l g
’/_ ' International Society of
7 ISLS the Learning Sciences

PhoneloT for Teaching ‘Internet of Things’: Smartphones to
Promote Accessible, Engaging, and Authentic Experiences

Devin Jean, Vanderbilt University, devin.c.jean@vanderbilt.edu
Shuchi Grover, Looking Glass Ventures, shuchigrover @acm.org
Akos Ledeczi, Vanderbilt University, akos.ledeczi @vanderbilt.edu
Brian Broll, Vanderbilt University, brian.broll@vanderbilt.edu

Abstract: We rely on a vast network of devices that communicate autonomously to provide
many of the services we use every day. However, the enabling technologies behind the Internet
of Things (IoT) are often not taught in K-12 classrooms, in part due to the need for hardware.
But most teens in the United States have smartphones. Thus, we introduce PhoneloT, a mobile
app that allows students to access their smartphones programmatically over the Internet.
PhoneloT supports access to live sensor data from the device and controlling a customizable
display on the phone’s screen. PhoneloT allows students to learn the fundamental concepts of
distributed computing and networked sensing using NetsBlox, a simple but powerful extension
of the Snap! block-based programming environment. Because both PhoneloT and NetsBlox are
free and open-source, instructors are able to teach these advanced computer science topics even
remotely without extra hardware.

Introduction

More and more, the programs and tools we use every day rely heavily on Internet connectivity to provide complex
services. For example, Google Maps uses the location of connected smartphones (even if the app is not open) to
approximate traffic statistics by keeping track of the number of phones in a given area. This is an example of
distributed sensor networks, which are becoming increasingly important in our daily lives. Such sensor networks
are the Internet of Things (IoT), an umbrella term to describe a network of internet-connected sensors and devices
that can be used to gather data or perform actions remotely, and potentially on a large scale. Despite being such a
ubiquitous reality in modern computing, there are few opportunities for K-12 students to have hands-on
experience with these topics. There are existing curricular activities as well as out-of-school clubs and
makerspaces that engage students with tangible computing technologies like Raspberry Pi and Micro:bit, which
can both act as or interface with simple sensors and actuators over USB or Bluetooth. However, they rely on local
connectivity and are disconnected from the ubiquitous internet and IoT. Lastly, due to the cost of hardware and
the logistics of keeping track of it, as well as a lack of teachers familiar with these technologies, few schools offer
IoT experiences in schools.

A concurrent reality is that close to 90% of teenagers in the US already own a personal smartphone, and
this number is only expected to grow (Sandler, 2022). Mobile devices such as these come with a wide variety of
sensors including an accelerometer, gyroscope, microphone, camera, and GPS location service. Additionally, they
are fully Internet-capable out of the box, allowing external software to easily communicate with them. Because
of this, smartphones present a cost-effective opportunity for introducing students to distributed computing ideas
such as the Internet of Things by using their own devices. By using everyday devices instead of relying on
expensive or specialized hardware, students are able to engineer and examine the world around them through
more practical, authentic, and engaging hands-on projects.

In this paper, we describe PhoneloT, our free smartphone technology innovation and associated
curricular activities for high school computer science (CS) students, designed to allow students to connect to and
interact with their smartphone over the internet. PhoneloT leverages NetsBlox, an extension of the block-based
programming environment Snap/ (Harvey et al, 2013) that makes networked communication and web data easily
accessible (Broll et al., 2017).

Design principles & related work

Easy entry point to hitherto-inaccessible, advanced networking ideas: The list of existing tools which allow
students to create their own standalone mobile apps from a block-based programming environment is small but
growing. This includes programming tools such as Thunkable (Siegle, 2020), App Inventor (Wolber, Abelson, &
Spertus, 2011), and Pocket Code (Wolfgang, 2014). Some of these tools (Thunkable, for instance) are similar to
PhoneloT in that they provide access to some Internet-based resources (similar to NetsBlox services) and live
sensor data from the phone. However, these are all strictly app development tools supporting projects local to the
device, unlike PhoneloT which exposes the device to the internet for students to manipulate in a distributed

ICLS 2023 Proceedings 2181 ©ISLS

l g
’/_ ' International Society of
7 ISLS the Learning Sciences

environment, thus making distributed computing and networked sensing accessible to students. For instance, with
PhoneloT, students could easily create a single server-like project that runs in the browser and connects to several
phones to implement a distributed chat app. This feature is significant, given recent findings of a meta-analysis of
(only 12 existing) K-12 IoT curricula, which concluded that K-12 physical computing/IoT experiences are
restricted to the IoT ‘sensor layer’ and few-to-none expose students to the crucial underlying ‘networking layer’
due to its complexity and lack of tools (Abichandani et al., 2022).

