a frontiers ‘ Frontiers in Computer Science

@ Check for updates

OPEN ACCESS

EDITED BY
José Lima,

Polytechnic Institute of Braganga (IPB),
Portugal

REVIEWED BY
Maha Khemaja,

University of Sousse, Tunisia

Raffaele De Amicis,

Oregon State University, United States
Cucuk W. Budiyanto,

Sebelas Maret University, Indonesia

*CORRESPONDENCE
Gordon Stein
gordon.stein@vanderbilt.edu

SPECIALTY SECTION
This article was submitted to
Digital Education,

a section of the journal
Frontiers in Computer Science

RECEIVED 30 August 2022
ACCEPTED 19 December 2022
PUBLISHED 10 January 2023

CITATION
Stein G, Jean D, Brady C and Lédeczi A
(2023) Browser-based simulation for
novice-friendly classroom robotics.
Front. Comput. Sci. 4:1031572.

doi: 10.3389/fcomp.2022.1031572

COPYRIGHT

© 2023 Stein, Jean, Brady and Lédeczi.
This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Frontiersin Computer Science

TyPe Original Research
PUBLISHED 10 January 2023
pol 10.3389/fcomp.2022.1031572

Browser-based simulation for
novice-friendly classroom
robotics

Gordon Stein'*, Devin Jean?, Corey Brady? and Akos Lédeczit

!Institute for Software Integrated Systems, Vanderbilt University, Nashville, TN, United States,
2Department of Teaching and Learning, Vanderbilt University, Nashville, TN, United States

Robots are a popular and engaging educational tool for teaching
computational thinking, but they often have significant costs and limitations
for classroom use. Switching to a simulated environment can eliminate
many of these difficulties. By also providing students with a block-based
programming environment, the barrier to entry can be further reduced. This
paper presents a networked virtual robotics platform designed to create
an environment which is highly accessible for novice students and their
teachers alike, along with components of a curriculum designed to teach
computational thinking skills through robotics programming challenges,
including autonomous challenges and in-class competitions. Students access
this platform through an extension of the same web interface used for
programming their robots, which allows students to collaborate on code and
view a shared simulated virtual space. Previously, this virtual robotics platform
was used only to facilitate distance education. This paper demonstrates
its use in an in-person class during the Spring 2022 semester, illustrating
the affordances of a virtual robotics environment for face-to-face learning
contexts as well. Students’ computational thinking skills were evaluated with
assessments both before and after the class, along with surveys and interviews
given to determine their opinions and outlooks regarding computer science.
The results show that students had a significant improvement in both attitudes
and aptitudes.

KEYWORDS

educational robotics, robotics simulation, computational thinking, STEM education,
distance education

1. Introduction

Demand for both STEM and distance education has continued to be strong for
many years. Distance education had especially high demand during the COVID-19
pandemic (Crick et al., 2021). While students have now largely returned to in-person
instruction, demand for distance education tools remains and is expected to continue
(Siegel et al., 2021). This need to integrate the web in the modality of CS learning actually
presents an opportunity to bring to the foreground internet-connected and distributed
computing systems in the content of CS Education (Broll et al., 2021). As the number of
Internet of Things devices continues to grow, students are expected to be equipped with
relevant knowledge in computer science, distributed computing, and other related topics

01 frontiersin.org

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2022.1031572
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2022.1031572&domain=pdf&date_stamp=2023-01-10
mailto:gordon.stein@vanderbilt.edu
https://doi.org/10.3389/fcomp.2022.1031572
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcomp.2022.1031572/full
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Stein et al.

(Abichandani et al., 2022). Educational tools must be provided
to meet both of these needs, to grant educators the capability to
reach students in any setting with STEM topics.

Educational robotics is a common tool to engage and excite
students in STEM classes (Sapounidis and Alimisis, 2021).
Robots give students tasks they can see represented in a physical
world, while enabling both teamwork and competition, allowing
a wide range of topics to be covered. This approach is also
adaptable to suit a wide range of pedagogies, allowing for
significant flexibility in curricular design. For example, many
classrooms have used Lego robot kits, which use a block-
based programming interface to make their functionality more
accessible to novice programmers (Souza et al., 2018).

However, costs of robots for classroom use can be significant
(Mistretta, 2022). In addition to the upfront cost of purchasing
the robots themselves, there are costs associated with setting up
the robots, maintaining the robots, and performing activities
with the robots. Some robots may require assembly, most
mobile robots require batteries to be replaced or charged before
use, and, depending on the age and experience level of the
students, any other repairs may be entirely the responsibility
of the teacher, if the robots are user-repairable at all. This
means teachers may be required to have additional electrical
engineering knowledge, regardless of the topics they intend to
use the robots with. Further, any activity performed with the
robots will require some setup and cleanup, with extra care
required to ensure equivalent starting conditions for in-class
competitions. Internet-connected robots may require support
from a school’s IT department to allow connecting them to
school networks, or they may require the educator to provide
a wireless hotspot for them to connect to. Finally, the costs and
technical difficulties of even simpler robots may prevent students
from being able to take a robot home for homework or practice,
reducing the time students get to work with them.

A common approach to eliminate these costs and difficulties
is to switch to simulated robots (Homa, 2019; Tselegkaridis
and Sapounidis, 2021). A simulated robot has no cost other
than the price of the simulation software and the computer
it runs on. Setting up activities for simulated robots only
requires telling the program which scenario to use, and students
may be able to install or access the software on their home
computers to “take a robot home” with them without any
risk that they will damage or lose school property. Simulated
robots require no batteries, and “repairs” are often accomplished
by simply resetting the simulation, making maintenance
greatly simplified.

Computational Thinking (CT) (Wing, 2006) uses the
cognitive tools associated with computer science extended to
problem-solving in general. In general, it includes thinking
algorithmically, framing problems so that technology can assist
in a solution, organizing and analyzing data, abstracting to
models and simulations, efficiently solving problems, and
transferring the CT process to other domains (ISTE and CSTA,

Frontiersin Computer Science

02

10.3389/fcomp.2022.1031572

2011; Weintrop et al.,, 2016). CT is presented as a preferred target
for educators, as it not only is associated with STEM topics, but
the “transfer” component inherently makes it applicable to a
wide range of domains. Educational robots have been commonly
used to teach CT (Chen et al., 2017; Chevalier et al., 2022), at
every level, from kindergarten (Roussou and Rangoussi, 2020)
to undergraduates in college (Aristawati et al., 2018).

A variety of approaches have been created to provide an
alternative to physical educational robots or to provide access to
robots for distance education. These have included both remote
control and web-based simulation, each of which have been
used for a significant length of time in various forms (Tzafestas,
2009). However, these approaches are not equivalent: providing
remote access does not necessarily eliminate the same costs as
simulation, nor does it necessarily provide a similar experience
to typical physical educational robots. For example, Georgia
Tech’s “Robotarium” (Pickem et al., 2017) requires students to
upload code to be verified in simulation first, with the goal of
providing safe access to a shared robotics testbed. In contrast,
our solution, RoboScape Online, focuses only on providing
simulated spaces for students to use, eliminating any need to
verify robot code will not damage the robots and enabling user
input-based control.

