
Project-Based Software Engineering Curriculum for Secondary
Students

Isabella Gransbury
North Carolina State University

Raleigh, NC, USA
igransb@ncsu.edu

Janet Brock
North Carolina State University

Raleigh, NC, USA
jdbrock@ncsu.edu

Emily Root
North Carolina State University

Raleigh, NC, USA
eeroot@ncsu.edu

Veronica Catete
North Carolina State University

Raleigh, NC, USA
vmcatete@ncsu.edu

Tiffany Barnes
North Carolina State University

Raleigh, NC, USA
tmbarnes@mcsu.edu

Shuchi Grover
Looking Glass Ventures
Palo Alto, CA, USA

shuchi.stanford@gmail.com

Akos Ledeczi
Vanderbilt University
Nashville, TN, USA

akos.ledeczi@vanderbilt.edu

ABSTRACT
Background. Software Engineering (SE) is a new and emerging
topic in secondary computer science classrooms. However, a review
of the recent literature has identified an overall lack of reporting on
the development of SE secondary curriculum. Previous studies also
report low student engagement when teaching these concepts. Ob-
jectives. In this experience report, we discuss the development of a
9-week, project-based learning (PBL) SE curriculum for secondary
students. During this curriculum, students create a socially relevant
project in groups of two to three. We discuss displays of partici-
pant engagement with CS concepts through the PBL pedagogy and
the SE curriculum. Method. We examine participant engagement
through group artifact interviews about student experiences during
a week-long, virtual summer camp that piloted activities from our
curriculum. During this camp, students followed a modified SE
life cycle created by the authors of the paper. Findings. Partici-
pants showed engagement with the curriculum through various
aspects of PBL, such as autonomy, creativity, and personal inter-
est in their project topic. Implications. The lessons learned from
this experience report suggest that PBL pedagogy can increase stu-
dent engagement when teaching CS concepts, and this pedagogy
provides detail and structure for future secondary SE curriculum
implementations to support educators in the classroom.

CCS CONCEPTS
• Social and professional topics→ K-12 education; Computer
science education; Software engineering education.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WiPSCE ’23, September 27–29, 2023, Cambridge, United Kingdom
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0851-0/23/09. . . $15.00
https://doi.org/10.1145/3605468.3605501

KEYWORDS
software engineering education, K-12, K-12 computer science edu-
cation, project-based learning pegadogy

ACM Reference Format:
Isabella Gransbury, Janet Brock, Emily Root, Veronica Catete, Tiffany Barnes,
Shuchi Grover, and Akos Ledeczi. 2023. Project-Based Software Engineering
Curriculum for Secondary Students. In The 18th WiPSCE Conference on Pri-
mary and Secondary Computing Education Research (WiPSCE ’23), September
27–29, 2023, Cambridge, United Kingdom. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3605468.3605501

1 INTRODUCTION
There has been growing interest in integrating software engineering
(SE) concepts with K-12 computer science (CS) curriculum. Most
of these integrations have taken place in secondary schools and
include concepts such as testing and software development cycles.
However, in a recent systematic mapping study, it was identified
that the K-12 SE literature lacks details of the course materials
[27]. It was also identified that there has been a lack of student
engagement when teaching SE concepts [27].

The goal of this experience report is to share our findings of
student engagement with CS from exposure to our modular project-
based learning (PBL) SE curriculum for secondary students [19, 30].
In our SE module, students work within groups to develop a final
project over a duration of 9 weeks. These projects are meant to be
socially relevant and connect to students’ interests tomake the topic
of CS more engaging. We use a block-based learning environment
that connects to Application Programming Interfaces (APIs), which,
in turn, provide students with a wide range of online datasets to
use in their projects. Students also learn about various SE topics
such as Human-Computer Interaction, Prototyping, and the various
software development life cycles.

To pilot this curriculum, we ran a virtual week-long summer
camp that implemented activities from our SE module. We con-
ducted group artifact interviews with participants to understand
their engagement with camp activities and materials. We chose to

https://doi.org/10.1145/3605468.3605501
https://doi.org/10.1145/3605468.3605501
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3605468.3605501&domain=pdf&date_stamp=2023-09-27

WiPSCE ’23, September 27–29, 2023, Cambridge, United Kingdom Gransbury et al.

analyze group project interviews using thematic analysis to find
patterns in participant experiences [23].

