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Abstract4

Genome re-arrangements such as chromosomal inversions are often involved in adaptation. As5

such, they experience natural selection, which can erode genetic variation. Thus, whether and6

how inversions can remain polymorphic for extended periods of time remains debated. Here we7

combine genomics, experiments, and evolutionary modeling to elucidate the processes main-8

taining an inversion polymorphism associated with the use of a challenging host plant (Redwood9

trees) in Timema stick insects. We show that the inversion is maintained by a combination of10

processes, finding roles for life-history trade-offs (i.e., balancing selection), local adaptation11

to different hosts, and gene flow. We use models to show how such multi-layered regimes of12

selection and gene flow provide resilience to help buffer populations against the loss of genetic13

variation, maintaining potential for future evolution. We further show that the inversion poly-14

morphism has persisted for millions of years and is not a result of recent introgression. We thus15

find that rather than being a nuisance, the complex interplay of evolutionary processes provides16

a mechanism for the long-term maintenance of genetic variation.17

Significance statement18

Variation is the fuel for evolution. How genetic variation is maintained is one of the central19

questions in biology. This is an especially striking question for chromosomal inversions (a20

change in the structure of an organism’s genome), as inversions are often subject to natural21

selection, which can erode variation. We studied stick insects that have an inversion that helps22

them live on Redwood trees. We found that this inversion has been present for millions of23

years, and that a suite of factors, including environmental heterogeneity and gene exchange,24

contribute to the persistence of this polymorphism. Our results show how a complex interplay25

of evolutionary processes offers a bulwark against the loss of variation allowing for the potential26
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for future evolution.27
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Introduction28

Genetic variation is the ultimate fuel for evolution. However, many forms of natural selection29

(e.g., directional and purifying selection) and random genetic drift are expected to result in30

the loss of genetic variation, depleting the reservoir of fuel for evolution. Whether and how31

genetic variation can be maintained over long periods of time thus remains a central question32

in biology [1–6]. We address this question here by studying the maintenance of an ancient33

chromosomal inversion. Since their discovery by Sturtevant ∼100 years ago [7], chromosomal34

inversions have been central to the development of evolutionary biology. For example, they35

served as the first genetic markers, motivated ideas by Dobzhansky, Ford, and others concerning36

co-adapted gene complexes and balancing selection, and they underlie several modern theories37

of adaptation that involve suppressed recombination [8–11]. Inversions also serve as powerful38

models for studying the maintenance of genetic variation, because their age can be estimated39

and they are often subject to natural selection [12–14].40

Although inversions are now known to vary along environmental clines and to be associ-41

ated with adaptive traits [8, 9, 13, 15–17], studies that directly estimate selection on inversions42

are few, some notable exceptions aside [18–20]. Thus, the mode and strength of selection act-43

ing on inversions remains poorly quantified, making it difficult to infer how and why inversion44

polymorphism is maintained. For example, balancing selection can maintain inversion poly-45

morphisms [9, 21], especially if strong enough to counteract drift, but this is not true of many46

forms of selection. Similarly, the role of other processes, such as gene flow, in maintaining47

polymorphism requires further study [6, 22–24].48

Determining the age of an inversion is also important for explaining the maintenance of49

inversion polymorphisms. For example, one hypothesis is that the inversion is young and still50

in the process of sweeping to fixation. In other words, it could be that the inversion will not51
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be maintained as polymorphic in the long term. If the inversion polymorphism is found to be52

ancient such that this ‘young inversion’ hypothesis is refuted, then studies of the processes main-53

taining variation, particularly natural selection, are required to explain the inversion polymor-54

phism (Figure 1A). Here we combine field data, genomics, experimental estimates of fitness,55

and evolutionary modeling to to elucidate the processes driving the long-term maintenance of56

an inversion polymorphism with fitness consequences across populations using different hosts57

(Figure 1).58

Our study system is the genus Timema, a group of plant-feeding stick insects distributed59

throughout southwestern North America (Figure 1). Timema are well studied for their cryp-60

tic colors and patterns, which help them avoid predation by visual predators such as birds and61

lizards [25, 26]. These traits are highly heritable and controlled by a modest number (∼5)62

of linked loci on linkage group (LG) 8 (LG8 hereafter), which often exhibit strongly reduced63

recombination due to structural genomic features including chromosomal inversions and dele-64

tions [12,27,28]. Timema are also known to use a particularly wide range of host-plant species,65

including both conifers and flowering plants (i.e., angiosperms) [29]. This host-plant use, in66

the context of local adaptation (i.e., growth and survival on different hosts; ‘performance’ here-67

after), is our focus here. Notably, the genetic basis of performance variation in Timema was68

previously unknown, but as we report here also involves a chromosomal inversion (on a differ-69

ent chromosome from color, LG11).70

Results71

Genome scans reveal exceptional host-associated differentiation on linkage group 11. Dur-72

ing the 30-million year diversification of the Timema genus, host shifts have occurred frequently73

between plant families (within conifers and within flowering plants), and several times even be-74

tween these plant divisions [29]. Indeed, Timema are broadly generalized in diet, often feeding75
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on multiple plant families in nature and surviving in the lab on novel hosts [30]. One exception76

involves the use of Redwood (Sequoia sempervirens); very few Timema species and populations77

use Redwood in nature–only T. knulli and T. poppensis–and most exhibit poor performance on78

this host in laboratory experiments [30].79

We thus initiated our investigation by quantifying patterns of genetic differentiation for the80

sexual species of Timema that live in the vicinity of Redwood in northern California and that use81

multiple hosts in nature. Specifically, we study T. californicum and T. landelsensis, which do82

not use Redwood, T. poppensis, which is specialized on conifers including Redwood in some lo-83

calities, and T. knulli, which uses both Redwood and flowering plant hosts (i.e., angiosperms).84

In this context, T. knulli is of particular interest as it is polymorphic in host-plant use, living85

on Redwood (a conifer) as well as other more commonly-used hosts such as Ceanothus (an86

angiosperm) (in contrast, T. poppensis uses only conifer hosts). We did so using published87

genotyping-by-sequencing (GBS) data [31, 32]. Our core interest was whether the use of a cer-88

tain host was associated with genetic differentiation, and if so whether this was genome-wide or89

restricted to individual chromosomes. Due to the known strong effects of geographic isolation90

on genetic structure in Timema [33], we restricted our survey to the six pairwise comparisons91

involving nearby populations using different hosts (broadly speaking, ‘parapatry’, Table S1,92

Figure 1). This revealed that genetic differentiation between parapatric, conspecific populations93

was generally weak. The exception to this trend was LG11 for populations of T. knulli using94

Ceanothus versus Redwood: LG11 was strongly differentiated in this comparison. We thus95

focused our study on T. knulli, with particular reference to the use of Redwood.96

Redwood T. knulli populations are distinguished by a chromosomal inversion. The results97

above were based on mapping GBS reads to the published T. cristinae reference genome [31,98

32]. Timema knulli is known from cytological work to have one chromosome pair fewer than T.99

cristinae [34], and we suspected structural variation on LG11 within T. knulli. Thus, to increase100
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the accuracy and precision of the current work and test explicitly for structural variation, we101

generated a high-quality de novo reference genome assembly for T. knulli. We did so using an102

individual collected from Redwood and a combination of PacBio and Illumina reads with Hi-C103

technology for scaffolding. The T. knulli genome comprised 12 large scaffolds corresponding104

to the 13 known T. cristinae chromosomes, but with a fusion between T. cristinae chromosomes105

1 and 3 (we refer to the fused chromosome as chromosome 1 and retain the T. cristinae linkage106

group numbering for the other chromosomes; total assembly length = 1,322,373,696 base pairs;107

scaffold N50 = 83,614,905 base pairs) (Table S2, Figure S1). We then used this reference108

genome for further population genetic and trait mapping analyses, with new data collected to109

allow larger sample sizes for T. knulli than what was available from published data.110

Using new GBS data from 138 T. knulli collected on Ceanothus and Redwood (Table S3)111

we detected a large block of differentiation (e.g., highly accentuated FST) on chromosome 11,112

whose boundaries were delimited using a Hidden Markov Model (HMM) approach applied113

to the results of a principal components analysis (PCA) (Figure 2). This block spanned ge-114

nomic positions 13,093,370 to 43,606,674 on chromosome 11 (∼30 mega-base pairs, mbps).115

We hereafter refer to this region as the ‘Perform’ locus, as polymorphism at this regions was116

associated with performance variation in an experiment reported below. A PCA of SNPs within117

the Perform locus revealed three genetic clusters segregating within populations (Figure 2). In118

contrast, PCA of genome-wide genetic variation exhibited structure by geography. This result119

is consistent with the Perform locus being a structural genomic variant that segregates within120

populations, differs in frequency among populations (as we reported in more detail below, one121

allele is at 84% frequency on Redwood but only at 34% frequency on Ceanothus), and exhibits122

reduced recombination between the two chromosomal variants.123

To more formally test the existence of a chromosomal inversion on T. knulli chromosome124