On the robotics simulation side, multiple platforms have
been created for the education space (Tselegkaridis and
Sapounidis, 2021). One notable example is Gazebo (Open Source
Robotics Foundation, 2022), which has already seen significant
educational use (Gervais and Patrosio, 2022). Gazebo provides
excellent physics simulation and can be configured for almost
any realistic robot design, but its use in a classroom requires
both a substantial hardware cost to run its simulations and/or
significant technical knowledge. For instance, many solutions
for simplifying the use of Gazebo in the classroom rely on
creating a Docker container to run on each student computer.
This approach may not be accessible to teachers with limited
information technology experience, and there may be difficulties
in obtaining approval from school IT departments or running on
students’ personal hardware at home. By performing the physics
simulation remotely and providing a browser-based client for
student use, our approach creates a more accessible system,
while still achieving the performance and accuracy levels needed
for educational scenarios.

Another notable preexisting robotics simulation platform is
Robot Virtual Worlds (Robomatter Inc, 2022), which has also
seen use in education research (Mistretta, 2022). This platform
is much more straightforward for classroom use, but unlike
Gazebo it is non-free, proprietary software, with support for
Windows only, requiring the software to be installed before use.
The VEX Virtual Robotics platform (VEX Robotics, 2022) and
Robotify (Robotify, 2022) are two browser-based educational
robotics simulation platforms also allowing the use of block-
based programming environments. These systems are closed-
source platforms with some content restricted behind payment.

frontiersin.org

https://doi.org/10.3389/fcomp.2022.1031572
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Stein et al.

In contrast, RoboScape Online aims to provide a free, open-
source platform for educational robotics simulation in the
browser, open to contributions from educators and students.
While Robotify also allows for multiple users to interact in
one networked environment, users have no ability to modify
the program or host their own servers due to the closed-
source nature of the platform. In addition, by building upon
the foundation of NetsBlox’s ecosystem (Stein and Lédeczi,
2021), RoboScape Online allows for more advanced robot
programs, controls, and interactions to be created by students.
For example, students can create a phone app that sends
commands to the robot (Jean et al., 2021), or multiple students’
programs can communicate over the network to synchronize or
coordinate actions.

The work we report on here builds upon our previous work
with physical robots. The RoboScape platform was used with
physical robots and in-person classes to teach cybersecurity
concepts to middle and high school level students (Lédeczi
et al,, 2019). In 2021, these classes were run as an online
class using an earlier version of RoboScape Online (Stein and
Lédeczi, 2022), created using the Unity game engine. Students
remained engaged and positive about the experience after it
moved to virtual robots. Our experience in implementing this
earlier version supported the design decisions and architectural
changes that produced the current version of Roboscape Online.
In this article, we describe this system and present the results of
implementing our next iteration of design-based research (Cobb
etal., 2003) in Spring 2022.

2. Materials and methods
2.1. NetsBlox

The programming environment used in this work is
NetsBlox Broll et al. (2017), a block-based environment
which expands upon the Snap! (Monig and Harvey, 2022)
programming environment created at Berkeley. While Snap!
is similar to Scratch (Maloney et al., 2010) in that both
are visual programming environments designed to introduce
computer science concepts through block-based abstractions,
Snap! extends this concept by introducing ideas from the
Scheme programming language to provide a more complete
and powerful programming experience without sacrificing the
novice-friendly block-based approach (Romagosa, 2019). This
includes both the use of first-class, heterogeneous lists as the only
structured data type and functional programming concepts such
as custom block types and closures as first-class types. NetsBlox
in turn adds an additional set of computer science concepts on
top of Snap!, providing distributed computing features such as
message passing and remote procedure calls, along with access
to external web services (Broll et al., 2021).

Frontiersin Computer Science

03

10.3389/fcomp.2022.1031572

These new features are largely made available through
similar block-based abstractions to the ones already present in
Snap!. For example, where Snap! has the ability to use messages
to run events in other objects within the same program,
NetsBlox adds blocks to send a message over the network to
another instance of the same program, another “role” within
the program, or another user’s program, identified through an
addressing system. This enables classroom challenges in which
message types are used as an interface between a teacher’s
program and student programs, such as a chatroom where the
students must all write client programs that interact with the
server run by the teacher. Remote procedure calls (RPCs) are
available as blocks that provide students with a list of available
network services and methods they can call. This functionality
is often used to provide a block-based abstraction for interacting
with external web services such as Google Maps (see Figure 1),
but it is also used to allow students to interact with robots,
phones, and other internet-connected devices, or to get and
set values from a shared cloud data store. These distributed
computing features enable the creation of multiplayer video
games, while also making it more feasible for students to
interact with scientific data by integrating with both data
sources and outputs such as charting software. By providing a
novice-friendly interface for distributed computing, NetsBlox
has supported multiple classes and camps aimed at high school
and middle school students who have limited prior computer
science experience.

The distributed computing features in NetsBlox go beyond
those present in the blocks available for programming. A wide
range of cloud-based functionality has been added to assist
users. While unauthenticated users can only save documents to
their browser’s local storage, with a NetsBlox account, a user
can save their projects to the NetsBlox cloud, providing both
reliable storage and easy access across any computers they may
be working on (e.g., classroom, library, home). NetsBlox projects
can also be made public and shared using a specific link, allowing
a user to easily give others access to their creations. Libraries
of custom blocks can also be shared through the interface,
facilitating the sharing of code snippets as well. NetsBlox also
allows for students to collaborate remotely on a single project.
Finally, these features are also integrated into a classroom
system, giving teachers the ability to control over which other
accounts their students are allowed to communicate with.

2.1.1. RoboScape

Robotics support in NetsBlox is provided through a service
called RoboScape (Lédeczi et al., 2019). The RoboScape service
exposes an interface to robots as if they were just another web
service accessible through NetsBlox. For example, to drive a
robot forward, a student could send the command “set speed 100

100” to the RoboScape service’s “send” RPC to set both wheels
to move forward at a specific speed. Figure 2 shows an example

frontiersin.org

https://doi.org/10.3389/fcomp.2022.1031572
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Stein et al.

10.3389/fcomp.2022.1031572

Scripts Backgrounds Sounds Room

{script variables ‘ location info | (latitude (longitude |

T el e
[TR) value flatiude in

=% -
switch to costume

(‘stage height @

FIGURE 1

e
‘set locatio o | to call Geolocation |/ geolocate Great*Pyramid-of-Giza

B e————_———e—— A
[set 303w 7 value [longitude in

(call GoogleMaps | I getsateliteMap | (latitude’ (longitude stage width

Example NetsBlox code, interacting with web services to search for a location and obtain a satellite view of it

‘when h clicked

set robot'|D .| to [SErTeelvueydNl s

when M key pressed
run RoboScape |/ send |(robot D EEgSsIloley

‘when M key pressed

run RoboScape |/ send | (robot ID

FIGURE 2

Simplified example RoboScape code. When the up arrow key is
pressed, the robot moves forward. When the space bar is
pressed, the robot will stop.

of NetsBlox code to move a robot forward or stop it based on
user input. A student can also access other features of the robot,
for example sending the command “get range” to receive the
output value of a distance sensor on the robot as a response. This
approach enables students to leverage their NetsBlox experience
with other distributed computing concepts, to make a smooth
conceptual transition into using robots. In addition, sending
commands to robots in this way, as opposed to the traditional
approach of writing code to be directly uploaded to the robots,
creates the potential for novel learning opportunities with the
robots as a tool.