Three themes emerged from the thematic analysis of group in-
terviews: Challenges With Design, Attitudes Towards Project, and
Attitudes Towards Collaboration. We found students showed engage-
ment in CS with the curriculum materials and with various aspects
of PBL pedagogy, such as student autonomy and creativity.

1.1 SE in Primary and Secondary Education
There has been a growing interest in software engineering (SE)
education to prepare K-12 students for the workforce. Despite the
relevance of SE education for K-12 students, most of the available
instructional units lack detail and are limited for large-scale use
[27]. Previous research has also indicated that educators fear that SE
concepts are too complicated for secondary students [14]. Hermans
and Aivaloglou address this in their findings of a massive open
online course (MOOC) that introduces K-12 students to software
engineering concepts [14]. One main finding was that students
thought that software engineering concepts were no more difficult
to understand than foundational programming concepts [14]. In an-
other study investigating students’ ability to learn SE best practices,
Gutierrez et al. confirmed that primary and secondary students are
more than capable of comprehending SE concepts [13].

1.2 Project-Based Learning
Our curriculum aims to provide the K-12 CER community with a
detailed SE curriculum for secondary students using project-based
learning (PBL) [19, 30], which has been found to have significant
benefits in increasing student performance, communication and
engagement when used in CS classes [11]. PBL is a student-centered
pedagogy in which students decide what actions they wish to take
to solve a problem [19, 30]. Project-based learning allows instruc-
tors to teach SE concepts and best practices while helping students
develop new collaboration skills. This pedagogy is especially rele-
vant to teaching SE due to the importance of teamwork and agile
development in CS. In software development teams, better team-
work quality has been associated with better team performance
and improvements in personal success and learning of the team
member [15, 22].

Our SE module is part of a larger course, Computer Science Fron-
tiers (CSF) [20] , designed for students to take after completing the
US College Board’s Advanced Placement Computer Science Prin-
ciples (AP CSP) course [8]. A purpose of this course is to trigger
secondary student interest in CS early in their academic careers by
introducing them to advanced topics, such as Artificial Intelligence
(AI), Internet of Things (IoT), and SE, that they would typically not
be exposed to until undergraduate studies. We target secondary
students in this curriculum because previous research has shown
that female interest in CS develops in high school, when many
other career choices occur [24].

This introduces another goal of this course: broadening partici-
pation in CS by increasing young girls’ engagement in the CS cur-
riculum. Previous research has shown that young girls are mostly
interested in topics of social relevance in interdisciplinary and
people-oriented fields [18, 29]. Socially relevant projects have also
been shown to increase the participation of underrepresented and

Figure 1: Diagram of the modified software engineering life
cycle used in the SE module.

young female students [7, 10, 26]. Therefore, we centered our cur-
riculum around socially relevant and people-oriented projects, sim-
ilar to how the other modules in the CSF course are structured
[1, 12, 31].

2 MODULE CURRICULUM
In this section, we give details about our SE module curriculum, a
modified SE life cycle, previous work that uses similar PBL peda-
gogy and the block-based learning environment used in our cur-
riculum.

2.1 Software Engineering Module
Our SE module curriculum enables students to learn about the soft-
ware engineering process while creating programs that are accessi-
ble and socially relevant. In its full implementation, the SE module
takes place over nineweeks and is designed to fit a typical secondary
classroom schedule. Module materials have been adapted from a
college-level SE course to be appropriate for secondary students.
Examples of SE topics taught in the module curriculum include
the following: documentation, product specifications, prototyping,
project management, human-computer interaction (HCI), user ex-
perience, affinity diagramming, accessibility, and ethics. Each week,
students will complete lessons related to a modified version of the
agile SE life cycle that has been developed for this module (Figure
1). This version was developed by the authors of this paper who
have experience in curriculum development for secondary students
and have experience teaching an undergraduate SE course at a large
research institution.