11, we aligned the T. knulli genome with published chromosome-level assemblies of T. cristinae125
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and T. chumash genomes [27, 28]. These alignments identified an inversion on chromosome 11126

in the Redwood T. knulli genome relative to both T. cristinae and T. chumash. Most critically,127

the breakpoints of this inversion coincided with the identified bounds of the Perform locus (Fig-128

ure 3). In contrast, this genomic region was co-linear between T. cristinae and T. chumash. The129

collective results are most consistent with the Perform locus being a polymorphic chromosomal130

inversion in T. knulli. To explicitly test this hypothesis, we gathered nanopore long-read DNA131

sequence data from a second T. knulli collected on Ceanothus. This revealed a large inversion132

(9,706,606 to 48,357,002 bps on chromosome 11) relative to the Redwood T. knulli genome133

(Figures 3, S2). Critically, this inversion spanned the Perform locus and the inversion bound-134

aries identified between species, consistent with expectations if the inversion also segregates135

within T. knulli.136

The Perform locus inversion affects performance on different hosts. We next considered137

the evolutionary processes potentially maintaining the inversion polymorphism. Specifically,138

to connect the inversion polymorphism to fitness, we tested if performance on Ceanothus and139

Redwood are affected by the Perform locus. Such an association with fitness would firmly refute140

strict neutrality with regard to the evolution of inversion frequencies. To do so, we collected T.141

knulli and reared them in the laboratory on either Ceanothus or Redwood, measuring growth and142

survival (notably these are the same individuals analyzed above to delimit the Perform locus).143

We focus our analyses here on specimens from the vicinity of the locality BCE, where T. knulli144

uses both Ceanothus and Redwood (we thus exclude population BCTURN, which uses only145

Ceanothus)(Table S3). These experiments revealed that the Perform locus explains appreciable146

and significant variation in both growth and survival, but with a trade-off between these fitness147

components that suggests balancing selection, especially on Ceanothus (Figure 4).148

Specifically, our experiments revealed that one allele at the Perform locus was associated149

with increased growth on both Ceanothus and Redwood (hereafter ‘Pg’, this is the allele at a150
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high-frequency on Redwood and referred to as the ‘Redwood’ allele above; linear regression151

on residuals after removing effect of sex; Ceanothus 15 day weight, β = 0.018, r2 = 0.178,152

P = 0.002; Ceanothus 21 day weight, β = 0.020, r2 = 0.233, P < 0.001; Redwood 15 day153

weight, β = 0.0086, r2 = 0.109, P = 0.031; Redwood 21 day weight, β = 0.0072, r2 = 0.053,154

P = 0.138). Critically, this same allele negatively affected survival on Ceanothus (linear re-155

gression, β = -0.14, r2 = 0.115, P = 0.014), representing a host-specific life-history trade-off.156

Notably, this latter result was sex-dependent, with Pg most markedly decreasing male survival157

(for individuals homozygous for this allele, 86% of females survived but only 57% of males158

survived; Table S4). Comparable results were observed using generalized linear models (GLM)159

for survival rather than simple linear regression (GLM survival on Ceanothus, β = -1.71, P =160

0.031), demonstrating that the results are robust to methods of analysis. Thus, there is a fitness161

trade-off between growth and survival at the Perform locus suggesting that the locus could be162

under balancing selection, at least on Ceanothus.163

The inversion is maintained by complex selection and gene flow. The results above suggest164

that genetic variation at the Perform locus could be maintained, in part, due to life-history trade-165

offs that vary with host and sex resulting in balancing selection. Moreover, selection appears to166

be shifted between populations feeding on different hosts. Specifically, the Pg allele that confers167

higher growth (but reduced survival) is at higher frequency in nature on Redwood (84%) than168

on Ceanothus (34%). Thus, there is a marked (∼50%) allele frequency difference between pop-169

ulations on different hosts. We suspect that this reflects the previously documented difficulties170

Timema have using Redwood in laboratory experiments [30]; use of Redwood favors the growth171

allele to make ‘a go of it’ on this challenging host (at the same time this growth allele does not172

appear to compromise survival on Redwood per se). In contrast, growing on Ceanothus is easy173

for Timema such that the survival advantage is more important than a growth benefit, leading to174

a high frequency of the allele associated with increased survival on Ceanothus (hereafter ‘Ps’).175
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Thus, a shift in selection appears to result in divergent allele frequencies (i.e., adaptation) be-176

tween hosts with evidence consistent with balancing selection on at least Ceanothus. However,177

gene flow between hosts could also play a role in maintaining variation, especially on Redwood.178

In principle, gene flow could maintain variation even without balancing selection, that is via a179

balance between directional selection that acts in divergent directions between hosts and gene180

flow. We next used evolutionary modeling to quantify these possibilities and their effects on the181

maintenance of variation.182

Specifically, we used approximate Bayesian computation (ABC) to estimate the probability183

of population genetic models that included genetic drift and gene flow (as inferred from puta-184

tive neutral loci; see Figure 2C) and either balancing or divergent (between hosts) directional185

selection on the Perform locus. We modeled evolution of the Perform locus inversion alleles,186

not the DNA sequence variation within this genomic region. We did this because of the evi-187

dence for selection on the inversion alleles and our interest in the maintenance of this inversion188

polymorphism rather than on nucleotide variation within the inversion. These models included189

adjacent (i.e., parapatric) Ceanothus (BCE C) and Redwood (BCE RW) populations and an al-190

lopatric Ceanothus population (BCTURN) (Table S3), with the latter being important to help191

parse the roles of balancing selection versus gene flow in maintaining variation. Models with192

balancing selection (i.e., over-dominance at the Perform locus) were most probable on both193

Ceanothus (posterior probability = 0.897) and Redwood (posterior probability = 0.683), and a194

model of (divergent) directional selection on both hosts was very unlikely (posterior probability195

= 0.023)(Figure 5). Under the most probable model of balancing selection on both hosts (poste-196

rior probability = 0.603), relative fitnesses of Perform homozygotes (when heterozygote fitness197

is set to 1.0) were 0.81 for the PgPg homozygote (i.e., the homozygote for the allele conferring198

the growth advantage, that is the Redwood allele) and 0.94 for the PsPs homozygote (where Ps199

denotes the allele conferring increased survival on Ceanothus, that is the Ceanothus allele) on200
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Ceanothus versus 0.98 and 0.64 for the PgPg and PsPs homozygotes on Redwood (Figure 5).201

Thus, this population genetic model-fitting analysis strongly supports balancing selection on202

Ceanothus, consistent with the experiment, and also suggests possible balancing selection on203

Redwood, though this was not evident from the experiment and the estimated relative fitnesses204

of the heterozygote (1.0) and the fitter homozygote (0.98 for PgPg) were very similar.205

The combination of processes buffers populations against the loss of variation. We have206

shown that gene flow and balancing selection (at least on Ceanothus) together can explain the207

observed polymorphism at the Perform locus, but it is unclear whether both processes are nec-208

essary for the maintenance of variation. In other words, does this combination of processes209

maintain variation that would be lost with either process in isolation? To address this question,210

we simulated evolution under our best model of balancing selection (on both hosts) and gene211

flow and under two counterfactual models–one with gene flow and divergent directional selec-212

tion between hosts and one with balancing selection but no gene flow. These two models thus213

eliminate balancing selection or gene flow, respectively. For all models, we used selection co-214

efficients estimated from the ABC analysis (assuming either balancing selection or directional215

selection) and gene flow inferred from neutral models based on genome-wide SNP data (except216

where gene flow was set to 0).217

Replicate simulations, each spanning 250,000 generations, showed that the balancing se-218

lection with gene flow model routinely maintains variation and predicts the observed data ex-219

tremely well (Figures 6, S3). Directional selection with gene flow also maintained variation220

over this moderate time interval in all but a few simulations, but failed to recover the observed221

Perform allele frequencies as well as the balancing selection with gene flow model (Figure S3).222

Finally, variation was lost in many of the balancing selection without gene flow simulations.223