In particular, as all robot commands are relayed through the
NetsBlox server, it was possible to add features by which these

Frontiersin Computer Science

04

commands can be intercepted, eavesdropped on, and spoofed for
cybersecurity lessons. A previous curriculum using RoboScape
during multiple camps and classes (Yett et al., 2020) focused
on teaching students about concepts such as encryption, replay
attacks, and denial-of-service attacks—along with defenses
against such attacks—using features of the RoboScape service.
As the robot code and the networking code on the server are
provided for students, abstractions are easily afforded to allow
students to interact with these concepts on a level that novices
to computer science are more comfortable with. For example,
a student wishing to protect their robot with encryption sends
a “set key” command with their chosen key (or a “hardware
key” obtained from the robot) to enable a Vigenre cipher
that is easily implemented with blocks. In the cybersecurity
curriculum, students engage in a series of competitions as they
learn new concepts. The general structure involves one team
attempting to complete a goal by maintaining control of their
robot while the opposing team attempts to prevent them from
completing their goal, using the cybersecurity topics covered.
Students have responded well to the competitive environment,
especially enjoying games such as a “tug-of-war” where two
teams attempted to move a single robot to their side of the room.

2.2. RoboScape Online

The recent disruption of education by COVID-19 has
motivated the creation of a platform that would allow access over
the Internet to the learning opportunities of RoboScape. This has
resulted in RoboScape Online, a simulation platform providing
access to virtual versions of robots similar to those that were used
with RoboScape during in-person classes.

frontiersin.org

https://doi.org/10.3389/fcomp.2022.1031572
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Stein et al.

The Parallax ActivityBot 360, with attached

daughterboard for wireless connectivity, as used for previous

an

RoboScape activities, has a cost of approximately $280
without quantity or other discounts. While we have found
these robots to be very reliable, they have more processing
power and many more features than are necessary for use
with RoboScape. Many of the features which are necessary,
such as high-speed continuous servos with encoder output
and Internet connectivity, are trivial for a virtual robot, but
often costly in commercial-off-the-shelf educational robotics
platforms customizable enough to add support for NetsBlox.
Simulated robots eliminate the cost entirely while providing all
the same features the physical robots had and more. Further,
physical robots experienced much more latency and packet
loss, making many autonomous challenges difficult for students
to accomplish—for the wrong reasons. Simulating robots
has additional logistical benefits as well, such as providing
more consistent initial conditions without any effort expended
for setup or cleanup, and not requiring batteries or repairs
to continue functioning. Finally, RoboScape Online was
specifically designed to not require any significant prior
programming knowledge beyond that required to use NetsBlox,
so that it would be accessible to a wider range of educators
and students.

Providing students with shared virtual spaces has many
benefits beyond costs. Students are able to collaborate in
both their code and with their robots without having to be
in immediate physical proximity. At the same time, through
NetsBlox, robot-to-robot communication is made very simple.
Easy resets to initial conditions and reliable connections assist
students with debugging, and novel diagnostic tools are feasible
with virtual robots to help students understand what their code
is doing. The potential for competition with virtual robots is
also enhanced. The shared virtual spaces are simulated on a
remote server, providing a consistent simulation that does not
rely on clients for anything but commands, and also reducing the
system requirements for a computer to be compatible with the
platform. A future version is planned to automate tournaments
of multiple types, both for programs that require synchronous
user input and fully automated tournaments of autonomous
code with matches running concurrently.

With a simulated platform, it also becomes possible to
provide sensors and actuators that would be infeasible for
classroom use, due to either their cost or potentially hazardous
nature, while making it easier to restrict the features available
to students based on their assignments. For example, a robot
in RoboScape Online can be equipped with a LIDAR sensor,
with its range and angular resolution defined as part of the
scenario the students are placed in. Additional virtual sensors
add no cost and can be designed to add or eliminate effects
such as noise to simplify them for student use. For instance,
a virtual robot can be given a radiation sensor or a toxic gas
sensor that detects the amount of hazardous emissions around

Frontiersin Computer Science

05

10.3389/fcomp.2022.1031572

'Room69E47@gstein

Time: 0.00

oot [T | (et (Frecim)

FIGURE 3
RoboScape Online 3D view showing “obstacle course”
environment. The robot is in its starting position in the red area.

it: this would obviously be impossible to use with physical
robots in a classroom, but it enables vivid scenarios (e.g., search
and rescue) that students may find more interesting. These
new sensors are made available to the programming interface
through NetsBlox’s IoTScape service (Tan et al., 2022), giving
similar web service-like abstractions to what students already
work with for the robots.

An earlier iteration of RoboScape Online was a standalone
application created in the Unity game engine. This approach
was chosen based on the ease of content creation, powerful
rendering capabilities, and existing networking modules
available. However, in practice, many limitations of this
approach became apparent. To make full use of the content
creation tools from Unity, the server-side simulation was
required to be running a full Unity application running without
graphics, which required an additional cloud server instance
for each group of students using it to provide a consistent and
performant simulation. This software worked well enough
for initial, exploratory implementations in online classes with
students using their own computers. However, moving back
to the classroom exposed issues with this approach. The client
software was able to be provided as binaries for multiple
platforms, but installing software on school computers was
often difficult to get permission for and difficult to update.
Moreover, the networking system chosen required specific
ports to be available on the client’s network, which proved to
be very difficult to negotiate with schools’ IT departments. At
the same time, it was observed that students were able to play
online multiplayer games in the browser on school computers,
inspiring the transition to an HTML5-based solution. The
current iteration of RoboScape Online is a combination of a
NET server and a JavaScript client running through NetsBlox’s
extensions feature. This new approach is compatible with
almost any computer that can run NetsBlox itself, requires
no installation besides a Chromium-based browser, and it

frontiersin.org

https://doi.org/10.3389/fcomp.2022.1031572
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Stein et al.

uses a networking protocol which almost all networks should
allow. Additionally, by providing the client as a NetsBlox
extension, the 3D view is better integrated with the students’
program development environment, preventing switching costs.
Furthermore, new blocks can be added as part of the extension,
such as a “robots in room” reporter block, to give students’ code
easier access to relevant robot IDs.

Many scenarios and environments are available for
RoboScape Online. An early lesson in our curriculum has
students write a custom remote control program to navigate
through an obstacle course, as shown in Figure 3. Students may
be given the task to have their robot autonomously navigate
through a walled path by using a LIDAR sensor (see Figures 4, 5
for a simplified solution program), or to use a similar sensor to
find boxes on a platform and push them off. A “treasure hunt”
environment has students use a metal detector, which gives
them readings of proximity to a large object; when their robot
is close enough (the assignment is given both with manual and
autonomous control), they must give it a command to “dig” to
reveal a buried treasure, as shown in Figure 6. More open-ended
environments give students a number of robots with a variety of
capabilities, allowing them to design their own tasks.

