
TYPE Original Research
PUBLISHED 10 January 2023
DOI 10.3389/fcomp.2022.1031572

OPEN ACCESS

EDITED BY

José Lima,
Polytechnic Institute of Bragança (IPB),
Portugal

REVIEWED BY

Maha Khemaja,
University of Sousse, Tunisia
Raffaele De Amicis,
Oregon State University, United States
Cucuk W. Budiyanto,
Sebelas Maret University, Indonesia

*CORRESPONDENCE

Gordon Stein
gordon.stein@vanderbilt.edu

SPECIALTY SECTION

This article was submitted to
Digital Education,
a section of the journal
Frontiers in Computer Science

RECEIVED 30 August 2022
ACCEPTED 19 December 2022
PUBLISHED 10 January 2023

CITATION

Stein G, Jean D, Brady C and Lédeczi Á
(2023) Browser-based simulation for
novice-friendly classroom robotics.
Front. Comput. Sci. 4:1031572.
doi: 10.3389/fcomp.2022.1031572

COPYRIGHT

© 2023 Stein, Jean, Brady and Lédeczi.
This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Browser-based simulation for
novice-friendly classroom
robotics

Gordon Stein1*, Devin Jean1, Corey Brady2 and Ákos Lédeczi1

1Institute for Software Integrated Systems, Vanderbilt University, Nashville, TN, United States,
2Department of Teaching and Learning, Vanderbilt University, Nashville, TN, United States

Robots are a popular and engaging educational tool for teaching

computational thinking, but they often have significant costs and limitations

for classroom use. Switching to a simulated environment can eliminate

many of these difficulties. By also providing students with a block-based

programming environment, the barrier to entry can be further reduced. This

paper presents a networked virtual robotics platform designed to create

an environment which is highly accessible for novice students and their

teachers alike, along with components of a curriculum designed to teach

computational thinking skills through robotics programming challenges,

including autonomous challenges and in-class competitions. Students access

this platform through an extension of the same web interface used for

programming their robots, which allows students to collaborate on code and

view a shared simulated virtual space. Previously, this virtual robotics platform

was used only to facilitate distance education. This paper demonstrates

its use in an in-person class during the Spring 2022 semester, illustrating

the affordances of a virtual robotics environment for face-to-face learning

contexts as well. Students’ computational thinking skills were evaluated with

assessments both before and after the class, along with surveys and interviews

given to determine their opinions and outlooks regarding computer science.

The results show that students had a significant improvement in both attitudes

and aptitudes.

KEYWORDS

educational robotics, robotics simulation, computational thinking, STEM education,

distance education

1. Introduction

Demand for both STEM and distance education has continued to be strong for

many years. Distance education had especially high demand during the COVID-19

pandemic (Crick et al., 2021). While students have now largely returned to in-person

instruction, demand for distance education tools remains and is expected to continue

(Siegel et al., 2021). This need to integrate the web in themodality of CS learning actually

presents an opportunity to bring to the foreground internet-connected and distributed

computing systems in the content of CS Education (Broll et al., 2021). As the number of

Internet of Things devices continues to grow, students are expected to be equipped with

relevant knowledge in computer science, distributed computing, and other related topics

Frontiers inComputer Science 01 frontiersin.org

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2022.1031572
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2022.1031572&domain=pdf&date_stamp=2023-01-10
mailto:gordon.stein@vanderbilt.edu
https://doi.org/10.3389/fcomp.2022.1031572
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcomp.2022.1031572/full
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Stein et al. 10.3389/fcomp.2022.1031572

(Abichandani et al., 2022). Educational tools must be provided

to meet both of these needs, to grant educators the capability to

reach students in any setting with STEM topics.

Educational robotics is a common tool to engage and excite

students in STEM classes (Sapounidis and Alimisis, 2021).

Robots give students tasks they can see represented in a physical

world, while enabling both teamwork and competition, allowing

a wide range of topics to be covered. This approach is also

adaptable to suit a wide range of pedagogies, allowing for

significant flexibility in curricular design. For example, many

classrooms have used Lego robot kits, which use a block-

based programming interface to make their functionality more

accessible to novice programmers (Souza et al., 2018).

However, costs of robots for classroom use can be significant

(Mistretta, 2022). In addition to the upfront cost of purchasing

the robots themselves, there are costs associated with setting up

the robots, maintaining the robots, and performing activities

with the robots. Some robots may require assembly, most

mobile robots require batteries to be replaced or charged before

use, and, depending on the age and experience level of the

students, any other repairs may be entirely the responsibility

of the teacher, if the robots are user-repairable at all. This

means teachers may be required to have additional electrical

engineering knowledge, regardless of the topics they intend to

use the robots with. Further, any activity performed with the

robots will require some setup and cleanup, with extra care

required to ensure equivalent starting conditions for in-class

competitions. Internet-connected robots may require support

from a school’s IT department to allow connecting them to

school networks, or they may require the educator to provide

a wireless hotspot for them to connect to. Finally, the costs and

technical difficulties of even simpler robotsmay prevent students

from being able to take a robot home for homework or practice,

reducing the time students get to work with them.

A common approach to eliminate these costs and difficulties

is to switch to simulated robots (Homa, 2019; Tselegkaridis

and Sapounidis, 2021). A simulated robot has no cost other

than the price of the simulation software and the computer

it runs on. Setting up activities for simulated robots only

requires telling the program which scenario to use, and students

may be able to install or access the software on their home

computers to “take a robot home” with them without any

risk that they will damage or lose school property. Simulated

robots require no batteries, and “repairs” are often accomplished

by simply resetting the simulation, making maintenance

greatly simplified.

Computational Thinking (CT) (Wing, 2006) uses the

cognitive tools associated with computer science extended to

problem-solving in general. In general, it includes thinking

algorithmically, framing problems so that technology can assist

in a solution, organizing and analyzing data, abstracting to

models and simulations, efficiently solving problems, and

transferring the CT process to other domains (ISTE and CSTA,

2011;Weintrop et al., 2016). CT is presented as a preferred target

for educators, as it not only is associated with STEM topics, but

the “transfer” component inherently makes it applicable to a

wide range of domains. Educational robots have been commonly

used to teach CT (Chen et al., 2017; Chevalier et al., 2022), at

every level, from kindergarten (Roussou and Rangoussi, 2020)

to undergraduates in college (Aristawati et al., 2018).

A variety of approaches have been created to provide an

alternative to physical educational robots or to provide access to

robots for distance education. These have included both remote

control and web-based simulation, each of which have been

used for a significant length of time in various forms (Tzafestas,

2009). However, these approaches are not equivalent: providing

remote access does not necessarily eliminate the same costs as

simulation, nor does it necessarily provide a similar experience

to typical physical educational robots. For example, Georgia

Tech’s “Robotarium” (Pickem et al., 2017) requires students to

upload code to be verified in simulation first, with the goal of

providing safe access to a shared robotics testbed. In contrast,

our solution, RoboScape Online, focuses only on providing

simulated spaces for students to use, eliminating any need to

verify robot code will not damage the robots and enabling user

input-based control.

