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KINet: Unsupervised Forward Models for Robotic
Pushing Manipulation

Alireza Rezazadeh

Abstract—Object-centric representation is an essential abstrac-
tion for forward prediction. Most existing forward models learn
this representation through extensive supervision (e.g., object class
and bounding box) although such ground-truth information is
not readily accessible in reality. To address this, we introduce
KINet (Keypoint Interaction Network)—an end-to-end unsuper-
vised framework to reason about object interactions based on
a keypoint representation. Using visual observations, our model
learns to associate objects with keypoint coordinates and discovers
a graph representation of the system as a set of keypoint embed-
dings and their relations. It then learns an action-conditioned for-
ward model using contrastive estimation to predict future keypoint
states. By learning to perform physical reasoning in the keypoint
space, our model automatically generalizes to scenarios with a
different number of objects, novel backgrounds, and unseen ob-
ject geometries. Experiments demonstrate the effectiveness of our
model in accurately performing forward prediction and learning
plannable object-centric representations for downstream robotic
pushing manipulation tasks.

Index Terms—Representation learning, deep learning methods,
manipulation planning.

1. INTRODUCTION

ISCOVERING a structured representation of the world
D allows humans to perform a wide repertoire of motor tasks
such as interacting with objects. The core of this process is
learning to predict the response of the environment to applying
an action [20]. The internal models, often referred to as the
forward models, come up with an estimation of the future states
of the world given its current state and the action. By cascading
the predictions of a forward model, it is possible to plan a
sequence of actions that would bring the world from an initial
state to a desired goal state.

Recently, deep learning architectures have been proposed to
perform forward prediction using an object-centric representa-
tion of the system [5], [17], [24], [32]. This representation is
learned from the visual observation by factorizing the scene
into the underlying object instances using ground-truth object
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Fig. 1. Existing forward modeling methods rely on the ground-truth object
states, limiting their application to the real setting where such data is hard to
obtain. Our framework (KINet) learns unsupervised forward models from raw
RGB images. At each timestep, using the image observation (I;), keypoints are
extracted to construct the scene graph (G:). The graph-based forward model
estimates the future keypoints (§t+1) conditioned on the action u;. Using this
forward model, we perform model-based planning and find a sequence of actions
to achieve a goal configuration based on similarity to the goal graph.

states (e.g., object class, position, and bounding box). We iden-
tified two major limitations in the existing work: First, they
either assume access to the ground-truth object states [2], [17]
or predict them using pre-trained object detection or instance
segmentation models [24], [32]. However, obtaining the ground
truth object states is not always feasible in practice, especially
in real-world settings. Relying on pre-trained object detection
and segmentation models further makes the forward models
fragile as the perception models do not work on novel objects,
significantly limiting their generalization capability. Second,
factorizing the scene into a fixed number of object instances
limits the generalization of the model models to scenarios with
a different number of objects.

In this letter, we address both of these limitations by proposing
to learn forward models using a keypoint representation. Key-
points represent a set of salient locations of moving entities.
Our model KINet (Keypoint Interaction Network) learns an
unsupervised forward model in three steps (Fig 1): 1) A keypoint
extractor factorizes the scene into keypoints with no supervision
other than raw visual observations. 2) A graph representation
of the scene is learned, where each node corresponds to a
keypoint and edges are keypoints relations. Node features carry
implicit object-centric features as well as explicit keypoint state
information. 3) With probabilistic message passing, our model
learns an action-conditional forward model to predict the future
location of keypoints and reconstruct the future appearances of
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the scene. We evaluate KINet’s forward prediction accuracy and
demonstrate that, by learning forward prediction in a keypoint
coordinate, our model effectively re-purposes this knowledge
and generalizes it to complex unseen circumstances.

Our key contributions are: 1) We introduce KINet, a graph-
based and end-to-end method for learning unsupervised action-
conditional forward models from visual observations 2) We
introduce probabilistic message-passing operation for efficient
aggregation of relevant information in the graph. 3) We introduce
GraphMPC for accurate action planning using graph similarity.
4) We demonstrate learning forward models with keypoints
enables generalization to complex unseen scenarios.

II. RELATED WORK

Unsupervised keypoint extraction. Keypoints have been
widely used in pose tracking [31], [33] and video prediction [19],
[21], [29], [33]. Recent work explored keypoints for reinforce-
ment learning in a keypoint space [4], [9], [14].

