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Attribute-Based Robotic Grasping With
Data-Efficient Adaptation

Yang Yang ', Houjian Yu'”, Xibai Lou

Abstract—Robotic grasping is one of the most fundamental
robotic manipulation tasks and has been the subject of extensive
research. However, swiftly teaching a robot to grasp a novel tar-
get object in clutter remains challenging. This article attempts to
address the challenge by leveraging object attributes that facilitate
recognition, grasping, and rapid adaptation to new domains. In
this work, we present an end-to-end encoder-decoder network to
learn attribute-based robotic grasping with data-efficient adap-
tation capability. We first pretrain the end-to-end model with a
variety of basic objects to learn generic attribute representation
for recognition and grasping. Our approach fuses the embeddings
of a workspace image and a query text using a gated-attention
mechanism and learns to predict instance grasping affordances. To
train the joint embedding space of visual and textual attributes,
the robot utilizes object persistence before and after grasping. Our
model is self-supervised in a simulation that only uses basic objects
of various colors and shapes but generalizes to novel objects in
new environments. To further facilitate generalization, we propose
two adaptation methods, adversarial adaption and one-grasp adap-
tation. Adversarial adaptation regulates the image encoder using
augmented data of unlabeled images, whereas one-grasp adapta-
tion updates the overall end-to-end model using augmented data
from one grasp trial. Both adaptation methods are data-efficient
and considerably improve instance grasping performance. Exper-
imental results in both simulation and the real world demonstrate
that our approach achieves over 81% instance grasping success
rate on unknown objects, which outperforms several baselines by
large margins.

Index Terms—Deep learning in grasping and manipulation,
grasping, perception for grasping and manipulation.

I. INTRODUCTION

BJECT attributes are generalizable properties in object
manipulation. Imagine how we describe a novel object
when asking someone to fetch it, “Please give me the apple, ared
sphere.”, we intuitively characterize the target by its appearance
attributes (see Fig. 1). If an assistive robot can be similarly
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Fig.1. Attribute-based instance grasping. Various objects of generic attributes
are placed in the workspace, and we propose to grasp a target object by describing
its attributes, e.g., “Please give me the apple, ared sphere.” (a) Objects of various
attributes. (b) Grasping affordances.

commanded utilizing such object attributes (e.g., color, shape,
and category name, etc.), it would allow better generalization
capability for novel objects than using a discrete set of predefined
category labels. Moreover, individuals learn to recognize and
grasp an unknown object through rapid interactions; hence, it
would be advantageous if a grasping pipeline is capable of
adapting with minimal adaptation data. These factors motivate
the development of attribute-based robotic grasping with data-
efficient adaptation capability.

Recognizing and grasping a target object in clutter is crucial
for an autonomous robot to perform daily-life tasks in the real
world. Over the past years, the robotics community has made
substantial progress in target-driven robotic grasping by com-
bining off-the-shelf object recognition modules with data-driven
grasping models [2], [3]. However, these recognition-based ap-
proaches presume a unique ID for each category and are likely to
experience limited generalization when applied to novel objects.
In contrast, we propose an attribute-based robotic grasping
approach that enables a robot to grasp an attributes-specified
target object. The intuition of using attributes for grasping is that
the grounded attributes can help transfer object recognition and
grasping capabilities across different environments. Suffering
from domain shift [4], a machine learning model trained with
the data in one domain is subject to limited generalization when
tested in another domain. In robotic grasping, the source of
domain shifts includes novel objects, new environments, percep-
tion noises, etc. To mitigate the domain shift, domain adaptation
methods [5] are widely used for model transfer. These adaptation
methods, on the other hand, typically require the collection of
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a large adaption dataset, which is costly, inefficient, and time-
consuming. To efficiently transfer our pretrained attribute-based
grasping model, we present two tailored adaptation methods.
Both the two proposed adaptation methods are data-efficient,
requiring minimal data collecting and labeling.

Compared to recognition-based robotic grasping (i.e.,
employing pretrained recognition modules), the challenges
of attribute-based grasping are 1) mapping from workspace
images and query text of the target to robot motions, 2)
associating abstract attributes with raw pixels, 3) data labeling
in target-driven grasping, and 4) data-efficient adaptation to
unknown objects and new scenes. In this article, we design
an architecture that consists of a multimodal encoder (i.e.,
encoding both visual and textual data) and an affordances
decoder (i.e., predicting instance grasping affordances [6]). The
key aspects of our system are as follows.

1) We design the deep grasping neural networks that repre-
sent 3-DOF grasp poses. After encoding and fusing visual-
textual representations, the networks rotate the fused fea-
tures to account for different grasping angles, and then
predict pixel-wise instance grasping affordances.

2) To learn a multimodal metric space, we employ the equa-
tion of object persistence before and after grasping; the
visual embedding of a grasped object should be equal to
the textual embedding of that object.

3) Our model learns object attributes that generalize to new
objects and scenes by only using basic objects (of various
colors and shapes) in simulation.

4) With the pretrained attribute representations, our model
supports efficient adaptation with minimal data. Adversar-
ial adaptation regulates the image encoder with augmented
data of unlabeled images, whereas one-grasp adaptation
updates the end-to-end model with augmented data re-
quiring only one successful grasp trial. Both adaption
approaches are data-efficient, and they can be employed
independently or in combination to improve instance
grasping performance.

The deep grasping model in our approach is fully self-
supervised through the interactions between the robot and ob-
jects. Fig. 1 presents an example of attribute-based robotic
grasping, wherein our approach successfully grounds object
attributes and accurately predicts grasping affordances for an
attributes-specified target object.

In our prior work [1], we proposed 1) an end-to-end
architecture for learning text-commanded robotic manipulation
and 2) a method of self-supervising multimodal attribute
embeddings through object grasping to facilitate quick
adaptation. As an evolved paper, this article presents an
in-depth study of adaptation in robotic manipulation and strives
to improve the autonomy of robots by achieving self-supervision
and self-adaptation. The pretrained model is self-supervised
in a simulation that only uses basic objects of various colors
and shapes. In our adaptation framework, we make use of
autonomous robots to collect raw data for adaptation. We
present three core technical contributions as follows.

1) A sequential adaptation scheme. We propose a robotic

grasping adaptation framework that comprises two
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stackable and data-efficient adaptation methods.
The adversarial adaptation and one-grasp adaptation
methods aim to comprehensively adapt the model for
object recognition and grasping. Through data-efficient
adaptation, the robot adeptly grasps challenging objects,
eliminating the need for extensive data collection.

2) Data-efficient augmentation methods. We design data aug-
mentation methods that only require unlabeled images of
candidate objects for adversarial adaptation and one-grasp
data of a target object for one-grasp adaptation.