On the robotics simulation side, multiple platforms have

been created for the education space (Tselegkaridis and

Sapounidis, 2021). One notable example is Gazebo (Open Source

Robotics Foundation, 2022), which has already seen significant

educational use (Gervais and Patrosio, 2022). Gazebo provides

excellent physics simulation and can be configured for almost

any realistic robot design, but its use in a classroom requires

both a substantial hardware cost to run its simulations and/or

significant technical knowledge. For instance, many solutions

for simplifying the use of Gazebo in the classroom rely on

creating a Docker container to run on each student computer.

This approach may not be accessible to teachers with limited

information technology experience, and there may be difficulties

in obtaining approval from school IT departments or running on

students’ personal hardware at home. By performing the physics

simulation remotely and providing a browser-based client for

student use, our approach creates a more accessible system,

while still achieving the performance and accuracy levels needed

for educational scenarios.

Another notable preexisting robotics simulation platform is

Robot Virtual Worlds (Robomatter Inc, 2022), which has also

seen use in education research (Mistretta, 2022). This platform

is much more straightforward for classroom use, but unlike

Gazebo it is non-free, proprietary software, with support for

Windows only, requiring the software to be installed before use.

The VEX Virtual Robotics platform (VEX Robotics, 2022) and

Robotify (Robotify, 2022) are two browser-based educational

robotics simulation platforms also allowing the use of block-

based programming environments. These systems are closed-

source platforms with some content restricted behind payment.

Frontiers inComputer Science 02 frontiersin.org

https://doi.org/10.3389/fcomp.2022.1031572
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Stein et al. 10.3389/fcomp.2022.1031572

In contrast, RoboScape Online aims to provide a free, open-

source platform for educational robotics simulation in the

browser, open to contributions from educators and students.

While Robotify also allows for multiple users to interact in

one networked environment, users have no ability to modify

the program or host their own servers due to the closed-

source nature of the platform. In addition, by building upon

the foundation of NetsBlox’s ecosystem (Stein and Lédeczi,

2021), RoboScape Online allows for more advanced robot

programs, controls, and interactions to be created by students.

For example, students can create a phone app that sends

commands to the robot (Jean et al., 2021), or multiple students’

programs can communicate over the network to synchronize or

coordinate actions.

The work we report on here builds upon our previous work

with physical robots. The RoboScape platform was used with

physical robots and in-person classes to teach cybersecurity

concepts to middle and high school level students (Lédeczi

et al., 2019). In 2021, these classes were run as an online

class using an earlier version of RoboScape Online (Stein and

Lédeczi, 2022), created using the Unity game engine. Students

remained engaged and positive about the experience after it

moved to virtual robots. Our experience in implementing this

earlier version supported the design decisions and architectural

changes that produced the current version of Roboscape Online.

In this article, we describe this system and present the results of

implementing our next iteration of design-based research (Cobb

et al., 2003) in Spring 2022.

2. Materials and methods

2.1. NetsBlox

The programming environment used in this work is

NetsBlox Broll et al. (2017), a block-based environment

which expands upon the Snap! (Mönig and Harvey, 2022)

programming environment created at Berkeley. While Snap!

is similar to Scratch (Maloney et al., 2010) in that both

are visual programming environments designed to introduce

computer science concepts through block-based abstractions,

Snap! extends this concept by introducing ideas from the

Scheme programming language to provide a more complete

and powerful programming experience without sacrificing the

novice-friendly block-based approach (Romagosa, 2019). This

includes both the use of first-class, heterogeneous lists as the only

structured data type and functional programming concepts such

as custom block types and closures as first-class types. NetsBlox

in turn adds an additional set of computer science concepts on

top of Snap!, providing distributed computing features such as

message passing and remote procedure calls, along with access

to external web services (Broll et al., 2021).

These new features are largely made available through

similar block-based abstractions to the ones already present in

Snap!. For example, where Snap! has the ability to use messages

to run events in other objects within the same program,

NetsBlox adds blocks to send a message over the network to

another instance of the same program, another “role” within

the program, or another user’s program, identified through an

addressing system. This enables classroom challenges in which

message types are used as an interface between a teacher’s

program and student programs, such as a chatroom where the

students must all write client programs that interact with the

server run by the teacher. Remote procedure calls (RPCs) are

available as blocks that provide students with a list of available

network services and methods they can call. This functionality

is often used to provide a block-based abstraction for interacting

with external web services such as Google Maps (see Figure 1),

but it is also used to allow students to interact with robots,

phones, and other internet-connected devices, or to get and

set values from a shared cloud data store. These distributed

computing features enable the creation of multiplayer video

games, while also making it more feasible for students to

interact with scientific data by integrating with both data

sources and outputs such as charting software. By providing a

novice-friendly interface for distributed computing, NetsBlox

has supported multiple classes and camps aimed at high school

and middle school students who have limited prior computer

science experience.

The distributed computing features in NetsBlox go beyond

those present in the blocks available for programming. A wide

range of cloud-based functionality has been added to assist

users. While unauthenticated users can only save documents to

their browser’s local storage, with a NetsBlox account, a user

can save their projects to the NetsBlox cloud, providing both

reliable storage and easy access across any computers they may

be working on (e.g., classroom, library, home). NetsBlox projects

can also bemade public and shared using a specific link, allowing

a user to easily give others access to their creations. Libraries

of custom blocks can also be shared through the interface,

facilitating the sharing of code snippets as well. NetsBlox also

allows for students to collaborate remotely on a single project.

Finally, these features are also integrated into a classroom

system, giving teachers the ability to control over which other

accounts their students are allowed to communicate with.

2.1.1. RoboScape
Robotics support in NetsBlox is provided through a service

called RoboScape (Lédeczi et al., 2019). The RoboScape service

exposes an interface to robots as if they were just another web

service accessible through NetsBlox. For example, to drive a

robot forward, a student could send the command “set speed 100

100” to the RoboScape service’s “send” RPC to set both wheels

to move forward at a specific speed. Figure 2 shows an example

Frontiers inComputer Science 03 frontiersin.org

https://doi.org/10.3389/fcomp.2022.1031572
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Stein et al. 10.3389/fcomp.2022.1031572

FIGURE 1

Example NetsBlox code, interacting with web services to search for a location and obtain a satellite view of it.

FIGURE 2

Simplified example RoboScape code. When the up arrow key is
pressed, the robot moves forward. When the space bar is
pressed, the robot will stop.

of NetsBlox code to move a robot forward or stop it based on

user input. A student can also access other features of the robot,

for example sending the command “get range” to receive the

output value of a distance sensor on the robot as a response. This

approach enables students to leverage their NetsBlox experience

with other distributed computing concepts, to make a smooth

conceptual transition into using robots. In addition, sending

commands to robots in this way, as opposed to the traditional

approach of writing code to be directly uploaded to the robots,

creates the potential for novel learning opportunities with the

robots as a tool.