In total, there are four phases of our modified life cycle: Plan-
ning, Design, Development, and Testing/Feedback. In the Planning
phase, students would answer questions such as, "What specific
features will your program have to meet Sprint ’#’ requirements?",
and "Who will be working on which tasks?", to develop a plan for
their next iteration. This ensures that all members of the group
know which tasks to complete and that projects are completed in

Project-Based Software Engineering Curriculum for Secondary Students WiPSCE ’23, September 27–29, 2023, Cambridge, United Kingdom

a timely manner. In the next phase, Design, students are able to
modify their design based on concepts from their previous lesson
or on tasks delegated in the planning meeting. During the Develop-
ment phase students would program the tasks they were deemed
responsible for per the planning and design meetings. Finally, in
the Testing/Feedback phase, students would test their programs and
give other groups feedback on how to improve their programs.

Every three days, each group would complete an iteration of this
cycle with the goal of completing their group project by the end of
the module. The topics mentioned previously (e.g. human-computer
interaction, documentation) will also be integrated into their class-
room time. Preferably before the next planning phase, so students
can apply concepts from the lesson to their next cycle iteration.
Contingent on publication, online access to our curriculum will be
provided.

2.2 NetsBlox
To facilitate the introduction of advanced topics to students, the
curriculum uses a block-based programming environment (BBP),
NetsBlox. Similar studies that have introduced K-12 students to SE
concepts also use BBP environments, such as Scratch [13, 14]. Nets-
Blox supports advanced programming techniques and connects to
several Application Programming Interfaces (APIs) to enable inter-
disciplinary projects and access to online datasets [5, 6]. Examples
of these datasets include, but are not limited to, climate and weather
data, New York Times articles, and song lyrics. By forming this con-
nection, students can create a wide range of projects on topics they
are interested in. This can spark interest in CS in students who
are typically not drawn to the subject [4]. This also opens up the
possibility of device programming for students interested in app
development.

Using a BBP language, reduces the possibility of syntax errors,
while ensuring successive development of code [34]. This allows
students to focus more on the computing concept they are learning
than on the semantics of a programming language. NetsBlox also
contains a collaboration feature, similar to Google Docs, that allows
students to work on a project simultaneously on different machines
[3]. The concurrent editing was crucial in the design of the SE
module in order for students to program their project at the same
time, on their own computers. During the virtual summer camp, this
was vital as students were not physically together in a classroom
environment.

3 RESEARCH METHODS
In this section, we give details about the study and researchmethods,
including camp implementation, facilitators, and participants. We
also describe the restructured camp curriculum, interview protocol,
and analysis of interview transcripts.

3.1 Camp Implementation
We condensed the SE module into a virtual, week-long summer
camp curriculum to test the material with secondary students. Stu-
dents participated in the camp for seven hours each day. As a
requirement to attend the SE camp, the students had to attend at
least one of the camps that we facilitated the two weeks prior. These
camps corresponded to other modules of the CSF curriculum (AI

and IoT) and were also taught using NetsBlox mentioned in Section
2.2.

The camp was facilitated using the Zoom online platform [32].
Zoom allowed remote communication between groups with the
breakout room feature, screen sharing, and audio/video recording.
Group interviews for this study were conducted on the fourth day
of camp. How the students were grouped is discussed in Section
3.2.

3.1.1 Camp Facilitators. The SE camp was co-taught by five teach-
ers, onemale and four female. All teachers have experience teaching
the AP CSP course to secondary students. All camp facilitators also
participated in a week-long professional development (PD) several
weeks before the camp. The purpose of this PD was for teachers to
become familiar with the materials of the SE camp and ask ques-
tions about unfamiliar concepts. Four out of five of the teachers also
have experience facilitating camps for the other modules, AI and
IoT, in the full CSF curriculum. Camp facilitators were also joined
by one female graduate student and one female undergraduate
student.

3.1.2 Participants. A total of eight students, two female and six
male, consented to be part of this study. Of the six male partic-
ipants, 5 self-identified as Southeast Asian/Indian, and one self-
identified as East Asian /Pacific Islander/Asian Other. Of the two
female participants, one identified as Southeast Asian/Indian, and
one self-identified as East Asian /Pacific Islander /Asian Other. All
participants were recruited from the institutions of the teacher
facilitators mentioned above.

