TWO RESULTS ON END SPACES OF INFINITE TYPE SURFACES
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ABSTRACT. We answer two questions about the topology of end spaces of infinite type
surfaces and the action of the mapping class group that have appeared in the literature.
First, we give examples of infinite type surfaces with end spaces that are not self-similar,
but a unique maximal type of end, either a singleton or Cantor set. Secondly, we use an
argument of T'sankov to show that the “local complexity” relation < on end types gives
an equivalence relation that agrees with the notion of being locally homeomorphic.

1. INTRODUCTION

The paper [9] introduced the notion of self-similar end spaces for infinite type surfaces,
and proved that a self-similar end space necessarily contains a unique maximal type of
end (with respect to the partial order defined below), with the set of ends of this type
either a singleton or a Cantor set. This notion has turned out to be a useful one and it
has appeared many times in the literature, see for instance [, 3 4, 10]. A partial converse
to this statement was proved in [9, Prop. 4.8]. Namely, under the additional hypothesis
that an infinite type surface ¥ contains no nondisplaceable subsurfaces, it was shown that
the end space of ¥ is self-similar if and only if the set of maximal ends is either a singleton
or a Cantor set of points of the same type. However, the necessity of this extra hypothesis
(no nondisplaceable subsurfaces) was not discussed there, raising the question of whether it
could be eliminated. This appeared as Question 1.4 in [7], and Remark 6.2 in [§]. Here we
answer the question, showing the strict converse (without extra assumptions) to [9, Prop.
4.8] is false:

Theorem 1.1. There exist examples of surfaces that have non self-similar end spaces with
a unique maximal type of end and set of maximal ends homeomorphic to a singleton or to
a Cantor set.

The partial order defined in [9, Section 4] is as follows. For z,y € E, we say y < «
if every neighborhood of x contains a point locally homeomorphic to y, and we say x
and y are of the same type if x < y and y < z, so that < descends to a partial order on
types. Informally, we think of < as describing the local complexity of an end. Of course, if
h(z) = y for some homeomorphism h of E, then = and y are of the same type. Here we
prove the converse to this statement, following an argument of T. Tsankov. This answers
another question from [9].

Theorem 1.2. If x < y and y < z, then there is a mapping class (equivalently, a
homeomorphism) h of ¥ taking x to y.

The outline of the paper is as follows. First, we provide details on a local construction
of non-comparable points (an idea sketched loosely in [9]) as a tool towards the proof of
Theorem 1.1. We then prove Theorem 1.1 building examples first in the case where the
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maximal end is a singleton, followed by the Cantor set case. Finally, the proof of Theorem
1.2 is given in Section 4.

2. TOOLKIT FOR THEOREM 1.1: NON-COMPARABLE POINTS

For a surface 3, we denote the space of ends of ¥ by E(X) or simply E. We define an
equivalence relation on the end space by saying points z, 2’ € E are locally homeomorphic
if there exists some clopen neighborhood of z in F that is homeomorphic to some clopen
neighborhood of 2’ via a homeomorphism taking x to 2’. This is equivalent to saying that
there is a homeomorphism of ¥ such the the induced map on the end space sends x to z'.
For an end z, we let Accu(x) denote the set of accumulation points of the set of all ends
locally homeomorphic to z.

We work with the relation < on points of F as given above in the introduction. One
may equivalently define y < z if x € Accu(y). We say = and y are of the same type if
r <y and y < x, so that < descends to a partial order on types. We say x is a maximal
type if x < y implies y < x and denote the set of maximal points in E by M(E). We say
x,y € E are non-comparable if neither x < y nor y < « holds. See [9] for more details and
discussion.

The first building block in our construction is a sequence of surfaces D,, indexed by
n € N, each with one boundary component, such that D,, contains a unique maximal end
zp and for all ¢ # j the ends z; and z; are non-comparable (the reader should picture D;
and Dj; as disjoint subsurfaces of X).