Thus, these simulations suggest that gene flow among populations feeding on different hosts224

and experiencing different selection pressures is important for the long-term maintenance of225
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variation at Perform, and that this combined with balancing selection is particularly effective at226

preventing the loss of polymorphism.227

The chromosomal inversion is ancient. Lastly, we estimated the age of the Redwood in-228

version to test the hypothesis that it might be young and in the act of sweeping rather than a229

polymorphism maintained over the long-term (Figure 1). To do so, we first used a phylogenetic230

approach to estimate the divergence time between the T. knulli chromosomal variants. Our in-231

ferences were based on SNP data within the Perform locus for T. knulli, T. poppensis, T. petita232

and T. californicum and species divergence time estimates from a published, time-calibrated233

phylogeny [31]. This revealed that the inversion is ancient, inconsistent with the young and234

sweeping hypothesis. Specifically, the divergence time between Redwood and Ceanothus chro-235

mosomal variants in T. knulli was estimated as 7.5 million years ago, MYA hereafter (90%236

equal-tail probability intervals [ETPI] = 3.4-13.5 MYA) (Figure 3E,F). Next, we generated a237

complementary estimate of this divergence time using a population genetic approach based on238

the site-frequency spectrum and allowing for recombination between inversion haplotypes. Our239

estimate of the divergence time using this approach (implemented in δaδi [35]) was 5.0 MYA240

(95% block-jackknife confidence interval lower bound = 1.9 MYA) (see Figure S4 for model241

performance and Table S5 and Figure S5 for model parameter estimates), which is broadly242

consistent with the phylogenetic estimate above.243

Furthermore, our results from the phylogenetic analysis suggest that the deep divergence244

between Redwood and Ceanothus alleles in T. knulli is not due to recent introgression from the245

closely related species T. poppensis, wich feeds on Redwood and other confiers. Specifically,246

the T. poppensis Perform DNA sequences were more closely related to the inverted Redwood T.247

knulli alleles than the Ceanothus T. knulli alleles, but the divergence time between T. poppensis248

and T. knulli Redwood alleles was 4.7 MYA (90% ETPI = 2.1 to 9.8 MYA). This corresponds249

roughly to the previously inferred divergence time between these two species based on genome-250
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wide SNP data (4.1 MYA, 90% ETPI = 2.3 to 6.7 MYA) [31]. Thus, while T. poppensis appears251

to share DNA sequence similarity at the Perofrm locus with the T. knulli Redwood alleles and252

there is uncertainty regarding whether the origin of the inverted Redwood allele predates the253

split between T. knulli and T. poppensis (the posterior probability of this is 0.60), our results254

suggest that the Redwood allele in T. knulli diverged from T. poppensis millions of years ago.255

More importantly, the inversion appears to have been maintained as a polymorphism within256

T. knulli for millions of years (based on both phylogenetic and population genetic models),257

whether or not allelic divergence predates the species divergence.258

Discussion259

Genetic variation is the ultimate fuel for evolution, but it remains unclear whether and how it260

can be maintained for extended periods of time. The maintenance of variation is particularly261

puzzling given that drift and many forms of natural selection tend to erode variation, depleting262

evolution’s fuel reservoir. Our results have broad implications for understanding the long-term263

maintenance of genetic variation, and the capacity to adapt to challenging environments. Specif-264

ically, we discovered an ancient chromosomal inversion in Timema stick insects, and reported265

that it has been maintained as polymorphic for millions of years and that it likely facilitates the266

use of a challenging host plant (Redwood). We combined genomics, experiments, and evolu-267

tionary modeling to elucidate the processes maintaining variation, finding a role for life-history268

trade-offs (i.e., balancing selection), local adaptation to different hosts, and gene flow among269

populations (we ruled out recent introgression from another species). We then used models to270

show how such multi-layered regimes of selection and gene flow provide resilience that buffers271

populations against the loss of genetic variation, maintaining future evolutionary potential.272

Beyond the maintenance of variation, our results have implications for understanding local273

adaptation. This process is a hallmark of evolution and is known to be common, but its dynamics274
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remain poorly understood because studying such dynamics often requires genetic analyses of275

adaptive mutations, whose identification has only recently become more feasible [36–38]. In276

this context, adaptation might involve the fixation of mutations that are beneficial in a new277

environment. This is a ‘directional selection’ hypothesis, often invoked in classical population278

genetics thinking and models [39, 40]. Alternatively, adaptation may involve shifts in allele-279

frequencies rather than fixation, representing disruption of a pre-existing evolutionary balance280

[41–43]. Such shifts might stem from standing genetic variation, and could occur via changes in281

the weight of balancing selection that maintains alternative alleles, slightly towards one allele or282

the other. This is a ‘shifting balancing selection’ hypothesis, often emphasized in the ecological283

genetics literature [9]. Our results are broadly consistent with this latter hypothesis. Still,284

the functional significance of the Perform inversion remains to be resolved. For example, the285

inversion could contribute to adaptation by suppressing recombination among linked loci that286

affect performance thereby creating a supergene, or the breakpoint mutations of the inversion287

could themselves be responsible for the observed fitness effects of this structural variant [10,28,288

44, 45].289

Our results also have relevance for understanding the spatial context of evolution, namely290

the potential for gene flow and recombination between populations. Specifically, at spatial291

scales allowing gene flow, recombination will occur between populations. This can result in292

the breakdown of adaptive gene combinations, frustrating the ability of divergent selection to293

generate multi-locus local adaptation [46]. Thus, factors that reduce recombination, such as294

chromosomal inversions, are predicted to evolve when gene flow occurs [10, 47]. Gene flow is295

also relevant as it can modulate the degree to which alleles can move around in space and time,296

as increasingly documented in cases of adaptive introgression [16, 48–50]. We here demon-297

strated a key role for gene flow in the maintenance of genetic variation, but further work is298

required to test its role in the initial origin of inversion polymorphism.299
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In conclusion, although inversion evolution has received much recent attention [13–17, 28,300

51], studies that directly elucidate the processes affecting inversions are still few [18–20]. This301

makes it difficult to connect data and theory, and precludes objective evaluation of ideas that302

have emerged over the last century concerning the evolutionary dynamics and role of inver-303

sions. Studies estimating selection on inversions are needed, and we provided such a study304

here, thereby elucidating how genetic variation can be maintained for millions of years. We find305

that rather than being a nuisance, complexity of evolutionary processes can generate resilience306

that buffers populations against the loss of variation. Further studies of the maintenance of an-307

cient genetic variants, including inversions, are required to solidify the general importance of308

combinations of multiple evolutionary processes for maintaining genetic variation.309

Methods310

Measuring host-associated genetic differentiation. We used previously published single nu-311

cleotide polymorphism (SNP) data, obtained by genotyping-by-sequencing (GBS), to quantify312

host plant-associated genetic differentiation in four Timema species–T. californicum, T. knulli,313

T. landelsensis, and T. poppensis. All four are sexual species from the monophyletic “North-314

ern” Timema clade that live in the vicinity of Redwood and use multiple hosts in nature [31].315

We focused our analyses to six pairwise comparisons of nearby (i.e., parapatric) populations316

on different hosts (Table S1). Genomic data from these populations were originally described317

by [31]. Here, we used SNPs and associated genotype likelihoods (from vcf files) generated318

through a more recent re-analysis of these genomic data by [32].319

We first estimated allele frequencies in each population at each of 1139 to 8548 genome-320

wide SNPs (Table S1). This was done using the program estpEM (version 0.1) [52] (Dryad,321

https://doi.org/10.5061/dryad.nq67q), which implements the expectation-maximization322

(EM) algorithm from [53] to estimate allele frequencies while accounting for uncertainty in323
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genotypes as expressed by genotype likelihoods. We used a convergence tolerance of 0.001324

and allowed for a maximum of 40 EM iterations. Then, for each pair of populations, we com-325

puted FST = (HT − HS)/HT for each SNP, and then summarized the distribution of FST for326

each linkage group (as defined by the T. cristinae genome to which these data were aligned) by327

computing the mean and various percentiles. Here, HS and HT denote the expected heterozy-328

gosities for the (sub)populations and the total, respectively. These calculations were performed329

in R (version 4.0.2) (see https://github.com/zgompert/TimemaFusion/blob/330

main/hostFst.R).331

Generating the T. knulli genome and assigning chromosome numbers. We generated a de332

novo reference genome for T. knulli using a combination of PacBio and Illumina reads from333

a Hi-C genomic library. DNA extraction, library preparation, DNA sequencing, and de novo334

genome assembly were performed by Dovetail Genomics. A single female stick insect was used335

for the assembly, and the individual was chosen based on a preliminary analysis that suggested336

it was homozygous for the Perform Redwood allele. The final assembly was created using337

Dovetail’s HiRise Assembly pipeline. It comprised 1,322,373,696 base pairs (bps) with an338

N50 of 83,614,905 bps. Using BUSCO version 4.0.5 with 255 BUSCOs, the assembly included339