3) Evaluation and analysis of robot grasping. We evaluate the
grasping model in simulated and real-world scenes with
various testing objects and domain gaps, which verifies
the effectiveness of our grasping model. Furthermore, the
ablative analysis of the data augmentation methods shows
the efficiency of our approach.

With observations from an RGB-D camera, our robot system
is designed to grasp a target object following the user command
containing object attributes. To our best knowledge, this is
the first work that explores object attributes to improve the
generalization and adaptation of deep robotic grasping models.
We believe that the adaptation framework not only enhances
the overall performance, but also opens up new possibilities for
solving the problem in target-driven robotic manipulation.

II. RELATED WORK
A. Instance Grasping

Though there are different taxonomies, the existing work of
robotic grasping can be roughly divided according to approaches
and tasks: 1) model-driven [7] and data-driven [8] approaches;
2) indiscriminate [9], [10] and instance grasping [2] tasks.
Our approach is data-driven and focuses on instance grasping.
Typical instance grasping pipelines assume a pretrained object
recognition module (e.g., detection [2], segmentation [3]
[11], template matching [12], and object representation [13],
etc.), limiting the generalization for unknown objects and the
scalability of grasping pipelines. Our model is end-to-end
and exploits object attributes for generalization. Some recent
research also proposes end-to-end learning methods for instance
robotic grasping. Jang et al. [14] learned to predict the grasp
configuration for an object class with a learning framework
composed of object detection, classification, and grasp planning.
In [15], CCAN, an attention-based network, learns to locate the
target object and predict the corresponding grasp affordances
given a query image. Compared to these methods, the main fea-
tures of our work are two-fold. First, we collect a much smaller
dataset of synthetic basic objects to learn generic attribute-based
grasping. Moreover, our generic grasping model is capable
of further adapting to new objects and domains. Second, our
approach takes a description text of target attributes as a query
command, which is more flexible when grasping a novel object.

B. Attribute-Based Methods

Object attributes are middle-level abstractions of object prop-
erties and generalizable across object categories [16]. Learning
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object attributes has been widely studied in the tasks of object
recognition [17], [18], [19], [20], while attribute-based robotic
grasping has been much less explored, except for [21], [22].
Cohen et al. [21] developed a robotic system to pick up the
target object corresponding to a description of attributes. Their
approach minimizes the cosine similarity loss between visual
and textual embeddings as well as predicts object attributes.
However, they only show generalization across viewpoints but
not object categories. In [22], the proposed Text2Pickup system
uses object attributes to specify a target object and removes
ambiguities in the user’s command. They use mono-color blocks
as training and testing objects but fail to show generalization
to novel objects. In contrast, our work learns generic attribute-
based robotic grasping (only using synthetic basic objects) and
generalizes well to novel objects and real-world scenes.

C. Model Generalization

Model generalization is one of the most important challenges
in robotic manipulation. To improve model generalization, vari-
ous approaches to bridging domain gaps have been proposed.
Domain randomization [23] is one frequently used method,
which collects more diverse data by randomizing simulation
settings. Some recent research [24], [25], [26] have applied do-
main randomization to improve the real-world generalization of
asimulation-trained robot policy. We build a simulation environ-
ment and apply domain randomization during the pre-training of
a generic model. In addition to domain randomization, we pro-
pose two adaption methods following the form of domain adap-
tation and few-shot learning. Domain adaptation [5], a subcate-
gory of transfer learning [27], is used to reduce the domain shift
between the source and target domain when the feature space
is the same but the distributions are different. Inspired by ad-
versarial domain adaptation [28], our approach learns a domain
classifier and the image encoder learns domain-invariant features
to confuse the classifier. We propose an object-level augmenta-
tion method to enrich the image dataset for adversarial training,
increasing the generalization of the encoder to new domains.
While there exist similar work, for example, Chen et al. [29]
investigated domain adversarial training in their work, their
approach focuses on updating the feature adaptor and the dis-
criminator using unlabeled data, rather than updating the grasp
synthesis model. In contrast, our grasping adaptation approach,
consisting of unsupervised adversarial adaptation and super-
vised few-shot learning, jointly updates the grasping pipeline.

Few-shot learning [30] is the paradigm of learning from a
small number of examples at test time. The key of metric-based
few-shot learning method, one of the most popular categories,
is to supervise the latent space and learn a versatile similar-
ity function by metric loss [31], [32]. The supervised metric
space supports fine-tuning using minimal adaptation data (also
known as support set), and the similarity function generalizes
to unknown test data [33], [34]. Motivated by the idea of
few-shot learning methods, our approach first learns a joint
metric space that encodes object attributes and then fine-tunes
recognition and grasping of our model when testing on novel
objects.

IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

ITI. PROBLEM FORMULATION

The attribute-based robotic grasping problem in this article is
formulated as follows:

Definition 1: Given a query text for a target object, the goal
for the robot is to grasp the corresponding object that is placed
in the cluttered workspace.

To handle the natural language that is diverse and uncon-
strained, we assume a language attribute parser, such as [35],
and make the following assumption:

Assumption 1: The query text is parsed into the keywords of
object attributes as an input to the robotic grasping model.

We consider color, shape, and category name attributes in
this article, while the proposed approach is extensible to other
attributes (e.g., texture, pose, and functionality, etc.). In order
to make object recognition tractable, we have the following
assumption regarding object placement.

Assumption 2: The objects are stably placed within the
workspace, and there is no stacking between objects.

While we show robotic grasping as a manipulation example
in this article, the proposed attribute-based learning methods
should be, in principle, extensible to other robotic manipulation
skills, such as suction, pushing, and placing.

IV. LEARNING ATTRIBUTE-BASED GRASPING

Object attributes are semantically meaningful features and
serve as an intermediate representation for object recognition
and manipulation. In this section, we propose an end-to-end
neural network for attribute-based robotic grasping. The pro-
posed model takes as input an image of visual observation and a
text of target description to predict pixel-wise instance grasping
affordances. To acquire a rich dataset for training, we build a
simulation environment that allows domain randomization with
diverse objects. In simulation, the model is pretrained to learn
instance grasping and object attributes simultaneously.

A. Learning Grasping Affordances

We formulate attribute-based grasping as a mapping from
pairs of workspace images and query text to target grasping affor-
dances. The proposed visual-textual manipulation architecture
assumes no prior linguistic or perceptual knowledge. It consists
of two modules, a multimodal encoder and an affordances de-
coder, as illustrated in Fig. 2.

Multimodal Encoder: As shown in Fig. 1(a), our robot system
uses an overhead RGB-D camera to capture the workspace. The
RGB-D image is projected into a 3-D point cloud and then ortho-
graphically back-projected in the gravity direction to construct
a heightmap image vp,. of RGB and depth channel. To specify
an object in the image as the grasping target, we give a text
command ¢ composed of color and/or shape attributes, e.g., “red
cuboid.” The workspace image vp.. and query text ¢ are the input
to visual spatial encoder ¢, s, and text encoder ¢, respectively.
We use the ImageNet-pretrained [36] ResNet-18 [37] backbone
as our image encoder ¢, spa. We replace the first convolutional
layer of the ResNet backbone with a four-channel convolutional
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Fig. 2.