Note that a construction such as this is not possible when the surface is planar and has
a countable number of ends. A classical result of Mazurkiewicz and Sierpinski [I1] states
that, for any surface with a countable set of ends, there exists a countable ordinal a such
that the end space E is homeomorphic to the ordinal w® - m 4+ 1 where m is a positive
integer. The assumption that E has one maximal point implies that m = 1. Now assume
D, D’ are two genus zero surfaces with one boundary and a countable end space (E and E')
such that that each end space has one maximal end (z € E and 2’ € E’). Then their end
spaces are respectively homeomorphic to w® + 1 and w® +1 for some countable ordinals a
and . Now if a < « then x < 2/, which means x and 2’ are comparable.

We carry out the construction in both remaining cases, namely, when the set of ends is
uncountable and the surface is planar (the proof easily generalizes to non-planar surfaces),
and when the set of ends is countable and the surface is non-planar.

Uncountable planar case. Let D be a disc, let C), = Q,, UC C D be the union of a
countable set @@, and a Cantor set C, with Cantor-Bendixson rank n such that, for each
derived set of (), that has isolated points, the accumulation set of the isolated points
contains the Cantor set. For example, one may take the C' to be the standard middle-thirds
Cantor set, and insert in each missing interval a set homeomorphic to w™ + 1 to form @Q,,.
Now for each Cy,, select a single point z, and let C!, be another Cantor set contained in D
so that C,,NC}, = {z,}. Puncturing D along C,, UC}, gives a surface D,, with one boundary
component such that z, is the unique maximal end (see Figure 1). By construction, z; and
zj are non-comparable when i # j.

Countable non-planar case. Let D be a disk and let & and 5 be two countable ordinals
with 8 < a. Let E, be a subset of D homeomorphic to w® + 1 and denote its (unique)
maximal point by z, 3. Now, consider a closed subset Eg C E, homeomorphic to wl 41
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FIGURE 1. The point z is in the intersection of Cy and C]. There is a
countable set Q1 of punctures (the blue points) that accumulate to Cj.
Points in Cf are not accumulated by punctures except for z;.

where z, g is again the maximal point of Eg. For every isolated point y of Eg remove a disk
around y (keeping these disks pairwise disjoint) and glue back in a one-ended, infinite genus
surface with one boundary component. We also puncture D along the remaining points
of F, to obtain a surface D, g. The point 2, g is the unique maximal end of this surface
(see Figure 2). Moreover, for two pairs or countable ordinals («, 3) and (o, 8’) (satisfying
f<aand f <d)if a>a' and B < ' then D, g and D, g are non-comparable. In fact,
no end of D, g is of the same type as z, g and vice versa. Hence we can, for example, fix
«a and vary 3 to get a countable family of surfaces with one boundary where the maximal
points are non-comparable.
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FIGURE 2. The end 27 is accumulated by a set of non-planar ends homeo-
morphic to w! and a set of planar ends homeomorphic to w?. That is, the
space of non-planar ends is homeomorphic to w + 1 and the total end space
is homeomorphic to w? + 1.

Uncountably many non-comparable points. It is also possible for a surface to contain
uncountably many non-comparable points. For example, let ¥ be a sphere minus a Cantor
set. Visualize X as a union of pairs of pants. Enumerate the pairs of pants, remove a disk
from each pair of pants, and glue back in a copy of D,, to the n-th pair of pants. Call
the resulting surface Y’. Then all the ends of ¥’ coming from Y are non-comparable since
small enough neighborhoods of any two such ends contain non-comparable points.
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3. PROOF OF THEOREM 1.1

Now we construct the surface that will furnish the examples needed for Theorem 1.1.
We give the construction first for the case where M(FE) is a singleton. We then modify the
construction to produce examples where M(FE) is a Cantor set.