2.2.1. Architecture

The server architecture for RoboScape Online is shown
in Figure 7. In addition to the preexisting NetsBlox server, a
main API server and multiple additional simulation servers
were added. From the perspective of the NetsBlox server, the
simulation is no different from any set of physical robots and
additional sensors. The virtual robots communicate with the
server with the same protocol as the physical robots, which
has allowed the existing RoboScape code to be reused with
RoboScape Online. The NetsBlox server also provides storage
for student project data, communication between student
projects, and collaboration features. Students creating or joining
rooms communicate with the main API server over HTTP
requests. When a simulation server is started, it announces
itself, advertising its supported scenarios and its capacity to the
main API server. A students request for a new room will be
redirected to the compatible server with the greatest remaining
capacity. Requests to join existing rooms will be redirected to the
simulation server hosting that specific room, if it exists. Once
redirected to a simulation server, the client opens a WebSocket
connection, over which updates to the state of the simulation
from the server are streamed to the client, and commands
from the client are sent to the simulation server. When no
users are in a room or no activity has occurred for several
minutes, the room is put into “hibernation”, allowing users
to rejoin to resume the simulation at the state it was left in.
Hibernating rooms are removed if they are not rejoined after
several days.

Frontiersin Computer Science

10.3389/fcomp.2022.1031572

FIGURE 4

RoboScape Online 3D view showing "LIDAR road” environment.
The robot is in its starting position in the red area. (A) Overview
of course. (B) "Chase cam” view of robot. (C) “First person” view
of robot.

set robot | to ! item @@ of {robots in room

(robot

t

FIGURE 5
Simple solution to "LIDAR road" challenge.

2.3. Curriculum
A curriculum focusing on robotics programming tasks

was created for use in design-based research to support
and study the classroom use of RoboScape Online as an

frontiersin.org

https://doi.org/10.3389/fcomp.2022.1031572
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Stein et al.

educational tool for teaching CT. The course took place
over 7 weeks in the Spring 2022 semester, during which
the class met to engage with RoboScape Online once a
week for 2 h. Activities included an initial introduction
to NetsBlox and distributed followed by
challenges that involved creating a manual remote control

computing,

program, building autonomous driving programs to navigate

: 'ROOmDIBI5E netsblox1661754058100 S

oo | (<) (o)

Close | P

FIGURE 6

Visual of success state in “treasure hunt” environment. The
treasure chest was not revealed until the robot moved to its
location and a “dig” command was sent to it.

10.3389/fcomp.2022.1031572

environments and solve tasks using a LIDAR, coordinating
waypoint navigation with a simulated GPS, and more.
Students worked in groups using the collaboration tools
in NetsBlox and the ability to share a single RoboScape
Online room.

Competitions were used in the classroom to motivate
The all had a
timer feature included, allowing a simple measure of the

and engage students. scenarios used
performance of student code. After the competitions ended,
students, especially the groups with the best performing
programs, were invited to explain how their code worked
and to share their strategies and lessons learned with

their classmates.

2.3.1. Participants

The of this
implementation consisted of 27 high-school students from
the School for Science and Math at Vanderbilt (Eeds et al,
2014). Of the 16 students who responded to both the pre and
post surveys, nine identified as male and seven as female. Four

class students who participated in

students identified as white, three as Asian, six as black, one as
American Indian or Alaskan Native, and two as another race.

Over 70% of students claimed to be familiar with a block-
based programming language previously (answering “Agree”
or “Strongly Agree” to the question “I have used block-based
programming like Scratch before”), with 43% claiming the same
for a text-based language.

Project Files and
RoboScape RPCs

Robot
Commands

NetsBlox Server

Student Computers
Room Status

FIGURE 7
Architecture of RoboScape Online service.

Create Requests

RPC Results
Sensor Data
Simulation ‘
Internet Data/Events RQbOSCépe Online
> Simulation
Servers
= " o Room Creation
Room Join/List/

Requests

Room
Status Data

RoboScape Online
API Server

Frontiers in Computer Science 07

frontiersin.org

https://doi.org/10.3389/fcomp.2022.1031572
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Stein et al.

2.3.2. Instruments

Student data was collected using three different instruments:
surveys, tests, and interviews. A survey and test were given both
before and after the implementation. Additionally, a group of
students were selected for interviews after the final session of the
activity sequence.

2.3.2.1. Surveys

Student demographics and opinions were collected through
an online survey administered to students both before and after
the course. Each opinion question was presented to students
on a four-point scale, ranging from "Strongly Disagree" at
1, to "Strongly Agree" at 4. Survey questions were designed
to identify the impact of the implementation on student
attitudes and beliefs about robotics and programming, which
were conjectured to mediate their changes in programming
performance. As illustrated in Table 2, questions aimed
to capture students’ confidence and self-efficacy around
programming and robotics. These are similar to the questions
used in Cross et al. (2016) to evaluate student confidence with
educational robotics.

2.3.2.2. Pretest/Posttest

To evaluate the educational effect of participating in the
course, students were given an in-class programming assessment
both at the start of the first day and end of the last day of
the course. Both the pretest and posttest consisted of a pair of
programming tasks that students were expected to accomplish
using a provided pseudocode language. While some aspects
of the language, such as the presence of “repeat until” loops,
were designed to resemble NetsBlox, some aspects of it differed,
including greatly simplified commands for interacting with
robots. One question was shared between both tests (question
2 on the pretest, question 1 on the posttest) to provide a
baseline. The tests’ tasks focused on robotics programming
tasks; however, to measure the students’ ability to transfer their
knowledge beyond the contexts presented in the curriculum, the
specific topics differ significantly from the contents of the course.

We applied a rubric and grading process informed by
the work of Chen et al. (2017). Their approach considers
students’ code through a five-component framework. Though
we omitted the “Representation” and “Data” components of

»

their framework, we used the “Syntax,” “Algorithm,” and
“Efficiency” components. For each assessment item, each
component was scored from 0 to 2, guided by the rubric shown
in Table 1. Two researchers graded half of the students’ responses
and then evaluated inter-rater reliability for each component
through percentage of agreement. If the agreement percentage
was >85% for all components, the graders would then continue
on to evaluate the remaining responses. If not, the graders
met to discuss their disagreements until the desired inter-rater
reliability was reached. This process was then repeated for the
remaining responses.

Frontiersin Computer Science

08

10.3389/fcomp.2022.1031572

TABLE 1 Rubric used to evaluate student responses on pretest and
posttest.