Overview of affordances and attribute learning. The workspace image and query text are encoded separately and fused using gated-attention. The fusion

matrix Fyy is rotated by N orientations for different grasping angles and then fed into the grasping affordances decoder. The decoder learns to predict pixel-wise
scores of target grasping success, and we run the e-greedy grasping policy and obtain the image vyoq after grasping. By utilizing the equation of object persistence
before and after grasping, we learn a metric space where multimodal embedding vectors corresponding to similar attributes are encouraged to be closer. Note we
denote the combination of ¢y, sp, and GAP as @y, vec, Which encodes images to vectors.

layer to match the RGB-D heightmap input. The encoder en-
codes the RGB and depth observation into 3D visual matrix
©u,spa € RET*W>51Z The text encoder ¢; is a deep averaging
network [38] represented by three fully connected layers and
interleaved ReLLU [39] activation functions. We first map each to-
ken in a sentence text to an embeddings vector of 128 dimension.
The mean token embeddings (i.e., continuous bag-of-words [40]
model) of the text are input to the three-layer MLP text encoder
to produce a text vector @; € R>!2. The visual matrix ¢, sp, and
the text vector ¢, are then fused by the gated-attention mecha-
nism [41]: each element of ¢, is repeated and expanded to an
H x W matrix to match the dimension of ¢, sp.. The expanded
matrix is multiplied element-wise with ¢, sp, to produce a fusion
matrix Fy,. The gated-attention unit is designed to gate certain
pixels in the visual feature matrix matching to the text vector,
resulting in the fusion matrix containing the visual features
selected by the query text. By this means, we can detect different
attributes of the objects in the image, such as color and shape.

Affordances Decoder: Grasping affordances decoder ¢, is a
fully convolutional residual network [37], [42] interleaved with
spatial bilinear 4x upsampling and ended with the sigmoid
function. The decoder takes as input the fusion matrix Fyy
and outputs a unit-ranged map (), with the same size and
resolution as the input image vp.. Each value of a pixel ¢; € Qg
represents the predicted score of target grasping success when
executing a top—down grasp at the corresponding 3-D location
with a parallel-jaw gripper oriented horizontally concerning the
map (Q,. The grasping primitive is parameterized by a 3-D
location and an angle. To examine different grasping angles,
we rotate the input Fj, by N = 6 (multiples of 30°) orientations
before feeding into the decoder, which predicts pixel-wise scores
of horizontal grasps within the rotated heightmaps. The pixel
with the highest score among all the N maps determines the
parameters (i.e., location and angle) for the grasping primitive
to be executed. As in Fig. 2, our model predicts accurate target
grasping location and valid (e.g., the selected angles for the red
cuboid) target grasping angle.

The motion loss L, wWhich supervises the entire encoder-
decoder networks, is the error from predictions of grasping
affordances:

N;

Egra.sp = Z (Q'e - ge)z + Anm Z qf

ieM

ey

where IV, is the size of the dataset that is collected in simulation,
ge is the grasping score in (), at the executed location, and g,
is the ground-truth label (see Section IV-C). The second term
ensures lower grasping scores for the pixels in background mask
M (obtained from the depth image) with weight A, [43], and
q; is the grasping score of a background pixel.

B. Learning Multimodal Attributes

To learn generic object attributes, we perform multimodal
attributes learning, where visual or textual embedding vectors
corresponding to similar attributes are encouraged to be closer
in the latent space. Inspired by [13], we take advantage of the
object persistence: the embedding difference of the scene before
and after grasping is enforced closer to the representation of the
grasped object. During data collection, we record image-text
data (vpre, Upost; ), Where vpe and vpoq are the workspace image
before and after grasping, respectively, and ¢ is the query text
that describes attributes of the grasped object.

We add one layer of global average pooling (GAP) [44], [45]
at the end of the encoder ¢, pa and denote the network as
visual vector encoder ¢, .. The output from ¢, . is a visual
embedding vector that represents the average of scene features
and has the same dimension of ¢.(¢). We express the logic of
the object persistence as an arithmetic constraint on visual and
textual vectors such that (@y vec(Vpre) — Pu,vec(Vpost)) is close to
¢¢(t). We use the triplet loss [46] to approximate the constraint,
and the set of triplets T is defined as

T= {(fi,fg+a ) ls (afwaf:’) =8 (af“af{)} 2
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Fig. 3. Multimodal feature space supervised by the equation of object persis-
tence (5). The image and text encoders are trained to produce consistent embed-
dings, where feature vectors corresponding to similar attributes are encouraged
to be closer.

where f;, fl ,and f; are random samples from the pool of
vectors (v, vee(Vpre) — Duvec(Vpost)) and ¢¢(t), and ay is an
n-dimensional attribute label vector corresponding to the feature
vector f (e.g., color, shape, and category name, etc.). Function
s(+,-) is an attribute similarity function that evaluates the simi-
larity between two attribute label vectors

1< o
s(a1,a2) = — > 1 (a1, a3) 3)
i=1

1 ifa} =a4+#0
0 otherwise

1 (a1, 43) ={ )
where a' denotes the ith element of the label vector a, and
the indicator function 1(-,-) evaluates the element-wise sim-
ilarity. Note that O indicates null attribute meaning no at-
tribute is specified in the label. As an example, suppose

we have the dictionary dict = {“eos” : 0, “red” : 1, “black” :
2, “yellow” : 3, “cylinder” : 4, “cube” : 5}; then, “red cylin-
der” can be represented as a label vector as, = [1,4], and

“red cube” can be represented as ay, = [1,5]. The similarity
between the two label vectors is computed using (3) such that
s(ag,,az ) = s([1,4], [1,5]) = 0.5. In addition, when “red” and
“black™ are used without any additional attribute description,
they are mapped to the vectors [1,0] and [2, 0], respectively.
In this case, the similarity between the two labels is derived
as s([1,0], [2,0]) = 0. With the triplets of embedding vectors,
multimodal metric loss Ly, is defined as

[T]

= max (|Ifi — £ 17 = Ifi = £7 I + ,0) (5)

i=1

»Cfallr (T)

where « is a hyperparameter that controls the margin between
positive and negative pairs. By encoding workspace images and
query text into a joint metric space and supervising the embed-
dings through the equation of object persistence (as shown in
Fig. 3), we learn generic attributes that are consistent across
object categories, as discussed in Section VII-A.

