and last tap

(or shake) gestures both have four or five turning points, while

the two middle ones can both have three, four or five turning

points. The examples in Fig. 5 show five turning points for

the first gesture, four and three for the two middle ones, and

four for the last one. Based on these observations, we design

Fig. 5. Processed acceleration and speed data.

an iterative approach to extract a start and end time of each

intentional gesture from the processed acceleration data.

We first select the axis that is the most sensitive to inten-

tional hand movement as the main axis for data segmentation.

In particular, we compute the standard deviation (STD) of

acceleration data along each axis and then select the axis

that has the largest STD as the main axis. Next, we try to

find the turning points that are related to each tap or shake

gesture by using the acceleration data along the main axis.

Specifically, we compute the first derivative of the acceleration

data and find all turning points which we use to segment the

data. Then we compute the acceleration difference between

the first and last points for each segment. Afterwards, we find

those segments whose acceleration difference is larger than an

empirical threshold value τ and use their first and last points as

candidate turning points. Subsequently, we iteratively identify

the start and end time of each gesture from the candidate

set. In particular, since the first gesture of intentional hand

movement has at least four turning points, we select the

first and fourth ones from the candidate set as its potential

start and end points. Then the following iterative process

is executed. We check if the acceleration difference of the

following segmentat is above a threshold θ. If so, we use

timestamps of the two points as the start and end time of

the gesture; we also use the first and third turning points of

the next three as the potential start and end points of the

next gesture. Otherwise, the end timestamp of the following

segment is considered the end time of the gesture, and the

potential start and end points of the next gesture is set to the

first and fourth points of the next four.
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Fig. 6. Processed phase data of Tap-4 and Shake-4.

Fig. 5 shows an example. We get a sequence of

timestamps from processed acceleration data as Ta =
[(t1s, t

1
e), (t

2
s, t

2
e), . . . , (t

n
s , tne )], where tis and tie (1 ≤ i ≤ n)

denote the start and end timestamps of the ith tap or shake,

respectively. Furthermore, we extract a three-row acceleration

data matrix A between t1s and tne to represent intentional hand

movement, in which each row corresponds to the processed

timestamped acceleration data of one axis.

2) Phase-Data Segmentation: As shown in Fig. 3(a), a tap

gesture induces an inverted bell-shaped phase pattern. Addi-

tionally, our experiments reveal that a shake gesture may lead

to three phase patterns: a bell shape (shake-I), two consecutive

bell shapes (shake-II), and an inverted bell shape (shake-III).

Figs. 3(b) to 3(d) shows three examples of a Shake-4 event,

each comprising shake-I, shake-II, and shake-III patterns only.

In practice, a Shake-4 event may induce an arbitrary combina-

tion of the three phase patterns. In addition, each bell-shaped

or inverted bell-shaped phase pattern has three turning points,

as shown in Fig. 6.

Based on these observations, we design the phase-data seg-

mentation algorithm as follows. In the first step, we use similar

operations in the previous algorithm to find all turning points

and extract the timestamp of the first and third ones as the start

and end time of each (inverted) bell-shaped pattern. For the

Tap-4 event, we can directly use the start and end time of each

inverted bell-shaped pattern as the start and end timestamps

of each tap. For the Shake-4 event, it is not straightforward

to determine if two adjacent bell-shaped patterns correspond

to one shake-II case or two shake-I cases. To solve this issue,

we first output a set of timestamp sequence that represents

a possible segmentation: Sp = {Tp1
, Tp2

, . . . , Tps
}, where

Tpi
= [t̂i1s , t̂i1e , t̂i2s , t̂i2e , . . . , t̂ins , t̂ine ]. Then we infer the max-

imum length of Sp. Given m bell-shaped patterns, the number

of shake-I and shake-II lie in [0, �m
2
�] and [m − �m

2
�, m],

respectively. Given i shake-II, the number of shake-I is m−2i,

so the maximum length of Sp is
∑�m

2
�

i=0

(

m−i
i

)

. In addition,

we can use other information such as the maximum and

minimum number of intentional gestures to further shorten the

list. The most feasible phase sequence in Sp is to be chosen

in Step 3.

TABLE I

LIST OF FEATURES

Step 2 (Gesture Identification): We utilize feature-based

machine learning techniques to identify tap or shake gestures

from the phase and acceleration data segments.