In particular, as all robot commands are relayed through the

NetsBlox server, it was possible to add features by which these

commands can be intercepted, eavesdropped on, and spoofed for

cybersecurity lessons. A previous curriculum using RoboScape

during multiple camps and classes (Yett et al., 2020) focused

on teaching students about concepts such as encryption, replay

attacks, and denial-of-service attacks—along with defenses

against such attacks—using features of the RoboScape service.

As the robot code and the networking code on the server are

provided for students, abstractions are easily afforded to allow

students to interact with these concepts on a level that novices

to computer science are more comfortable with. For example,

a student wishing to protect their robot with encryption sends

a “set key” command with their chosen key (or a “hardware

key” obtained from the robot) to enable a Vigenre cipher

that is easily implemented with blocks. In the cybersecurity

curriculum, students engage in a series of competitions as they

learn new concepts. The general structure involves one team

attempting to complete a goal by maintaining control of their

robot while the opposing team attempts to prevent them from

completing their goal, using the cybersecurity topics covered.

Students have responded well to the competitive environment,

especially enjoying games such as a “tug-of-war” where two

teams attempted to move a single robot to their side of the room.

2.2. RoboScape Online

The recent disruption of education by COVID-19 has

motivated the creation of a platform that would allow access over

the Internet to the learning opportunities of RoboScape. This has

resulted in RoboScape Online, a simulation platform providing

access to virtual versions of robots similar to those that were used

with RoboScape during in-person classes.

Frontiers inComputer Science 04 frontiersin.org

https://doi.org/10.3389/fcomp.2022.1031572
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Stein et al. 10.3389/fcomp.2022.1031572

The Parallax ActivityBot 360, with an attached

daughterboard for wireless connectivity, as used for previous

RoboScape activities, has a cost of approximately $280

without quantity or other discounts. While we have found

these robots to be very reliable, they have more processing

power and many more features than are necessary for use

with RoboScape. Many of the features which are necessary,

such as high-speed continuous servos with encoder output

and Internet connectivity, are trivial for a virtual robot, but

often costly in commercial-off-the-shelf educational robotics

platforms customizable enough to add support for NetsBlox.

Simulated robots eliminate the cost entirely while providing all

the same features the physical robots had and more. Further,

physical robots experienced much more latency and packet

loss, making many autonomous challenges difficult for students

to accomplish—for the wrong reasons. Simulating robots

has additional logistical benefits as well, such as providing

more consistent initial conditions without any effort expended

for setup or cleanup, and not requiring batteries or repairs

to continue functioning. Finally, RoboScape Online was

specifically designed to not require any significant prior

programming knowledge beyond that required to use NetsBlox,

so that it would be accessible to a wider range of educators

and students.

Providing students with shared virtual spaces has many

benefits beyond costs. Students are able to collaborate in

both their code and with their robots without having to be

in immediate physical proximity. At the same time, through

NetsBlox, robot-to-robot communication is made very simple.

Easy resets to initial conditions and reliable connections assist

students with debugging, and novel diagnostic tools are feasible

with virtual robots to help students understand what their code

is doing. The potential for competition with virtual robots is

also enhanced. The shared virtual spaces are simulated on a

remote server, providing a consistent simulation that does not

rely on clients for anything but commands, and also reducing the

system requirements for a computer to be compatible with the

platform. A future version is planned to automate tournaments

of multiple types, both for programs that require synchronous

user input and fully automated tournaments of autonomous

code with matches running concurrently.

With a simulated platform, it also becomes possible to

provide sensors and actuators that would be infeasible for

classroom use, due to either their cost or potentially hazardous

nature, while making it easier to restrict the features available

to students based on their assignments. For example, a robot

in RoboScape Online can be equipped with a LIDAR sensor,

with its range and angular resolution defined as part of the

scenario the students are placed in. Additional virtual sensors

add no cost and can be designed to add or eliminate effects

such as noise to simplify them for student use. For instance,

a virtual robot can be given a radiation sensor or a toxic gas

sensor that detects the amount of hazardous emissions around

FIGURE 3

RoboScape Online 3D view showing “obstacle course”
environment. The robot is in its starting position in the red area.

it: this would obviously be impossible to use with physical

robots in a classroom, but it enables vivid scenarios (e.g., search

and rescue) that students may find more interesting. These

new sensors are made available to the programming interface

through NetsBlox’s IoTScape service (Tan et al., 2022), giving

similar web service-like abstractions to what students already

work with for the robots.

An earlier iteration of RoboScape Online was a standalone

application created in the Unity game engine. This approach

was chosen based on the ease of content creation, powerful

rendering capabilities, and existing networking modules

available. However, in practice, many limitations of this

approach became apparent. To make full use of the content

creation tools from Unity, the server-side simulation was

required to be running a full Unity application running without

graphics, which required an additional cloud server instance

for each group of students using it to provide a consistent and

performant simulation. This software worked well enough

for initial, exploratory implementations in online classes with

students using their own computers. However, moving back

to the classroom exposed issues with this approach. The client

software was able to be provided as binaries for multiple

platforms, but installing software on school computers was

often difficult to get permission for and difficult to update.

Moreover, the networking system chosen required specific

ports to be available on the client’s network, which proved to

be very difficult to negotiate with schools’ IT departments. At

the same time, it was observed that students were able to play

online multiplayer games in the browser on school computers,

inspiring the transition to an HTML5-based solution. The

current iteration of RoboScape Online is a combination of a

.NET server and a JavaScript client running through NetsBlox’s

extensions feature. This new approach is compatible with

almost any computer that can run NetsBlox itself, requires

no installation besides a Chromium-based browser, and it

Frontiers inComputer Science 05 frontiersin.org

https://doi.org/10.3389/fcomp.2022.1031572
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Stein et al. 10.3389/fcomp.2022.1031572

uses a networking protocol which almost all networks should

allow. Additionally, by providing the client as a NetsBlox

extension, the 3D view is better integrated with the students’

program development environment, preventing switching costs.

Furthermore, new blocks can be added as part of the extension,

such as a “robots in room” reporter block, to give students’ code

easier access to relevant robot IDs.

Many scenarios and environments are available for

RoboScape Online. An early lesson in our curriculum has

students write a custom remote control program to navigate

through an obstacle course, as shown in Figure 3. Students may

be given the task to have their robot autonomously navigate

through a walled path by using a LIDAR sensor (see Figures 4, 5

for a simplified solution program), or to use a similar sensor to

find boxes on a platform and push them off. A “treasure hunt”

environment has students use a metal detector, which gives

them readings of proximity to a large object; when their robot

is close enough (the assignment is given both with manual and

autonomous control), they must give it a command to “dig” to

reveal a buried treasure, as shown in Figure 6. More open-ended

environments give students a number of robots with a variety of

capabilities, allowing them to design their own tasks.