Forward models. The most fundamentally relevant work to
ours is Interaction Networks (IN) [2], [25] and follow-up work
using graph networks for forward simulation [11], [16], [22].
These methods rely on the ground-truth state of objects to build
graphs where each node represents an object. Several approaches
extended IN by combining explicit states with implicit visual
features [24], [28], [32]. However, two main concerns remain
unaddressed. First, object features in the graph are often ob-
tained from extensive ground-truth information such as position,
bounding box, and mask [11], [15], [24], [32]. Second, these
approaches lack generalization to varying number of objects as
they are formulated on fixed-size graphs where each node has to
correspond to one of the objects. To address these limitations,
our framework extracts unsupervised keypoints to build a scene
graph and performs forward prediction in the keypoint space.
This allows performing forward modeling without any super-
vision other than RGB images. Also, factorizing the scene to
keypoints instead of objects allows for automatic generalization
to varying number of objects.

Action-conditional forward models. Battaglia et al. [2] aug-
ments the action to the node embeddings. Ye et al. [32] included
the action as an additional node in a fully connected graph while
other nodes represent objects. For probabilistic forward models,
Henaff et al. [8] suggests using a latent variable dropout to con-
dition the model on action [6]. Minderer et al. [30] showed the
effectiveness of contrastive estimation [23] to learn actionable
representations. Minderer et al. [21] uses keypoints for video
prediction from a history of frames. However, their dynamics
model is not conditioned on action and cannot be used for action
planning. In our work, we ensure conditioning on the action by
incorporating the action vector in the graph message-passing
operation. In addition, we extend the contrastive estimation
method for graph embeddings to further enhance the learned
representations.

Unsupervised Forward Models. Kipf et al. [12] uses a
contrastive loss to learn object-centric abstractions in multibody
environments of fixed objects with minimal visual features such
as 2D shapes. In our work, we randomize the properties of
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the objects and examine challenging realistic objects. Kossen
etal. [13] uses images to infer a set of object states (e.g., position
and velocity) to predict the future state of each object using graph
networks. Although learning unsupervised states, this method
is formulated on a fixed number of objects and only tested on
environments with simple 2D geometries. Li et al. [18] infers the
causal graph representation and makes future predictions on a
fixed dynamic system in simulation using a pretrained keypoint
extractor from topview images. In our work, we experiment
with other camera angles and real-world 3D objects with various
properties such as geometry and texture.

III. KEYPOINT INTERACTION NETWORKS (KINET)

We assume access to RGB image, action vector, and the
image after applying the action: D = {(I¢, ut, [¢11)}. Our goal
is to learn a forward model that predicts the future states of
the objects. We describe our approach in two main steps (see
Fig. 2): learning to encode visual observations into keypoints and
learning an action-conditioned forward model in the keypoint
space.

A. Unsupervised Keypoint Detection

The keypoint detector (fip, Fig. 2) is a mapping from RGB
visual observations of the scene to a lower-dimensional set of
K keypoint coordinates {z}}x—1.. x = fip(It). The keypoint
coordinates are learned by capturing the spatial appearance of
the objects in an unsupervised manner. Specifically, the keypoint
detector receives a pair of initial and current images (Ip, ;)
and uses a convolutional encoder to compute a K -dimensional
feature map for each image ®(Iy), ®(I;) € RH'*W'*K_The
expected number of keypoints is set by the dimension K. Next,
the feature maps are marginalized into a 2D keypoint coordinate
{zf z¥}r—1. x € RZ. We use a convolutional image recon-
struction model (frc, Fig. 2) with skip connections to inpaint
the current image frame using the initial image and the predicted
keypoint coordinates I, = froc(Io, {zE, 2%} c—1. x). With this
formulation, fip and fr. create a bottleneck to encode the visual
observation in a temporally consistent lower-dimensional set of
keypoints [14].