3) Feature Extraction: We explore 13 features in total

(#1 to #13 in Table I) to represent the phase segment.

In addition, we extract #1 to #13 features for each

axis and compute the Pearson correlation coefficient (PCC)

(#14 feature) between every two axes for the acceleration

data segment. Hence, we can obtain a 13-feature vector and

a 42-feature vector from the phase and acceleration data

segments, respectively.

4) Intentional-Gesture Detector:: Since we cannot collect

profiles of all potential gestures, we adopt one-class support

vector machine (OC-SVM) [22] to train two gesture detectors

to determine if a phase or acceleration data segment represents

an intentional gesture (i.e., tap or shake). OC-SVM maps input

data into a higher dimensional feature space via a kernel and

finds the maximal margin hyperplane which best separates

the training data from the origin. It has been successfully

applied in a wide variety of application areas such as anomaly

detection [23]. In this paper, we select a Radial Basis Function

(RBF) kernel and a sigmoid kernel for the phase and acceler-

ation data, respectively.

5) Tap or Shake Classifier:: Once a data segment is identi-

fied as an intentional gesture, we further build classifiers from

training datasets with known labels to infer its gesture type

as either tap or shake. In particular, since the two intentional

gestures can induce four possible phase patterns (see Fig. 3),

we train a multi-class classifier to recognize the gesture for

each phase segment. In addition, we use a binary classi-

fier to recognize the gesture for each acceleration segment.

SmartRFID can work with many existing machine learn-

ing techniques. In this paper, we consider three lightweight

supervised machine learning techniques, including Support

Vector Machine (SVM), Random Forest (RF), and k-nearest

neighbors (k-NN). The performance of these techniques are

compared in Section V.
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Step 3 (Phase-Sequence Selection): Since the Phase-Data

Segmentation submodule outputs a set Sp of potential

timestamp sequences, SmartRFID needs to determine which

one is feasible. We leverage the timestamp sequence Ta and its

corresponding gesture-type vector from the acceleration data

to find the most feasible timestamp sequence in Sp. More

specifically, we first identify a subset from Sp, denoted by

S′
p, such that each sequence in S′

p has the same gesture-type

vector as that of Ta. Since the phase-data and acceleration-

data collection processes may not be perfectly synchronized,

we further derive a relative-time sequence for Ta and also one

for each sequence in S′
p, in which each element is updated

by subtracting the first timestamp. Next, we compute three

metrics between the relative-time sequence of Ta and that of

each sequence in S′
p, including the PCC, average element-wise

difference, and the element-wise difference variance. Then

a phase sequence in S′
p with a higher PCC, lower average

element-wise difference, and lower element-wise difference

variance is ranked higher for each metric accordingly. Finally,

we select the sequence in S′
p with the highest average rank

as the most feasible phase-data sequence, denoted by Tp =
[t̂1e, t̂

2
s, t̂

2
e, . . . , t̂

n
s , t̂ne ]. As in Acceleration-Data Segmentation,

we also generate a fine-grained phase data vector φ that

includes all the processed timestamped phase data between

t̂1e and t̂ne to fully characterize intentional hand movement.

F. Correlation Detection

Finally, we explore two different ways to check the corre-

lation between the phase sequence and acceleration sequence,

based on traditional feature-based machine learning methods

and deep learning techniques, respectively.

1) Feature-Based Correlation Detection: We use traditional

machine learning classifiers to check if Tp and Ta correlate.

Since the phase and acceleration data are supposed to be

induced by the same intentional hand movement, the duration

of each gesture and interval between two adjacent gestures

should be highly consistent in Tp and Ta. As in Phase-

Sequence Selection, we first obtain the two relative-time data

sequences, denoted by T r
p = [0, t̂1e′ , t̂2s′ , t̂2e′ , . . . , t̂ns′ , t̂ne′ ] and

T r
a = [0, t1e′ , t2s′ , t2e′ , . . . , tns′ , tne′ ]. Then we compute the differ-

ence between T r
p and T r

a as D = [0, t̂1e′ − t1e′ , t̂2s′ − t2s′ , t̂2e′ −

t2e′ , . . . , t̂ns′ − tns′ , t̂ne′ − tne′ ]. Next, based on aforementioned

observation, we extract the mean, standard deviation, mean

absolute deviation, max, and min from D to generate a feature

vector for (Tp, Ta). Afterwards, we use the resulting feature

vector to train a binary classifier based on any established

machine learning technique such as SVM, RF, and k-NN

which are compared in Section V. During each authentication

session, the server explores the same process to extract a

feature vector and then test it with the classifier.