3.2 Restructured Camp Curriculum
On the first day of camp, students were introduced to SE and the
criteria for the projects they would be creating throughout the
week. Following the introduction, students created proposals for
their project and presented them. Then, students chose their three
favorite proposals and ranked them in order of most to least pre-
ferred. After the rankings were submitted, students were put into
groups based on their pitch rankings; This resulted in four different
groups: three groups of two students and one group of three stu-
dents (Note: not all students participated in interviews). The next
two days followed a schedule similar to that shown in Figure 2. This
figure also connects the activities from the camp to the modified
software development life cycle discussed in section 2.1

During these days, the camp began with group sprint planning,
then a project design meeting. After the design meeting, the groups
had 75 minutes of development time. The topic of the day was
presented after the development time and was followed by an hour-
long break, then 30 minutes more development time. The SE top-
ics that were taught throughout the week were Documentation,
Project Management, HCI, and Play Testing. At the end of the day,
the groups presented short demos of their projects to show other
students and facilitators for feedback.

On the fourth day of camp, the students completed play test-
ing of each group’s project. They received peer feedback on how
to improve their project and make it more accessible. After play
testing, the groups were given development time for one hour and
45 minutes. During this time, two researchers (female) conducted

WiPSCE ’23, September 27–29, 2023, Cambridge, United Kingdom Gransbury et al.

Figure 2: Example schedule of a day from the summer camp.
Activities from the camp are mapped to difference phases of
the curriculum’s modified software development life cycle.

group project interviews. The students had interacted with these
researchers every day at the camp, so they had gained a level of fa-
miliarity with them. On the last day of camp, the students received
more development time before their final presentations. Finally,
the groups presented their projects to the camp and were able to
interact with other projects using a feature in NetsBlox.

3.3 Interview Protocol
To gain insight into student’s experiences during the camp we
conducted group project interviews with each of the four groups.
Questions asked in these interviews related to student engagement
with activities and attitudes towards their artifacts. All interviews
took place on the fourth day of camp and were approximately 30
minutes long. Two female graduate students facilitated the inter-
views through Zoom. One researcher asked questions, while the
other took notes on participant responses. The following questions
asked in these interviews are shown in Table 1.

Table 1: Questions asked during group interviews.

Group Questions
1. What is your project about?
2. How did you decide on your project?
3. Now can one of you share your screen and walk me through
the code and show me what the different parts do?
4. What were some bugs you had to deal with or are dealing
with?
5. What was the most challenging part of going through the SE
process for your project?

Individual Questions
1. How is this project similar to or different from previous
projects you’ve worked on?
2. What are you most proud of about creating your project?
3. Overall how would you describe this project experience?

3.4 Interview Analysis
After completing the group project interviews, three researchers
used thematic analysis to analyze the transcript data [23]. Thematic
analysis involves a team of researchers coding qualitative data, then
condensing that data into common themes. This methodology is
often used to analyze dialog in study participant interviews [23].
Due to the low population size of the study, a qualitative approach
gives us greater insight into student engagement with SE concepts,
compared to quantitative data. During our thematic analysis we
completed the following 4 phases: (1) Review data and rectify tran-
scripts; (2) Code first interview together and discuss codes; (3) Code
other three interviews; (4) Group codes into themes. We completed
thematic analyses for all group project interviews and coded the
first interview together to establish a norm across all four inter-
views.

4 RESULTS: THEMATIC ANALYSIS
This section describes the results of the thematic analysis of group
interviews. Groups were formed based on the interest the partici-
pants had in the project proposals on the first day of camp. Common
themes we found across all four groups consist of: Challenges With
Planning / Design, Attitudes Towards Project, and Attitudes Towards
Collaboration. Table 2 displays participants responses to the group
interview questions that display engagement with our curriculum
and activities.

5 DISCUSSION
5.1 Student Engagement
As mentioned in the literature review, the pedagogical method of
PBL has been shown to increase student engagement when used
in CS classes. An initial objective of this study was to determine
the effects of using PBL on student engagement in our curricu-
lum. A surprising result was that the student in Group 1 showed
engagement with her project, despite not having a partner who
also contributed code to the project. Previous research has shown
that young women enjoy collaborating when actively learning CS,
therefore increasing their engagement [21]. The student explained
that her strong feelings were due to her interest in the focus of her
project. It may be the case that if it is not possible for a woman to
collaborate while learning CS, the use of PBL may counteract the
engagement lost from not being able to learn collaboratively.