2.2.1. Architecture
The server architecture for RoboScape Online is shown

in Figure 7. In addition to the preexisting NetsBlox server, a

main API server and multiple additional simulation servers

were added. From the perspective of the NetsBlox server, the

simulation is no different from any set of physical robots and

additional sensors. The virtual robots communicate with the

server with the same protocol as the physical robots, which

has allowed the existing RoboScape code to be reused with

RoboScape Online. The NetsBlox server also provides storage

for student project data, communication between student

projects, and collaboration features. Students creating or joining

rooms communicate with the main API server over HTTP

requests. When a simulation server is started, it announces

itself, advertising its supported scenarios and its capacity to the

main API server. A student’s request for a new room will be

redirected to the compatible server with the greatest remaining

capacity. Requests to join existing rooms will be redirected to the

simulation server hosting that specific room, if it exists. Once

redirected to a simulation server, the client opens a WebSocket

connection, over which updates to the state of the simulation

from the server are streamed to the client, and commands

from the client are sent to the simulation server. When no

users are in a room or no activity has occurred for several

minutes, the room is put into “hibernation”, allowing users

to rejoin to resume the simulation at the state it was left in.

Hibernating rooms are removed if they are not rejoined after

several days.

FIGURE 4

RoboScape Online 3D view showing "LIDAR road" environment.
The robot is in its starting position in the red area. (A) Overview
of course. (B) “Chase cam” view of robot. (C) “First person” view
of robot.

FIGURE 5

Simple solution to "LIDAR road" challenge.

2.3. Curriculum

A curriculum focusing on robotics programming tasks

was created for use in design-based research to support

and study the classroom use of RoboScape Online as an

Frontiers inComputer Science 06 frontiersin.org

https://doi.org/10.3389/fcomp.2022.1031572
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Stein et al. 10.3389/fcomp.2022.1031572

educational tool for teaching CT. The course took place

over 7 weeks in the Spring 2022 semester, during which

the class met to engage with RoboScape Online once a

week for 2 h. Activities included an initial introduction

to NetsBlox and distributed computing, followed by

challenges that involved creating a manual remote control

program, building autonomous driving programs to navigate

FIGURE 6

Visual of success state in “treasure hunt” environment. The
treasure chest was not revealed until the robot moved to its
location and a “dig” command was sent to it.

environments and solve tasks using a LIDAR, coordinating

waypoint navigation with a simulated GPS, and more.

Students worked in groups using the collaboration tools

in NetsBlox and the ability to share a single RoboScape

Online room.

Competitions were used in the classroom to motivate

and engage students. The scenarios used all had a

timer feature included, allowing a simple measure of the

performance of student code. After the competitions ended,

students, especially the groups with the best performing

programs, were invited to explain how their code worked

and to share their strategies and lessons learned with

their classmates.

2.3.1. Participants
The class of students who participated in this

implementation consisted of 27 high-school students from

the School for Science and Math at Vanderbilt (Eeds et al.,

2014). Of the 16 students who responded to both the pre and

post surveys, nine identified as male and seven as female. Four

students identified as white, three as Asian, six as black, one as

American Indian or Alaskan Native, and two as another race.

Over 70% of students claimed to be familiar with a block-

based programming language previously (answering “Agree”

or “Strongly Agree” to the question “I have used block-based

programming like Scratch before”), with 43% claiming the same

for a text-based language.

FIGURE 7

Architecture of RoboScape Online service.

Frontiers inComputer Science 07 frontiersin.org

https://doi.org/10.3389/fcomp.2022.1031572
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Stein et al. 10.3389/fcomp.2022.1031572

2.3.2. Instruments
Student data was collected using three different instruments:

surveys, tests, and interviews. A survey and test were given both

before and after the implementation. Additionally, a group of

students were selected for interviews after the final session of the

activity sequence.

2.3.2.1. Surveys

Student demographics and opinions were collected through

an online survey administered to students both before and after

the course. Each opinion question was presented to students

on a four-point scale, ranging from "Strongly Disagree" at

1, to "Strongly Agree" at 4. Survey questions were designed

to identify the impact of the implementation on student

attitudes and beliefs about robotics and programming, which

were conjectured to mediate their changes in programming

performance. As illustrated in Table 2, questions aimed

to capture students’ confidence and self-efficacy around

programming and robotics. These are similar to the questions

used in Cross et al. (2016) to evaluate student confidence with

educational robotics.

2.3.2.2. Pretest/Posttest

To evaluate the educational effect of participating in the

course, students were given an in-class programming assessment

both at the start of the first day and end of the last day of

the course. Both the pretest and posttest consisted of a pair of

programming tasks that students were expected to accomplish

using a provided pseudocode language. While some aspects

of the language, such as the presence of “repeat until” loops,

were designed to resemble NetsBlox, some aspects of it differed,

including greatly simplified commands for interacting with

robots. One question was shared between both tests (question

2 on the pretest, question 1 on the posttest) to provide a

baseline. The tests’ tasks focused on robotics programming

tasks; however, to measure the students’ ability to transfer their

knowledge beyond the contexts presented in the curriculum, the

specific topics differ significantly from the contents of the course.

We applied a rubric and grading process informed by

the work of Chen et al. (2017). Their approach considers

students’ code through a five-component framework. Though

we omitted the “Representation” and “Data” components of

their framework, we used the “Syntax,” “Algorithm,” and

“Efficiency” components. For each assessment item, each

component was scored from 0 to 2, guided by the rubric shown

in Table 1. Two researchers graded half of the students’ responses

and then evaluated inter-rater reliability for each component

through percentage of agreement. If the agreement percentage

was >85% for all components, the graders would then continue

on to evaluate the remaining responses. If not, the graders

met to discuss their disagreements until the desired inter-rater

reliability was reached. This process was then repeated for the

remaining responses.

TABLE 1 Rubric used to evaluate student responses on pretest and

posttest.

Syntax 2 Commands in solution obey given syntax almost totally

1 Commands in solution obey given syntax partially

0 Commands in solution do not obey given syntax at all

or are not psuedocode

Algorithm 2 Solution solves the problem

1 Solution solves the problem partially or displays good

understanding of problem/solution form

0 Solution does not solve the problem and does not

display understanding of problem/solution form

Efficiency 2 Solution has no or almost no redundant or unnecessary

code

1 Solution has some redundant or unnecessary code

0 Solution is mostly redundant or unnecessary code

2.3.2.3. Interviews

To augment the survey information and provide richer

context for some of these effects, semi-structured interviews

were conducted with seven participants at the end of the unit.

These interviews ranged in length from 7 to 32 min, and were

conducted by the authors.

In analyzing these data, the first author repeatedly read

the transcripts as well as the viewed video recordings of the

interviews. This familiarization process was guided by constant-

comparative methods (Glaser, 1965) and inductive coding

(Strauss and Corbin, 1990; Charmaz, 2006). The generation of

codes was not entirely an effort of grounded theory (Glaser and

Strauss, 1967), however, as the literature and the survey results

provided important sensitizing concepts (Blumer, 1954).