2) Deep Correlation Network: We also explore deep learn-

ing to build a deep correlation network to check the correlation

between the phase and acceleration data. Fig. 7 shows the

architecture of our deep correlation network whose inputs are

the first-order derivatives of the phase and acceleration data,

denoted by φ′ and A′, respectively. We pad zeros in the end

(if needed) to make all the input vectors/matrices have the

Fig. 7. Deep correlation network.

same length. The network has two branches that can extract

features from the phase and acceleration data, respectively.

Both network branches consist of two one-dimensional (1D)

convolutional layers and a Long Short Term Memory (LSTM)

layer. Each 1D convolutional layer is followed by a batch

normalization Layer, a Rectified Linear Unit (ReLU) activa-

tion layer, and a dropout layer. The two 1D convolutional

layers extract features from the input vector/matrix, and the

LSTM layer encodes the sequence of features to a vector

representation. The two branches produce two feature matrices

representing the two input data vectors, respectively. We then

compute the matrix product of the two feature matrices to

quantify their similarity in each time step. Afterwards, we per-

form a max pooling over the matrix product and then use

two fully connected (FC) layers with sigmoid activation to

produce a value between 0 and 1, which can be interpreted

as a correlation probability. If the output value is above 0.5,

we consider Tp and Ta correlated and otherwise uncorrelated.

V. PERFORMANCE EVALUATION

In this section, we evaluate the usability and security of

SmartRFID. Following the adversary model in Section III,

we considered two types of attackers. Type-1 attackers

can observe the victim’s hand movement in real time and

then attempts synchronized hand movement with the victim.

Type-2 attackers can additionally record and practice the

victim’s hand movement multiple times beforehand.

A. Experiment Setup and Performance Metrics

We prototyped SmartRFID with commodity devices.

As shown in Fig. 8, we used an Impinj Speedway R420 RFID

reader equipped with a circularly polarized RFID antenna and

connected it to a Dell Precision laptop that acts as the backend

server. The RFID reader continuously sent queries at a rate of

100 reads/second. In addition, we used Zebra’s passive RFID

cards as users’ access cards in our experiments. But our system

is applicable to any other commodity RFID tags or cards such

as Aline ALN-9740 RFID tags and Omni-ID’s Adept 650P

RFID cards. To collect acceleration data, we implemented

Android application and Tizen application on Huawei Watch

2 that runs Android Wear 2.1 and Samsung Galaxy Watch

that runs Tizen 5.0, respectively. The accelerometer sampling
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Fig. 8. Experimental setup.

rate was set to 100Hz. We also implemented a Java appli-

cation based on the Octane SDK together with the reader to

record the phase of the backscattered signals. The application

on the smartwatch and the phase-recording application are

both part of the Data Acquisition submodule in SmartRFID.

In addition, we implemented Data Preprocessing, Intentional-

Gesture Recognition, and Feature-based Correlation Detection

using Matlab on the laptop. Finally, we constructed the deep

correlation network in PyTorch 1.7 and trained the model on

Dell 7920 Tower with NVIDIA Quadro GP100 16GB GPU.

In SmartRFID, users need to perform intentional hand

movement which should be not only easy and quick to perform

by legitimate users but also hard to imitate by attackers.

We evaluated the following six types of intentional hand move-

ment events in our experiments: (1) Tap-4/5/6: tap an RFID

card four/five/six times, respectively; and (2) Shake-4/5/6:

shake an RFID card four/five/six times, respectively. In addi-

tion, there were random human activities such as walking

during the experiments.

The main performance metrics we use include the True

Acceptance Rate (TAR), False Acceptance Rate (FAR),

Receiver Operating Characteristics (ROC) curve, Equal Error

Rate (EER), and Area Under The Curve (AUC).