Start with a flute surface, meaning a sphere punctured along a sequence of points
p1, P2, ... accumulating at an end ps.. For each i # 0o, replace a neighborhood of the
puncture p; with a Cantor tree T;. We think of T} as a union of pants surfaces, indexed by
finite binary strings, so that the pants indexed by a string si...s, has cuffs glued to the
pants indexed by si...5,—1, S1...5,0, and sj...s,1, and the first pair of pants Fj is glued on
where the original puncture was removed. Now for each ¢, we will replace a countable set
of discs in T; with discs homeomorphic to copies of the previously constructed discs D,
(from either construction in the previous section), according to the following recipe.

For tree T;, place copies of Dy, Da,...D; on the first pants surface, P, and place a copy
of Dy, on each pants indexed by a word of length k& — 7. Thus, for each k > i there are
2k=i copies of Dy on Tj. Call the resulting punctured surface S. An illustration is given in
Figure 3.

Y

FIGURE 3. Construction of the surface with unique maximal end.

Note that all of the ends of each of the trees T; are pairwise locally homeomorphic. The
end po, of our surface S is the unique accumulation point of these tree ends, so it is the
unique maximal end. We will now show that the end space of S is not self-similar. Let E;
denote the end space of the tree Tj.

Consider the decomposition of the end space Fy L (E — E7). Since Ej does not contain a
maximal end, to show the end space of the surface is not self-similar, it suffices to show that
its complement contains no homeomorphic copy of E;. Suppose for contradiction that we
could find such. Note the the sets U; := J,—; E,, form a neighborhood basis of ps, in the
end space. Since po, is the unique maximal end and FEj is closed, any homeomorphic copy of
FE1 must avoid some neighborhood of ps, so is contained in a finite union Fs U E3U. ..U EN.

By construction, F; contains 2V locally homeomorphic copies of the end zy,i. But
Ey; UFE3U...U EpN contains Zfi_ll 2t < 2N copies of zy,1. A contradiction. Thus, E;
cannot be mapped into its complement, so the end space is not self-similar.
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Cantor set case. A variation on the construction above can be used to produce a non
self-similar surface with a unique maximal type and a Cantor set of maximal ends. First,
following a similar procedure to the construction of the punctured trees T, for each ¢ € N
we can build a Cantor tree 7] with a single boundary component that contains one copy

of each of the discs Dy, Do, ... D;, and for each k > 7 contains 2(2"77) copies of Dy, with
each end of the tree locally homeomorphic.

Now instead of starting with the flute, start with a Cantor tree constructed of pairs of
pants indexed by binary strings, with the first pair of pants Fj capped off by a disc on
one of its boundary components. From each pair of pants indexed by a string of length
i, remove a disc and glue in a copy of T} to it along its boundary. In particular, 77 is
glued to the first pair of pants indexed by the empty string. In the resulting surface, the
ends of the original Cantor tree are precisely the maximal ends, forming a Cantor set of
maximal ends of a single type. We claim again that this is not self-similar. To see this,
let E; denote the end space of 7] and consider the decomposition of its end space into
E, U (FE — E1). Suppose for contradiction that £ — F; contained a homeomorphic copy of
Eq. As before, since F¢ and the set of maximal ends are both closed, the homeomorphic
image of F; avoids some neighborhood of the maximal ends, so is contained in a union
of end spaces of trees homeomorphic to T} for a bounded set of indices i. We consider
the maximal such index IV, and again count copies of ends of type zy41. Without loss
of generality, we may take IV > 4. The set E; contains 2(2") copies of zy41. Since our
surface is constructed using 2¥~! copies of each tree T}, the number of copies of zy41 in
the union of all trees T,g for 2 < k < N is equal to
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Set j = 2N¥~1 4+ 1. Then this sum is bounded above by
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which gives the desired contradiction.

4. PROOF OF THEOREM 1.2

We now give the proof of Theorem 1.2, following an argument of T. Tsankov. The key
ingredient is a zero-one law for Baire sets invariant under certain actions of Polish groups.
We recall the following standard definition and results from descriptive set theory.