Accessible & engaging experiences: PhoneloT is designed to be quick to set up and simple to use. “Low
floor, high ceiling” has been a crucial guiding principle for the creation of novice programming environments for
K-12 learners dating back to Papert's (1980) work on children and LOGO. A low floor entry point is suitable for
all students and a high ceiling supports the curiosity of all learners. Block-based programming in general, and in
particular, Snap! (a Scratch derivative), have been designed for providing gentle introductory programming
experiences to K-12 learners, and have especially benefited minoritized students and those with less preparatory
privilege and prior programming knowledge (Goldenberg et al., 2018; Weintrop et al., 2019). Even students who
have never used NetsBlox before can learn the basics and build their first distributed app in one class period.

Interactive & Customizable: Unlike other tools like Sensor Fusion and Cumulocity (Hendeby et al.,
2017; Srirama et al., 2017) which allow for reading sensor values remotely in real time but restrict users to only
using the device as a sensor hub, PhoneloT promotes interactivity through a customizable phone display which
affords engagement in event-based graphical inputs and remote controllers (see below). Additionally, tools such
as Cumulocity are complex and expensive due to running in fee-based, specialized cloud environments.

Promoting creativity, authentic engagement: Since the phone is a personal, easily accessible device,
PhoneloT provides excellent opportunities for developing projects that promote creative, authentic engagement.
For example, the phone’s dedicated step counter sensor opens up a world of possibilities for ‘quantified self” data
science activities that promote personally and culturally relevant projects and artifacts (Lee et al., 2021).

Broadening participation through physical computing and interdisciplinary connections: Recent
research highlights several benefits associated with physical computing, including increased motivation for
students (especially from diverse backgrounds) because working with sensors is tangible and affords
interdisciplinary projects (Sentence & Childs, 2020). We ensure broad accessibility through making the PhoneloT
app freely available on both Android and iOS, and designed to cover as many phone models and versions as
possible.

Protecting Student Privacy: To address justifiable student privacy concerns related to providing
convenient access to sensors, such as the camera, microphone, and location, PhoneloT proactively (a) prohibits
any network communication when the screen is turned off or the app is put into the background, (b) limits the
functionality of some sensors, such as the microphone so that PhoneloT cannot be used for eavesdropping (c)
prevents direct access to the camera; users must explicitly click an image display (with appropriate optional
settings) to take an image from the camera and store it in the display after confirmation, and (d) password-protects
each request to the device and passwords automatically expire after 24 hours.

PhoneloT design: NetsBlox, access to sensor data, & custom interactivity
NetsBlox enables two key features: 1) accessing web-based services, which reach out into the Internet to effect
changes or collect and return information, and 2) message passing, which allows two NetsBlox projects running
anywhere on the internet to communicate and exchange data. Using these simple networking primitives, students
can design powerful applications such as a live weather map or chat server, or remotely control virtual or physical
robots (Brady et al., 2022). PhoneloT taps into these existing concepts to provide two core features to students’
projects: 1) the ability to access live sensor data from the device, and (2) the ability to configure and control an
interactive custom display on the phone. When the app is opened, simply pressing the “Connect” button connects
the device to the NetsBlox server. Also shown on the screen are the device ID and password, which are needed
for a user’s NetsBlox project to connect to the device through the server (Figure 1a).

Students can access sensor data from PhoneloT in one of two ways. The first (somewhat simpler to
introduce to students), is by sending an explicit request to the device through the PhoneloT service in NetsBlox.
For example, Figure 1b shows how this can be used to instantly tell the current device location. Explicit requests
are convenient if sensor values are only occasionally needed: for instance, when the project is first started.
However, it is often the case in practice, both in the classroom and in industry, that live sensor values are needed
continuously; PhoneloT’s second sensor access mode does exactly this. The listenToSensors function in the
PhoneloT service can be provided a list of sensor and update period pairs; it then requests the mobile device to
send a message to the student’s NetsBlox project with the specified sensor data every time the update period
elapses. Figure 2 shows how to request and receive location updates every two seconds. Note that this streaming
technique has the added benefit of automatically breaking the values up into separate variables like “latitude” and

ICLS 2023 Proceedings 2182 ©ISLS

International Society of
the Learning Sciences

“longitude” rather than receiving a list as in Figure 1b. With these two simple techniques, students can
immediately begin accessing all of PhoneloT’s supported sensors including the accelerometer, location sensor,
and microphone, the magnetic field sensor, gyroscope, orientation sensor, or step counter, in their programs.