216 complete BUSCOs (212 single copy and four duplicated), 15 fragmented BUSCOs and 24340

missing BUSCOs.341

Much of our recent work in Timema, including the analyses of host-associated genetic dif-342

ferentiation described in the previous section, has relied on a T. cristinae reference genome and343

associated linkage map, with each linkage group comprising multiple moderately large scaf-344

folds (version 1.3c2; this genome comes from a melanic stick insect; see [5,27]). We wished to345

identify chromosomes (scaffolds) homologous to the T. cristinae linkage groups in our T. knulli346

genome for consistency in chromosome (linkage group) names and numbering. To do this, we347

first compared the T. cristinae reference plus linkage map to a more recent yet published T.348
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cristinae genome from a green striped stick insect, which was constructed based on proxim-349

ity ligation of DNA in chromatin and reconstituted chromatin (Hi-C) and comprised 13 large350

scaffolds, each corresponding to one of the 13 T. cristinae chromosomes [28]. Specifically, we351

constructed a blast database from the 13 scaffolds of the newer (green striped) genome and then352

identified homologous scaffolds from the older melanic genome (and linkage map) by blasting353

each of these scaffolds against the database. This was done with blastn (version 2.11.0) with354

a minimum e-value of 1e−50 and a minimum percent identity of 92. Only matches of >10,000355

bps were considered [54]. Then, in R (4.0.2), we computed the total length of matches between356

each of the 13 linkage groups from the melanic T. cristinae genome and the 13 large scaffolds357

from the newer, green striped genome. In most cases, there was an unambiguous correspon-358

dence between linkage groups and chromosome scaffolds. However, our linkage groups 9 and359

13 were under-assembled on the linkage map as both corresponded to a single scaffold, and360

much of the new scaffold 14101 was not mapped to any linkage group. Thus, our old linkage361

groups 9 and 13 were combined and are hereafter referred to as chromosome 9, and our new362

scaffold 14101 was denoted chromosome 13 (Table S2).363

We then used cactus (version 1.0.0) to align the T. knulli genome to the green striped T.364

cristinae genome [55, 56]. For this, we first used RepeatMasker (version 4.0.7) to mask365

repetitive regions of the genome [57]; this was done using a repeat library developed for366

Timema [28]. We then performed a pairwise alignment between the genomes with cactus.367

The HalSynteny tool was then used to extract syntenic alignment blocks from the com-368

parative alignment [58] (https://github.com/ComparativeGenomicsToolkit/369

hal). We then identified homologous chromosomes by summing the total length of syntenic370

segments between each T. cristinae and T. knulli genome. There was a one-to-one correspon-371

dence between T. cristinae and T. knulli chromosomes with one exception, T. cristinae chro-372

mosomes 1 and 3 were represented by a single fused chromosome in T. knulli (hereafter chro-373

17



mosome 1), consistent with cytological work showing that T. knulli has one fewer chromosome374

than T. cristinae [34]. Thus, we were able to map our older T. cristinae linkage map numbers to375

the large scaffolds (i.e., chromosomes) in T. knulli.376

Timema knulli sample collection. In spring 2019 (March 16-18), we collected 138 T. knulli377

for population genomic analyses and for use in a performance rearing experiment (described378

below). Most stick insects were collected at one of two localities–BCTURN, where Ceanothus379

is the main host and Timema are not found on Redwood (N = 37), and BCE where both Cean-380

othus and Redwood are hosts (N = 68 and N = 24, respectively) (Table S3). Ten additional T.381

knulli were collected from three localities near BCE; BCOG (N = 1 on Ceanothus), BCSH (N382

= 1 on Redwood) and BCXD (N = 8 on Ceanothus). Stick insects were collected in sweep nets383

by beating host plants with a stick, as in past work [31, 59]. Captured insects were placed in384

plastic tubes, and kept in a cooler with ice for 1-2 days during transplantation to the laboratory385

for use in the performance experiment, as detailed below.386

DNA extraction, library preparation and sequencing. After the performance experiment387

(see details below), we isolated DNA from each of 138 T. knulli. Frozen legs from each indi-388

vidual were ground into powder form using a Qiagen TissueLyser (Qiagen Inc., Valencia, CA).389

Genomic DNA was then extracted using Qiagen DNeasy Blood and Tissue kits, using a proto-390

col with slightly altered incubation temperatures and times. We used a reduced-representation391

technique (i.e., genotyping-by-sequencing or GBS) to construct DNA sequencing libraries fol-392

lowing the protocol detailed in [60]. Genomic DNA from each individual was digested with393

two restriction endonucleases, MseI (four base recognition site) and EcoRI (six base recogni-394

tion site). Illumina adaptors with unique 8-10 bp DNA barcodes for each individual were ligated395

to EcoRI cut sites, and a base Illumina adaptor was ligated to MseI cut sites. Barcoded fragment396

libraries were then PCR amplified using Illumina primers and a high-fidelity proofreading poly-397

merase (Iproof, BioRad, Hercules, CA). PCR products were pooled into a single library which398
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was then quality screened using an Agilent BioAnalzyer automated electrophoresis device. To399

reduce the portion of the genome targeted for sequencing, the reduced-representation library400

was then size-selected for DNA fragments 350-450 bp in length using a Pippin Prep quanti-401

tative electrophoresis unit (Sage Science, Beverly, MA) at the University of Texas Genome402

Sequencing and Analysis Facility (UTGSAF). The size-selected library was then sequenced403

using S2 chemistry and a single lane on an Illumina NovaSeq 4000 at UTGSAF.404

DNA sequence alignment, variant calling, filtering and genotype estimation. We aligned405

the newly acquired T. knulli GBS reads to our new T. knulli reference genome. This was done406

with the aln and samse algorithms from bwa (version 0.7.17-r1188) [61]. For alignment, we407

set the maximum number of allowed mismatches to 4, allowed only 2 mismatches in the first408

20 bp of the alignment, trimmed bases with quality scores <10, and only output alignments409

for reads with a single, best alignment. We then used samtools (version 1.5) to compress,410

sort and index the alignments [62]. We then used samtools (version 1.5) and bcftools411

(version 1.6) for variant calling [62]. Here, we used the consensus caller (-c), applied the412

recommended mapping quality adjustment for Illumina data (-C 50), and only output SNPs413

when the probability of all individuals being homozygous for the reference allele conditional on414

the data was <0.01. We then used a series of Perl scripts to filter the variant set. Specifically,415

we only retained SNPs that met the following criteria: 2× minimum coverage per individual,416

a minimum of 10 reads supporting the non-reference allele, Mann-Whitney P -values for base417

quality, mapping quality and read position rank-sum tests > 0.005, a minimum ratio of variant418

confidence to non-reference read depth of 2, a minimum mapping quality of 30, no more than419

20% of individuals with missing data, only two alleles observed, and coverage not exceeding 3420

SDs of the mean coverage (at the SNP level). This left us with 64,650 SNPs for further analysis.421

We then used the (ad)mixture model implemented in entropy (version 1.2) to obtain422

Bayesian estimates of genotypes [63, 64]. This model uses a mixture prior on genotypes for423
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each locus and individual based on co-estimated allele frequencies from a series of k hypotheti-424

cal source populations (similar to the admixture model from [65]). The model also accounts for425

uncertainty in genotypes arising from finite sequence coverage and possible sequencing errors426

as captured by the genotype likelihoods computed with bcftools. We estimated genotypes427

using Markov chain Monte Carlo (MCMC) and assuming either 2 or 3 source populations (i.e.,428

our estimates integrate over these two possibilities). We ran 10 MCMC chains total (5 each for429

2 and 3 source populations), each comprising 8000 steps, a 5000 step burnin and a thinning430

interval of 3. MCMC output was visually inspected to ensure (probable) convergence of the431

chains to the posterior distribution. Bayesian genotype estimates were then obtained by tak-432

ing the posterior mean of the number of non-reference alleles (0, 1, or 2) for each locus and433

individual (these estimates are not constrained to integer values).434

Delineating the Perform locus. We used principal component analysis (PCA) to delineate the435

region of T. knulli chromosome 11 associated with host-plant use (feeding on Ceanothus versus436

Redwood), i.e., the Perform locus. First, we conducted separate PCA ordinations of the genetic437

data (centered but not standardized genotype matrixes) for the 62,093 SNPs not on chromo-438

some 11 and the 2557 SNPs on chromosome 11. Only the PCA of chromosome 11 showed439

host-associated genetic structure, and thus we then focused on chromosome 11. To localize440

the portion of chromosome 11 exhibiting this pattern, we performed PCA in 100-SNP sliding441

windows along chromosome 11. We summarized each PCA by the eigenvalue associated with442

the first eigenvector. Larger values coincide with greater genetic structure along this first PCA443

axis. All PCAs were done with the prcomp function in R (version 4.0.2). Visual inspection444

of the eigenvalues indicated a broad peak of high eigenvalues (accentuated structure) spanning445

much of chromosome 11. We fit a Hidden Markov model to the eigenvalues in R with the446

