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Abstract

Genome re-arrangements such as chromosomal inversions are often involved in adaptation. As
such, they experience natural selection, which can erode genetic variation. Thus, whether and
how inversions can remain polymorphic for extended periods of time remains debated. Here we
combine genomics, experiments, and evolutionary modeling to elucidate the processes main-
taining an inversion polymorphism associated with the use of a challenging host plant (Redwood
trees) in Timema stick insects. We show that the inversion is maintained by a combination of
processes, finding roles for life-history trade-offs (i.e., balancing selection), local adaptation
to different hosts, and gene flow. We use models to show how such multi-layered regimes of
selection and gene flow provide resilience to help buffer populations against the loss of genetic
variation, maintaining potential for future evolution. We further show that the inversion poly-
morphism has persisted for millions of years and is not a result of recent introgression. We thus
find that rather than being a nuisance, the complex interplay of evolutionary processes provides

a mechanism for the long-term maintenance of genetic variation.

Significance statement

Variation is the fuel for evolution. How genetic variation is maintained is one of the central
questions in biology. This is an especially striking question for chromosomal inversions (a
change in the structure of an organism’s genome), as inversions are often subject to natural
selection, which can erode variation. We studied stick insects that have an inversion that helps
them live on Redwood trees. We found that this inversion has been present for millions of
years, and that a suite of factors, including environmental heterogeneity and gene exchange,
contribute to the persistence of this polymorphism. Our results show how a complex interplay

of evolutionary processes offers a bulwark against the loss of variation allowing for the potential



27 for future evolution.
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Introduction

Genetic variation is the ultimate fuel for evolution. However, many forms of natural selection
(e.g., directional and purifying selection) and random genetic drift are expected to result in
the loss of genetic variation, depleting the reservoir of fuel for evolution. Whether and how
genetic variation can be maintained over long periods of time thus remains a central question
in biology [1-6]. We address this question here by studying the maintenance of an ancient
chromosomal inversion. Since their discovery by Sturtevant ~100 years ago [7], chromosomal
inversions have been central to the development of evolutionary biology. For example, they
served as the first genetic markers, motivated ideas by Dobzhansky, Ford, and others concerning
co-adapted gene complexes and balancing selection, and they underlie several modern theories
of adaptation that involve suppressed recombination [8—11]. Inversions also serve as powerful
models for studying the maintenance of genetic variation, because their age can be estimated
and they are often subject to natural selection [12—14].

Although inversions are now known to vary along environmental clines and to be associ-
ated with adaptive traits [8,9, 13, 15-17], studies that directly estimate selection on inversions
are few, some notable exceptions aside [18-20]. Thus, the mode and strength of selection act-
ing on inversions remains poorly quantified, making it difficult to infer how and why inversion
polymorphism is maintained. For example, balancing selection can maintain inversion poly-
morphisms [9,21], especially if strong enough to counteract drift, but this is not true of many
forms of selection. Similarly, the role of other processes, such as gene flow, in maintaining
polymorphism requires further study [6,22-24].

Determining the age of an inversion is also important for explaining the maintenance of
inversion polymorphisms. For example, one hypothesis is that the inversion is young and still

in the process of sweeping to fixation. In other words, it could be that the inversion will not
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be maintained as polymorphic in the long term. If the inversion polymorphism is found to be
ancient such that this ‘young inversion” hypothesis is refuted, then studies of the processes main-
taining variation, particularly natural selection, are required to explain the inversion polymor-
phism (Figure 1A). Here we combine field data, genomics, experimental estimates of fitness,
and evolutionary modeling to to elucidate the processes driving the long-term maintenance of
an inversion polymorphism with fitness consequences across populations using different hosts
(Figure 1).

Our study system is the genus Timema, a group of plant-feeding stick insects distributed
throughout southwestern North America (Figure 1). Timema are well studied for their cryp-
tic colors and patterns, which help them avoid predation by visual predators such as birds and
lizards [25,26]. These traits are highly heritable and controlled by a modest number (~5)
of linked loci on linkage group (LG) 8 (LGS hereafter), which often exhibit strongly reduced
recombination due to structural genomic features including chromosomal inversions and dele-
tions [12,27,28]. Timema are also known to use a particularly wide range of host-plant species,
including both conifers and flowering plants (i.e., angiosperms) [29]. This host-plant use, in
the context of local adaptation (i.e., growth and survival on different hosts; ‘performance’ here-
after), is our focus here. Notably, the genetic basis of performance variation in Timema was
previously unknown, but as we report here also involves a chromosomal inversion (on a differ-

ent chromosome from color, LG11).