The second main feature of PhoneloT is the custom interactive display. This lets students display
information from NetsBlox graphically on the phone screen with labels, text fields, image displays, etc., as well
as receive information from the user such as button presses, text entry, and joystick manipulation. The PhoneloT
block provides addButton, addlmageDisplay, and addJoystick—functions that add a widget/element to the screen.
These all typically take as input the location and the size of the new widget as well as an optional input which is
a list of other values to set; these can control the orientation, font size, text color, background color, and other
properties of the widget. Figure 3 shows an example of two widget-adding functions and the resulting phone
screen; the image display has been filled with an image taken by the user’s camera.

Importantly, one of the optional settings for a widget is an “event” (message type) to send to the student’s
project whenever the user interacts with the widget, such as pushing a button, moving a joystick, altering the
textbox text, or updating the image. This allows instructors to cover important CS topics such as graphical
interface design and event-based programming. This feature allows students to implement custom remote
controllers for their NetsBlox projects. The example in Figure 3 is all the code needed to send images and text
from a student’s phone and display them on the NetsBlox stage running in the browser.

Figure 1
(a) Code required to initially connect to a PhoneloT device (“device” variable holds the device ID) (Left) and

(b) Example request for current device location in terms of latitude and longitude (result is displayed) (Right)

call PhoneloT |/ getLocation | (device R e0.7752713

call PhoneloT |/ setCredentials | (device FEEGFIL

Figure 2
Requesting and receiving location updates every two seconds (2000ms)

call PhoneloT | I listenToSensors | (device) | i {location {2000/ 4

Figure 3

Example code to make NetsBlox sprites display camera images and say messages from the phone. The top-right
image is the phone screen (cropp

| F addim

when | receive img-update

swilch to costume | call PhoneloT |/ getimage (device (imgbox

when | receive utupdate | (it

s‘ay’i‘aﬁ
Preliminary evidence from pilot summer camp

Summer camp description:

PhoneloT was used in a recent online summer camp to introduce students to distributed computing (DC) and IoT.
After a brief introduction to NetsBlox and its DC features through a Weather app and MovieDB app, our project-
based, hands-on curriculum advanced to multiple interesting loT applications first involving robots, and then
PhoneloT apps such as: (1) streaming and plotting 3-axis acceleration data in real time; this project concept was
eventually expanded from gathering raw data into a more engaging app where students recreated the classic
labyrinth game with a twist: they could tilt their phone to control the ball on the NetsBlox stage; (2) creating
graphical controls such as virtual buttons and touchpads, some of which were later used to implement remote
controllers for games such as pong. All projects were done as iterative exercises: the instructors showed the
PhoneloT or NetsBlox feature and then students had to complete partially complete code. The capstone project
was to turn their phone into a remote controller to command virtual robots (which had been previously introduced
in the camp’s robotics component) with custom controller layouts and behaviors. Students were free to use any

ICLS 2023 Proceedings 2183 © ISLS

l g
/_ - International Society of
7 ISLS the Learning Sciences

PhoneloT features, resulting in creative original projects such as slider-based throttles for each wheel, single
joystick-based steering/driving, and button-based controls for discrete commands (e.g., “turn left 10 degrees”).
As the final challenge, students used their custom controllers to compete and drive their robot around an obstacle
course in as short a time as possible. All students completed all tasks.