C. Data Collection and Training

To achieve self-supervision, we create a simulation envi-
ronment in which objects are identified and grasped based on

IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

Fig. 4. Examples of basic objects. Synthetic objects of various colors and
shapes are used for learning object attributes and grasping affordances. To ensure
shape attribute learning, we include objects having random textures.

Algorithm 1: Online Data Collection.
Initialize bounded buffer B
Notations: e-greedy policy ¢, our model ¢, image v, text
t, mask M, action a, and label g,
1: while collecting data do
reset the simulation and randomly drop basic objects
get image vy and randomly choose a command ¢
execute action a < m(¢; Vpee, t, €)
label g, according to grasping results
Save Upe, t, M, a and g, into B
if successful grasp then
save vpost into B with HER
end if
sample a batch from B to train the model
11: end while

._.
SYEeIN AL

a description of semantic attributes. We collect training data
in simulation with the following procedure, as summarized in
Algorithm 1. Several objects are randomly dropped into the
workspace in front of the robot. Given a workspace image and
a query text, the robot learns to grasp a target under e-greedy
exploration [47] (e=0 during testing, i.e., an argmax policy).
We save the workspace images, query text, background masks,
executed actions, and results into a bounded buffer. The ground-
truth labels are automatically generated for learning grasping
affordances. The label g, in (1) is assigned as the attribute
similarity in (3) between the query text and the grasped object
(0 if no object grasped). We also save the workspace image
after a successful grasping for learning object attributes. To
deal with sparse rewards in target-driven grasping, the hindsight
experience replay (HER) technique [48] is applied. If a nontarget
is grasped, we add the additional positive sample by relabeling
the target text. Fig. 4 shows the basic objects of various colors
(red, green, blue, yellow, and black) and shapes (cube, cuboid,
cylinder, and sphere) used in our simulation. We choose these
colors and shapes because they are foundational for common
objects in daily life. To enrich the distribution of training data,
we perturb color RGB values, randomize sizes and heights of
the objects, and randomize textures of the workspace. Using
the domain randomization techniques [24], we can generate a
number of randomized properties in simulation and achieve a
model with better generalization. At every iteration, we sample
a batch from the buffer and run one off-policy training. The

Authorized licensed use limited to: University of Minnesota. Downloaded on April 19,2024 at 22:47:30 UTC from IEEE Xplore. Restrctions apply.



YANG et al.: ATTRIBUTE-BASED ROBOTIC GRASPING WITH DATA-EFFICIENT ADAPTATION

Fig. 5. Testing objects in simulation and the real world. We use the testing
objects that share similar attributes with the training objects. See Appendix for
more details. (a) Simulated novel objects. (b) Real-world objects.

training loss is defined as
»Cftrajn = Leprasp + Jl-t:|'ucallr (6)

by combining both motion 10ss Lgrasp (1) and metric loss Ly (5).
We train the proposed model using stochastic gradient descent
with alearning rate of 104, momentum of 0.9, and weight decay
of 2 x 107> for 5 k iterations. Each training iteration involves
capturing data, computing a forward pass, executing an action,
and backpropagating. After collecting a dataset of 5 k samples,
we replay the entire data for 100 epochs.

V. DATA-EFFICIENT ADAPTATION

Due to the high cost of collecting data on real robots, we
often choose to train robotic models in a simulator. However,
the domain gap between the source domain (e.g., simulation,
trained objects) and the target domain (e.g., the real world, novel
objects) frequently leads to the failure of the learned models.
We propose to, in addition to randomizing the source domain
in Section IV-C, adapt our learned model using data from
the target domain to further alleviate the domain shifts. One
typical adaptation approach is fine-tuning the pretrained model.
However, the fine-tuning methods remain expensive in terms of
data usage. In this section, as shown in Fig. 6, we propose two
data-efficient adaptation methods: 1) adversarial adaptation,
which adapts the image encoder using unlabeled images, and 2)
one-grasp adaptation, which updates the end-to-end model using
one grasp ftrial. The two adaptation methods can be either used
independently or in combination for performance improvement.

A. Adbversarial Adaptation

Despite that our generic model trained using the simulated
basic objects shows good generalization (see Section VII-B),
the visual feature shifts (e.g., objects, lighting conditions, and
scene configurations, etc.) are inevitable. As a result, the image
encoder is likely to produce out-of-distribution visual embed-
dings, leading to the failure of the grasping model. To reduce
the influence of the domain shifts, we propose to use adversarial
adaptation [28] to learn domain-invariant visual features that are
transferable across different domains. In our problem setup, the
simulated basic objects constitute the source domain, and our
goal is to transfer the learned model to a target domain that is
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Fig. 6. Overview of the proposed adaptation schemes. In adversarial adapta-
tion (top), the adversarial loss L4, regulates the image encoder using augmented
data of unlabeled images to learn domain-invariant features for the decoder. The
dotted boxes indicate no gradient flows corresponding to Lagv (there are gradients
from Ligin though). One-grasp adaptation updates the end-to-end model through
Lgasp using augmented data from one grasp trial. (a) Adversarial adaptation.
(b) One-grasp adaptation.

prone to domain shifts. As shown in Fig. 6(a), adversarial adap-
tation regularizes the weights of the image encoder ¢,, by enforc-
ing a two-player game similar to the generative adversarial net-
work (GAN) [49]. A domain classifier (i.e., discriminator) learns
to distinguish between two domains, while the image encoder
learns to fool the domain classifier by learning domain-invariant
features. To achieve adversarial training, we connect the encoder
and the discriminator via a gradient reversal layer (GRL) [50]
that has reverse forward and back-propagation schemes. The
GRL R is an identity mapping during forward-propagation but
reverses the sign of the gradients during back-propagation

R(z)==x (7)
dR
- = —hrd (8)

where I is an identity matrix, and A, is a positive constant.

During adaptation, images from the two different domains
are fed into the image encoder. The domain classifier f; takes
as input the encoded features, and is trained to predict which
domain the feature is from, by maximizing the binary cross-
entropy Hg. Using the source domain dataset D; = {vs, &, ys }
({image, text, label} collected in Algorithm 1) and assuming a
target domain dataset D; = {v;}™, the model is updated to be
optimal on the training 10ss Lipiq (6) under the regularization of
the adversarial loss Lg4y

Lav=— Y Ha(fa(R(bvyec(v:)),di) (9

v; eDUD;
Eadvadp = ’Cll'a.irl(US: ts, ys) + Eadv(vt)

where L,4yqqp 1S the overall loss for adversarial adaptation, d; €
{0, 1} are the binary domain label for each input v;. Note that
the reversal layer R is augmented between the classifier f; and
the encoder ¢, vo. and updates them in reversal directions.