HiddenMarkov package (version 1.8.13) [66]. We allowed for two hidden states, which we447

initialized with expected values equal to the 25th and 75th percentiles of the empirical eigen-448
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value distribution across chromosome 11. We assumed a normal distribution for the observed449

eigenvalues with standard deviations initialized at half the empirical standard deviation. We450

then estimated the hidden state means, standard deviations, and transitions between hidden451

states using the Baum-Welch algorithm (i.e., we set initial values for means and standard devi-452

ations but these were then refined with the Baum-Welch algorithm) [67]. For this, we allowed a453

maximum of 500 iterations and set the tolerance to 1e−4. This procedure identified high (mean454

eigenvalue = 4.6, SD = 0.45) and low (mean eigenvalue = 2.8, SD = 0.29) states. We then used455

the Viterbi algorithm for decoding, that is for inferring the most likely hidden state for each 100456

SNP window [68]. A single contiguous set of 100 SNP windows was assigned to the high state,457

which we hereafter refer to as the Perform locus. This region (i.e., the Perform locus) includes458

base positions 13,093,370 to 43,606,674 (i.e., ∼30 megabases) of T. knulli chromosome 11.459

Determining Perform is a chromosomal inversion. We used a series of comparative genome460

alignments to test the hypothesis that the Perform locus is an inversion. Specifically, we461

performed pairwise whole-genome alignments for our de novo chromosome-level reference462

genomes for T. knulli (described in this paper), T. cristinae (the green striped morph) [28], and463

T. chumash [27]. Repetitive genomic regions were masked prior to genome alignment using464

RepeatMasker (version 4.0.7) and a Timema repeat library from [28]. We ran RepeatMasker465

using the slow/sensitive search (-s) with the NCBI engine. We then used cactus (version466

1.0.0) to align each pair of genomes [55,56]. cactus creates genome alignment graphs, which467

can represent genome rearrangements and copy number variation. We then used HAL (Hierar-468

chical Alignment) tools (version 2.1) to extract synteny blocks from the genome graphs. This469

was specifically done with HalSynteny with the default lower bound for synteny blocks of470

5000 bps [58]. We then constructed sequence alignment dot plots from the synteny blocks using471

R (version 4.0.2) to visualize inversions and other structural variation between species. These472

patterns of structural variation were compared to the bounds of the Perform locus, delimited473
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within T. knulli as described above using the PCA approach .474

The comparative alignments described above demonstrated that Perform coincides with an475

inversion in the Redwood T. knulli allele relative to T. cristinae and T. chumash. We used476

Oxford Nanopore long-read sequencing [69] to verify that this genomic region is a segregating477

inversion within T. knulli (as strongly suggested by the PCA results). We chose this approach as478

we expected long DNA sequence reads to have a substantial chance of spanning and accurately479

detecting the expected large inversion [70]. To do this, we extracted high-molecular weight480

DNA from a single T. knulli collected from BCEC (on Ceanothus) where the Ceanothus allele481

(that is the expected ancestral, non-inverted allele) occurs at high frequency. This was done482

with Qiagen’s MatAttract HMW DNA kit (Qiagen, Inc.) in accordance with the manufacturer’s483

protocol. We extracted DNA from two samples taken from the thorax of this individual, which484

yielded 803 and 1018 nanograms of DNA respectively on a dsDNA HS (high sensitivity) assay485

with a Qubit f4 fluorometer (Thermo Fisher). We then repaired and polished the DNA molecules486

with the NEBNEXT FFPE DNA Repair Mix and NEBNEXT Ultra II end-repair/dA-tailing487

module in accordance with Oxford Nanopore’s suggested protocol. The two DNA samples488

were then pooled and adaptor oligos for sequencing were added with the Oxford Nanopore489

ligation sequencing kit (SQK-LSK109). We sequenced the resulting library on a R9.4 flow cell490

with a MiniION using a 72 hour run time. We used guppy basecaller (version 6.1.7 gpu)491

to call nucleotides from the raw output. This generated 471,648 sequences with a total length of492

863 megabases (about 0.5× genome coverage). Note that while this is low coverage, it proved493

sufficient to validate the expected inversion as described below.494

We first used NanoFilt [71] to remove bases with quality scores less than 6 and then495

aligned the filtered nanopore DNA sequences to the T. knulli reference genome with minimap2496

(version 2.23-r1117) [72]. We used the preset option for mapping Nanopore reads against a ref-497

erence (-x map-ont) and used soft clipping for supplementary alignments. samtools (ver-498
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sion 1.12) was used to compress, sort and index the alignments [62]. We then used sniffles2499

(version 2.0.3) to call structural variants [73]. We required an alignment length of at least 100500

bps, a mapping quality of at least 15, and a minimum structural variant length of 35 bps sup-501

ported by at least one read for variant calling. We then focused specifically on inversions on502

chromosome 11 that were 1 mbp or greater in length; there were five of these, one of which503

spanned the Perform locus (see our results above and Figure S2 for details).504

Performance experiment. We conducted a laboratory experiment to test for a potential effect505

of the Perform locus on performance (here growth and survival) in T. knulli reared on Ceanothus506

or Redwood. For this experiment, each of the 138 T. knulli collected (see “T. knulli sample507

collection” above) were placed individually in 500 millimeter plastic containers, with air holes508

for breathing punched into the lid containers using a needle. Each stick insect was then fed509

fresh plant material from either Ceanothus or Redwood every second day (when survival was510

recorded, see below). Host-plant treatment was determined randomly and was independent of511

the host from which the stick insect was collected. We then measured weight and survival at512

15 and 21 days as metrics of performance, and survival (dead or alive) was monitored every513

second day for the course of the 21-day experiment.514

Testing for associations between Perform and T. knulli performance. We next tested for an515

association between Perform genotype and weight and survival on Ceanothus and Redwood516

during the performance experiment. We used PCA and k-means clustering to assign Peform517

genotypes (following, e.g., [12]). Specifically, we performed a PCA of the SNP genotypes for518

SNPs within the Perform locus; this was done on the centered but not standardized genotype519

matrix. We then used k-means clustering with three centers to assign each individual to a520

cluster based on the first PC from the ordination of SNPs in the Perform locus. We then fit521

models for 15 and 21 day weight (linear models) and survival (generalized linear model with522

binomial response and logit link) on each host plant as a function of Perform genotype (i.e., we523
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fit distinct models for each of the two host-plant treatments). Here, genotype corresponds to524

the assigned cluster number with homozygous clusters coded as 0 and 2 and the heterozygous525

(intermediate on PC1) cluster coded as 1 [12]. We removed the effects of sex and developmental526

stage on weight prior to the analyses, and dropped T. knulli from BCTURN to avoid possible527

confounding effects of population structure. Models were fit in Rwith the lm and glm functions528

(version 4.0.2).529

Modeling gene flow and selection. We used approximate Bayesian computation (ABC) to530

fit and compare alternative models for selection with gene flow in the T. knulli-Ceanothus-531

Redwood system [74, 75]. We first fit a Bayesian F-model to estimate (putative neutral) migra-532

tion rates Nm (number of migrants per generation) between our three main populations: BCE533

C (BCE on Ceanothus), BCE RW (BCE on Redwood; parapatric with BCE C) and BCTURN534

(on Ceanothus, allopatric with respect to BCE C and BCE RW) [6, 76]. This statistical model535

approximates several population genetic models, including an island model of drift-gene flow536

equilibrium [77–80]. Estimates of gene flow were based on allele frequencies in each popula-537

tion, but excluding chromosome 11 (i.e., the chromosome harboring the Perform locus). For this538

analysis, we placed Cauchy priors on Nm (the number of migrants) with bounds of 0 and 50,539

a location parameter of 0 and a scale parameter of 10, and Jeffery’s beta priors on the migrant540

allele frequencies (lower bounds = 0, upper bounds = 1, α = 0.5, β = 0.5). We fit this model in541

R using Hamiltonian Monte Carlo via the R interface with STAN (rstan version 2.21.2) [81].542

Posteriors were inferred from 10 independent Markov chain Monte Carlo (MCMC) analyses,543

with each chain using a random subset of 5000 (out of 62,093) SNPs (this was done to increase544

computation speed and reduced linkage disequilibrium among loci). For each run, we used 4 in-545

dependent chains, each comprising 2000 iterations and a 1000 iteration burnin. The No-U-Turn546

sampler (NUTS) was used for updates [82]. The Gelman-Rubin convergence diagnostic was547

computed to verify likely convergence of the MCMC algorithm to the posterior distribution.548
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We next fit ABC models for selection on Perform, with gene flow based on our estimates549

from the F-model described in the preceding section. Our goal here was to compare models of550

divergent selection (directional selection in opposing directions on different hosts) to balancing551

selection while accounting for drift and gene flow, and to estimate the strength of selection552

under these models. Here, we assumed three populations, BCE C (on Ceanothus), BCE RW553