Syntax 2 Commands in solution obey given syntax almost totally

1 | Commands in solution obey given syntax partially

0 | Commands in solution do not obey given syntax at all
or are not psuedocode

Algorithm | 2 | Solution solves the problem

1 Solution solves the problem partially or displays good
understanding of problem/solution form

0 | Solution does not solve the problem and does not
display understanding of problem/solution form

Efficiency 2 | Solution has no or almost no redundant or unnecessary

code
1 | Solution has some redundant or unnecessary code

0 | Solution is mostly redundant or unnecessary code

2.3.2.3. Interviews

To augment the survey information and provide richer
context for some of these effects, semi-structured interviews
were conducted with seven participants at the end of the unit.
These interviews ranged in length from 7 to 32 min, and were
conducted by the authors.

In analyzing these data, the first author repeatedly read
the transcripts as well as the viewed video recordings of the
interviews. This familiarization process was guided by constant-
comparative methods (Glaser, 1965) and inductive coding
(Strauss and Corbin, 1990; Charmaz, 2006). The generation of
codes was not entirely an effort of grounded theory (Glaser and
Strauss, 1967), however, as the literature and the survey results
provided important sensitizing concepts (Blumer, 1954).

During this process, the first author identified themes across
the participants’ experiences, which served both to provide
depth of description and as a means of triangulating (Creswell
and Miller, 2000) these qualitative data with the quantitative
survey results.

3. Results
3.1. Surveys

Due to the limited number of survey responses, only three
questions reached the threshold of statistical significance. These
questions are listed in Table 2. In general, the students responses
to the open-ended questions on the post-survey were positive,
with some examples listed in Table 3. These three responses
suggest that students’ gained confidence in their general ability
to engage with CS and programming; with their ability to create
personally and socially meaningful constructions with code
(i.e., apps); and with their understanding of the logic involved
in defining robot behavior. For the question “I can program

frontiersin.org

https://doi.org/10.3389/fcomp.2022.1031572
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Stein et al.

TABLE 2 Significant pre-survey and post-survey differences.

Question

Pre-survey

10.3389/fcomp.2022.1031572

Effect size
(Cohen's d)

Post-survey
average

p-value

average

I am able to do well in activities that involve programming and computer science. 2.688 3.063 0.687 <0.01
I can program computers to create new apps (in other words, write code). 1.800 2.188 0.470 <0.03
I can explain how a robot makes decisions. 2.625 3.125 0.655 <0.004

TABLE 3 Post-survey open ended questions and selected responses.

Question Responses

What would you tell a
friend about this course?

“I really enjoyed it and further reinforced my
interest in coding and robotics engineering.”
“This class was extremely interesting and
being able to solve problems was always
rewarding.”

What did you like about
the virtual environment?

“It was convenient, it was extremely portable
in comparison to real-life robots and it was
free (or at least for my class) It was also
relatively easy to understand the code blocks
and what they did.”

“It worked a little more reliably than a robot
would in real life.”

“Iliked that we could reset them in a very
easy and efficient way.”

What was your favorite
activity?

“I really enjoyed coding the LIDAR
navigation program.”

“Ireally enjoyed them all, but if I have to
choose one, I would say the very first
autonomous robot activity, which dealt with
the robot(s) pushing the boxes off the
‘hovering white floor’. I like it because it was
the very first time I was programming a
virtual robot to autonomously do a task.”
“Iliked coding as homework and then
coming back to class were we would test our
creations and get feedback.”

What were some (one or
more) takeaways,
“a-ha’s, or insights from
this program?

“Like in math there is always a way to solve
something but some things are more difficult
than others.”

“Programming can be used for a lot more

that just coding apps, robots, etc. ”

“Ilearned the aspect of how things virtually
are made with the concept of coding. Also, an
‘a-ha’ for me was when I learned how
deep/complicated coding could get with so
much code.”

computers to create new apps,” the pre-survey student response
was <2, meaning that the average student disagreed that they
had this ability. After the course, the average score was now
>2, indicating that students’ perception of their abilities was
now such that they feel confident enough to report computer
programming as an ability.

3.2. Pretest/Posttest

Aggregate scores for the graded pretests and posttests are
presented in Table 4. The changes from pretest to posttest

Frontiersin Computer Science

TABLE 4 Pre-test and post-test results, significant (p < 0.05) column
marked with asterisk.

Question Syntax Algorithm* Efficiency
Pretest 1 1.750 0.708 1.396
Pretest 2 1.813 0.646 1.063
Posttest 1 1.750 0.729 1.170
Posttest 2 1.667 1.167 1.458
Pretest combined 1.782 0.677 1.229
Posttest combined 1.708 0.948 1.313

All scores have a maximum value of 2.

for the Syntax and Efficiency categories were not statistically
significant, but the change in the Algorithm component was
(p < 0.02), with an effect size (Cohen’s d) of 0.469. Next,
student scores were separated based on previous experience with
block-based programming languages to determine the impact of
prior experience on their performance. While students with past
experience had higher scores on average for each component
on both the pretests and posttests, this difference was not
statistically significant (p > 0.05) except on the Efficiency
component of the posttest, where experienced students had an
average score of 1.66 and non-experienced students had an
average score of 1.14.

In spite of improvements in many areas, our tests revealed
some students had persistent conceptual difficulties across both
tests. Multiple students demonstrated misunderstandings of
how variables worked. Some seemed to be treating variables as if
they were preprocessor macros, e.g., using “set right to get color
right” and expecting the value of “right” to always be the value
of running “get color right,” while a few others seemed to think
that an assignment “set right to get color right” would mean
that a statement of only “get color right” updates the variable’s
value without a proper assignment statement. Some students
repeated initial lines verbatim from an example program they
were given, which performed no function in their new program,
even if they otherwise understood how to solve the problem.
This negatively effected their Efficiency scores, but as the copied
lines of pseudocode were valid and had no effect, their Syntax
and Algorithm scores were not impacted. These challenges
indicate potential directions for refinements to the curriculum
and facilitation of the course.

frontiersin.org

https://doi.org/10.3389/fcomp.2022.1031572
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Stein et al.

3.3. Interviews

All students interviewed commented on their enjoyment of
problem solving associated with the tasks during the class, and
many said they found it especially satisfying to complete a task.
For instance, one remarked that the open-ended nature of the
challenges were “really like a large puzzle and I feel like that was
the best part about it.” Another student specifically mentioned
feeling that the course had improved their critical thinking skills
(likely referring to the algorithmic component of computational
thinking skills), saying “now when I evaluate problems and
just look at them and analyze them, I can think through them
clearer.” Finally, another student mentioned enjoying the low-
risk nature of the in-class competitions, saying, “You don’t really
lose anything if you do lose, so I think that helped.”

In general, the students felt that the virtual robots were
simpler than physical ones (whether speaking hypothetically or
from their own experience). One student noted the advantage to
debugging with a virtual robot, saying, “If you have a physical
robot, you don’t know if it’s the code, or it could be the physical
robot, it could bump into something, maybe one of the motors
isn’t working, or one of the treads is not working, maybe
something’s a little bit loose.” Two students noted the low-cost
aspect of simulation; one said, “I think it’s really good in the sense
that you don’t have to actually buy a robot or something and you
can actually work on a robot, but virtually. And so I really like
that experience. Also it’s easier to work with your code and the
robot and stuff.” The other remarked, “I like how virtual you can
do it anywhere, and this is free, not to buy it.” Finally, students
also mentioned that they enjoyed the block-based development
environment; as one said, “I think blocks are easier because you
know what the function of the block is. Just because you can
put them together, how the blocks fit together I felt makes a lot
of sense.”