B. Data Collection

With the IRB approval from our institution, we recruited

20 participants for the experiments, including 3 females and

17 males aged between 20 and 35. We collected the following

three training datasets (Dataset I to III) and two test datasets

(Datasets IV and V).
1) Dataset-I for Intentional Gesture Recognition: We con-

structed a gesture-profile dataset to recognize tap and shake

gestures in intentional hand movement. In particular, we asked

a participant P to perform 1,000 taps and also 1,000 times of

each of Shake-I, Shake-II, and Shake-III gestures (see Fig. 3).

Then we fed the resulting raw phase and acceleration data

into the Data Preprocessing module to obtain the phase and

acceleration profiles of the tap and shake gestures, respectively.

Finally, we collected 4,000 phase data samples and also 4,000

acceleration data samples. The gesture-profile dataset is not

user-specific.
2) Dataset-II for Feature-Based Correlation Detection: and

Dataset-III for Deep Correlation Network. We further asked

P to perform each intentional hand movement 700 times to

collect phase and acceleration data samples. So we collected

4,200 positive paired phase-acceleration data samples, each of

which is labeled as 1. In addition, we asked P and another

participant P ′ to perform each intentional hand movement

10 times. A phase data sample from P and an acceleration data

sample from P ′ constitute an uncorrelated phase-acceleration

pair, leading to 60 × 60 = 3, 600 negative paired phase-

acceleration samples. Furthermore, we asked P ′ to act as a

Type-2 attacker and mimic the actions of P in real time.

P was required to perform each intentional hand movement

100 times, so we collected another 600 negative paired phase-

acceleration samples and thus 4,200 in total which are labeled

as 0. Next, we randomly chose 200 from the 700 positive

paired samples of each intentional hand movement and 1,200

negative paired samples from all negative paired samples. Then

we fed them into the Data preprocessing and Intentional-

Gesture Recognition modules to build Dataset-II that contains

1,200 positive and 1,200 negative paired phase-acceleration

samples. In addition, we input all raw data into Data Pre-

processing and Intentional-Gesture Recognition modules to

extract pairs of phase and acceleration data vectors. The first

derivatives in such phase-acceleration vector pairs were used

to construct Dataset-III that have 4,200 positive and negative

paired phase-acceleration samples.

3) Dataset-V for Intentional-Gesture Detector: Five par-

ticipants were asked to perform four daily activities within

the transmission range of the RFID reader: walking, using a

computer, using a phone, and any other physical activities. All

such activities led to unintentional hand gestures other than

tap and shake gestures. Each participant wore the smartwatch

and a Vulcan RFID wristband to perform these activities.

After obtaining the raw data, we used the Data Preprocessing

module to remove noise. Then we used our iterative algorithm

and the Phase-Data Segmentation submodule to extract the

acceleration and phase data segments as negative samples.

We collected 800 negative gesture samples in total.

4) Dataset-VI for User and Attacker Emulation: All

volunteers acted as either legitimate users or attackers to

generate this dataset. Each volunteer was first asked to prac-

tice the aforementioned 6 intentional hand movement events

multiple times until he/she was familiar with them. After-

wards, we required them to perform each intentional hand

movement 20 times. So we collected 2,400 positive paired

phase-acceleration samples in total. In addition, 6 out of the

20 participants served as both Type-1 and Type-2 attackers.

Each attacker was physically co-located with the victim and

could clearly observe the victim’s hand movement. For each

volunteer, the other 5 were regarded as his/her victims. Each

victim-attacker pair performs each intentional hand movement

10 times, leading to 50 × 6× 2 = 600 negative paired phase-

acceleration samples.

C. Model Training

We used Dataset-I to train two OC-SVM models for

the phase and acceleration data, respectively. Additionally,

we trained SVM, RF, and k-NN on Dataset-I and Dataset-II
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for intentional gesture recognition and feature-based correla-

tion detection. We adopted 10-fold cross-validation to evaluate

each model. In particular, we applied OC-SVM and SVM

with four kernel functions, including linear, polynomial, RBF,

and sigmoid. We also used the grid search method to find

the best parameters. The implementations of OC-SVM and

SVM relied on LibSVM [24]. For RF, we tested the number

of decision trees ranging from 5 to 100. For k-NN, we tested

the number of neighbors ranging from 1 to 40 and various

distance metrics such as Standardized Euclidean distance. The

parameter settings are summarized as follows.