(on Redwood) and BCTURN (on Ceanothus) with host-dependent selection on Perform, that554

is, we assumed one set of selection coefficients for BCE C and BCTURN and a second set of555

selection coefficients for BCE RW. We allowed for one of two models for selection on each556

host: (i) directional selection, where one homozygote was the most fit, or (ii) overdominance,557

where the Perform heterozygotes were the most fit. With directional selection, we assumed558

w11 = 1 + s, w12 = 1 + hs, and w22 = 1, where w11, w12 and w22 are relative fitnesses for559

the Perform genotypes, s is the selection coefficient, and h is the heterozygote effect, and w11560

refers to the genotype that was more fit on Redwood in the experiments and that was at higher561

frequency in BCE RW (i.e., the PgPg homozygote). We placed uniform priors on h (lower562

bounds = 0 upper bounds = 1) and log uniform priors on the absolute value of s with bounds563

of 0.001 and 0.9 (-6.91 and -0.11 on the natural-log scale). We assumed s was positive on564

Redwood and negative on Ceanothus (i.e., alternative homozygotes favored on each host). For565

overdominance, we assumed w11 = 1 − s1, w12 = 1, and w22 = 1 − s2, where s1 and s2566

denote the decrease in relative fitness of the two alternative homozygotes (PgPg and PsPs,567

respectively). We used the same log-uniform priors on s1 and s2 as were used for s, with the568

added constraint of s1 < s2 on Redwood and s1 > s2 on Ceanothus. We placed equal prior569

probabilities of directional versus balancing selection on each host (i.e., 0.5 each) and allowed570

for the models to differ on the two hosts.571

We modeled evolution following a generalized Wright-Fisher model with selection and gene572

flow. Specifically, the expected allele frequency change at Perform for each population was573
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E[∆p] = ∆ps + ∆pm, where ∆ps and ∆pm are the expected change caused by selection and574

gene flow respectively. We assumed ∆ps = sp(1−p)[p+h(1−2p)] for directional selection or575

∆ps = p(1− p)[s2− p(s1+ s2)] for overdominance, and ∆pm = mba(pa − pb)+mca(pa − pc)576

where mba and mca are the migration rates (proportions) from populations b and c to population577

pa, and pb and pc are the corresponding migrant and source population allele frequencies [83].578

We then assumed that the actual allele frequency in each population following selection, gene579

flow and drift was pt+1 ∼ binomial(p = pt + E[∆p], 2Ne), where Ne is the variance effective580

population size for the relevant population (BCE C, BCE RW, or BCTURN). We did not attempt581

to estimate Ne, but rather to integrate over uncertainty in contemporary Ne (i.e., we treat this as582

a nuisance parameter). Specifically, we assumed re-scaled beta priors on Ne for each population583

with a lower bound of 50, an upper bound of 1000 and α and β set to 6 (symmetrical about the584

mean of Ne = 525 and relatively flat over the range). We allowed for asymmetric gene flow585

with expectations set by the neutral gene flow Bayesian F-model defined above. Specifically,586

for population pair i and j, we assumed re-scaled beta priors on Nmij and Nmji with lower and587

upper bounds set to the 2.5th and 97.5th percentiles of the posterior from the neutral F-model588

and α and β set to 10 (again symmetrical and relatively but slightly less flat over the range). We589

then solved for, e.g., mij as mij =
Nmij

Ne
(with Ne denoting Ne for population j).590

We conducted 25 million simulations of evolution to estimate the model and parameter pos-591

terior probabilities. In each case, the selection models and all relevant parameters were sampled592

from their priors. We then simulated evolution for 2500 generations starting from Perform al-593

lele frequencies of 0.5 for all populations (this was sufficient time to remove sensitivity to our594

initial allele frequency but not so long to ensure one allele was lost, as will always ultimately595

be the case given sufficient time without recurrent mutation). Simulations were performed us-596

ing a custom program written in C++ with functions from the Gnu Scientific Library [84]. We597

used the vector of final (at generation 2500) Perform allele frequencies for the three popula-598
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tions as the output (summary statistics) from the simulations. Thus, the allele frequency vectors599

from the 25 million simulations were compared to the actual Perform allele frequency vector600

for the three populations. Using the rejection algorithm from the abc R package (version 2.1;601

R version 4.0.2) [85] we identified the 0.004% (1000 out of 25 million) of simulations result-602

ing in the smallest Euclidean distance between the simulated and observed allele frequencies.603

Model posteriors were computed as the proportion of these retained simulations arising from604

each model (i.e., each combination of directional versus balancing selection for the two host605

plants). The model of balancing selection on both host plants had the highest posterior prob-606

ability. Consequently, we estimated the selection coefficients (s1 and s2) on each host plant607

under the balancing selection model (model-averaging is not appropriate as the selection coef-608

ficients do not have a consistent definition across models). This was done by considering the609

0.015% (∼1000) of simulations with balancing selection on both hosts with smallest distance610

between observed and simulated summary statistics, and performing ridge regression for pa-611

rameter adjustment on the log-transformed selection coefficients. This was also done with the612

abc R package (version 2.1) [85].613

Additional simulations testing if a combination of processes buffers populations against614

the loss of genetic variation. We conducted an additional set of forward-time simulations of615

evolution to determine whether and to what extent our best fit model (balancing selection with616

gene flow) maintained variation at the Perform locus (i.e., we conducted a predictive check of617

this model) and how this compared to two counterfactual models–one with directional selection618

and gene flow and one with balancing selection and no gene flow. We used the same general619

model described above. For the balancing selection with gene flow simulations, we sampled620

effective population size and gene flow parameters from the same prior distributions used above621

and then sampled selection coefficients from the posterior distributions inferred from ABC. For622

the balancing selection without gene flow simulations, we did the same thing, except we set the623
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migration rates to 0. Lastly, for directional selection with gene flow, we sampled selection co-624

efficients from a posterior inferred from the ABC model when only considering the directional625

selection model (i.e., forcing directional selection). We ran 50 simulations (50 samples from626

the prior or posterior distributions depending on the parameters) under each of the three models627

with each running for 250,000 generations. Initial Perform allele frequencies were set to 0.5 for628

all simulations. These simulations were conducted in R (version 4.1.3). We then compared the629

outcome of these simulations to the observed variability at the Perform locus.630

Dating the chromosomal inversion. We first used a phylogenetic approach to estimate the631

divergence time between the Perform chromosomal variants, i.e., alleles (as in [12]. For this,632

we used GBS data from 138 T. knulli described above, along with 69 newly sequenced T. pe-633

tita (from site 101S, latitude = 35.73◦N, longitude = 121.31◦W), and 329 T. poppensis and634

86 T. californicum originally described in [28]. These data were aligned to the T. knulli ref-635

erence genome using the bwa aln algorithm (version 0.7.17-r1198) and alignments were636

compressed, sorted and indexed with samtools as described above for the T. knulli sam-637

ples [61, 62]. We identified variable nucleotides (SNPs) across this full set of samples but only638

within the Perform locus using samtools (version 1.5) and bcftools (version 1.6). Other639

than considering only the Perform locus, variant calling options and subsequent filtering were640

as described above for T. knulli. We then determined the number of invariant bases of each641

type (A, C, G, or T) within the Perform locus, as this information is part of the phylogenetic642

model. Specifically, using the samtools depth command, we determined coverage for643

each individual at each site within Perform that was not called as a SNP (even before filter-644

ing). We counted the site as invariant if we had data for at least 80% of the individuals with645

a mean coverage of at least 2× per individual. This resulted in 789 variable sites (SNPs) and646

18,425, 11,610, 12,007, and 18,570 invariant As, Cs, Gs, and Ts, respectively. We then used647

Perl scripts to convert the variant file to a nexus alignment and to choose a subset of indi-648
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viduals for phylogenetic analysis (the conversion scripts are from [12] and are available from649

GitHub, https://github.com/zgompert/TimemaFusion). Specifically, for the out-650

group taxa T. californicum, T. poppensis and T. petita, we chose the 8-10 (10 for T. petita only)651

individuals with the least missing data for the aligned SNPs, and for T. knulli we retained 33652

individuals from BCE C (host = Ceanothus) and 25 from the parapatric population BCE RW653

(host = Redwood).654

We then used BEAST2 (version 2.6.6) [86] to estimate the divergence times between the655