In contrast, the students who had prior experience felt
there were advantages to the physical robots, although they had
some difficulty expressing the exact differences they experienced.
One said, “It’s easier to wrap your mind around what I do
logically when you have it in front of you, as opposed to online.”
Another student recommended the use of physical robots “just
to begin, to understand the actual concepts” and then suggested
shifting to virtual robots for more advanced sensors. All students
commented on the technical difficulties that emerged during
the implementation, although the general attitude was that
this was a part of working with experimental software. One
said, “Sometimes I had technical difficulties, that was the only
negative, but that’s out of your control, so that’s nothing wrong.”

Students also expressed an increased or continuing interest
in computer science classes after the robotics curriculum. All
students interviewed expressed an interest in more computer
science courses in their high school programs. Some expressed a
desire for their schools to have more offerings in the field; as one
said, their schools “have a lot of arts and performing arts but no

Frontiersin Computer Science

10

10.3389/fcomp.2022.1031572

CS,” while another remarked that “if there was a [programming
club at their school] I would think about joining it.”

4. Discussion

This design-based research study implemented the new
design and architecture of RoboScape Online, to support
and study virtual robotics learning among early high school
students. The results help to demonstrate the potential of
curriculum using simulated robotics for in-person learning
as well as in hybrid and remote classrooms. The study
confirmed key design propositions of RoboScape Online—
including presenting robots” functionality through the RPC-style
interfaces characteristic of NetsBlox’s approach to distributed
computing. And it validated the technical feasibility of the new
architecture. These findings motivate future work to implement
the RoboScape Online platform and technologies at scale.

Additionally, the curriculum used in this study produced
results that are encouraging, even in light of the limitations that
the nature of our participant group impose on their immediate
generalizability. Participating students seem to have finished
the course with both an improved ability for computational
thinking and, as indicated by results from the surveys and
interviews, greater confidence in these abilities. While their pre-
to-post test scores for Syntax and Efficiency did not change
significantly, these were not the focus of the curriculum, and
many students’ Syntax pretest scores were already at or near the
upper limit of the assessment’s scale. Examining these findings
at a finer grain-size will help us to refine our assessments for
future implementation cycles. In particular, it is possible that the
pseudocode language we used for the tests was simple enough
that students rarely made enough of an error to reduce their
Syntax score significantly; alternatively, the amount of prior
exposure to programming that our participants had gave them
sufficient familiarity with syntax in general to demonstrate a
high level of fluency.

On the other hand, the students’ gains in the Algorithm
component were highly encouraging. This is the focus of the
RoboScape Online curriculum and of our work with NetsBlox
more generally. Students” increased proficiency and confidence
in this area suggest important gains in Computational Thinking
that can make a compelling case for including virtual robotics in
middle-school and high-school students” experiences.

4.1. Limitations and future work

This work demonstrates the utility of the RoboScape Online
platform in a classroom setting at the scale of a pilot project.
In future work, larger-scale studies involving more classrooms
and schools will provide a larger sample size and allow for

frontiersin.org

https://doi.org/10.3389/fcomp.2022.1031572
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Stein et al.

exploration of additional variables alongside the use of the
virtual robotics platform.

Several limitations of the present study should be explicitly
mentioned. Due to the research team’s limited (once-a-week)
access to students during the semester, the effect attributed to
this course could be confounded with students’ learning in other
classes or with other factors more broadly. These could not
be fully controlled or accounted for in our study. That said,
the students involved were not taking any other coursework
intentionally focusing on CT. Moreover, students” feedback in
interviews and open-ended survey questions referring to the
course specifically suggested its positive influence, but these
provide only subjective metrics. Nonetheless, future studies
would benefit from utilizing students not participating in the CT
class as a control.

As another form of control and comparison group, it
would be illuminating to study a second class using physical
robots and a minimally-adapted RoboScape curriculum. Both
RoboScape and RoboScape Online have strong claims to provide
good outcomes for students, but a direct comparison of the
two would be helpful for educators deciding between physical
and virtual robots for their classrooms. In such a study, it
would also be possible to explore the qualitative differences in
learning and reasoning that can emerge across physical and
virtual settings. Building upon comments from interviews with
students who had experienced physical robotics in the past,
there is reason to believe that there are differences and also
that these differences are challenging for students to articulate.
Findings from such a comparison study could be used to enrich
the future development of both RoboScape and RoboScape
Online. In particular, we have open questions about how to
integrate principles and ideas from electrical and mechanical
engineering. This is an important aspect of educational robotics
which should be addressed in developing future extensions of
both platforms.

A final limitation of our participant group is that the
students had a relatively high level of prior experience with
CT topics and programming in general. Some of the students
had taken related courses in the past. While there were
important advantages to implementing the experimental version
of RoboScape Online with this group, future studies should
engage with students who have less prior knowledge. A class of
less-experienced students might demonstrate a greater change
in the Syntax and Efficiency components between the pretest
and posttest. Alternatively, if the Syntax component continues
to show little change, it may be useful to replace the pseudocode
language used with a subset of or variation on the block-based
language used during the course itself to allow for automated
grading of student responses. And it would be illuminating to
determine whether the key gains in the Algorithm component
could be sustained with a group of students with less experience,
although our prior work with NetsBlox gives us reason to expect
this is possible.

Frontiersin Computer Science

11

10.3389/fcomp.2022.1031572

5. Conclusion

Robotics is an engaging topic, presenting opportunities for
novice programmers to encounter ideas that are emerging in
importance for computer scientists, STEM professionals,
and citizens in general. Moreover, with the NetsBlox
approach to RoboScape and RoboScape Online, these ideas
in robotics are contextualized as vivid examples of distributed
computing concepts. Though COVID-19 accelerated research
to virtualize the experience of educational robotics, the
present study suggests that virtual robotics can be a powerful
addition to in-person learning as well, making advanced
computing and engineering problems accessible to students
with a wider range of experience and to lower-resourced
schools. This study indicates rich directions for future
research to make Computational Thinking attractive and
accessible to a broader set of students at earlier stages in
their learning.

Data availability statement

The raw data supporting the conclusions of this article will
be made available by the authors, without undue reservation.

Ethics statement

The studies involving human participants were reviewed
and approved by Vanderbilt University Institutional Review
Board. Written informed consent from the participants’ legal
guardian/next of kin was not required to participate in this
study in accordance with the national legislation and the
institutional requirements.

Author contributions

GS contributed most code for the RoboScape Online
software used, performed the statistical analysis, and wrote the
first draft of the manuscript. All authors were involved in data
collection, wrote sections of the manuscript, contributed to
conception and design of the study, manuscript revision, read,
and approved the submitted version.