Another important finding was that the students in Group 2 and
Group 3 specifically commented on their engagement of the camp
due to the use of the PBL pedagogy. The students in Group 2 said
that they enjoyed being able to implement a concept they had pre-
viously learned in "their own way". This comment directly relates
to autonomy, which conveys that one’s behavior is an expression
of their self [28]. Student autonomy is one of three psychological
needs that serve as the main driver of human behavior, as stated
in Self-Determination Theory (SDT) [17]. STD is a theoretical lens
within developmental and educational psychology to understand
how humans are self-motivated and engaged [9]. This finding sug-
gests that the use of PBL pedagogy can cause students to engage
with concepts being taught through student autonomy.

Project-Based Software Engineering Curriculum for Secondary Students WiPSCE ’23, September 27–29, 2023, Cambridge, United Kingdom

Table 2: Student responses from the group interviews organized into the themes found through thematic analysis.

Groups Challenges With Planning /
Design

Attitudes Towards Project Attitudes Towards Collabora-
tion

Flood Preven-
tion (1F)

"I think it was during the be-
ginning stages on like Mon-
day, Tuesday, when I was still
trying to figure out like what
I wanted to do with the app."

She commented on the
"positive outlook" she had
throughout the project be-
cause of her interest in the
project topic.

One student reported it was
"nice" to be able to use that
code as a starting point and
make the code their "own"
through the SE project

"I enjoyed it when the in-
structors came into the break-
out rooms. I also liked an
overview of the day. The in-
structors were extremely kind
and easy to reach out for
help."

Inspirational
Quotes (1F,
1M)

They decided to begin testing
different sentiment analysis
techniques by "[testing] dif-
ferent codes to see what is go-
ing to work better".

The young woman said that
they were proud of their
project because of its possi-
bility of helping people and
"motivat[ing] them to do
what they want".

Both students commented
on being able to use this
concept "in their own way"
by implementing it in their
program.

"It was fun thinking of ways
to solve our problems to-
gether"

Drawing
Game (3M)

Early in the week, the mem-
bers of group 3 realized that
they may not be able to imple-
ment more than 2 users at the
same time.

".... [the user] can sort of cus-
tomize it to whatever they
feel like and not just have to
... deal with [the program]
because they ... [can] make
it fit their needs".

"better experience than
what I had before [and] had
more creativity to add what
we wanted"

"... working alone can get a lit-
tle bit tedious but ... working
with two or three people ... it’s
a lot more fun"

Remote Con-
trol App (2M)

One student explained that it
was hard for the pair to orga-
nize their thoughts such as "...
what shouldwe do on this day,
what should we do tomorrow,
what should we do day after?"

"[They] were able to create
something that could actu-
ally help people"

Another member of the
group liked that you could
also have fun with their
project and that it also has
"a serious point"

They commented they en-
joyed being able to work with
a partner because they were
able to overcome their "road-
blocks" easier than if they
were working alone.

We will now consider comments made by a student in Group
3 who had previously taken CS courses: "[The camp was a] better
experience than what I had before [and] [w]e had more creative
[freedom]. We didn’t really have projects [in previous classes] be-
cause there was a set curriculum". This student expressed that he
was able to engage with the curriculum more than his previous
CS classes because of the creative aspect of the PBL pedagogy.
Previous literature has shown that creative thinking can increase
self-efficacy [25, 33], leading to increased enjoyment and engage-
ment in CS introductory courses [16]. Therefore, it can be assumed
that the creative aspects of PBL can lead to student engagement of
CS concepts. These findings raise intriguing questions regarding
the nature and extent of student autonomy and creativity in CS
classes and their important roles in student engagement with CS.

5.2 Lessons Learned: For Practitioners
The initial objective of this study was to determine student en-
gagement with our project-based learning curriculum in a virtual
summer camp. Below we discuss the lessons learned from a practi-
tioners stand point for future implementation of our curriculum:

• When implementing this module and SE in general, it would
be beneficial for students to have completed coding activities
they can draw inspiration from for their projects. All groups
used concepts from activities in the camp they completed
the week prior to the SE camp in their projects. We believe

this also had a large impact on their engagement of the SE
camp since they had knowledge of how to implement other
CS concepts besides SE.