Results

Genome scans reveal exceptional host-associated differentiation on linkage group 11. Dur-
ing the 30-million year diversification of the Timema genus, host shifts have occurred frequently
between plant families (within conifers and within flowering plants), and several times even be-

tween these plant divisions [29]. Indeed, Timema are broadly generalized in diet, often feeding
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on multiple plant families in nature and surviving in the lab on novel hosts [30]. One exception
involves the use of Redwood (Sequoia sempervirens); very few Timema species and populations
use Redwood in nature—only 7. knulli and T. poppensis—and most exhibit poor performance on
this host in laboratory experiments [30].

We thus initiated our investigation by quantifying patterns of genetic differentiation for the
sexual species of Timema that live in the vicinity of Redwood in northern California and that use
multiple hosts in nature. Specifically, we study 7. californicum and T. landelsensis, which do
not use Redwood, T poppensis, which is specialized on conifers including Redwood in some lo-
calities, and T. knulli, which uses both Redwood and flowering plant hosts (i.e., angiosperms).
In this context, 7. knulli is of particular interest as it is polymorphic in host-plant use, living
on Redwood (a conifer) as well as other more commonly-used hosts such as Ceanothus (an
angiosperm) (in contrast, 7. poppensis uses only conifer hosts). We did so using published
genotyping-by-sequencing (GBS) data [31,32]. Our core interest was whether the use of a cer-
tain host was associated with genetic differentiation, and if so whether this was genome-wide or
restricted to individual chromosomes. Due to the known strong effects of geographic isolation
on genetic structure in Timema [33], we restricted our survey to the six pairwise comparisons
involving nearby populations using different hosts (broadly speaking, ‘parapatry’, Table S1,
Figure 1). This revealed that genetic differentiation between parapatric, conspecific populations
was generally weak. The exception to this trend was LG11 for populations of 7. knulli using
Ceanothus versus Redwood: LG11 was strongly differentiated in this comparison. We thus
focused our study on 7. knulli, with particular reference to the use of Redwood.

Redwood 7. knulli populations are distinguished by a chromosomal inversion. The results
above were based on mapping GBS reads to the published T. cristinae reference genome [31,
32]. Timema knulli is known from cytological work to have one chromosome pair fewer than 7.

cristinae [34], and we suspected structural variation on LG11 within 7. knulli. Thus, to increase
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the accuracy and precision of the current work and test explicitly for structural variation, we
generated a high-quality de novo reference genome assembly for 7. knulli. We did so using an
individual collected from Redwood and a combination of PacBio and Illumina reads with Hi-C
technology for scaffolding. The 7. knulli genome comprised 12 large scaffolds corresponding
to the 13 known 7. cristinae chromosomes, but with a fusion between 7. cristinae chromosomes
1 and 3 (we refer to the fused chromosome as chromosome 1 and retain the 7. cristinae linkage
group numbering for the other chromosomes; total assembly length = 1,322,373,696 base pairs;
scaffold N50 = 83,614,905 base pairs) (Table S2, Figure S1). We then used this reference
genome for further population genetic and trait mapping analyses, with new data collected to
allow larger sample sizes for 7. knulli than what was available from published data.

Using new GBS data from 138 7. knulli collected on Ceanothus and Redwood (Table S3)
we detected a large block of differentiation (e.g., highly accentuated Fgr) on chromosome 11,
whose boundaries were delimited using a Hidden Markov Model (HMM) approach applied
to the results of a principal components analysis (PCA) (Figure 2). This block spanned ge-
nomic positions 13,093,370 to 43,606,674 on chromosome 11 (~30 mega-base pairs, mbps).
We hereafter refer to this region as the ‘Perform’ locus, as polymorphism at this regions was
associated with performance variation in an experiment reported below. A PCA of SNPs within
the Perform locus revealed three genetic clusters segregating within populations (Figure 2). In
contrast, PCA of genome-wide genetic variation exhibited structure by geography. This result
is consistent with the Perform locus being a structural genomic variant that segregates within
populations, differs in frequency among populations (as we reported in more detail below, one
allele is at 84% frequency on Redwood but only at 34% frequency on Ceanothus), and exhibits
reduced recombination between the two chromosomal variants.