(10)
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extracted objects

object images augmented image

Fig. 7.  Object-level data augmentation. We extract objects from the images
of a single object, apply the augmentation methods (e.g., shifting, rotation),
and assemble them on a background to generate diverse adaptation data for
adversarial adaptation.

The target dataset D; for the new domain is the prerequisite to
performing adversarial adaptation. As shown in Fig. 7, we pro-
pose a object-level augmentation (ObjectAug) approach instead
of collecting data from a vast number of configurations. Since
the grasping label is not required in Dy, synthetic generation
of a large image dataset would be more efficient. We begin
by collecting RGB-D images of all conceivable objects in the
target domain. Using the object mask acquired from the depth
channel, we extract each objectindividually and randomize them
with the single-object augmentation methods commonly used
(e.g., scaling, flipping, and rotation). To generate an augmented
RGB-D image, the augmented objects are randomly sampled and
shifted before being overlaid with a background image. We also
perform IoU threshold verification to avoid dense overlapping.
To simulate varying conditions of target domains, we can apply
the visual jitter technique discussed in Section VI-A to obtain
more diverse data. Given the ease with which unlabeled images
may be acquired (e.g., the internet, image collection), generating
atarget dataset that is of the same magnitude as the source dataset
is rather efficient.

B. One-Grasp Adaptation

By learning domain-invariant features, the adversarial adap-
tation technique in Section V-A improves model generalization
using unlabeled images of the target domain. However, the
adversarial loss uses unlabeled images to only update the image
encoder and leave the text encoder and the grasping affordance
decoder unadapted. When deploying in a new domain, end-
to-end model fine-tuning is often necessary, but this comes at
the cost of a large dataset covering all potential testing object
configurations. To further adapt to novel objects and new scenes
in a data-efficient manner, we present a one-grasp adaptation
scheme [see Fig. 6(b)] that only requires one successful grasp
of a novel object. The inductive bias of object attributes in
Section I'V-B is the key to adaptation in this limited-data regime.
If similar objects are enforced closer in the embedding space, the
adaptation distance for a novel object is likely to be shorter [51].

The proposed one-grasp adaptation method improves the
model performance on a novel target object at the cost of
only one grasp. The adaptation data are collected with the
following one-grasp data augmentation (OneGraspAug) pro-
cedure. We place the object solely in the workspace and run
the generic model to collect one successful grasp. The setting
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collected data

one-grasp collection

augmented data

Fig. 8. One-grasp data augmentation. We place the target object solely on
the workspace and collect one successful grasp. To enrich the distribution of
grasping angles, we rotate the collected data and synthesize a few samples for
one-grasp adaptation. One rotation example of the augmented data is visualized.

of a sole object facilitates grasping and avoids combinatorial
object arrangements. Because convolutional neural networks
are not rotation-invariant by design, we also augment the grasp
data by rotating with various orientations to achieve rotation-
invariance [52], [53], i.e., the ability to recognize and grasp
an object regardless of its orientation. As shown in Fig. 8, we
rotate the collected image and action execution to have rotated
versions of the collected data. In the adaptation stage, we add
the category name of the object as an additional token to the
query text, e.g., “apple, red sphere” for the testing object apple.
The token embedding of the object name is initialized properly
to keep the embedding vector of the query text unchanged.
The addition of the object name allows for a more specific
grasping instruction and distinguishing from similar objects via
adaptation. By optimizing over motion loss Lenp in (1), we
jointly fine-tune the recognition and grasping of our model for
unknown objects and scenes. As delineated in Section VII-C, the
adapted model outputs higher affordances on the target objects
that are not seen and grasped before.

VI. SYSTEM IMPLEMENTATION
A. Simulation Environment

We use CoppeliaSim [54] to build our simulation environ-
ment. The simulation setup includes a URS robot arm and an
RG2 gripper, with Bullet Physics 2.83 for dynamics and Cop-
peliaSim’s internal inverse kinematics module for robot motion
planning. We simulate a statically mounted overhead 3-D camera
in the environment from which perception data is captured. The
camera renders RGB-D images with a 640 x 480 pixels reso-
lution using OpenGL. We use various basic and novel objects
for training and testing in the simulation. As shown in Fig. 4,
the basic objects consist of 36 different 3-D toy blocks, whose
shapes and colors are randomly chosen during experiments.
We collect 34 different 3-D household objects from the YCB
dataset [55] or the 3-D mesh library SketchUp [56], as shown in
Fig. 5(a). To produce more diverse simulation configurations, the
simulation environment supports several domain randomization
techniques, including background randomization, color jitter
(i.e., randomly changing the brightness, contrast, and saturation
of the color channel), and depth jitter (i.e., adding Gaussian noise
to the depth channel).
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B. Real-Robot System

Fig. 1(a) shows our real-world setup that includes a Franka
Emika Panda robot arm with a FESTO DHAS soft gripper and
a hand-mounted Intel RealSense D415 camera overlooking a
tabletop scene. We use the soft fingers because they are more
suitable for grasping the objects in our experiments and are
similarly compliant to the RG2 fingers. For perception data,
RGB-D images of resolution 640 x 480 are captured from the
RGB-D camera, statically mounted on the robot arm. The camera
is localized with respect to the robot base using the automatic
calibration procedure of ViSP [57], during which the camera
tracks the location of a checkerboard pattern taped on the table.
For a given pose, the robot follows the corresponding trajectory
generated with Movelt [58] in open-loop. The entire system is
implemented under the robot operating system framework and
runs on a PC workstation with an Intel i7-8700 CPU and an
NVIDIA 1080Ti GPU. Objects vary throughout tests, with a
collection of 20+ different household objects being used to test
model generalization to novel objects, as shown in Fig. 5(b).

VII. EXPERIMENTS

We propose training with simulated basic objects first to have
a generic model and then adapting it to novel objects and real-
world scenes. In the experiments, we first analyze the structured
metric space of our generic model and show the consistency
between attention and grasping maps. Next, we evaluate the
instance grasping performance of the generic model and show
its modest generalization even before adaptation. Then, we adapt
the model using the proposed adversarial and one-grasp adap-
tation methods and test the grasping models after adaptation.
Finally, we run a series of ablation studies to investigate the two
adaptation methods. The goals of the experiments are four-fold:
1) to show the effectiveness of multimodal attribute learning
for instance robotic grasping,
2) to evaluate our attribute-based grasping system in both
simulated and real-world settings,
3) to evaluate the proposed adversarial and one-grasp adap-
tation methods, and
4) toshow the importance of the proposed data augmentation
methods for grasping adaptation.