Perform chromosomal variants in T. knulli. We encoded information on the invariant sites us-656

ing the constantSiteWeights option. We fit the GTR sequence evolution model with rate657

heterogeneity that approximated a gamma distribution using four rate categories. We assumed a658

relaxed log-normal clock [87] with a coalescent extended Bayesian skyline tree prior [88]. Fol-659

lowing [12], we fit a gamma distribution to the previously inferred divergence time for all four660

of our taxa–T. knulli, T. petita, T. californicum, and T. poppensis–using the fitdistr function661

in R. This gives a gamma with α = 10.8509 and β = 0.973, which has a mean of 11.5 million662

years and standard deviation of 3.4 million years. We used this as the prior on the root diver-663

gence time and thus as a calibration point for our key divergence time of interest, that is between664

the two chromosomal variants in T. knulli. Our input xml file (tknulli perform og.xml)665

is available from GitHub (https://github.com/zgompert/TimemaFusion). We es-666

timated the tree and associated divergence times based on 3 chains each comprising 10 million667

iterations. Posteriors were summarized in R.668

Second, we estimated the divergence time in a population genetic context with the diffu-669

sion approximation approach implemented in δaδi [35]. We specifically followed an approach670

inspired by [89], which modeled recombination between subgenomes (in polyploids) as being671

analogous to gene flow between populations. We focused on the BCE population and designated672

two “populations”, each comprising individuals homozygous for one of the Perform inversion673
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alleles. We assumed these populations were descended from a single ancestral population with674

a mutation-scaled effective population size of θ (4Nancµ, where µ is the locus mutation rate)675

that diverged at time Tsplit (measured in 2Nanc generations), which corresponds with the origin676

time for the inversion (i.e., the creation of the two distinct inversion haplotypes). We allowed677

for the relative effective sizes of the two inversion “populations” to increase or decrease over678

time based on population growth parameters ν1 = N1/Nanc and ν2 = N2/Nanc); this could679

reflect selection or drift in inversion allele frequencies. We modeled potential genetic exchange680

(recombination or gene conversion) between inversion alleles (populations) using the migration681

rate parameter from δaδi, M12 = 2Nancm12 and M21 = 2Nancm21 (here m12 and m21 are682

propotions), as in [89]. Thus, our estimate of the divergence time between inversion alleles683

accounts for possible reduced DNA sequence divergence resulting from recombination within684

the inversion.685

We used δaδi (with Python 3.9.7) to first infer the joint site frequency spectrum for our686

two populations, one comprising 25 PgPg homozygote (the allele more common on Redwood)687

and one comprising 33 PsPs homozygotes (the all more common on Ceanothus) (all from688

BCE); this was done within δaδi directly from the filtered vcf file. We down-sampled the689

data at this stage to 70% of the smaller size (i.e., 70% of 25 diploids). We then used δaδi to690

estimate the model parameters, specifically θ, Tsplit, ν1, ν2, and the genetic exchnage param-691

eters M12 = 2Nancm12 and M212Nancm21 (here m12 and m21 are propotions) (see https:692

//github.com/zgompert/TimemaFusion/blob/main/im_dadi_old.py). We693

used three rounds of numerical optimization, comprising 20, 10 and five iterations each to esti-694

mate the model parameters.695

We then used the average of two published per-base mutation rates for insects, 2.9e−9 for696

Heliconius and 2.8e−9 for Drosophila [90], to convert our estimates of divergence time to time697

in years (or equivalently generations as Timema are univoltine). This conversion also required698
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an estimate of the number of sequenced bases for the Perform locus so that we could compute699

the per-locus mutation rate (µ in δaδi). Importantly, this is not the same as the total length of700

the locus as not all bases were sequenced, and even considering only sequenced bases not all701

were sequenced to high coverage or exhibited properties that would have allowed a SNP to have702

been called at a nucleotide position even if it were variable. Thus, we first used the samtools703

(version 1.5) depth command to determine the number of bases within Perform sequenced to704

at least 2× coverage (average per individual), which was the same threshold used for variant705

calling. We then tried to account for the fact that a subset of these sites would not pass other fil-706

tering criteria. Specifically, we calculated the proportion of SNPs that passed the coverage filter707

but failed quality control based on other filters (about 2/3rds of the initial SNPs) and assumed708

that this same proportion of non-SNPs would have been filtered out if they had been variable.709

This gave us an effective number of sequenced bases of 53,538.3, which we used in combi-710

nation with the per-base mutation rate to calculate the divergence time in years (see https:711

//github.com/zgompert/TimemaFusion/blob/main/ComputeDate.R). Con-712

fidence intervals on the divergence time were inferred using a block-jackknife procedure to713

account for the non-independence among SNPs within Perform. Specifically, the SNPs within714

Perform were divided into 100 contiguous 18 SNP windows and divergence time estimates were715

obtained for each unique data subset of 99 of the 100 SNP windows.716
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Figure 1: Conceptual overview and evidence of host-associated differentiation. Panel (A) il-

lustrates our two alternative hypotheses of (H1) an ongoing sweep and (H2) polymorphism

maintained by selection. Under the first hypothesis the inversion is young and in the process

of sweeping; variation will not be maintained. Under the second hypothesis balancing selec-

tion promotes the long-term maintenance of inversion polymorphism. (B) Shows illustrations

of Timema stick insects and their host plants, for the taxa studied here. Panel (C) summa-

rizes genome-wide genetic differentiation for parapatric Timema populations on different hosts.

Points denote mean FST for each of 13 T. cristinae linkage groups with horizontal lines extend-

ing to the 75th percentile of FST for that linkage group. Host abbreviations are A = Adenostoma,

C = Ceanothus, P = Pseudotsuga menziesii (Douglas Fir), Pi = Pinus (pine), Q = Quercus (oak),

and RW = Sequoia sempervirens (Redwood).
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Figure 2: Genetic differentiation and structure associated with Redwood feeding in Timema

knulli. These results are all based on the new reference genome for T. knulli. (A) Manhattan

plot of FST between stick insects collected on Ceanothus versus Redwood at BCE. Points denote

FST for individual SNPs. Timema knulli chromosomes are used here (chromosome 3 from T.

cristinae is fused to chromosome 1; X = the X sex chromosome). Panel (B) shows eigenvalues

for the first principal component of genetic variation in T. knulli (excluding BCTURN) in 100

SNP overlapping, sliding windows along chromosome 11. Colors denote alternative states as

identified by a Hidden Markov model (HMM), with red denoting the elevated eigenvalue state

and defining the bounds for the ‘Perform’ locus on chromosome 11 (text for details). Panels (C)

and (D) show summaries of genetic variation in T. knulli based on principal components analysis

(PCA) for all SNPs not on chromosome 11 (C) and for the Perform locus only (D). Values for

the first two principal components are shown with colors and symbols denoting locations and

hosts. The inset in (C) is a schematic for the model used to infer neutral rates of gene flow

among populations: BCE C (on Ceanothus), BCE RW (on Redwood) and BCTURN C (on

Ceanothus). Point estimates of Nm, that is the number of migrants exchanged per generation,

are shown on lines connecting the populations, and are consistent with a pattern of isolation by

geographic distance.

45



46



Figure 3: Genome alignments and evidence Perform is an ancient inversion. Dot plots show

alignments of chromosome 11 for T. knulli and T. cristinae (A), T. knulli and T. chumash (B),

and T. cristiane and T. chumash (C). Red line segments denote aligned genome regions with the

orientation of the alignment shown by the direction of the lines. The bounds of the Perform lo-

cus in the T. knulli genome are denoted by the gray shaded region. A large inversion coinciding

with the Perform locus is evident between T. knulli and both T. cristiane (A) and T. chumash

(B), but no such inversion is found for T. cristinae versus T. chumash. Panel (D) summarizes

the evidence for and estimated bounds of the Perform inversion within T. knulli. Specifically,

horizontal black lines show the inferred bounds based on the T. knulli nanopore data, the com-

parative alignments in (A) and (B), and the eigenvalues from a PCA in T. knulli (see Figure

2B). Panel (E) shows the phylogeny for the Perform locus estimated with BEAST2. Colored

points indicate taxa and inversion alleles (for T. knulli only) (Redwood = RW, Ceanothus =

C). Bifurcations with posterior probability > 0.5 are shown with pie charts colored to denote

posterior probabilities. Panel (F) shows the corresponding Bayesian posterior distributions for

divergence times for T. knulli and T. poppensis based on genome-wide SNP data, for the T.

knulli RW chromosomal variant and T. poppensis based on SNPs within the Perform locus, and

for SNPs within the T. knulli RW and C Perform chromosomal variants. Points and horizontal

lines denote posterior medians and 95% equal-tail probability intervals [ETPIs], respectively.
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Figure 4: Summary of the rearing and genetic mapping experiments. Panel (A) illustrates the

experimental design. Panels (B) and (C) show 15-and 21-day weight for T. knulli reared on