1) Tap/Shake Gesture Detector: We chose RBF and the

sigmoid function as kernel functions for phase and acceleration

data, respectively. We set the parameter ν to 0.05 and γ to

0.1 for phase data, and ν to 0.1 and γ to 0.4 for acceleration

data.

2) Tap/Shake Gesture Classifier: For SVM, we used the

polynomial function and RBF as the kernel functions for the

phase and acceleration data, respectively. We set γ to 3 and

degree to 3 for phase data, and γ to 0.01 for acceleration data.

For RF, we set the number of decisions to 22 and 5 for the

phase and acceleration data. For k-NN, we chose Standardized

Euclidean distance as the distance metric for both data types.

The k value is set to 9 and 5 for phase and acceleration data,

respectively.

3) Feature-Based Correlation Detection: For SVM,

we selected RBF as the kernel function with γ and c set to

2 and 219, respectively. We also chose 31 decision trees for

the RF classifier. For k-NN, we used Manhattan distance as

distance metric and set k to 7.

4) Deep Correlation Network: We used dataset-III to train

the deep correlation network. The number of hidden units

in each 1D convolutional layer and LSTM layer was set to

128. The kernel size of 1D convolutional layer was 3 with

stride of 1. The dropout rate was set to 0.2 for all dropout

layers and the max pooling window size was 10. We adopted

two FC layers with 120 and 80 units, respectively. We trained

the network by minimizing binary cross entropy between the

actual label and the output using the Adam optimizer. It took

approximately 20 minutes to train the deep neural network on

200 epochs.

D. Intentional-Gesture Recognition

We used Dataset-V and Dataset-VI to evaluate intentional-

gesture detectors. The TPRs are 94.17% and 99.88%

for phase-based and acceleration-based intentional-gesture

detectors, respectively, and the corresponding FPRs are

1.57% and 0.02%, respectively. The results show that our

intentional-gesture detectors can rule out unintentional ges-

tures, so SmartRFID can naturally detect attackers who per-

form random hand movement with overwhelming probability.

In addition, we applied intentional tap/shake gesture classifiers

on Dataset-VI to evaluate the classification accuracy that is

defined as the ratio of true positives plus true negatives to the

total number of samples. Table II shows that SVM outperforms

RF and NB for the phase data, and all the three classifiers can

achieve 100% accuracy for the acceleration data. We further

TABLE II

CLASSIFICATION ACCURACY FOR INTENTIONAL-GESTURE RECOGNITION

Fig. 9. ROC and EER comparison for feature-based correlation detection.

TABLE III

FAR FOR TYPE-1 AND TYPE-2 ATTACKERS

compared the average prediction time and found that SVM

took less time than RF and NB. Therefore, we chose SVM as

the intentional tap/shake gesture classifier for both phase and

acceleration data in subsequent experiments.

E. Feature-Based Correlation Detection

We fed raw data samples from Dataset-VI into Data Pre-

processing and Intentional-Gesture Recognition modules to

extract timestamp vectors. We then compared the EERs of

SVM, RF, and kNN classifiers in Fig.9(b). Since the EER of

SVM is lower than those of RF and k-NN, we chose SVM for

the Feature-Based Correlation Detection module. Moreover,

Fig. 9(a) shows the ROC curve of the SVM classifier. Since

the ROC curve is located at the top-left corner, we can

simultaneously achieve a very high TAR and a very low FAR.

Specifically, the TAR of feature-based correlation detection is

97.3%. We also evaluated the resilience of the SVM classifier

to Type-1 and Type-2 attackers. The FARs under Type-1 and

Type-2 attackers are 0.78% and 6.3%, respectively. It is also

not surprising to see that Type-2 attackers have a higher suc-

cess rate than Type-2 attackers. To sum up, SmartRFID using

feature-based correlation detection can correctly distinguish

legitimate users from Type-1 and Type-2 attackers with very

high probability.

F. Deep Correlation Network

We evaluated the deep correlation network on

Dataset-VI. As in Section V-E, we obtained phase and

acceleration data vectors from the raw data. Then we

computed the first derivatives of both data vectors and

input them into the pre-trained deep correlation network to

check if the two data vectors correlate. Fig. 10(a) shows the

ROC curve of the deep correlation network. Specifically,

the TAR of the deep correlation network is 97.56%,
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Fig. 10. ROC and AUC of deep correlation network.

indicating that it can recognize legitimate users with very

high probability. In addition, the overall FAR of the deep

correlation network is 0.67%. In particular, the FARs under

Type-1 and Type-2 attackers are 0% and 1%, respectively.