B. Graph Representation of Scene

After factorizing the scene into K keypoints, we build a graph
G: = (V4, &, Z) (undirected, no self-loop) where keypoints and
their pairwise relations are the graph nodes and edges. Keypoint
positional and visual information are encoded into embedding
of nodes {nf}r—1. . x €V; and edges {eij} € &. We define
the adjacency matrix to specify the graph connectivity as Z €
RX*K where z;; € [0, 1] is the probability of the edge e € €.
At timestep £, node embeddings encode keypoint positional and
visual features n¥ = [®¥ +¥]. Edge embeddings contain relative
positional information of each node pair e}’ = [z} — =7, ||z} —
313]-

Existing graph-based forward modeling methods construct
the scene graph such that each node represents an object. The
node embeddings are positional and visual features extracted
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Keypoint Interaction Network (KINet): a keypoint detector fi;, utilizes the current RGB image I and the initial frame Iy to identify a set of unsupervised

keypoints {x¢ } and their corresponding visual features {®¢ }. A scene graph Gt is constructed, where the keypoints are represented as nodes. The forward model

Jrorw processes the graph and action u; through L rounds of probabilistic message-passing operations using the edge function fegg.

and the node function fjoge.

with the edge probabilities generated by an encoder fe,.. Subsequently, a state decoder estimates the future positions of the keypoints & ;. Finally, the appearance

of the future scene is reconstructed by frec.

using ground-truth object state information [11], [24], [32].
Our framework, however, does not rely on any ground-truth
information supervision and only uses RGB images.

C. Probabilistic Graph-Based Forward Model

We extend the existing graph-based approaches [2], [25] and
propose probabilistic graph-based forward models. The core
of our forward model is probabilistic message-passing using
edge-level latent variables z;; € R? that represent the edge
probabilities. A posterior network py infers the elements of the
adjacency matrix given the scene graph representation. In partic-
ular, we model the posterior as pg(2ij|Gi) = o (fenc([ni, nl]))
where o(.) is the sigmoid function.

The forward model Gt_l,.]_ = frwa(Gt, ue, Z) predicts the graph
representation at the next timestep by taking as input the current
graph representation and the action vector (frwq, Fig. 2) and
performing L rounds of probabilistic message-passing. Fig. 2-
frwa illustrates the probabilistic message-passing operation. A
single round of message-passing operation in the forward model
can be described as,

Edge update : €' < fogee(n’,n?, ')

Aggregation : &* + %,y pyzare’™"

Node update : n'* + fooqe(n*, 8%, u;)

where the edge-specific function fe4e. first updates edge embed-
dings, then the node-specific function fy.4e updates each node
embedding n'* by aggregating its neighboring nodes N (k) in-
formation. Specifically, the updated edges are aggregated using
the edge probabilities from the inferred adjacency matrix Z as
weights. The action u; is also an input to the aggregation step.
After performing the L rounds of message-passing, the resulting
updated node embeddings estimate the graph’s nodes at the next
timestep {fig 1}

Recent models for forward prediction rely on fully connected
graphs for message passing [15], [24], [32]. Our model, however,
learns to probabilistically sample the neighbor information. Intu-
itively, this adaptive sampling allows the network to efficiently
aggregate the most relevant neighboring information. This is
specifically essential in our model as keypoints could provide
redundant information if they are in close proximity.

D. Forward Prediction

The state decoder (fuae, Fig. 2) transforms the predicted
node embeddings of the updated graph Gt+1 to a first-order
difference {AZ}, 1} = fuae({if,1}), which is integrated once
to predict the position of the keypoints in the next timestep
{281} = {=F} + {A%F,,}. To reconstruct the image at the
next timestep, we boqow the reconstruction model fi.. from
the keypoint detector Iy 41 = frec(lo, {26, 2,1 1}).

E. Learning KINet

Reconstruction loss. The keypoint detector is trained to
reconstruct the image at each timestep L. = ||I; — I;||3. As
suggested by [21], errors from the keypoint detector were not
backpropagated to other modules of the model. This ensures that
the model does not conflate errors from keypoint extraction and
forward prediction functions.

Forward loss. The model is optimized to predict the next
state of the keypoints. A forward loss penalizes the distance
between the estimated future keypoint locations using first-order
state decoder and the keypoint extractor predictions: Lgwg =
Sk ks — fipLern)*[13-

Inference loss. Our model is trained to minimize the
KL-divergence between the posterior and prior: Liprer =
DKL(p¢(Z|Q)||p(Z)). We use independent Gaussian prior
p(Z) = [1; NV (2z:) and reparameterization for training [10].