Ceanothus based on their Perform genotype (i.e., 0 and 2 are alternative homozygotes, with 0

being homozygous for the Redwood allele, and 1 is the heterozygote). Points denote individuals

(with a small jitter applied to the x-axis), horizontal lines give means for each genotype. The

P -value for the null hypothesis of no effect of Perform is shown. A barplot (D) shows survival

proportions on Ceanothus along with the P -value for the null model of no effect of genotype on

survival. Analogous results are shown for T. knulli on Redwood (RW, Sequoia) in (E) (15-day

weight), (F) (21-day weight) and (G) (survival).
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Figure 5: Summary of the ABC model and inferences. Panel (A) illustrates the fitness schemes

and definitions of selection coefficients under directional versus balancing selection. Specifi-

cally, for directional selection s denotes the difference in relative fitness for alternative homozy-

gotes and h gives the heterozygote effect (with 0 < h < 1), whereas for balancing selection s1
and s2 denote the reductions in fitness for homozygotes relative to the heterozygote. Panel (B)

summarizes the demographic component of the model. Colored circles correspond with pop-

ulations with colors denoting host, red = Redwood and blue = Ceanothus. Populations have

distinct effective population sizes (Ne) and selection coefficients (either s and h or s1 and s2)

dictated by host (RW or C). Asymmetric gene flow is allowed as indicated by the migration

edges. Panels (C) and (D) given model posterior probabilities. In (C) posteriors are given for

DS = divergent directional selection on both hosts, BS/RW = balancing selection on Redwood

and directional selection on Ceanothus, BS/C = directional selection on Redwood and balancing

selection on Ceanothus, and BS = balancing selection on both hosts. In (D) marginal posteri-

ors are shown for directional (DS) versus balancing selection (BS) on each host (indicated by

color). Panel (E) shows the joint posterior for the fitness of RW versus C allele homozygotes

on each host, where points denote individual samples from the posterior with contours over-

lain. (F) gives posterior estimates of the selection coefficients s1 and s2 (balancing selection)

on Ceanothus (C) versus Redwood (RW). Points and numbers denote posterior medians and

vertical bars indicate 95% credible intervals.
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Figure 6: Summary of simulations testing the effects of balancing selection and gene flow on

the maintenance of polymorphism at the Perform locus. Panel (A) illustrates the three models–

balancing selection with gene flow (our best model), directional selection with gene flow, and

balancing selection without gene flow–that we consider for the three focal populations ana-

lyzed with the ABC model, BCE on Ceanothus (BCE C), BCE on Redwood (BCE RW) and

BCTURN (an allopatric Ceanothus population). Panels (B)–(D) show the proportion of repli-

cate simulations in which variation at Perform was lost over time in BCTURN (B), BCE RW

(C) and BCE C (D).
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Supplement Tables and Figures944

Supplemental Tables945

Table S1: Summary of samples and genetic data used to measure host-associated genetic differ-

entiation. Host abbreviations are: C = Ceanothus, P = Pseudotsuga menziesii (Douglas fir), A =

Arctostaphylos (Manzanita), Pi = Pinus, Q = Quercus, RW = Sequoia sempervirens (Redwood).

N1 and N2 denote the sample sizes for populations 1 and 2, respectively. See Riesch et al. [31]

for additional information about these populations.

Species Population 1 Population 2 N1 N2 Number of SNPs

T. californicum SM on A SM on Q 17 20 7858

T. knulli BCE on RW BCWP on C 15 12 1139

T. knulli BCTUR on C BCTUR on Pi 17 16 1139

T. landelsensis BCBOG on C BCBOG on Q 23 20 8548

T. landelsensis BCSUM on C BCSUM on Q 20 11 8548

T. poppensis TBARN on P TBARN on RW 20 20 7157
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Table S2: Summary of the relationships between our current chromosome number system

(based on T. cristinae), our previous T. cristinae genome that used linkage groups [5], and the

numbers (IDs) for the chromosome-scale scaffolds in T. cristinae (GS = green striped morph),

T. knulli, and T. chumash genomes here based on whole genome-alignments. Note that our

earlier linkage groups corresponded with T. cristinae chromosomes with two exceptions, one

chromosome (now 9 = T. cristinae GS scaffold 16151) was split between two linkage groups,

and the sex chromosome, X (now 13 = T. cristinae GS scaffold 14101) was not assigned to any

linkage group.

T. cristinae Old T. cristinae T. cristinae (GS) T. knulli T. chumash

chromosome number linkage group scaffold number scaffold number scaffold number

1 1 8483 29 43

2 2 14640 813 1392

3 3 42935 29 43

4 4 42912 6886 43

5 5 18722 6895 56

6 6 9928 6839 1469

7 7 10660 934 1510

8 8 7748 6852 113

9 9,13 16151 1305 43

10 10 14160 30 1213

11 11 12033 500 48

12 12 12380 6840 1403

13 NA 14101 775 1308

Table S3: Summary of samples for the T. knulli performance experiment and associated genetic

analyses. Host abbreviations are: C = Ceanothus and RW = Redwood (Sequoia sempervirens).

N denotes sample size

Population Host Latitude (◦N) Longitude (◦W) N

BCE C 36.07 121.60 68

BCE RW 36.07 121.60 24

BCSH RW c3.07 121.60 1

BCTURN C 36.08 121.61 37

BCXD C 36.07 121.60 8
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Table S4: Proportion of T. knulli surviving to the end of the experiment as a function of Perform

genotype, host treatment (Redwood or Ceanothus) and sex.

Redwood Ceanothus

Genotype female male female male

PgPg 1.00 1.00 0.86 0.57

PgPs 0.79 0.88 0.94 0.80

PsPs 0.92 1.00 1.00 1.00

Table S5: Model parameter estimates from δaδi. The scaled parameters presented are defined

as follows: θ = 4Nancµ, ν1 = N1/Nanc, ν2 = N2/Nanc, Tsplit = 2Nanctsplit, M12 = 2Nancm12,

M21 = 2Nancm21, where N and t denote actual effective population sizes and time in genera-

tions (years) and µ is the total mutation rate for the locus. 95%CIs denote 95% block-jackknife

confidence intervals. Here, populations 1 and 2 refer to homozygoes for Ps (more common on

Ceanothus) and Pg (more common on Redwood), respectively.

Parameter Estimate 95%CI lower 95%CI upper

θ 111.184 41.845 234.364

ν1 0.231 0.106 0.631

ν2 3.901 1.875 10.386

Tsplit 13.833 2.573 28.976

M12 0.367 0.134 0.782

M21 0.110 0.040 0.248
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Supplemental Figures946
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Figure S1: Heatmap shows the proportion synteny blocks on of each T. knulli scaffold that

aligned to each of the T. cristinae chromosomes.
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Figure S2: The dot plot shows the alignment of chromosome 11 for T. knulli (from Redwood)

and T. cristinae. Line segments denote aligned genome regions with the orientation of the

alignment shown by the direction of the lines. The bounds of the Perform locus in the T. knulli

genome are denoted by the vertical red lines. The location of the five inversions detected on

chromosome 11 for the T. knulli genome from Ceanothus relative to the Redwood T. knulli

genome are shown with horizontal orange lines. The location of these along the y-axis is arbi-

trary. These inversions were delineated based on nanopore DNA sequence data. The main text

focuses on the largest of these five inversions.
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(A) BCTURN
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Figure S3: Boxplots show the RW (Pg) allele frequency from simulations for BCTURN (A),

BCE RW (B) and BCE C (C) after 250,000 generations of evolution with balancing selection

(BS) and gene flow, directional selection (DS) and gene flow, or BS without gene flow. Results

are shown for 50 replicate simulations under each set of conditions. Boxes denote the 1st and

3rd quartile, with the median given by the midline and whiskers extending to the minimum

and maximum value or 1.5× the interquartile range. Points show the allele frequency for each

replicate simulation. The observed RW allele frequency in each population is shown with a red,

dashed line.
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Figure S4: Summary of model fit for divergence time models in δaδi. The top panels show

the observed (data) and predicted (model) joint site frequency spectra for Perform locus. The

bottom panels show the corresponding residuals, that is the deviation between the observed and

model-predicted joint site frequency spectra.
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Figure S5: Inversion divergence time estimates from δaδi. The boxplot summarizes estimates

of divergence time (in millions of years ago = MYA) for each of 100 block-jackknife replicates.

Boxes denote the 1st and 3rd quartile, with the median given by the midline and whiskers

extending to the minimum and maximum value or 1.5× the interquartile range. Gray points

denote the estimate for each replicate; the larger black dot indicates the estimate from the full

data set.
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