Funding

This material is based upon work supported by the National
Science Foundation under Grant No. 1835874, the National
Security Agency (H98230-18-D-0010), and the Computational
Thinking and Learning Initiative of Vanderbilt University.

frontiersin.org

https://doi.org/10.3389/fcomp.2022.1031572
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Stein et al.

Acknowledgments

The authors would like to thank the School for Science
and Math at Vanderbilt, a collaborative endeavor of Vanderbilt
University and Metropolitan Nashville Public Schools (MNPS).
We are also grateful to Dr. Brian Broll for the continued
development and maintenance of the NetsBlox environment
and to Dr. Shuchi Grover for assisting in the design of the
survey instrument.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

References

Abichandani, P., Sivakumar, V., Lobo, D., Iaboni, C., and Shekhar,
P. (2022). Internet-of-things curriculum, pedagogy, and assessment for
STEM education: a review of literature. IEEE Access. 10, 38351-38369.
doi: 10.1109/ACCESS.2022.3164709

Aristawati, F., Budiyanto, C., and Yuana, R. (2018). Adopting educational
robotics to enhance undergraduate students’ self-efficacy levels of computational
thinking. J. Turkish Sci. Educ. 15, 42-50. doi: 10.12973/tused.10255a)

Blumer, H. (1954). What is wrong with social theory? Am. Sociol. Rev. 19, 3-10.
doi: 10.2307/2088165

Broll, B., Lédeczi, A., Volgyesi, P., Sallai, ., Maroti, M., Carrillo, A., et al.
(2017). A visual programming environment for learning distributed programming,
in Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science
Education (ACM), p. 81-86. doi: 10.1145/3017680.3017741

Broll, B., Lédeczi, K., Stein, G., Jean, D., Brady, C., Grover, S., et al. (2021).
“Removing the walls around visual educational programming environments,”
in 2021 IEEE Symposium on Visual Languages and Human-Centric Computing
(IEEE). p. 1-9. doi: 10.1109/VL/HCC51201.2021.9576399

Charmaz, K. (2006). Constructing Grounded Theory: A Practical Guide Through
Qualitative Analysis. New York, NY: Sage.

Chen, G., Shen, J., Barth-Cohen, L., Jiang, S., Huang, X., and Eltoukhy,
M. (2017). Assessing elementary students computational thinking in
everyday reasoning and robotics programming. Comp. Educ. 109, 162-175.
doi: 10.1016/j.compedu.2017.03.001

Chevalier, M., El-Hamamsy, L., Giang, C., Bruno, B., and Mondada, F. (2022).
“Teachers’ perspective on fostering computational thinking through educational
robotics,” in Robotics in Education, Merdan, M., Lepuschitz, W., Koppensteiner, G.,
Balogh, R., and Obdrzalek,, D., editors. p. 177-185, Cham: Springer International
Publishing. doi: 10.1007/978-3-030-82544-7_17

Cobb, P., Confrey, J., diSessa, A., Lehrer, R, and Schauble, L.
(2003). Design experiments in educational research. Edu. Res. 32, 9-13.
doi: 10.3102/0013189X032001009

Creswell, J. W., and Miller, D. L. (2000). Determining validity in qualitative
inquiry. Theory Pract. 39, 124-130. doi: 10.1207/s15430421tip3903_2

Crick, T., Knight, C., Watermeyer, R., and Goodall, J. (2021). “The International
Impact of COVID-19 and “Emergency Remote Teaching” on Computer Science
Education Practitioners,” in 2021 IEEE Global Engineering Education Conference
(IEEE), p. 1048-1055. doi: 10.1109/EDUCON46332.2021.9453846

Cross, J., Hamner, E., Zito, L., Nourbakhshh, I., and Bernstein, D. (2016).
“Development of an assessment for measuring middle school student attitudes
towards robotics activities,” in 2016 IEEE Frontiers in Education Conference (IEEE),
p. 1-8. doi: 10.1109/FIE.2016.7757677

Eeds, A., Vanags, C., Creamer, J., Loveless, M., Dixon, A., Sperling, H.,
et al. (2014). The school for science and math at vanderbilt: an innovative

Frontiersin Computer Science

12

10.3389/fcomp.2022.1031572

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed
or endorsed by the publisher.

Author disclaimer

Any opinions, findings, and conclusions or

recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of the
funding agencies.

research-based program for high school students. Life Sciences Educ. 13, 297-310.
doi: 10.1187/cbe.13-05-0103

Gervais, O., and Patrosio, T. (2022). “Developing an introduction to ROS
and Gazebo through the LEGO SPIKE Prime,” in Robotics in Education, Merdan,
M., Lepuschitz, W., Koppensteiner, G., Balogh, R., and Obdrzalek, , D., editors.
Cham: Springer International Publishing. p. 201-209. doi: 10.1007/978-3-030-825
44-7_19

Glaser, B., and Strauss, A. (1967).
Theory: Strategies for Qualitative
doi: 10.1097/00006199-196807000-00014

The Discovery of Grounded
Research. Lippincott-Raven.

Glaser, B. G. (1965). The constant comparative method of qualitative analysis.
Social Prob. 12, 436-445. doi: 10.1525/sp.1965.12.4.03200070

Homa, A. I. R. (2019). Robotics Simulators in STEM education. Acta Scientiae.
21, 178-191. doi: 10.17648/acta.scientiae.5417

ISTE and CSTA (2011). Operational Definition of Computational Thinking.

Jean, D., Broll, B, Stein, G., and Lédeczi, A. (2021). “Your phone as a
sensor: Making IoT accessible for novice programmers,” in 2021 IEEE Frontiers
in Education Conference (IEEE), p. 1-5. doi: 10.1109/FIE49875.2021.9637272

Lédeczi, A., Maroti, M., Zare, H., Yett, B., Hutchins, N., Broll, B., et al.
(2019). “Teaching cybersecurity with networked robots,” in Proceedings of the 50th
ACM Technical Symposium on Computer Science Education (ACM). p. 885-891.
doi: 10.1145/3287324.3287450

Maloney, J., Resnick, M., Rusk, N., Silverman, B., and Eastmond, E. (2010). The
Scratch programming language and environment. ACM Trans. Comput. Educ. 10,
4. doi: 10.1145/1868358.1868363

Mistretta, S. (2022). “Virtual robotics in hybrid teaching and learning,” in New
Updates in E-Learning. London, UK: IntechOpen. doi: 10.5772/intechopen.102038

Mbénig, J., and Harvey, B. (2022). Snap! Available online at: https://snap.berkeley.
edu/. (accessed March 8, 2021).

Open Source Robotics Foundation (2022). Gazebo. Available online at: http://
gazebosim.org/ (accessed August 30, 2022).

Pickem, D., Glotfelter, P., Wang, L., Mote, M., Ames, A., Feron, E., and Egerstedt,
M. (2017). “The Robotarium: A Remotely Accessible Swarm Robotics Research
Testbed,” in 2017 IEEE International Conference on Robotics and Automation
(ICRA). p. 1699-1706. doi: 10.1109/ICRA.2017.7989200

Robomatter Inc (2022). Robot Virtual Worlds. Available online at: https://www.
robotvirtualworlds.com/ (accessed August 30, 2022).