Contrastive loss. We use the contrastive estimation method
to further enhance the learned graph representations. We add a
contrastive loss [23], LSO] and reframe it Eor graph embeddings as
Lar = —Epllog(S(Ge+1,G;51)/> S(Ge+1,G;41))] such that
the predicted graph representations §3+1 are maximally sim-
ilar to their corresponding positive sample pair g;;rl =Gt11
and maximally distant from the negative sample pairs G, ; :=
G V1 #t+ 1. We use a simple node embedding similarity
as the graph matching algorithm S(G1,Ga) = 3 {nf}.{n5}.
The motivation behind adding a contrastive loss is aligning
the graph representation of similar object configurations while
pushing apart those of dissimilar configurations in the em-
bedding space to enhance the learned graphs. Finally, the
combined loss is: £ = Arec Erec + Afwd Efwd ~+ Ainfer £infer
+ Aclr £clr-
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Experiment setups including two simulated environments with block objects and YCB objects, and a real robot environment with YCB objects. We trained

our model in simulation on 3 objects and then tested for their generalization to unseen geometries and an unseen number of objects.

F. GraphMPC Planning With KINet

A learned KINet model can be used to perform model-
based planning. We extend the Model Predictive Control (MPC)
method [7] and propose the GraphMPC algorithm based on
graph embeddings. The graph representation of the next timestep
is estimated for multiple sampled actions using frwq. The opti-
mal action is selected such that it produces the most similar
graph representation to the goal graph representation G2°.
We describe our GraphMPC algorithm with a horizon of T'
as: u} = arg max{S(G&, frwa(G*, {us-7}))}; t € [0,T). Un-
like performing conventional MPC only with respect to po-
sitional states, GraphMPC allows for accurately bringing the
objects to a goal configuration both explicitly (i.e., position)
and implicitly (i.e., pose, orientation, and visual appearance).

IV. EXPERIMENTAL SETUPS

Our experiments address the following: 1) How accurate is our
forward model? 2) Can the model be used for action planning?
3) Does the model generalize to unseen scenarios?

A. Dataset

We apply our approach to learn a forward model for multi-
object manipulation tasks. The task involves rearranging the
objects to achieve a goal configuration using pushing actions. We
use MuJoCo 2.0 [27] to generate two simulated environments.
We also test on a real robot environment. Fig. 3 demonstrates
these three experiment setups.

BlockObjs: Each object is constructed with two cuboid
geoms. We sample the geom dimensions from a continuous
range denoted as geom,,.,,,, for training and geom,,,, for gen-
eralization. Unseen geometries are designed to have elongated
shapes to create extreme out-of-distribution cases (see Fig. 3).

YCBObjs: A subset of YCB objects placed on a wooden table
that includes objects of daily life with diverse properties such as
shape, size, and texture [3] (see Fig. 3).

In both of the simulated environments, we generate 10 K
episodes of random pushing on multiple objects (1-5 objects)
where a simplified robot end-effector applies randomized push-
ing for 60 timesteps per episode. We collect the 4-dimensional
action vector (pushing start and end location) and RGB images
before and after each action is applied. Images are obtained using
an overhead (TopView) and an angled camera (Side View).

RealYCB: We directly transfer the learned model from the
YCBObjs simulation to the real environment with YCB objects.
The real robot setup includes a Franka Emika Panda robot with
Festo soft fingers and an Intel RealSense camera on the side of
the tabletop (see Fig. 3).

B. Baselines

We compare our approach with existing methods for learning
object-centric forward models:

Forward Model (Forw): We train a convolutional encoder
to extract visual features of the scene image (Img) and learn a
forward model in the feature space.

Forward-Inverse Model [1] (ForwInv): We train a convolu-
tional encoder to extract visual features of the scene image (Img)
and jointly learn forward and inverse models.

Interaction Network [2], [25] (IN): We build an Interaction
Network based on the ground truth location of the objects
available in simulation. Each object representation contains the
ground-truth position and velocity of the objects (GT state).
Note that this approach is only applicable to scenarios where
the number of objects in the scene is known and fixed.

Visual Interaction Network [28], [32] (VisIN): We train a
convolutional encoder to extract visual features of fixed-size
bounding boxes centered on ground-truth object locations (GT
state + Img). We use the extracted visual features as object rep-
resentations in the Interaction Network. Note that this approach
requires prior knowledge of the number of objects.