To more formally test the existence of a chromosomal inversion on 7. knulli chromosome

11, we aligned the 7. knulli genome with published chromosome-level assemblies of 7. cristinae
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and 7. chumash genomes [27,28]. These alignments identified an inversion on chromosome 11
in the Redwood 7. knulli genome relative to both T. cristinae and T. chumash. Most critically,
the breakpoints of this inversion coincided with the identified bounds of the Perform locus (Fig-
ure 3). In contrast, this genomic region was co-linear between 7. cristinae and T. chumash. The
collective results are most consistent with the Perform locus being a polymorphic chromosomal
inversion in 7. knulli. To explicitly test this hypothesis, we gathered nanopore long-read DNA
sequence data from a second 7. knulli collected on Ceanothus. This revealed a large inversion
(9,706,606 to 48,357,002 bps on chromosome 11) relative to the Redwood 7. knulli genome
(Figures 3, S2). Critically, this inversion spanned the Perform locus and the inversion bound-
aries identified between species, consistent with expectations if the inversion also segregates
within 70 knulli.
The Perform locus inversion affects performance on different hosts. We next considered
the evolutionary processes potentially maintaining the inversion polymorphism. Specifically,
to connect the inversion polymorphism to fitness, we tested if performance on Ceanothus and
Redwood are affected by the Perform locus. Such an association with fitness would firmly refute
strict neutrality with regard to the evolution of inversion frequencies. To do so, we collected 7.
knulli and reared them in the laboratory on either Ceanothus or Redwood, measuring growth and
survival (notably these are the same individuals analyzed above to delimit the Perform locus).
We focus our analyses here on specimens from the vicinity of the locality BCE, where 7. knulli
uses both Ceanothus and Redwood (we thus exclude population BCTURN, which uses only
Ceanothus)(Table S3). These experiments revealed that the Perform locus explains appreciable
and significant variation in both growth and survival, but with a trade-off between these fitness
components that suggests balancing selection, especially on Ceanothus (Figure 4).
Specifically, our experiments revealed that one allele at the Perform locus was associated

with increased growth on both Ceanothus and Redwood (hereafter ‘Pg’, this is the allele at a
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high-frequency on Redwood and referred to as the ‘Redwood’ allele above; linear regression
on residuals after removing effect of sex; Ceanothus 15 day weight, 3 = 0.018, r? = 0.178,
P = 0.002; Ceanothus 21 day weight, 5 = 0.020, r? =0.233, P < 0.001; Redwood 15 day
weight, 3 = 0.0086, r? = 0.109, P = 0.031; Redwood 21 day weight, 5 = 0.0072, r? = 0.053,
P = 0.138). Critically, this same allele negatively affected survival on Ceanothus (linear re-
gression, 3 =-0.14, r> = 0.115, P = 0.014), representing a host-specific life-history trade-off.
Notably, this latter result was sex-dependent, with Pg most markedly decreasing male survival
(for individuals homozygous for this allele, 86% of females survived but only 57% of males
survived; Table S4). Comparable results were observed using generalized linear models (GLM)
for survival rather than simple linear regression (GLM survival on Ceanothus, 3 =-1.71, P =
0.031), demonstrating that the results are robust to methods of analysis. Thus, there is a fitness
trade-off between growth and survival at the Perform locus suggesting that the locus could be
under balancing selection, at least on Ceanothus.

The inversion is maintained by complex selection and gene flow. The results above suggest
that genetic variation at the Perform locus could be maintained, in part, due to life-history trade-
offs that vary with host and sex resulting in balancing selection. Moreover, selection appears to
be shifted between populations feeding on different hosts. Specifically, the Pg allele that confers
higher growth (but reduced survival) is at higher frequency in nature on Redwood (84%) than
on Ceanothus (34%). Thus, there is a marked (~50%) allele frequency difference between pop-
ulations on different hosts. We suspect that this reflects the previously documented difficulties
Timema have using Redwood in laboratory experiments [30]; use of Redwood favors the growth
allele to make ‘a go of it’ on this challenging host (at the same time this growth allele does not
appear to compromise survival on Redwood per se). In contrast, growing on Ceanothus is easy
for Timema such that the survival advantage is more important than a growth benefit, leading to

a high frequency of the allele associated with increased survival on Ceanothus (hereafter ‘Ps’).



176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

Thus, a shift in selection appears to result in divergent allele frequencies (i.e., adaptation) be-
tween hosts with evidence consistent with balancing selection on at least Ceanothus. However,
gene flow between hosts could also play a role in maintaining variation, especially on Redwood.
In principle, gene flow could maintain variation even without balancing selection, that is via a
balance between directional selection that acts in divergent directions between hosts and gene
flow. We next used evolutionary modeling to quantify these possibilities and their effects on the
maintenance of variation.