• Students also seemed to be more engaged due to the collab-
orative aspects of the camp. One student said it made him
feel more creative, while another student said it was eas-
ier to overcome the obstacles they had with more than one
person working on an program. Another student also said
their group was able to create more ideas for their project
together versus them brainstorming ideas on their own.

• When pairing secondary students it is important to consider
the factors of familiarity (students who are friends with
each other), previous programming experience, and project
interest. Some factors may produce more productive and
collaborative groups than others, and greatly depends on the
students [2, 35] .

5.3 Limitations
A limitation of this study is that it was conducted virtually, thus
we were not aware of the specific distractions in each student’s
environment. These distractions may have negatively impacted
students engagement with the materials. Another limitation is low
camp attendance; which makes these findings less generalizable for
female engagement in our curriculum. Although only two female
students interviewed, their experiences give us insight into possible
ways to increase female engagement in CS using a SE curriculum.

WiPSCE ’23, September 27–29, 2023, Cambridge, United Kingdom Gransbury et al.

Despite the relatively limited sample, this work also offers valuable
information on overall student engagement in CS using SE.

6 CONCLUSIONS & FUTUREWORK
The purpose of the current study was to examine student engage-
mentwith CS using our SE curriculum after participating in a virtual
week-long camp. The first major finding was students expressed
their engagement with CS through statements about student au-
tonomy and creativity. Both of these concepts are directly related
to the use of the PBL pedagogy. The findings reported here shed
new light on how to use advanced CS topics, such as SE, in CS
classrooms to increase student engagement. More research using a
traditional classroom environment and a larger sample size could
provide insight into how the curriculum specifically directly affects
the engagement of women and underrepresented students.

ACKNOWLEDGMENTS
This material is based upon work supported by the National Science
Foundation under Grant No. 1949472, 1949488, and 1949492. Any
opinions, findings, and conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation.

REFERENCES
[1] Lauren Alvarez, Isabella Gransbury, Veronica Cateté, Tiffany Barnes, Akos

Lédeczi, and Shuchi Grover. 2022. A Socially Relevant Focused AI Curricu-
lum Designed for Female High School Students. Thirty-sixth AAAI Conference on
Artificial Intelligence (2022).

[2] Margarita Azmitia and RyanMontgomery. 1993. Friendship, transactive dialogues,
and the development of scientific reasoning. Social development 2, 3 (1993), 202–
221.

[3] Corey Brady, Brian Broll, Gordon Stein, Devin Jean, Shuchi Grover, Veronica
Cateté, Tiffany Barnes, and Ákos Lédeczi. 2022. Block-based abstractions and
expansive services to make advanced computing concepts accessible to novices.
Journal of Computer Languages (2022), 101156.

[4] Brian Broll, Akos Lédeczi, Gordon Stein, Devin Jean, Corey Brady, Shuchi Grover,
Veronica Catete, and Tiffany Barnes. 2021. Removing the Walls Around Visual
Educational Programming Environments. In 2021 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC). IEEE, 1–9.

[5] Brian Broll, Akos Lédeczi, Peter Volgyesi, Janos Sallai, Miklos Maroti, Alexia Car-
rillo, Stephanie L Weeden-Wright, Chris Vanags, Joshua D Swartz, and Melvin Lu.
2017. A visual programming environment for learning distributed programming.
In Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science
Education. 81–86.

[6] Brian Broll, Péter Völgyesi, János Sallai, and Akos Lédeczi. 2016. NetsBlox: A
visual language and web-based environment for teaching distributed program-
ming.

[7] Stephen J Ceci, Donna K Ginther, Shulamit Kahn, and Wendy M Williams. 2014.
Women in academic science: A changing landscape. Psychological science in the
public interest 15, 3 (2014), 75–141.

[8] Jan Cuny. 2015. Transforming K-12 computing education: AP® computer science
principles. ACM Inroads 6, 4 (2015), 58–59.