Causal Discovery from Videos [18] (V-CDN): A pretrained
perception module extracts keypoints that are used in an infer-
ence module to predict a causal structure of the visual obser-
vation which is then used in a dynamics module to predict the
future location of the keypoints.

We also compare KINet with two variants: 1) KINet - determ,
which employs a fully connected graph instead of probabilistic
edges, and 2) KINet - no ctr, which excludes the contrastive
loss.

C. Training and Evaluation Setting

All models are trained on a subset of the simulated data (Block-
Objs and YCBObjs) with 3 objects (8 K episodes: 80% training,
10% validation, and 10% testing sets). To evaluate generalization
to a different number of objects, we use other subsets of data with
1, 2, 4, and 5 objects (~ 400 episodes for each case). We train
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MPC on BlockObjs. Left panel: MPC result measured as the distance to goal configuration. (a) Comparison with baselines. (b) MPC for KINet trained on

a fixed white background (fixed;,;r ), generalization to random backgrounds (rand ., ), and trained on random backgrounds (rand;,q;» ). Right panel: qualitative
examples of generalization to unseen geometries, unseen number of objects, and unseen table textures.

TABLE 1
FORWARD PREDICTION PERFORMANCE ON BLOCKOBJS MEASURED AS
SINGLE-STEP MEAN PREDICTIONS ERROR %1073

TABLE IT
GENERALIZATION RESULTS MEASURED AS THE AVERAGE DISTANCE TO THE
GOAL POSITION x 1073

Model SideView TopView Img  GT state
IN 0.109+0.01 0.11240.01 - v
VisIN 0.121+0.03 0.107+0.01 v v

" Forw 0.317x000  0.309%012 | v - =
Forwlnv 0.266+0.02 0.29340.08 v -
KINet (ours) 0.129+0.02 0.122+0.m v -

" KINet - determ  0.133z0.01  0.127x003 | v -
KINet - no ctr 0.169+0.05 0.173+0.02 v -

our model separately on images obtained from the overhead
camera (TopView) and the angled camera (SideView). We set the
expected number of keypoints K = 6 for BlockObjs, K = 9 for
YCBObjs and RealYCB. For the message-passing operation, the
number of rounds is set to L = 3. Note that fenc, fedge, and faode
are MLPs with three 128-dim hidden layers.

V. RESULTS

This section is organized to thoroughly evaluate our model in
simulated and real environments.

A. Does the Model Accurately Learn a Forward Model?

First, we evaluate the forward prediction accuracy. Our model
factorizes the observation into a set of keypoint representations
and accurately estimates the future appearance of the scene
conditioned on external action.

Using BlockObjs data, we quantify the effectiveness of our
model in comparison with Forw, Forwlnv, IN, and VisIN base-
lines (Table I). We separately train and examine each model on
TopView and SideView images. The prediction error is computed
as the average distance between the predicted and ground-truth
positional states. VisIN performs the best among baseline mod-
els as it builds object representations with explicit ground-truth
object positions and their visual features. Our model, on the
other hand, achieves a comparable performance to VisIN while
it does not rely on any supervision beyond the scene images.
Forw and ForwInv baselines have similar supervision to ours but
are significantly less accurate. This emphasizes the capability
of our approach in learning a rich graph representation of the
scene and an accurate forward model, while relaxing prevailing
assumptions of the prior work on the structure of the environment

BEOMLy . qin £e0ml ey
N KINet KINet - determ KINet KINet - determ
1 0.21+0.04 0.28+0.01 0.35+0.04 0.36+0.08
2 | 0.21+0.03 0.22+0.05 0.53+0.06 0.59+0.07
3 | 0.19+0.02 0.19+0.03 0.20+0.05 0.31+0.08
4 | 0.51+0.02 0.57+0.12 0.65+0.07 0.96+0.09
5 | 0.89+0.13 1.05+0.16 1.64+0.11 2.17+0.10

and the availability of ground-truth state information. KINet -
determ & no ctr will be discussed in Section V-D.

B. Can We Use the Model in Control Tasks?

We design a robotic manipulation task of rearranging a set of
objects to the desired goal state using MPC with pushing actions.
For all models, we run 1 K episodes with randomized object
geometries and initial poses and a random goal configuration
of objects. The planning horizon is set to 7" = 40 timesteps in
each episode. For our model, we perform GraphMPC based on
graph embedding similarity as described in Section III-F. For
all baseline models, we perform MPC directly on the distance
to the goal. Fig. 4(a) shows MPC results of BlockObjs based
on Top View observations. Our approach is consistently more
accurate and faster in reaching the goal configuration compared
to the baseline models.