Robotify (2022). Robotify. Available online at: https://www.robotify.com/
(accessed August 30, 2022).

Romagosa, B. (2019). The Snap! Programming System. p. 1-10. Cham: Springer
International Publishing. doi: 10.1007/978-3-319-60013-0_28-2

frontiersin.org

https://doi.org/10.3389/fcomp.2022.1031572
https://doi.org/10.1109/ACCESS.2022.3164709
https://doi.org/10.12973/tused.10255a)
https://doi.org/10.2307/2088165
https://doi.org/10.1145/3017680.3017741
https://doi.org/10.1109/VL/HCC51201.2021.9576399
https://doi.org/10.1016/j.compedu.2017.03.001
https://doi.org/10.1007/978-3-030-82544-7_17
https://doi.org/10.3102/0013189X032001009
https://doi.org/10.1207/s15430421tip3903_2
https://doi.org/10.1109/EDUCON46332.2021.9453846
https://doi.org/10.1109/FIE.2016.7757677
https://doi.org/10.1187/cbe.13-05-0103
https://doi.org/10.1007/978-3-030-82544-7_19
https://doi.org/10.1097/00006199-196807000-00014
https://doi.org/10.1525/sp.1965.12.4.03a00070
https://doi.org/10.17648/acta.scientiae.5417
https://doi.org/10.1109/FIE49875.2021.9637272
https://doi.org/10.1145/3287324.3287450
https://doi.org/10.1145/1868358.1868363
https://doi.org/10.5772/intechopen.102038
https://snap.berkeley.edu/
https://snap.berkeley.edu/
http://gazebosim.org/
http://gazebosim.org/
https://doi.org/10.1109/ICRA.2017.7989200
https://www.robotvirtualworlds.com/
https://www.robotvirtualworlds.com/
https://www.robotify.com/
https://doi.org/10.1007/978-3-319-60013-0_28-2
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Stein et al.

Roussou, E., and Rangoussi, M. (2020). “On the use of robotics for the
development of computational thinking in kindergarten: Educational intervention
and evaluation,” in Robotics in Education. Merdan, M., Lepuschitz, W.,
Koppensteiner, G., Balogh, R., and Obdrvzilek, D., editors, p. 31-44, Cham.
Springer International Publishing. doi: 10.1007/978-3-030-26945-6_3

Sapounidis, T., and Alimisis, D. (2021). Educational robotics curricula:
current trends and shortcomings. Stud. Comp. Intellig. 982, 127-138.
doi: 10.1007/978-3-030-77022-8_12

Siegel, A. A., Zarb, M., Alshaigy, B., Blanchard, J., Crick, T., Glassey, R., et al.
(2021). “Teaching through a Global Pandemic: Educational Landscapes Before,
During and After COVID-19,” in Proceedings of the 2021 Working Group Reports
on Innovation and Technology in Computer Science Education (ACM), p. 1-25.
doi: 10.1145/3502870.3506565

Souza, I. M. L., Andrade, W. L., Sampaio, L. M. R., and Araujo, A. L. S. O. (2018).
A Systematic Review on the use of LEGORobotics in Education, in 2018 IEEE
Frontiers in Education Conference (FIE). p. 1-9. doi: 10.1109/FIE.2018.8658751

Stein, G., and Lédeczi, K. (2021). Enabling collaborative distance
robotics education for novice programmers, in 2021 IEEE Symposium
on Visual Languages and Human-Centric Computing (VL/HCC). p. 1-5.
doi: 10.1109/VL/HCC51201.2021.9576314

Stein, G., and Lédeczi, A. (2022). Shared virtual worlds for accessible classroom
robotics, in Proceedings of the 53rd ACM Technical Symposium on Computer
Science Education V. 2, SIGCSE 2022. New York, NY, USA: Association for
Computing Machinery. p. 1177. doi: 10.1145/3478432.3499259

Frontiersin Computer Science

13

10.3389/fcomp.2022.1031572

Strauss, A., and Corbin, J. (1990). Basics of Qualitative Research. New York: Sage.

Tan, Y., Rizk, M., Stein, G., and Lédeczi, A. (2022). “User-extensible
block-based interfaces for internet of things devices as new educational
tools,” in SoutheastCon 2022. p. 711-717. doi: 10.1109/SoutheastCon48659.2022.
9763937

Tselegkaridis, S., and Sapounidis, T. (2021). Simulators in educational robotics:
areview. Edu. Sci. 11, 11. doi: 10.3390/educscil 1010011

Tzafestas, S. G. (2009). Web-based control and robotics education. Springer:
Intelligent Systems, Control and Automation: Science and Engineering.
doi: 10.1007/978-90-481-2505-0

VEX Robotics (2022). VEXcode Virtual Robotics (VR). Available online at:
https://www.vexrobotics.com/vexcode/vr (accessed August 30, 2022).

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., and
Wilensky, U. (2016). Defining computational thinking for mathematics and science
classrooms. J. Sci. Edu. Techn. 25, 127-147. doi: 10.1007/s10956-015-9581-5

Wing, J. M. (2006). Computational thinking. Commun. ACM. 49, 33-35.
doi: 10.1145/1118178.1118215

Yett, B., Hutchins, N., Stein, G., Zare, H., Snyder, C., Biswas, G., Metelko,
M., and Ledeczi, A. (2020). A hands-on cybersecurity curriculum using a
robotics platform, in Proceedings of the 5Ist ACM Technical Symposium
on Computer Science Education, SIGCSE ’20. p. 1040-1046, New York,
NY, USA: Association for Computing Machinery. doi: 10.1145/3328778.
3366878

frontiersin.org

https://doi.org/10.3389/fcomp.2022.1031572
https://doi.org/10.1007/978-3-030-26945-6_3
https://doi.org/10.1007/978-3-030-77022-8_12
https://doi.org/10.1145/3502870.3506565
https://doi.org/10.1109/FIE.2018.8658751
https://doi.org/10.1109/VL/HCC51201.2021.9576314
https://doi.org/10.1145/3478432.3499259
https://doi.org/10.1109/SoutheastCon48659.2022.9763937
https://doi.org/10.3390/educsci11010011
https://doi.org/10.1007/978-90-481-2505-0
https://www.vexrobotics.com/vexcode/vr
https://doi.org/10.1007/s10956-015-9581-5
https://doi.org/10.1145/1118178.1118215
https://doi.org/10.1145/3328778.3366878
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

	Browser-based simulation for novice-friendly classroom robotics
	1. Introduction
	2. Materials and methods
	2.1. NetsBlox
	2.1.1. RoboScape

	2.2. RoboScape Online
	2.2.1. Architecture

	2.3. Curriculum
	2.3.1. Participants
	2.3.2. Instruments
	2.3.2.1. Surveys
	2.3.2.2. Pretest/Posttest
	2.3.2.3. Interviews

	3. Results
	3.1. Surveys
	3.2. Pretest/Posttest
	3.3. Interviews

	4. Discussion
	4.1. Limitations and future work

	5. Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	Author disclaimer
	References