A. Multimodal Attention Analysis

By embedding workspace images and query text into a joint
metric space, the multimodal encoder (¢, and ¢;), supervised
by metric loss Lay and motion loss Lgnep, learns attending to
text-correlated visual features. We visualize what our model
“sees” by computing the dot product of text vector ¢; with
each pixel of the visual matrix ¢y spa. This computation ob-
tains an attention heatmap over the image, which refers to the
similarity between the query text and each pixel’s receptive
field [see Fig. 9(a)]. We quantitate the attention of our model
and report its attention localization performance in Table I (see
Ours-Attention). Evaluation metrics: An attention localization
is considered correct only if the maximum value in the attention
heatmap lies on the target object.
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Fig. 9. Visualization of attention and grasping. (a) shows attention of our
encoder, and (b) shows heatmaps of grasping affordances for different targets
(described by the query text). The maps of attention and grasping are consistent
even for the novel objects. (a) Encoder’s attention. (b) Grasping affordances.

TABLEI
TARGET RECOGNITION ACCURACY (%)

Method sim basic | sim novel | real novel
ClassIndis 100.0 56.3 357
EncoderIndis 95.8 71.5 57.1
NoMetric 934 704 54.0
Ours-Attention 95.3 74.5 70.2
AttrID 96.8 79.1 70.6
Generic (Ours) 100.0 79.7 71.8

The bold entities are typically used to emphasize the best
results across the methods.

Ours-Attention (in Table I) performs target localization at a
74.5% accuracy on simulated novel objects and a 70.2% accu-
racy on real-world objects, without any localization supervision
provided. In summary, our multimodal embeddings demonstrate
a consistent pattern across object categories and scenes. Though
the localization results are not directly used for grasping, the
consistent embeddings facilitate learning, generalization, and
adaptation of our grasping model, as shown in Fig. 9 and
discussed in the following subsections.

B. Generic Instance Grasping

We compare the instance grasping performance of our generic

model with the following baselines.

1) Indiscriminate is an indiscriminate grasping version of
our approach and composed of a visual spatial encoder
¢ spa and a grasping affordances decoder ¢4. We collect
a dataset of binary indiscriminate grasping labels and train
Indiscriminate using Lgqsp in (1).

2) ClassIndis extends Indiscriminate with an attributes clas-
sifier that is trained to predict color and shape attributes on
cropped object images. We filter the grasping maps from
Indiscriminate using the mask of a target recognized by
the classifier.

3) Encoderlndis is similar to [21] and is another extension
of Indiscriminate, which leverages a multimodal encoder
(¢dv,vec and ¢; in Section IV-A) for text template matching.
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TABLEII
INSTANCE GRASPING SUCCESS RATE (%)

Method sim basic | sim novel | real novel
Indiscriminate 27.2 22.8 13.5
ClassIndis 91.6 51.0 329
EncoderIndis 89.1 63.9 52.0
NoMetric 90.5 62.7 50.0
AttrID 90.8 68.7 60.0
Generic (Ours) 98.4 721 63.1

The bold entities are typically used to emphasize the best
results across the methods.

The encoder is trained using Ly, in (5) to evaluate the sim-
ilarity between each cropped object image and query text.
During training, we also include attributes classification
as an axillary task.

4) AttrID is for an ablation study of our text encoder ¢;. The
only difference between AftrID and the proposed method
is that AftrID takes the attribute shape and color ID one-hot
encoding as the system input, but our generic model uses
Word2Vec continuous bag-of-words (CBOW) model to
convert the texts into vector inputs. During training, we
use both the motion loss and the metric loss to update the
model.

5) NoMetric is for an ablation study of multimodal metric
loss. We simply remove the metric loss on the basis of our
approach during its training.

Evaluation metrics: These methods have different target
recognition schemes: ClassIndis and EncoderIndis recognize a
target by classification and text template matching, respectively;
NoMetric, AttrID and Ours are end-to-end. We report their
target recognition performance (in addition to instance grasping
performance, as in the next paragraph). A target localization
is correct only if the predicted grasping location lies on the
tar%egf sgct::'ie?ffﬁi The instaml(i;-:,r gicrasping success rate is defined
as #of“i‘:z‘]p;;';;:mc 22 In each testing scene, we only
execute grasping once.

We evaluate the methods on both simulated basic (sim basic)
and simulated novel (sim novel) objects in simulation, where
there are 1200 test cases for the basic objects (see Fig. 4) and
3400 test cases for the 34 novel objects (see Fig. 5(a), mostly
from the YCB dataset [55]). We assume the objects are placed
right-side up to be stable while their 4-D pose (3-D position and
a yaw angle) can vary arbitrarily. For each testing object, we
prechoose a query text that best describes its color and/or shape.
In each test case, four objects are randomly sampled and placed
in the workspace, except avoiding any two objects with the same
attributes. The robot is required to grasp the target queried by
an attribute text. We report the results of target recognition in
Table I and the results of instance grasping in Table II.

Overall, our approach outperforms the baselines remarkably
(in both recognition and grasping) and achieves a 98.4% grasp-
ing success rate on the simulated basic objects and an 72.1%
grasping success rate on the simulated novel objects. ClassIndis
extends Indiscriminate that is well trained in target-agnostic
tasks and performs well on the basic objects, but the attributes
classifier generalizes poorly. EncoderIndis utilizes a more gen-
eralizable recognition module and performs better on the novel
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objects. However, EncoderIndis fails to reach optimality because
its separately trained recognition and grasping modules have
different training objectives from instance grasping. Despite
training the recognition and grasping modules simultaneously,
AttrID using sparse attribute one-hot IDs as a substitute for text
inputs yields lower recognition accuracy and grasping success
rate compared to Ours. As an ablation study, the performance
gap between NoMetric and Ours shows the effectiveness of
multimodal metric loss, which supervises the joint latent space to
produce consistent embeddings, as discussed in Section VII-A.
Our approach successfully learns object attributes that general-
ize well to novel objects, as shown in Fig. 9.

We further evaluate our approach and the baselines on the
real robot before any adaptation (see Tables I and II). Fig. 5(b)
shows 21 testing objects of various colors and shapes used in
our real-robot experiments. The robot is tasked to grasp the
target within a combination of six objects placed on the table.
We use the same 21 object combinations that are randomly
generated and repeat each combination twice, resulting in a total
of 252 grasping trials for each method. Overall, the grasping
performance of all the methods decreases due to the domain
gap. However, our approach shows the best generalization and
achieves a 63.1% grasping success rate, before adaptation, in the
real-world scenes.

C. Adapted Instance Grasping

The generic model in Section VII-B infers the object closest
to the query text as the target. Overall, our generic model
demonstrates good generalization despite the gaps in the testing
scenes. Specifically, these gaps are 1) RGB values of the testing
objects deviate from training ranges, 2) some testing objects
are multicolored, 3) shape and size differences between the
testing objects and the training objects, and 4) depth noises in
the real world causing imperfect object shapes. To account for
the gaps, we further adapt our generic model to increase instance
recognition and grasping performance.