C. Does the Model Generalize to Unseen Circumstances?

One of our main motivations to learn a forward model in
the keypoint space is to eliminate the dependency of model
formulation on the number of objects in the scene which al-
lows for generalization to an unseen number of objects, object
geometries, background textures, etc.

BlockObjs. We train KINet on 3 randomized blocks with
(geom,,..;,) and test for generalization to an unseen number
of objects (1, 2, 4, 5), unseen object geometries (geom,,,,).
Fig. 4 shows qualitative generalization results. We separately
train and examine for generalization on TopView and SideView
images. Since our model learns to perform forward modeling
in the keypoint space, it reassigns the keypoints to unseen
objects and makes forward predictions. Table II summarizes
the generalization performance to unseen number of objects
and unseen geometries. As expected, by increasing the number
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Fig. 6. KINet performance with challenging background textures and occlu-
sion in the goal configurations.

of objects the average distance to the goal position increases.
Also, objects with out-of-distribution geometries (geom,,,,)
have more distance to the goal position. KINet - determ will
be discussed in Section V-D.

Further, we test the performance of the model on unseen
background textures (i.e., the table texture). Since the keypoint
extraction relies on visual features of salient objects, our model is
able to perform the control tasks by ignoring the background and
assigning keypoints to the moving objects. Fig. 4(b) compares
the MPC results for the KINet trained on a fixed white back-
ground (fixed;rqin ), Z€ro-shot generalization of KINet trained on
the fixed background to randomized backgrounds (rand g, ), and
KINet trained directly on randomized backgrounds (rand;rgqin ).
As expected, although the MPC converges, the final distance
to the goal configuration is larger for randgey,. This final error
is statistically at the same level of accuracy for fixed;rqin and
rand;rqin. Qualitative examples are included in Fig. 4.

YCBObjs. We train our model on a random subset of 3
YCB objects and test for generalization to an unseen number of
objects (1, 2, 4, 5). As shown in Fig. 5, our method generalizes
well to an unseen number of objects and performs the control
task accurately. Importantly, assigning multiple keypoints to
each object allows our framework to implicitly capture the
orientation of each object, as well as their position without any
supervision on the object pose (e.g., compare the power drill
pose in Fig. 5). Additional qualitative results for two challenging
scenarios are included in Fig. 6. In these two examples, the
tabletop is highly textured which shows the robustness of the
keypoint factorization in binding to the moving object and ignor-
ing the background. Moreover, objects in the goal configuration
in these two examples are partially occluded. This means that
even if an object is heavily occluded, our framework should
still be able to find a sequence of actions to recover from the
occluded configuration by leveraging the keypoints assigned
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Fig.7. (a) Qualitative examples showcasing the predicted keypoints for vary-
ing K. (b) Distance to the goal configuration after 30 steps (T = 30) for KINets
trained with varying numbers of keypoints. (c) Distance to goal after 30 steps
(T = 30) for KINet trained on 3 objects compared to 1-5 objects.

to the non-occluded objects. We believe this is a significant
advantage, as it allows our framework to handle challenging
scenarios and achieve accurate performance.

We compare the performance of our framework with
V-CDN [18] baseline which is also a keypoint-based model
to learn the structure of physical systems and perform future
predictions and potentially generalize to an unseen number of
objects. Although V-CDN is formulated to extract the causal
structure of a fixed system through visual observations, we
pretrain its perception module on our randomized YCBObjs
dataset for a direct comparison to our model. To perform a
control task, we condition the V-CDN on the action by adding an
encoding of the action vector to each keypoint embedding. Fig. 5
compares the MPC results (normalized to the number of objects)
of our method and V-CDN both trained on a subset of 3 YCB
objects. The MPC performance of both models is comparable
for rearranging 3 objects (green lines). However, V-CDN is
most accurate for the number of objects it has been trained on
and significantly less accurate when generalizing to an unseen
number of objects. We attribute this to two reasons: 1) Although
using keypoints, V-CDN is formulated to infer explicit causal
structure and physical attributes for the graph representation of
fixed environments which does not necessarily carry over to
unseen circumstances. 2) Unlike our method, V-CDN does not
take into account the visual features in the model and only uses
the keypoint positions.