Specifically, we used approximate Bayesian computation (ABC) to estimate the probability
of population genetic models that included genetic drift and gene flow (as inferred from puta-
tive neutral loci; see Figure 2C) and either balancing or divergent (between hosts) directional
selection on the Perform locus. We modeled evolution of the Perform locus inversion alleles,
not the DNA sequence variation within this genomic region. We did this because of the evi-
dence for selection on the inversion alleles and our interest in the maintenance of this inversion
polymorphism rather than on nucleotide variation within the inversion. These models included
adjacent (i.e., parapatric) Ceanothus (BCE C) and Redwood (BCE RW) populations and an al-
lopatric Ceanothus population (BCTURN) (Table S3), with the latter being important to help
parse the roles of balancing selection versus gene flow in maintaining variation. Models with
balancing selection (i.e., over-dominance at the Perform locus) were most probable on both
Ceanothus (posterior probability = 0.897) and Redwood (posterior probability = 0.683), and a
model of (divergent) directional selection on both hosts was very unlikely (posterior probability
= 0.023)(Figure 5). Under the most probable model of balancing selection on both hosts (poste-
rior probability = 0.603), relative fitnesses of Perform homozygotes (when heterozygote fitness
is set to 1.0) were 0.81 for the PgPg homozygote (i.e., the homozygote for the allele conferring
the growth advantage, that is the Redwood allele) and 0.94 for the PsPs homozygote (where Ps

denotes the allele conferring increased survival on Ceanothus, that is the Ceanothus allele) on

10
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Ceanothus versus 0.98 and 0.64 for the PgPg and PsPs homozygotes on Redwood (Figure 5).
Thus, this population genetic model-fitting analysis strongly supports balancing selection on
Ceanothus, consistent with the experiment, and also suggests possible balancing selection on
Redwood, though this was not evident from the experiment and the estimated relative fitnesses
of the heterozygote (1.0) and the fitter homozygote (0.98 for PgPg) were very similar.

The combination of processes buffers populations against the loss of variation. We have
shown that gene flow and balancing selection (at least on Ceanothus) together can explain the
observed polymorphism at the Perform locus, but it is unclear whether both processes are nec-
essary for the maintenance of variation. In other words, does this combination of processes
maintain variation that would be lost with either process in isolation? To address this question,
we simulated evolution under our best model of balancing selection (on both hosts) and gene
flow and under two counterfactual models—one with gene flow and divergent directional selec-
tion between hosts and one with balancing selection but no gene flow. These two models thus
eliminate balancing selection or gene flow, respectively. For all models, we used selection co-
efficients estimated from the ABC analysis (assuming either balancing selection or directional
selection) and gene flow inferred from neutral models based on genome-wide SNP data (except
where gene flow was set to 0).

Replicate simulations, each spanning 250,000 generations, showed that the balancing se-
lection with gene flow model routinely maintains variation and predicts the observed data ex-
tremely well (Figures 6, S3). Directional selection with gene flow also maintained variation
over this moderate time interval in all but a few simulations, but failed to recover the observed
Perform allele frequencies as well as the balancing selection with gene flow model (Figure S3).
Finally, variation was lost in many of the balancing selection without gene flow simulations.
Thus, these simulations suggest that gene flow among populations feeding on different hosts

and experiencing different selection pressures is important for the long-term maintenance of
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variation at Perform, and that this combined with balancing selection is particularly effective at
preventing the loss of polymorphism.

The chromosomal inversion is ancient. Lastly, we estimated the age of the Redwood in-
version to test the hypothesis that it might be young and in the act of sweeping rather than a
polymorphism maintained over the long-term (Figure 1). To do so, we first used a phylogenetic
approach to estimate the divergence time between the 7. knulli chromosomal variants. Our in-
ferences were based on SNP data within the Perform locus for T. knulli, T. poppensis, T. petita
and T. californicum and species divergence time estimates from a published, time-calibrated
phylogeny [31]. This revealed that the inversion is ancient, inconsistent with the young and
sweeping hypothesis. Specifically, the divergence time between Redwood and Ceanothus chro-
mosomal variants in 7. knulli was estimated as 7.5 million years ago, MYA hereafter (90%
equal-tail probability intervals [ETPI] = 3.4-13.5 MYA) (Figure 3E,F). Next, we generated a
complementary estimate of this divergence time using a population genetic approach based on
the site-frequency spectrum and allowing for recombination between inversion haplotypes. Our
estimate of the divergence time using this approach (implemented in dadi [35]) was 5.0 MYA
(95% block-jackknife confidence interval lower bound = 1.9 MYA) (see Figure S4 for model
performance and Table S5 and Figure S5 for model parameter estimates), which is broadly
consistent with the phylogenetic estimate above.