We first collect one successful grasp of a solely placed target
object and then augment the collected data by rotating with
additional N — 1 angles, as discussed in Section V-B and shown
in Fig. 8. The compared methods that are adapted with the same
adaptation data are as follows.

1) ClassIndis updates its attributes classifier for a better

recognition accuracy on the adaptation data.

2) Encoderindis minimizes the latent distance between
cropped target images and query text to improve text
template matching.

3) NoMetric takes as input images and text, and minimizes
motion loss on the adaptation data.

4) One-Grasp is our prior work [1] which updates the
encoder-decoder in an end-to-end manner.

5) AttrID-One-Grasp uses the same adaptation method and
data as One-Grasp baseline on AftrID from Section VII-B.

We also update Indiscriminative grasping in ClassIndis and
Encoderindis. We keep the experimental setup the same with
Section VII-B and evaluate the instance grasping performance
of the adapted models. We report the adapted instance grasping
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TABLE III
ADAPTED INSTANCE GRASPING (%)

Method sim novel | real novel
ClassIndis 56.8 373
EncoderIndis 72.0 60.3
NoMetric 68.1 53.6
One-Grasp ([1]) 83.7 76.6
AttrID-One-Grasp 79.7 73.0
Adversarial+One-Grasp (Ours) 86.0 81.7

The bold entities are typically used to emphasize the best
results across the methods.

b
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Fig. 10. Adaptation gains of instance grasping made by different adap-
tation methods. The plot shows the effectiveness of our One-Grasp and
Adversarial+One-Grasp adaptation approach, which achieve significant adap-
tation gains.

success rate in Table III and the adaptation gains in Fig. 10.
The attributes classifier in Classindis suffers from insufficient
adaptation data, limiting its target recognition and adaptation
performance. While EncoderiIndis minimizes embedding dis-
tances in its latent space and shows better performance, it is still
worse than One-Grasp. By fine-tuning over the structured metric
space, One-Grasp updates the end-to-end model and improves
target recognition and grasping jointly. At the cost of minimal
data collection, One-Grasp achieves an 83.7% grasping success
rate on the simulated novel objects and an 76.6% grasping
success rate on the real objects, which shows the significant
adaptation gains. On the contrary, the unstructured latent space
in NoMetric limits its adaptation, demonstrating the importance
of attributes learning for grasping affordances learning. The dif-
ference in adaptation performance between NoMetric and One-
Grasp demonstrates the significance of the regulated feature
space in adaptation. Furthermore, the substantial adaptation gain
observed in AftrID validates the applicability of our adaptation
method with sparse feature inputs.

As an improvement, we propose applying Adversarial
adaptation on the image encoder to learn domain-invariant
features before One-Grasp adaptation. The image encoder’s
domain invariancy results in superior transferring performance
for Adversarial+One-Grasp: an instance grasping success rate
of 86.0% in the domain of sim novel and 81.7% in the domain of
real-world novel (real novel). The qualitative results in Fig. 11
suggest the efficacy of the two adaptation methods: 1) both
Adversarial adaptation and One-Grasp adaptation increase
the recognition and grasping performance of the models, and
2) Adversarial adaptation minimizes grasping noises around
nontarget objects (by reducing domain feature changes), while
One-Grasp adaptation can rectify recognition and grasping
errors through end-to-end updates. The more compact and
centered contour in Fig. 11(b) could be explained by the
hypothesis that domain-invariant features improve the output
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Fig. 11.  Visualization of grasping maps before and after adaptation. (a) shows
the grasping affordances from the generic model trained only with simulated
basic objects, and (b) to (d) show the affordances from the adapted models after
Adversarial, One-Grasp, and Adversarial+One-Grasp adaptation, respectively.
Our adaptation methods, which require only a limited amount of adaptation data,
effectively enhance model performance. (a) Generic model before adaptation.
(b) Adversarial adaptation. (c) One-Grasp adaptation. (d) Adversarial+One-
Grasp adaptation.

consistency of the encoder across domains. The corrected
target recognition in Fig. 11(c), on the other hand, is attributed
to the One-Grasp adaptation which effectively shifts the
affordances from irrelevant objects to the target object through
the end-to-end model updates. Another noteworthy finding is
that the combined adaptation Adversarial+One-Grasp appears
to benefit from both Adversarial adaptation and One-Grasp
adaptation, as their focuses are complementary.

D. Comparison With a Foundation Model

In addition to the instance grasping experiments, we perform
another quantitative evaluation of the adapted model on sim
novel objects. For comparison, we utilize the CLIP model [59],
a recently prevailing multimodal (text and image) foundation
model. CLIP aligns language and image features through train-
ing with millions of text-image pairs and is widely acclaimed
for its robust generalization capability across various objects.
To evaluate the performance of CLIP, we segment and crop
randomly placed objects in the workspace. For each object crop
and its attribute text description, the CLIP model calculates a
matching score, which is then used to construct the confusion
matrix shown in Fig. 12(a). The pairwise matching scores reflect
the similarity between the object crops and the text inputs. As

Authorized licensed use limited to: University of Minnesota. Downloaded on April 19,2024 at 22:47:30 UTC from IEEE Xplore. Restrctions apply.



1576

red black drill-

black hammer

yellow cube dice

sphere soccer

blue eylinder pitcher

vellow cylinder yellowcup

red black drill-

black hammer

blue cylinder pitcher

yellow cylinder yellowcup

(b)

Fig.12.  Visualization of confusion matrices. The comparison between the two
confusion matrices shows the effectiveness of our adaptation method trained with
a minimum amount of data. (a) CLIP matching scores. (b) Adversarial+One-
Grasp scores.

for our Adversarial+One-Grasp model, we compute another
confusion matrix shown in Fig. 12(b) by collecting the highest
affordance value, under each target attribute description, from
affordance maps (), within each object’s segmentation mask.
While CLIP matching uses cropped images of single objects,
Adversarial+One-Grasp is tested using workspace images of
multiple objects, which is a more natural but also more challeng-
ing setting. Fig. 12 shows that Adversarial+One-Grasp achieves
more accurate grounding of the correct target objects. In contrast,
the matching scores produced by the CLIP model often lack
discrimination, leading to some misclassifications (e.g., “sphere
soccer” and “yellow cylinder yellowcup”). This comparison
highlights the limitations of zero-shot generalization in a foun-
dation model and showcases the effectiveness of our adaptation
method.

E. Ablative Analysis of Adaptation

The proposed adaptation approaches efficiently improve the
instance grasping performance of our model. As discussed in
Section VII-C, the finding that the approaches have comple-
mentary adaptation focuses leads to one of the major features:
the two adaptation methods can be employed individually or in
combination, depending on the availability of adaptation data.
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To investigate their independent and combinative performance,
we conduct an ablation study to compare the grasping models
as follows.