D. Analysis and Ablation

We justify the major choices we made to formulate the model
with ablation studies: the probabilistic graph representation
(KINet - determ), and the contrastive loss (KINef - no ctr). As
shown in Table I, the best forward prediction for both TopView
and SideView images is achieved when the model is probabilistic
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Fig.9. Baseline comparison in the real setting. (a) Similarity to the goal image
(b) Our model more accurately rearranges YCB Objects to match the goal image.

and trained with a contrastive loss. The contrastive loss is an
essential element in our approach to ensure the learned forward
model is accurately action conditional. Also, with a probabilistic
graph representation, our model achieves better generalization
compared to the deterministic variant. This performance gap is
more evident when generalizing to unseen geometries (Table II).

We ran additional experiments to examine the effect of the
number of keypoints. Fig. 7(b) shows the distance to the goal
configuration after executing 30 planning steps with KINet,
trained with different numbers of keypoints. Notably, for object
rearrangement involving 3 YCB objects, KINet with fewer than
6 keypoints exhibited considerably larger errors. This indicates
that in environments with complex visual features, optimal
performance is achieved by a larger number of keypoints to
ensure proper keypoint assignment (i.e., with K = 3, Fig. 7(a)
shows one object remains unassigned).

Since the number of objects is not hard-coded into our formu-
lation, KINet allows for training on a variable number of objects.
We experimented with training on varying numbers of YCBObjs
(N =1t05), as opposed to a fixed number (N = 3). The results,
shown in Fig. 7(c), demonstrate that training KINet on a variable
number of objects leads to a more balanced performance. As ex-
pected, for N > 3, the final distance to the goal improved since
the model was trained on these scenarios instead of generalizing.
However, we did not observe a statistically significant change
for N < 3.

E. Real Robot Results

After training the model in YCBObjs simulation, we test
for the real robot performance (see Fig. 3). Fig. 8 (top row)
shows examples of the control task. The framework successfully
transferred to the real setting and was able to perform the
RealYCB object rearrangement tasks. We observed that some
of the detected keypoints were slightly less consistent compared

6201

Fig. 8.

Qualitative results in the real setting. Top row: Performance of the model on RealYCB objects. Bottom row: Generalization to unseen objects.

to the simulation. We attribute this to the sim2real domain gap
(e.g., the tabletop texture and camera noise).

We also tested for generalization to unseen objects (Fig. 8,
bottom row). Our model generalized to unseen objects by appro-
priately distributing the keypoints across the objects. We noticed
that in some instances a keypoint is attached to the tabletop due
to its visual feature. Regardless, the control task is achieved
as the majority of keypoints are attached to the objects. The
GraphMPC algorithm selects the action based on maximizing
graph similarity to the goal scene across all nodes which reduces
the effect of a single inconsistent keypoint on the rearrangement
task.

We also compare with V-CDN baseline in the real setting.
Since the ground-truth positions are unknown in the real world,
we use image similarity to quantify the accuracy of the rear-
rangement task. Specifically, we used the pretrained VGG [26]
to measure the cosine similarity between the scene image and
the goal image in the feature space to obtain MPC results for the
real-world setting. As shown in Fig. 9, our model is consistently
more accurate in rearranging the real scene and archives a
significantly higher similarity to the goal image.

VI. CONCLUSION

In this letter, we propose a method for learning action-
conditioned forward models based only on RGB images. We
showed that our approach effectively makes forward predictions
with keypoint factorization of the scene image. Also, we showed
that a keypoint-based forward model, unlike prior work, does not
make assumptions about the number of objects which allows
for automatic generalization to a variety of unseen circum-
stances. Importantly, our model is trained without any explicit
supervision on ground-truth object states. Our framework has
a limitation regarding the fixed number of expected keypoints.
Although we demonstrate that this approach enhances general-
izability compared to fixing the number of objects, determining
the optimal number of keypoints for a specific environment
requires experimenting with various numbers. Furthermore, we
observed slight inconsistencies in keypoints for real-robot. As
a future direction, enhancing the keypoint extraction module
to better handle real settings would be an interesting area of
investigation.
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