Definition 4.1. A subset A of a topological space has the Baire property if it differs from
an open set (in the sense of symmetric difference) by a meager set. (It is also sometimes
said that such a set A is Baire measurable, to emphasize the distinction between “sets
with the Baire property” and “Baire spaces”, which are not equivalent notions.)

Theorem 4.2. (See [5, Theorem 8.46].) Let G be a group of homeomorphisms of a Baire
space X, and assume that for all open U,V C X there exists g € G with gU NV # ().
Suppose that A C X is a G-invariant set with the Baire property. Then A is either meager
or has meager complement in X.

Theorem 4.3. (Lusin-Sierpinski, see e.g. [2, Corollary 1159].) Let X and Y be Polish
spaces, and f : X — Y a continuous map. Then f(X) has the Baire property in Y. (Such
a continuous image of a Polish space is called an analytic set.)



6 KATHRYN MANN AND KASRA RAFI

Proof of Theorem 1.2. Suppose x <y and y < z. Let H, denote the ends that are locally
homeomorphic to  and H, the ends locally homeomorphic to y. If H, is finite, then it is
easy to see that H, = H,. Otherwise, we have H, = Fy Moreover, since every point of
H,, is an accumulation point of H,, we have that H, C FE is homeomorphic to a Cantor
set. Denote this cantor set by C. This set C is preserved by the action of Map(X) on the
end space.

We claim the following: if z € C has a dense orbit in C' under Map(X), then this
orbit is comeager in C. By the Baire Category Theorem, there cannot be two disjoint
comeager subsets (equivalently, two meager sets whose union is C), thus, provided the
claim holds, there is at most one dense orbit. This implies that = is in the same orbit as y,
or equivalently it is locally homeomorphic to y. In short, the claim proves the Theorem.

To prove the claim, let G C Homeo(C) denote the quotient of Map(X) defined by
restricting the action to C'. Since Map(X) is a Polish group and the kernel of the restriction
map is closed, so is its quotient G. Furthermore, the action of G on C has the topological
transitivity property that for every open U and U’ in C, there exists some g € G with
gU NU' # 0, since both U and U’ intersect H,.

Finally, any orbit of GG is a set with the Baire property by Theorem 4.3, being the
continuous image of a Polish space, so one may thus apply the topological zero-one law
(Theorem 4.2) and conclude that a non-meager orbit is necessarily comeager in C.

Thus, it suffices to show that any point z with a dense orbit has a non-meager orbit.
By a condition of Kechris-Rosendal [6, Prop 3.2], for this it suffices to show that for
any open subgroup V of G, the orbit Vz is somewhere dense in C. Let V be an open
subgroup. Without loss of generality, we may take V to be the subgroup consisting of
homeomorphisms preserving a fixed decomposition of C' into finitely many clopen sets
C=X,U...UX, (possibly permuting the clopen sets) since such open subgroups form a
basis for the topology of the homeomorphisms of the Cantor set. Again, without loss of
generality, assume z € X;. We will show that Vz is dense in X;. Given some open set
U C Xy, there exists g € G such that gz € U. We assume also gz # z. Let W be a clopen
neighborhood of z in E small enough WNC C X1, gWNC C X; and gW NW = 0. Now
define a homeomorphism h of E to agree with g on W, agree with ¢g~! on gWW, and restrict
to the identity elsewhere. Then the restriction of h to C' (i.e. the image of h in G) lies in
V, and h(z) = g(z) € U. This is what we needed to show. O

Remark 4.4. This proof came about as a response to the question: does a homeomorphism
h of {0,1}% that set-wise preserves each periodic orbit of the full shift necessarily preserve
all orbits of the shift? Tsankov [12] answered this question in the negative, showing that,
as in the proof above, there is only a single dense orbit under the group of periodic-orbit
preserving maps of {0, 1}Z. The argument above is a direct translation to this setting.
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