Feedback and results:

Nine students of color participated in the pilot camp (6 male, 3 female; 6 Asian, 2 Black, 1 Hispanic) from 9, 10,
and 11" grades. Student engagement in the camp was very high. In the post-survey, students ranked rank the 2
distributed computing, 3 robot navigation, and 2 PhoneloT projects from 1 (highest) to 7 (lowest). The PhoneloT
projects ranked the highest with average score of 2.2 for the tilting game and 3.2 for the remote controller app.
There were significant average pre-to-post gains registered on 4-point likert scale survey questions on confidence,
ability, and interest in CS. On the question on knowledge of how to build IoT applications, there was a significant
gain on the mean score: 1.4 (pre) to 2.9 (post). Open-ended responses on students’ camp experience suggests that
their perceptions of computer science became more positive and the camp expanded their understanding of this
vast and growing discipline. Sample responses were: a) “Before, I did not have a lot of experience in "Internet of
Things," but this camp provided an excellent introduction. It allowed me to understand how hardware (robots,
phones, sensors, etc.) interact with code. Overall, it gave me a good understanding of the field and allowed me to
think about it as a potential career option.” b) I learned a lot about how hardware interacts with the software we
make over the course of this camp.” ¢) “Programming in general is very broad and we can expand it to many
things in computer science.” d) I saw ways we use coding in real life, before I thought they couldn’t go beyond a
computer screen.” These positive findings from our pilot are encouraging and validate our approach and the
design principles behind the PhoneloT innovation to make the growing Internet of Things topic accessible and
engaging to K-12 students. Our ongoing work involves expanding PhoneloT activities to include more personal
apps such as mapping one’s walking or running route and overlaying points of cultural and community interest.

References

Abichandani, P., Sivakumar, V., Lobo, D., Iaboni, C., & Shekhar, P. (2022). Internet-of-Things Curriculum,
Pedagogy, and Assessment for STEM Education: A Review of Literature, in IEEE Access, Vol.10.

Brady, C., Broll, B., Stein, G., Jean, D., Grover, S., Cateté, V., ... & Lédeczi, A. (2022). Block-based abstractions
and expansive services to make advanced computing concepts accessible to novices. Journal of
Computer Languages, 73, 101156.

Broll, B., Lédeczi, A., Volgyesi, P., Sallai, J., Maroti, M., Carrillo, A.,...& J.D., Lu, M. (2017). A visual
programming environment for learning distributed programming. In Proceedings of SIGCSE, ACM.

Goldenberg, P., Mark, J., Harvey, B., Cuoco, A., & Fries, M. (2020, February). Design Principles behind Beauty
and Joy of Computing. In Proceedings of the 51st ACM Technical Symposium on CS Education.

Hendeby, G., Gustafsson, F., Wahlstrom, N., & Gunnarsson, S. (2017). Platform for teaching sensor fusion using
a smartphone. International Journal of Engineering Education, 33, 781-789.

Harvey, B., Garcia, D. D., Barnes, T., Titterton, N., Armendariz, D., Segars, L., ... & Paley, J. (2013). Snap! (build
your own blocks). In Proceedings of the 44th SIGCSE Conference (pp. 759-759). ACM.

Lee, V. R., Drake, J., Cain, R., & Thayne, J. (2021). Remembering what produced the data: Individual and social
reconstruction in the context of a quantified self elementary data and statistics unit. Cognition and
Instruction, 39(4), 367-408.

Sentance, S. & Childs, K (2020). X-ing Boundaries with Physical Computing. In S. Grover (ed). Computer
Science in K-12: An A-to-Z Handbook on Teaching Programming (pp 250-28). Edfinity.

Siegle, D. (2020). There’s an app for that, and I made it. Gifted Child Today. 43, 64-71.

Srirama S. N., Mass, J., Koppel, M. K., Sepp, A., & Avanashvili, S. (2017). Smartphone-based Real-time Sensing
and Actuation with the Cumulocity Internet of Things Platform. 1-6.

Wolber, D., Abelson, H., Spertus, E., & Looney, L. (2011). App inventor. O'Reilly Media, Inc..

Wolfgang, S. (2014). Pocket code: a scratch-like integrated development environment for your phone.
Proceedings of the companion publication of the 2014 ACM SIGPLAN conference on Systems,
programming, and Applications: Software Humanity. 35-36.

Weintrop, D., Killen, H., Munzar, T., & Franke, B. (2019, February). Block-based comprehension: Exploring and
explaining student outcomes from a read-only block-based exam. In Proceedings of the 50th ACM
technical symposium on Computer Science Education (pp. 1218-1224).

Acknowledgments
We thank the National Science Foundation (#1949472, #1949488, & #1949492) for their support of this work.

ICLS 2023 Proceedings 2184 ©ISLS