The results demonstrate that the deep correlation network

can detect Type-1 and Type-2 attackers with overwhelming

probability.

Tap and shake gestures have slightly different perfor-

mance. As shown in Fig. 10(b), the shake gesture has better

performance than the tap gesture. One possible reason is

that the shake gesture can induce larger amplitude changes

than the tap gesture, which makes the correlation detec-

tion easier and the attacker emulation harder. Let us further

examine the ROC curves for all six types of intentional

hand movement. As shown in Fig. 10(c) and Fig. 10(d),

the deep correlation network performs better as the number

of taps or shakes increases. This indicates that the more

gestures the user performs, the easier for the deep corre-

lation network to check the acceleration-phase correlation,

the harder for attackers to mimic the victim’s intentional

hand movement. Moreover, Table III shows that all Type-1

attackers in our experiments can be detected by the deep

correlation network. Additionally, although Type-2 attackers

can occasionally mimic the victim’s tap-4/5/6 gestures, it is

still very difficult for them to bypass the deep correlation

network. Moreover, none of them can mimic the victim’s shake

gestures.

As we can see, the deep correlation network is better in

distinguishing legitimate users from Type-1 and Type-2 attack-

ers. The reason is that feature-based correlation detection only

considers time information, while the deep correlation network

additionally considers the data-change pattern. We can also

notice that the deep correlation network needs more training

data than feature-based correlation detection. Which method(s)

to use in SmartRFID thus depends on practical security

requirements and the availability of training data.

TABLE IV

USABILITY SCORES

G. Authentication Latency

We also studied the authentication latency of SmartRFID.

The authentication latency can be broken into three parts:

the time to perform an intentional hand movement event, the

network delay to transmit accelerometer data to the server, and

the response time that the system needs to make a decision.

In our experiments, the average time for a tap and a shake

are about 271 ms and 408 ms, respectively. Additionally, the

average performing time of Tap-4/5/6 and Shake-4/5/6 events

ranges from 1.33 s to 2.74 s. The overall average performing

time is about 1.99 s. Moreover, the average network delay

for transferring accelerometer data of 5 s is about 48 ms.

Furthermore, the average response time for Tap-4/5/6 and

Shake-4/5/6 events varies between 0.157 s and 0.176 s. The

overall average response time is 0.167 s. Hence, the average

authentication latency ranges from 1.535 s to 2.964 s. The

overall average authentication latency is 2.205 s, which is

comparable to inputting a PIN on a door keypad.

H. Usability Studies

We also surveyed the same 20 volunteers about their experi-

ence using SmartRFID. Specifically, we asked each volunteer

(Q1) whether it is easy to learn using SmartRFID, (Q2) if

SmartRFID is easy to use, (Q3) if tap and shake gestures

are easy to perform, and (Q4) if intentional hand movement

is easy to memorize. Each participant was asked to give a

score ranging from one (lowest) to five (highest) for each

question and was not allowed to give all five. The average

scores are listed in Table IV. The results clearly indicate

that SmartRFID is very easy to use and more preferable than

traditional RFID-based authentication due to its high security.

VI. RELATED WORK

A. Mobile Authentication

There is prior work using smartwatch-like wrist wearables

as secure tokens for mobile authentication. ZEBRA [25]

continuously verifies a user’s identity when he/she works on

a computer by comparing two sequences of operations (e.g.,

typing and scrolling) captured by his/her wristband and the

computer. A user is authenticated if the majority of the two

operation sequences match. SAW [26] requires users to tap

a key on a keyboard multiple times or wiggle a mouse for

a few seconds with their wristband hand to unlock their

desktops. Users are considered legitimate if the difference

is less than a predefined threshold between the two time

sequences of keystrokes or wiggles that are extracted from the

desktop and the built-in motion sensors of their wristbands.