1) Generic is the baseline generic model obtained in Sec-
tion VII-B before any adaptation.

2) Adversarial adapts the generic model to learn domain-
invariant features using a large augmented data, as dis-
cussed in Section V-A.

3) One-Grasp adapts the generic model using one grasping
trial of the target object, as discussed in Section V-B.

4) Adversarial+One-Grasp applies the two adaptation ap-
proaches on the generic model sequentially to improve
the recognition and grasping.

As shown in Fig. 14, the adaptation methods are compared in
four testing environments with an increasing extent of domain
shifts: 1) sim basic jitter—simulated basic objects with visual
jitter (see Section VI-A) applied on color and depth channels as
well as background, 2) sim novel—simulated novel objects, 3)
sim novel jitter—simulated novel objects with visual jitter, and
4) real novel—real novel objects. As the training environment
uses simulated basic objects, the testing environments include
the domain shifts caused by novel objects, visual jitter, and
real-world noises.

We report the experimental results of the instance grasping
success rate in Fig. 13. Overall, all adaptation methods improve
the grasping performance across the testing environments. It is
not surprising that adaptation is likely to be more effective (i.e.,
leading to more performance increments) if the domain shifts
are severer. For example, the adaptation gain in the environment
of sim basic jitter is less than 4%, while the real environment
witnesses an adaptation gain of over 18%. Moreover, when
encountering complex novel objects that are more challenging
(e.g., drill) than the basic training objects (e.g., red cuboid), the
One-Grasp method provides more adaptation power than the
Adversarial method. In Adversarial adaptation, we use unla-
beled data from the target domain to update the image encoder,
while the text encoder and grasping decoder remain unadapted.
As a result, the Adversarial adapted model is more prone to
encountering difficulties with challenging novel objects (e.g.,
drill and spatula). On the other hand, One-Grasp adaptation
adapts the entire model and demonstrates better performance on
these challenging objects, but it requires additional labeled data
(at least one grasp) of the objects. Another observation is that
we can combine the two adaptation methods to achieve an even
higher adaptation performance. Through various tests, the com-
bined method Adversarial+One-Grasp adaptation consistently
shows the best performance in all the testing environments.
This suggests that the two adaptation methods adapt our model
complementarily for accumulative adaptation gains. In practice,
we can choose a configuration of adaptation methods based on
the availability of the adaptation data.

F. Data Augmentation for Adaptation

The quality of adaptation data is critical for grasping
adaptation. The two data augmentation methods, ObjectAug
and OneGraspAug, are proposed for the two adaptation methods,
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Adaptation performance in the designed testing environments. The instance grasping success rate of four approaches in the four testing environments.

The plot shows the effectiveness of the proposed two data-efficient adaptation methods, Adversarial and One-Grasp adaption, which consistently improve the
grasping performance. It is worth noting the additive performance of the two methods, and the combined Adversarial+One-Grasp adaption performs the best in all

the testing cases.
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Fig. 14. Example images of the designed testing environments for ablative
analysis of adaptation. The environments are created to test the adaption perfor-
mance of the grasping models as the degree of domain shift increases.

TABLE IV
ABLATIONS FOR OBJECT-LEVEL AUGMENTATION (%)

Method sim novel | real novel
Objects (w/o overlay and single-object aug.) 73.8 70.0
ObjectOverlay (w/o single-object aug.) 76.1 72.6
ObjectAug (Ours) 76.6 74.2

The bold entities are typically used to emphasize the best results across
the methods.

TABLE V
ABLATIONS FOR ONE-GRASP AUGMENTATION (%)

Method sim novel | real novel
OneGrasp (w/o repetition and rotation) 81.5 726
OneGraspRpt (w/o rotation) 81.7 73.8
OneGraspAug (Ours) 83.7 76.6

The bold entities are typically used to emphasize the best results
across the methods.

respectively. We execute the ablation studies in Tables IV and
V to examine the augmentation methods. The results of adapted
instance grasping are presented in the tables. In the ablations
for object-level augmentation, the compared approaches are

1) Objects uses the raw data (images of single objects) as the
adaptation data.

2) ObjectOverlay overlays the randomly sampled objects
on the background image to synthesize a large dataset
covering possible object combinations and locations.

3) ObjectAug is our object-level data augmetation method
discussed in Section V-A, where much richer object con-
figurations (i.e., orientations and scales) are covered in the
synthesized dataset.

For the above augmentation methods, we keep the dataset

size constant and use each augmentation data in (9), accordingly.

Even though the data is unlabeled, the adaptation data quality has
a direct impact on grasping performance, as seen in Table IV.
The performance difference between Objects and ObjectAug,
for example, is up to 4% on real novel objects, despite the fact
that they nominally contain the identical objects. This finding
demonstrates that the suggested object-level data augmentation
successfully reduces domain shift by supplying rich unlabeled
data.

In the ablations for one-grasp augmentation, the comparable
approaches include

1) OneGrasp uses the raw data of one successful grasp trial,
including an RGB-D image and the corresponding grasp-
ing action.

2) OneGraspRpt simply repeats the one-grasp data IV times
without rotating the data, where N = 6 is the angle dis-
cretion parameter.

3) OneGraspAug is our one-grasp data augmentation method
discussed in Section V-B, where we augment the one-
grasp data by rotating for IV orientations to enrich possible
orientations of objects and robot grasping.

As shown in Table V, OneGraspAug outperforms the com-
pared methods by over 4% grasping success rate on real robot
experiments, which demonstrates how angle-augmented data
can be used to make the grasping model rotation-invariant for
object recognition and grasping.

VIII. CONCLUSION

In this work, we presented a novel attribute-based robotic
grasping system. An end-to-end architecture was proposed to
learn object attributes and manipulation jointly. Workspace im-
ages and query text were encoded into a joint metric space, which
was further supervised by object persistence before and after
grasping. Our model was self-supervised in a simulation only
using basic objects but showed good generalization. To further
adapt to novel objects and real-world scenes, we proposed
two data-efficient adaptation methods, adversarial adaptation
and one-grasp adaptation, which only require unlabeled object
images or one grasp trial. Our grasping system achieved an
86.0% instance grasping success rate in simulation and an 81.7%
instance grasping success rate in the real world, both on un-
known objects. Our approach outperformed the other compared
methods by large margins.
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We showed that incorporating object attributes in robotic
grasping improves the performance of the deep learning grasping
model. To the best of our knowledge, this is the first work to
explore object attributes for the generalization and adaptation
of deep learning robotic grasping models. Our long-term goal
is to further improve the effectiveness and robustness of our
model by pre-training it with objects of richer attributes. Another
possible avenue for future work is to study object attributes
under partial observation, such as the shape of an object in dense
clutter. It would be of interest to explore how to achieve more
robust attribute perception, potentially using shape completion
algorithms.
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