[9] Edward L Deci and Richard M Ryan. 1985. The general causality orientations
scale: Self-determination in personality. Journal of research in personality 19, 2
(1985), 109–134.

[10] Allan Fisher and Jane Margolis. 2003. Unlocking the clubhouse: Women in
computing. In Proceedings of the 34th SIGCSE technical symposium on Computer
science education. 23.

[11] Alexandre Grotta and Edmir Parada Vasques Prado. 2019. Benefits of the Project-
Based Learning to Cope with Computer Programming Education: A Systematic
Literature Review. http://pbl2019.panpbl.org/wp-content/uploads/2019/09/
AlexandreGrottaBenefitsoftheproject-basedlearning.pdf

[12] Shuchi Grover, Veronica Cateté, Tiffany Barnes, Marnie Hill, Akos Ledeczi, and
Brian Broll. 2020. FIRST principles to design for online, synchronous high school
CS teacher training and curriculum co-design. In Koli Calling’20: Proceedings of
the 20th Koli Calling International Conference on Computing Education Research.
1–5.

[13] Francisco J Gutierrez, Jocelyn Simmonds, Nancy Hitschfeld, Cecilia Casanova,
Cecilia Sotomayor, and Vanessa Peña-Araya. 2018. Assessing software devel-
opment skills among K-6 learners in a project-based workshop with scratch. In
2018 IEEE/ACM 40th International Conference on Software Engineering: Software
Engineering Education and Training (ICSE-SEET). IEEE, 98–107.

[14] Felienne Hermans and Efthimia Aivaloglou. 2017. Teaching Software Engineering
Principles to K-12 Students: A MOOC on Scratch. In 2017 IEEE/ACM 39th Inter-
national Conference on Software Engineering: Software Engineering Education and
Training Track (ICSE-SEET). 13–22. https://doi.org/10.1109/ICSE-SEET.2017.13

[15] Martin Hoegl and Hans Georg Gemuenden. 2001. Teamwork Quality and the
Success of Innovative Projects: A Theoretical Concept and Empirical Evidence.
Organization Science 12, 4 (2001). https://pubsonline.informs.org/doi/abs/10.
1287/orsc.12.4.435.10635

[16] Geetha Kanaparan, Rowena Cullen, DavidMason, et al. 2019. Effect of self-efficacy
and emotional engagement on introductory programming students. Australasian
Journal of Information Systems 23 (2019).

[17] Virginia Grow Kasser and Richard M Ryan. 1999. The relation of psychological
needs for autonomy and relatedness to vitality, well-being, and mortality in a
nursing home 1. Journal of Applied Social Psychology 29, 5 (1999), 935–954.

[18] Chris Michael Kirk, Rhonda K Lewis, Kyrah Brown, Corinne Nilsen, and Deltha Q
Colvin. 2012. The gender gap in educational expectations among youth in the
foster care system. Children and Youth Services Review 34, 9 (2012), 1683–1688.

[19] Joseph S Krajcik and Namsoo Shin. 2014. Project-based learning. In The Cam-
bridge Handbook of the Learning Sciences, R Keith Sawyer (Ed.). Cambridge Uni-
versity Press, Cambridge, 275–297.

[20] Ákos Lédeczi, Shuchi Grover, Veronica Catete, and Brian Broll. 2021. Beyond
CS Principles: Bringing the Frontiers of Computing to K12. In Proceedings of the
52nd ACM Technical Symposium on Computer Science Education. 1379–1379.

[21] Janet Liebenberg, Elsa Mentz, and Betty Breed. 2012. Pair programming and
secondary school girls’ enjoyment of programming and the subject Information
Technology (IT). Computer Science Education 22, 3 (2012), 219–236.

[22] Yngve Lindsjørn, Dag I.K. Sjøberg, Torgeir Dingsøyr, Gunnar R. Bergersen, and
Tore Dybå. 2016. Teamwork quality and project success in software development:
A survey of agile development teams. Journal of Systems and Software 122 (2016),
274–286. https://doi.org/10.1016/j.jss.2016.09.028

[23] Moira Maguire and Brid Delahunt. 2017. Doing a thematic analysis: A practical,
step-by-step guide for learning and teaching scholars. All Ireland Journal of
Higher Education 9, 3 (2017).