Furthermore, our results from the phylogenetic analysis suggest that the deep divergence
between Redwood and Ceanothus alleles in T. knulli is not due to recent introgression from the
closely related species T. poppensis, wich feeds on Redwood and other confiers. Specifically,
the T. poppensis Perform DNA sequences were more closely related to the inverted Redwood T.
knulli alleles than the Ceanothus T. knulli alleles, but the divergence time between 7. poppensis
and T. knulli Redwood alleles was 4.7 MYA (90% ETPI = 2.1 to 9.8 MYA). This corresponds

roughly to the previously inferred divergence time between these two species based on genome-
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wide SNP data (4.1 MYA, 90% ETPI = 2.3 to 6.7 MYA) [31]. Thus, while T. poppensis appears
to share DNA sequence similarity at the Perofrm locus with the 7. knulli Redwood alleles and
there is uncertainty regarding whether the origin of the inverted Redwood allele predates the
split between 7. knulli and T. poppensis (the posterior probability of this is 0.60), our results
suggest that the Redwood allele in 7. knulli diverged from T. poppensis millions of years ago.
More importantly, the inversion appears to have been maintained as a polymorphism within
T. knulli for millions of years (based on both phylogenetic and population genetic models),

whether or not allelic divergence predates the species divergence.

Discussion

Genetic variation is the ultimate fuel for evolution, but it remains unclear whether and how it
can be maintained for extended periods of time. The maintenance of variation is particularly
puzzling given that drift and many forms of natural selection tend to erode variation, depleting
evolution’s fuel reservoir. Our results have broad implications for understanding the long-term
maintenance of genetic variation, and the capacity to adapt to challenging environments. Specif-
ically, we discovered an ancient chromosomal inversion in 7imema stick insects, and reported
that it has been maintained as polymorphic for millions of years and that it likely facilitates the
use of a challenging host plant (Redwood). We combined genomics, experiments, and evolu-
tionary modeling to elucidate the processes maintaining variation, finding a role for life-history
trade-offs (i.e., balancing selection), local adaptation to different hosts, and gene flow among
populations (we ruled out recent introgression from another species). We then used models to
show how such multi-layered regimes of selection and gene flow provide resilience that buffers
populations against the loss of genetic variation, maintaining future evolutionary potential.
Beyond the maintenance of variation, our results have implications for understanding local

adaptation. This process is a hallmark of evolution and is known to be common, but its dynamics
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remain poorly understood because studying such dynamics often requires genetic analyses of
adaptive mutations, whose identification has only recently become more feasible [36-38]. In
this context, adaptation might involve the fixation of mutations that are beneficial in a new
environment. This is a ‘directional selection’ hypothesis, often invoked in classical population
genetics thinking and models [39,40]. Alternatively, adaptation may involve shifts in allele-
frequencies rather than fixation, representing disruption of a pre-existing evolutionary balance
[41-43]. Such shifts might stem from standing genetic variation, and could occur via changes in
the weight of balancing selection that maintains alternative alleles, slightly towards one allele or
the other. This is a ‘shifting balancing selection’ hypothesis, often emphasized in the ecological
genetics literature [9]. Our results are broadly consistent with this latter hypothesis. Still,
the functional significance of the Perform inversion remains to be resolved. For example, the
inversion could contribute to adaptation by suppressing recombination among linked loci that
affect performance thereby creating a supergene, or the breakpoint mutations of the inversion
could themselves be responsible for the observed fitness effects of this structural variant [10,28,
44,45].

Our results also have relevance for understanding the spatial context of evolution, namely
the potential for gene flow and recombination between populations. Specifically, at spatial
scales allowing gene flow, recombination will occur between populations. This can result in
the breakdown of adaptive gene combinations, frustrating the ability of divergent selection to
generate multi-locus local adaptation [46]. Thus, factors that reduce recombination, such as
chromosomal inversions, are predicted to evolve when gene flow occurs [10,47]. Gene flow is
also relevant as it can modulate the degree to which alleles can move around in space and time,
as increasingly documented in cases of adaptive introgression [16,48-50]. We here demon-
strated a key role for gene flow in the maintenance of genetic variation, but further work is