During this process, the first author identified themes across

the participants’ experiences, which served both to provide

depth of description and as a means of triangulating (Creswell

and Miller, 2000) these qualitative data with the quantitative

survey results.

3. Results

3.1. Surveys

Due to the limited number of survey responses, only three

questions reached the threshold of statistical significance. These

questions are listed in Table 2. In general, the students responses

to the open-ended questions on the post-survey were positive,

with some examples listed in Table 3. These three responses

suggest that students’ gained confidence in their general ability

to engage with CS and programming; with their ability to create

personally and socially meaningful constructions with code

(i.e., apps); and with their understanding of the logic involved

in defining robot behavior. For the question “I can program

Frontiers inComputer Science 08 frontiersin.org

https://doi.org/10.3389/fcomp.2022.1031572
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Stein et al. 10.3389/fcomp.2022.1031572

TABLE 2 Significant pre-survey and post-survey differences.

Question Pre-survey
average

Post-survey
average

Effect size
(Cohen’s d)

p-value

I am able to do well in activities that involve programming and computer science. 2.688 3.063 0.687 <0.01

I can program computers to create new apps (in other words, write code). 1.800 2.188 0.470 <0.03

I can explain how a robot makes decisions. 2.625 3.125 0.655 <0.004

TABLE 3 Post-survey open ended questions and selected responses.

Question Responses

What would you tell a

friend about this course?

“I really enjoyed it and further reinforced my

interest in coding and robotics engineering.”

“This class was extremely interesting and

being able to solve problems was always

rewarding.”

What did you like about

the virtual environment?

“It was convenient, it was extremely portable

in comparison to real-life robots and it was

free (or at least for my class) It was also

relatively easy to understand the code blocks

and what they did.”

“It worked a little more reliably than a robot

would in real life.”

“I liked that we could reset them in a very

easy and efficient way.”

What was your favorite

activity?

“I really enjoyed coding the LIDAR

navigation program.”

“I really enjoyed them all, but if I have to

choose one, I would say the very first

autonomous robot activity, which dealt with

the robot(s) pushing the boxes off the

‘hovering white floor’. I like it because it was

the very first time I was programming a

virtual robot to autonomously do a task.”

“I liked coding as homework and then

coming back to class were we would test our

creations and get feedback.”

What were some (one or

more) takeaways,

“a-ha”s, or insights from

this program?

“Like in math there is always a way to solve

something but some things are more difficult

than others.”

“Programming can be used for a lot more

that just coding apps, robots, etc. ”

“I learned the aspect of how things virtually

are made with the concept of coding. Also, an

‘a-ha’ for me was when I learned how

deep/complicated coding could get with so

much code.”

computers to create new apps,” the pre-survey student response

was <2, meaning that the average student disagreed that they

had this ability. After the course, the average score was now

>2, indicating that students’ perception of their abilities was

now such that they feel confident enough to report computer

programming as an ability.

3.2. Pretest/Posttest

Aggregate scores for the graded pretests and posttests are

presented in Table 4. The changes from pretest to posttest

TABLE 4 Pre-test and post-test results, significant (p < 0.05) column

marked with asterisk.

Question Syntax Algorithm* Efficiency

Pretest 1 1.750 0.708 1.396

Pretest 2 1.813 0.646 1.063

Posttest 1 1.750 0.729 1.170

Posttest 2 1.667 1.167 1.458

Pretest combined 1.782 0.677 1.229

Posttest combined 1.708 0.948 1.313

All scores have a maximum value of 2.

for the Syntax and Efficiency categories were not statistically

significant, but the change in the Algorithm component was

(p < 0.02), with an effect size (Cohen’s d) of 0.469. Next,

student scores were separated based on previous experience with

block-based programming languages to determine the impact of

prior experience on their performance. While students with past

experience had higher scores on average for each component

on both the pretests and posttests, this difference was not

statistically significant (p > 0.05) except on the Efficiency

component of the posttest, where experienced students had an

average score of 1.66 and non-experienced students had an

average score of 1.14.

In spite of improvements in many areas, our tests revealed

some students had persistent conceptual difficulties across both

tests. Multiple students demonstrated misunderstandings of

how variables worked. Some seemed to be treating variables as if

they were preprocessor macros, e.g., using “set right to get color

right” and expecting the value of “right” to always be the value

of running “get color right,” while a few others seemed to think

that an assignment “set right to get color right” would mean

that a statement of only “get color right” updates the variable’s

value without a proper assignment statement. Some students

repeated initial lines verbatim from an example program they

were given, which performed no function in their new program,

even if they otherwise understood how to solve the problem.

This negatively effected their Efficiency scores, but as the copied

lines of pseudocode were valid and had no effect, their Syntax

and Algorithm scores were not impacted. These challenges

indicate potential directions for refinements to the curriculum

and facilitation of the course.

Frontiers inComputer Science 09 frontiersin.org

https://doi.org/10.3389/fcomp.2022.1031572
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Stein et al. 10.3389/fcomp.2022.1031572

3.3. Interviews

All students interviewed commented on their enjoyment of

problem solving associated with the tasks during the class, and

many said they found it especially satisfying to complete a task.

For instance, one remarked that the open-ended nature of the

challenges were “really like a large puzzle and I feel like that was

the best part about it.” Another student specifically mentioned

feeling that the course had improved their critical thinking skills

(likely referring to the algorithmic component of computational

thinking skills), saying “now when I evaluate problems and

just look at them and analyze them, I can think through them

clearer.” Finally, another student mentioned enjoying the low-

risk nature of the in-class competitions, saying, “You don’t really

lose anything if you do lose, so I think that helped.”

In general, the students felt that the virtual robots were

simpler than physical ones (whether speaking hypothetically or

from their own experience). One student noted the advantage to

debugging with a virtual robot, saying, “If you have a physical

robot, you don’t know if it’s the code, or it could be the physical

robot, it could bump into something, maybe one of the motors

isn’t working, or one of the treads is not working, maybe

something’s a little bit loose.” Two students noted the low-cost

aspect of simulation; one said, “I think it’s really good in the sense

that you don’t have to actually buy a robot or something and you

can actually work on a robot, but virtually. And so I really like

that experience. Also it’s easier to work with your code and the

robot and stuff.” The other remarked, “I like how virtual you can

do it anywhere, and this is free, not to buy it.” Finally, students

also mentioned that they enjoyed the block-based development

environment; as one said, “I think blocks are easier because you

know what the function of the block is. Just because you can

put them together, how the blocks fit together I felt makes a lot

of sense.”

In contrast, the students who had prior experience felt

there were advantages to the physical robots, although they had

some difficulty expressing the exact differences they experienced.