[24] Microsoft Corporation. 2017. Why Europe’s Girls Aren’t Studying
STEM. https://news.microsoft.com/europe/features/dont-european-girls-like-
science-technology/. Accessed: 2021-12-01.

[25] L Dee Miller, Leen-Kiat Soh, Vlad Chiriacescu, Elizabeth Ingraham, Duane F
Shell, Stephen Ramsay, and Melissa Patterson Hazley. 2013. Improving learning
of computational thinking using creative thinking exercises in CS-1 computer
science courses. In 2013 ieee frontiers in education conference (fie). IEEE, 1426–
1432.

[26] Marina Papastergiou. 2008. Are computer science and information technology
still masculine fields? High school students’ perceptions and career choices.
Computers & education 51, 2 (2008), 594–608.

[27] Fernando D. C. Pinheiro, Von W. Christiane Gresse, and Raul M. Filho. 2018.
Teaching Software Engineering in K-12 Education: A Systematic Mapping Study.
Informatics in Education 17, 2 (2018), 167–206. Copyright - Copyright Institute
of Mathematics and Informatics 2018; Last updated - 2019-04-15.

[28] Richard M Ryan, Edward L Deci, et al. 2002. Overview of self-determination
theory: An organismic dialectical perspective. Handbook of self-determination
research 2 (2002), 3–33.

[29] Oshani Seneviratne. 2017. Making computer science attractive to high school
girls with computational thinking approaches: A case study. In Emerging research,
practice, and policy on computational thinking. Springer, 21–32.

[30] Gwen Solomon. 2003. Project-based learning: A primer. Technology and learning-
dayton- 23, 6 (2003), 20–20.

[31] Gordon Stein, Isabella Gransbury, Devin Jean, Lauren Alvarez, Marnie Hill, Veron-
ica Catete, Shuchi Grover, Tiffany Barnes, Brian Broll, and Akos Ledeczi. 2022.
Engaging Female High School Students in the Frontiers of Computing. In 2022
ASEE Annual Conference & Exposition.

[32] Zoom Video. 2020. Video conferencing, web conferencing, webinars, screen
sharing.

[33] Shiyuan Wang, Duane F Shell, Abraham Flanigan, Markeya Peteranetz, and Leen-
Kiat Soh. 2017. Impact of Creative Competency Exercises on College Computer
Science Students’ Learning, Achievement, Self-Efficacy, and Creativity. AERA
Online Paper Repository (2017).

[34] David Weintrop. 2019. Block-based programming in computer science education.
Commun. ACM 62, 8 (2019), 22–25.

[35] LaurieWilliams, Lucas Layman, JasonOsborne, andNeha Katira. 2006. Examining
the compatibility of student pair programmers. In AGILE 2006 (AGILE’06). IEEE,
10–pp.

http://pbl2019.panpbl.org/wp-content/uploads/2019/09/AlexandreGrottaBenefitsoftheproject-basedlearning.pdf
http://pbl2019.panpbl.org/wp-content/uploads/2019/09/AlexandreGrottaBenefitsoftheproject-basedlearning.pdf
https://doi.org/10.1109/ICSE-SEET.2017.13
https://pubsonline.informs.org/doi/abs/10.1287/orsc.12.4.435.10635
https://pubsonline.informs.org/doi/abs/10.1287/orsc.12.4.435.10635
https://doi.org/10.1016/j.jss.2016.09.028
https://news.microsoft.com/europe/features/dont-european-girls-like-science-technology/
https://news.microsoft.com/europe/features/dont-european-girls-like-science-technology/

	Abstract
	1 Introduction
	1.1 SE in Primary and Secondary Education
	1.2 Project-Based Learning

	2 Module Curriculum
	2.1 Software Engineering Module
	2.2 NetsBlox

	3 Research Methods
	3.1 Camp Implementation
	3.2 Restructured Camp Curriculum
	3.3 Interview Protocol
	3.4 Interview Analysis

	4 Results: Thematic Analysis
	5 Discussion
	5.1 Student Engagement
	5.2 Lessons Learned: For Practitioners
	5.3 Limitations

	6 Conclusions & Future Work
	Acknowledgments
	References