WristUnlock [27] asks a user to raise his/her smartphone
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naturally with his/her wristband hand to unlock the smartphone

by checking the correlation between acceleration data from

the wrist wearable and smartphone. As another example,

Pet-2-Auth [28] authenticates users on IoT devices that have

buttons, knobs, or touchscreen, such as Nest Thermostat and

Amazon Echo. Users click on buttons or twist knobs multiple

times with their wristband hands. Pet-2-Auth then uses a SVM

classifier to check the correlation between the two timestamp

sequences of these actions extracted from the user’s wristband

and the target IoT device. SmartRFID differs significantly from

the aforementioned work in the application context and data

processing techniques. Specifically, SmartRFID focuses on

commodity UHF RFID systems that have a very different user

interaction mode. In particular, RFID systems are not equipped

with any interaction interface, so we can only leverage raw

RFID signals. SmartRFID explores new algorithms to extract

intentional-gestures related data from noisy phase data and

uses SVM classifiers to recognize them. Moreover, we explore

and design a cross-modal deep neural network to check the

correlation between phase and accelerometer data.

Biometric authentication methods have been widely

explored for mobile authentication as well. They can be clas-

sified into two categories: physiological and behavioral [29].

Physiological biometric authentication relies on unique biolog-

ical traits such as retinas, irises, voices, facial characteristics,

and fingerprints to authenticate users. Behavioral biometric

authentication identifies users by their unique patterns exhib-

ited when they interact with a mobile device [30], [31], [32],

[33], [34], [35], [36]. These schemes all aim to secure smart

devices themselves and are orthogonal to SmartRFID which

explores commodity smart devices to secure commodity UHF

RFID systems.

B. RFID Security

RFID security has also been extensively studied. Many cryp-

tographic authentication protocols can prevent illegal reading

of tags [37], [38], [39], but these schemes cannot be applied

to commodity crypto-less UHF RFID tags. Czeskis [40] et al.

proposed to mitigate replay attacks by requiring RFID users to

handshake their cards with a build-in accelerometer during the

authentication session. RF-Cloak [41] protects RFID systems

from eavesdropping attacks by randomizing modulation and

wireless channels. Hu-Fu [42] is a physical-layer authenti-

cation method for passive RFID tags by leveraging induc-

tive coupling of two adjacent tags and signal randomization.

RF-Mehndi [43] authenticates an RFID card and its holder’s

identity simultaneously by exploring the backscattered signal

phase changes induced by the holder’s fingertip on a carefully

design passive tag array. More recently, RF-Rhythm [44] iden-

tifies an RFID user’s identity by requiring the user to perform

a sequence of taps on his/her card according to a self-chosen

secret melody. RCID [45] is a new fingerprinting scheme for

RFID tags based on wideband backscatter. WearRF-CLA [46]

combines wearables and RFID tags to achieve secure and

usable continuous location authentication. Orthogonal to the

above work, SmartRFID explores pervasive smart devices to

enhance the security of RFID authentication systems without

requiring any hardware modification. In [4], Tan et al. design a

protocol to authenticate RFID tags. In [5], Saad et al. proposes

a new approach to inject noise-like signals at the reader end to

prevent attackers from eavesdropping tag information. In [6],

Tan et al. presents two protocols to accurately and efficiently

monitor the RFID tags for missing tags. By comparison,

SmartRFID does not require any modification on the reader

end. SmartRFID can be applied to generic UHF RFID systems

with user-carried commodity smart devices and RFID tags.

The schemes in [35] and [36] authenticate users by explor-

ing an off-body RFID tag array to sense users’ daily activities

such as door knocking or walking patterns. Both schemes

can be considered behavioral biometric RFID authentication

techniques and require each RFID user to get involved in

the intensive model-training process. In addition, they require

a customized off-body RFID tag array and thus cannot be

applied to generic UHF RFID systems. By comparison, the

model training in SmartRFID is generic to all users and

does not require individual user involvement. SmartRFID

also applies to generic UHF RFID systems with user-carried

commodity smart devices and RFID tags.

VII. CONCLUSION

In this paper, we presented the design and evaluation

of SmartRFID, a novel UHF RFID authentication system.

SmartRFID explores pervasive user-carried smart devices to

protect commodity crypto-less UHF RFID tags from spoofing

and cloning and thus greatly enhances their applicability to

security-sensitive contexts. We designed novel feature-based

machine learning techniques and also deep learning techniques

to check the coexistence of an RFID tag and its associ-

ated smart device on the RFID user. Comprehensive user

experiments on commodity RFID devices and smartwatches

confirmed the high security and usability of SmartRFID.
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