One said, “It’s easier to wrap your mind around what I do

logically when you have it in front of you, as opposed to online.”

Another student recommended the use of physical robots “just

to begin, to understand the actual concepts” and then suggested

shifting to virtual robots for more advanced sensors. All students

commented on the technical difficulties that emerged during

the implementation, although the general attitude was that

this was a part of working with experimental software. One

said, “Sometimes I had technical difficulties, that was the only

negative, but that’s out of your control, so that’s nothing wrong.”

Students also expressed an increased or continuing interest

in computer science classes after the robotics curriculum. All

students interviewed expressed an interest in more computer

science courses in their high school programs. Some expressed a

desire for their schools to have more offerings in the field; as one

said, their schools “have a lot of arts and performing arts but no

CS,” while another remarked that “if there was a [programming

club at their school] I would think about joining it.”

4. Discussion

This design-based research study implemented the new

design and architecture of RoboScape Online, to support

and study virtual robotics learning among early high school

students. The results help to demonstrate the potential of

curriculum using simulated robotics for in-person learning

as well as in hybrid and remote classrooms. The study

confirmed key design propositions of RoboScape Online—

including presenting robots’ functionality through the RPC-style

interfaces characteristic of NetsBlox’s approach to distributed

computing. And it validated the technical feasibility of the new

architecture. These findings motivate future work to implement

the RoboScape Online platform and technologies at scale.

Additionally, the curriculum used in this study produced

results that are encouraging, even in light of the limitations that

the nature of our participant group impose on their immediate

generalizability. Participating students seem to have finished

the course with both an improved ability for computational

thinking and, as indicated by results from the surveys and

interviews, greater confidence in these abilities. While their pre-

to-post test scores for Syntax and Efficiency did not change

significantly, these were not the focus of the curriculum, and

many students’ Syntax pretest scores were already at or near the

upper limit of the assessment’s scale. Examining these findings

at a finer grain-size will help us to refine our assessments for

future implementation cycles. In particular, it is possible that the

pseudocode language we used for the tests was simple enough

that students rarely made enough of an error to reduce their

Syntax score significantly; alternatively, the amount of prior

exposure to programming that our participants had gave them

sufficient familiarity with syntax in general to demonstrate a

high level of fluency.

On the other hand, the students’ gains in the Algorithm

component were highly encouraging. This is the focus of the

RoboScape Online curriculum and of our work with NetsBlox

more generally. Students’ increased proficiency and confidence

in this area suggest important gains in Computational Thinking

that can make a compelling case for including virtual robotics in

middle-school and high-school students’ experiences.

4.1. Limitations and future work

This work demonstrates the utility of the RoboScape Online

platform in a classroom setting at the scale of a pilot project.

In future work, larger-scale studies involving more classrooms

and schools will provide a larger sample size and allow for

Frontiers inComputer Science 10 frontiersin.org

https://doi.org/10.3389/fcomp.2022.1031572
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Stein et al. 10.3389/fcomp.2022.1031572

exploration of additional variables alongside the use of the

virtual robotics platform.

Several limitations of the present study should be explicitly

mentioned. Due to the research team’s limited (once-a-week)

access to students during the semester, the effect attributed to

this course could be confounded with students’ learning in other

classes or with other factors more broadly. These could not

be fully controlled or accounted for in our study. That said,

the students involved were not taking any other coursework

intentionally focusing on CT. Moreover, students’ feedback in

interviews and open-ended survey questions referring to the

course specifically suggested its positive influence, but these

provide only subjective metrics. Nonetheless, future studies

would benefit from utilizing students not participating in the CT

class as a control.

As another form of control and comparison group, it

would be illuminating to study a second class using physical

robots and a minimally-adapted RoboScape curriculum. Both

RoboScape and RoboScape Online have strong claims to provide

good outcomes for students, but a direct comparison of the

two would be helpful for educators deciding between physical

and virtual robots for their classrooms. In such a study, it

would also be possible to explore the qualitative differences in

learning and reasoning that can emerge across physical and

virtual settings. Building upon comments from interviews with

students who had experienced physical robotics in the past,

there is reason to believe that there are differences and also

that these differences are challenging for students to articulate.

Findings from such a comparison study could be used to enrich

the future development of both RoboScape and RoboScape

Online. In particular, we have open questions about how to

integrate principles and ideas from electrical and mechanical

engineering. This is an important aspect of educational robotics

which should be addressed in developing future extensions of

both platforms.

A final limitation of our participant group is that the

students had a relatively high level of prior experience with

CT topics and programming in general. Some of the students

had taken related courses in the past. While there were

important advantages to implementing the experimental version

of RoboScape Online with this group, future studies should

engage with students who have less prior knowledge. A class of

less-experienced students might demonstrate a greater change

in the Syntax and Efficiency components between the pretest

and posttest. Alternatively, if the Syntax component continues

to show little change, it may be useful to replace the pseudocode

language used with a subset of or variation on the block-based

language used during the course itself to allow for automated

grading of student responses. And it would be illuminating to

determine whether the key gains in the Algorithm component

could be sustained with a group of students with less experience,

although our prior work with NetsBlox gives us reason to expect

this is possible.

5. Conclusion

Robotics is an engaging topic, presenting opportunities for

novice programmers to encounter ideas that are emerging in

importance for computer scientists, STEM professionals,

and citizens in general. Moreover, with the NetsBlox

approach to RoboScape and RoboScape Online, these ideas

in robotics are contextualized as vivid examples of distributed

computing concepts. Though COVID-19 accelerated research

to virtualize the experience of educational robotics, the

present study suggests that virtual robotics can be a powerful

addition to in-person learning as well, making advanced

computing and engineering problems accessible to students

with a wider range of experience and to lower-resourced

schools. This study indicates rich directions for future

research to make Computational Thinking attractive and

accessible to a broader set of students at earlier stages in

their learning.

Data availability statement

The raw data supporting the conclusions of this article will

be made available by the authors, without undue reservation.

Ethics statement

The studies involving human participants were reviewed

and approved by Vanderbilt University Institutional Review

Board. Written informed consent from the participants’ legal

guardian/next of kin was not required to participate in this

study in accordance with the national legislation and the

institutional requirements.

Author contributions

GS contributed most code for the RoboScape Online

software used, performed the statistical analysis, and wrote the

first draft of the manuscript. All authors were involved in data

collection, wrote sections of the manuscript, contributed to

conception and design of the study, manuscript revision, read,

and approved the submitted version.

Funding

This material is based upon work supported by the National

Science Foundation under Grant No. 1835874, the National

Security Agency (H98230-18-D-0010), and the Computational

Thinking and Learning Initiative of Vanderbilt University.

Frontiers inComputer Science 11 frontiersin.org

https://doi.org/10.3389/fcomp.2022.1031572
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Stein et al. 10.3389/fcomp.2022.1031572

Acknowledgments

The authors would like to thank the School for Science

and Math at Vanderbilt, a collaborative endeavor of Vanderbilt

University and Metropolitan Nashville Public Schools (MNPS).

We are also grateful to Dr. Brian Broll for the continued

development and maintenance of the NetsBlox environment

and to Dr. Shuchi Grover for assisting in the design of the

survey instrument.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.

Author disclaimer

Any opinions, findings, and conclusions or

recommendations expressed in this material are those of

the authors and do not necessarily reflect the views of the

funding agencies.

References

Abichandani, P., Sivakumar, V., Lobo, D., Iaboni, C., and Shekhar,
P. (2022). Internet-of-things curriculum, pedagogy, and assessment for
STEM education: a review of literature. IEEE Access. 10, 38351–38369.
doi: 10.1109/ACCESS.2022.3164709

Aristawati, F., Budiyanto, C., and Yuana, R. (2018). Adopting educational
robotics to enhance undergraduate students’ self-efficacy levels of computational
thinking. J. Turkish Sci. Educ. 15, 42–50. doi: 10.12973/tused.10255a)

Blumer, H. (1954). What is wrong with social theory? Am. Sociol. Rev. 19, 3–10.
doi: 10.2307/2088165

Broll, B., Lédeczi, A., Volgyesi, P., Sallai, J., Maroti, M., Carrillo, A., et al.
(2017). A visual programming environment for learning distributed programming,
in Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science
Education (ACM), p. 81–86. doi: 10.1145/3017680.3017741

Broll, B., Lédeczi, K., Stein, G., Jean, D., Brady, C., Grover, S., et al. (2021).
“Removing the walls around visual educational programming environments,”
in 2021 IEEE Symposium on Visual Languages and Human-Centric Computing
(IEEE). p. 1–9. doi: 10.1109/VL/HCC51201.2021.9576399

Charmaz, K. (2006). Constructing Grounded Theory: A Practical Guide Through
Qualitative Analysis. New York, NY: Sage.

Chen, G., Shen, J., Barth-Cohen, L., Jiang, S., Huang, X., and Eltoukhy,
M. (2017). Assessing elementary students’ computational thinking in
everyday reasoning and robotics programming. Comp. Educ. 109, 162–175.
doi: 10.1016/j.compedu.2017.03.001

Chevalier, M., El-Hamamsy, L., Giang, C., Bruno, B., and Mondada, F. (2022).
“Teachers’ perspective on fostering computational thinking through educational
robotics,” in Robotics in Education, Merdan, M., Lepuschitz, W., Koppensteiner, G.,
Balogh, R., and Obdržálek„ D., editors. p. 177–185, Cham: Springer International
Publishing. doi: 10.1007/978-3-030-82544-7_17

Cobb, P., Confrey, J., diSessa, A., Lehrer, R., and Schauble, L.
(2003). Design experiments in educational research. Edu. Res. 32, 9–13.
doi: 10.3102/0013189X032001009

Creswell, J. W., and Miller, D. L. (2000). Determining validity in qualitative
inquiry. Theory Pract. 39, 124–130. doi: 10.1207/s15430421tip3903_2

Crick, T., Knight, C., Watermeyer, R., and Goodall, J. (2021). “The International
Impact of COVID-19 and “Emergency Remote Teaching” on Computer Science
Education Practitioners,” in 2021 IEEE Global Engineering Education Conference
(IEEE), p. 1048–1055. doi: 10.1109/EDUCON46332.2021.9453846

Cross, J., Hamner, E., Zito, L., Nourbakhshh, I., and Bernstein, D. (2016).
“Development of an assessment for measuring middle school student attitudes
towards robotics activities,” in 2016 IEEE Frontiers in Education Conference (IEEE),
p. 1–8. doi: 10.1109/FIE.2016.7757677

Eeds, A., Vanags, C., Creamer, J., Loveless, M., Dixon, A., Sperling, H.,
et al. (2014). The school for science and math at vanderbilt: an innovative

research-based program for high school students. Life Sciences Educ. 13, 297–310.
doi: 10.1187/cbe.13-05-0103

Gervais, O., and Patrosio, T. (2022). “Developing an introduction to ROS
and Gazebo through the LEGO SPIKE Prime,” in Robotics in Education, Merdan,
M., Lepuschitz, W., Koppensteiner, G., Balogh, R., and Obdržálek, , D., editors.
Cham: Springer International Publishing. p. 201–209. doi: 10.1007/978-3-030-825
44-7_19

Glaser, B., and Strauss, A. (1967). The Discovery of Grounded
Theory: Strategies for Qualitative Research. Lippincott-Raven.
doi: 10.1097/00006199-196807000-00014

Glaser, B. G. (1965). The constant comparative method of qualitative analysis.
Social Prob. 12, 436–445. doi: 10.1525/sp.1965.12.4.03a00070

Homa, A. I. R. (2019). Robotics Simulators in STEM education. Acta Scientiae.
21, 178–191. doi: 10.17648/acta.scientiae.5417

ISTE and CSTA (2011). Operational Definition of Computational Thinking.

Jean, D., Broll, B., Stein, G., and Lédeczi, A. (2021). “Your phone as a
sensor: Making IoT accessible for novice programmers,” in 2021 IEEE Frontiers
in Education Conference (IEEE), p. 1–5. doi: 10.1109/FIE49875.2021.9637272

Lédeczi, A., Maroti, M., Zare, H., Yett, B., Hutchins, N., Broll, B., et al.
(2019). “Teaching cybersecurity with networked robots,” in Proceedings of the 50th
ACM Technical Symposium on Computer Science Education (ACM). p. 885–891.
doi: 10.1145/3287324.3287450

Maloney, J., Resnick, M., Rusk, N., Silverman, B., and Eastmond, E. (2010). The
Scratch programming language and environment. ACM Trans. Comput. Educ. 10,
4. doi: 10.1145/1868358.1868363

Mistretta, S. (2022). “Virtual robotics in hybrid teaching and learning,” in New
Updates in E-Learning. London, UK: IntechOpen. doi: 10.5772/intechopen.102038

Mönig, J., andHarvey, B. (2022). Snap! Available online at: https://snap.berkeley.
edu/. (accessed March 8, 2021).

Open Source Robotics Foundation (2022). Gazebo. Available online at: http://
gazebosim.org/ (accessed August 30, 2022).

Pickem, D., Glotfelter, P.,Wang, L.,Mote,M., Ames, A., Feron, E., and Egerstedt,
M. (2017). “The Robotarium: A Remotely Accessible Swarm Robotics Research
Testbed,” in 2017 IEEE International Conference on Robotics and Automation
(ICRA). p. 1699–1706. doi: 10.1109/ICRA.2017.7989200

Robomatter Inc (2022). Robot Virtual Worlds. Available online at: https://www.
robotvirtualworlds.com/ (accessed August 30, 2022).

Robotify (2022). Robotify. Available online at: https://www.robotify.com/
(accessed August 30, 2022).

Romagosa, B. (2019). The Snap! Programming System. p. 1–10. Cham: Springer
International Publishing. doi: 10.1007/978-3-319-60013-0_28-2

Frontiers inComputer Science 12 frontiersin.org

https://doi.org/10.3389/fcomp.2022.1031572
https://doi.org/10.1109/ACCESS.2022.3164709
https://doi.org/10.12973/tused.10255a)
https://doi.org/10.2307/2088165
https://doi.org/10.1145/3017680.3017741
https://doi.org/10.1109/VL/HCC51201.2021.9576399
https://doi.org/10.1016/j.compedu.2017.03.001
https://doi.org/10.1007/978-3-030-82544-7_17
https://doi.org/10.3102/0013189X032001009
https://doi.org/10.1207/s15430421tip3903_2
https://doi.org/10.1109/EDUCON46332.2021.9453846
https://doi.org/10.1109/FIE.2016.7757677
https://doi.org/10.1187/cbe.13-05-0103
https://doi.org/10.1007/978-3-030-82544-7_19
https://doi.org/10.1097/00006199-196807000-00014
https://doi.org/10.1525/sp.1965.12.4.03a00070
https://doi.org/10.17648/acta.scientiae.5417
https://doi.org/10.1109/FIE49875.2021.9637272
https://doi.org/10.1145/3287324.3287450
https://doi.org/10.1145/1868358.1868363
https://doi.org/10.5772/intechopen.102038
https://snap.berkeley.edu/
https://snap.berkeley.edu/
http://gazebosim.org/
http://gazebosim.org/
https://doi.org/10.1109/ICRA.2017.7989200
https://www.robotvirtualworlds.com/
https://www.robotvirtualworlds.com/
https://www.robotify.com/
https://doi.org/10.1007/978-3-319-60013-0_28-2
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Stein et al. 10.3389/fcomp.2022.1031572

Roussou, E., and Rangoussi, M. (2020). “On the use of robotics for the
development of computational thinking in kindergarten: Educational intervention
and evaluation,” in Robotics in Education. Merdan, M., Lepuschitz, W.,
Koppensteiner, G., Balogh, R., and Obdrvzálek, D., editors, p. 31–44, Cham.
Springer International Publishing. doi: 10.1007/978-3-030-26945-6_3

Sapounidis, T., and Alimisis, D. (2021). Educational robotics curricula:
current trends and shortcomings. Stud. Comp. Intellig. 982, 127–138.
doi: 10.1007/978-3-030-77022-8_12

Siegel, A. A., Zarb, M., Alshaigy, B., Blanchard, J., Crick, T., Glassey, R., et al.
(2021). “Teaching through a Global Pandemic: Educational Landscapes Before,
During and After COVID-19,” in Proceedings of the 2021 Working Group Reports
on Innovation and Technology in Computer Science Education (ACM), p. 1–25.
doi: 10.1145/3502870.3506565

Souza, I. M. L., Andrade,W. L., Sampaio, L. M. R., and Araujo, A. L. S. O. (2018).
A Systematic Review on the use of LEGORobotics in Education, in 2018 IEEE
Frontiers in Education Conference (FIE). p. 1–9. doi: 10.1109/FIE.2018.8658751

Stein, G., and Lédeczi, K. (2021). Enabling collaborative distance
robotics education for novice programmers, in 2021 IEEE Symposium
on Visual Languages and Human-Centric Computing (VL/HCC). p. 1–5.
doi: 10.1109/VL/HCC51201.2021.9576314

Stein, G., and Lédeczi, A. (2022). Shared virtual worlds for accessible classroom
robotics, in Proceedings of the 53rd ACM Technical Symposium on Computer
Science Education V. 2, SIGCSE 2022. New York, NY, USA: Association for
Computing Machinery. p. 1177. doi: 10.1145/3478432.3499259

Strauss, A., and Corbin, J. (1990). Basics of Qualitative Research. New York: Sage.

Tan, Y., Rizk, M., Stein, G., and Lédeczi, A. (2022). “User-extensible
block-based interfaces for internet of things devices as new educational
tools,” in SoutheastCon 2022. p. 711–717. doi: 10.1109/SoutheastCon48659.2022.
9763937

Tselegkaridis, S., and Sapounidis, T. (2021). Simulators in educational robotics:
a review. Edu. Sci. 11, 11. doi: 10.3390/educsci11010011

Tzafestas, S. G. (2009). Web-based control and robotics education. Springer:
Intelligent Systems, Control and Automation: Science and Engineering.
doi: 10.1007/978-90-481-2505-0

VEX Robotics (2022). VEXcode Virtual Robotics (VR). Available online at:
https://www.vexrobotics.com/vexcode/vr (accessed August 30, 2022).

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., and
Wilensky, U. (2016). Defining computational thinking formathematics and science
classrooms. J. Sci. Edu. Techn. 25, 127–147. doi: 10.1007/s10956-015-9581-5

Wing, J. M. (2006). Computational thinking. Commun. ACM. 49, 33–35.
doi: 10.1145/1118178.1118215

Yett, B., Hutchins, N., Stein, G., Zare, H., Snyder, C., Biswas, G., Metelko,
M., and Ledeczi, A. (2020). A hands-on cybersecurity curriculum using a
robotics platform, in Proceedings of the 51st ACM Technical Symposium
on Computer Science Education, SIGCSE ’20. p. 1040–1046, New York,
NY, USA: Association for Computing Machinery. doi: 10.1145/3328778.
3366878

Frontiers inComputer Science 13 frontiersin.org

https://doi.org/10.3389/fcomp.2022.1031572
https://doi.org/10.1007/978-3-030-26945-6_3
https://doi.org/10.1007/978-3-030-77022-8_12
https://doi.org/10.1145/3502870.3506565
https://doi.org/10.1109/FIE.2018.8658751
https://doi.org/10.1109/VL/HCC51201.2021.9576314
https://doi.org/10.1145/3478432.3499259
https://doi.org/10.1109/SoutheastCon48659.2022.9763937
https://doi.org/10.3390/educsci11010011
https://doi.org/10.1007/978-90-481-2505-0
https://www.vexrobotics.com/vexcode/vr
https://doi.org/10.1007/s10956-015-9581-5
https://doi.org/10.1145/1118178.1118215
https://doi.org/10.1145/3328778.3366878
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

	Browser-based simulation for novice-friendly classroom robotics
	1. Introduction
	2. Materials and methods
	2.1. NetsBlox
	2.1.1. RoboScape

	2.2. RoboScape Online
	2.2.1. Architecture

	2.3. Curriculum
	2.3.1. Participants
	2.3.2. Instruments
	2.3.2.1. Surveys
	2.3.2.2. Pretest/Posttest
	2.3.2.3. Interviews

	3. Results
	3.1. Surveys
	3.2. Pretest/Posttest
	3.3. Interviews

	4. Discussion
	4.1. Limitations and future work

	5. Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	Author disclaimer
	References