required to test its role in the initial origin of inversion polymorphism.
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300 In conclusion, although inversion evolution has received much recent attention [13-17, 28,
st 51], studies that directly elucidate the processes affecting inversions are still few [18-20]. This
sz makes it difficult to connect data and theory, and precludes objective evaluation of ideas that
a3 have emerged over the last century concerning the evolutionary dynamics and role of inver-
s+ sions. Studies estimating selection on inversions are needed, and we provided such a study
s0s here, thereby elucidating how genetic variation can be maintained for millions of years. We find
sos that rather than being a nuisance, complexity of evolutionary processes can generate resilience
a7 that buffers populations against the loss of variation. Further studies of the maintenance of an-
a8 cient genetic variants, including inversions, are required to solidify the general importance of

a9 combinations of multiple evolutionary processes for maintaining genetic variation.

- Vethods

st Measuring host-associated genetic differentiation. We used previously published single nu-
sz cleotide polymorphism (SNP) data, obtained by genotyping-by-sequencing (GBS), to quantify
313 host plant-associated genetic differentiation in four Timema species—T. californicum, T. knulli,
sts  T. landelsensis, and T. poppensis. All four are sexual species from the monophyletic “North-
a5 ern” Timema clade that live in the vicinity of Redwood and use multiple hosts in nature [31].
sis We focused our analyses to six pairwise comparisons of nearby (i.e., parapatric) populations
s17 on different hosts (Table S1). Genomic data from these populations were originally described
sis by [31]. Here, we used SNPs and associated genotype likelihoods (from vcf files) generated
s19 through a more recent re-analysis of these genomic data by [32].

320 We first estimated allele frequencies in each population at each of 1139 to 8548 genome-
321 wide SNPs (Table S1). This was done using the program estpEM (version 0.1) [52] (Dryad,
32 https://doi.org/10.5061/dryad.ng67q), which implements the expectation-maximization

a3 (EM) algorithm from [53] to estimate allele frequencies while accounting for uncertainty in

15



324

325

326

327

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

genotypes as expressed by genotype likelihoods. We used a convergence tolerance of 0.001
and allowed for a maximum of 40 EM iterations. Then, for each pair of populations, we com-
puted Fst = (Hr — Hg)/Hr for each SNP, and then summarized the distribution of Fgr for
each linkage group (as defined by the 7. cristinae genome to which these data were aligned) by
computing the mean and various percentiles. Here, Hg and Hy denote the expected heterozy-
gosities for the (sub)populations and the total, respectively. These calculations were performed
in R (version 4.0.2) (see https://github.com/zgompert/TimemaFusion/blob/
main/hostFst.R).

Generating the 7. knulli genome and assigning chromosome numbers. We generated a de
novo reference genome for 7. knulli using a combination of PacBio and Illumina reads from
a Hi-C genomic library. DNA extraction, library preparation, DNA sequencing, and de novo
genome assembly were performed by Dovetail Genomics. A single female stick insect was used
for the assembly, and the individual was chosen based on a preliminary analysis that suggested
it was homozygous for the Perform Redwood allele. The final assembly was created using
Dovetail’s HiRise Assembly pipeline. It comprised 1,322,373,696 base pairs (bps) with an
N50 of 83,614,905 bps. Using BUSCO version 4.0.5 with 255 BUSCOs, the assembly included
216 complete BUSCOs (212 single copy and four duplicated), 15 fragmented BUSCOs and 24
missing BUSCOs.

Much of our recent work in Timema, including the analyses of host-associated genetic dif-
ferentiation described in the previous section, has relied on a 7. cristinae reference genome and
associated linkage map, with each linkage group comprising multiple moderately large scaf-
folds (version 1.3c2; this genome comes from a melanic stick insect; see [5,27]). We wished to
identify chromosomes (scaffolds) homologous to the 7. cristinae linkage groups in our 7. knulli
genome for consistency in chromosome (linkage group) names and numbering. To do this, we

first compared the T. cristinae reference plus linkage map to a more recent yet published 7.
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cristinae genome from a green striped stick insect, which was constructed based on proxim-
ity ligation of DNA in chromatin and reconstituted chromatin (Hi-C) and comprised 13 large
scaffolds, each corresponding to one of the 13 7. cristinae chromosomes [28]. Specifically, we
constructed a blast database from the 13 scaffolds of the newer (green striped) genome and then
identified homologous scaffolds from the older melanic genome (and linkage map) by blasting
each of these scaffolds against the database. This was done with blastn (version 2.11.0) with
a minimum e-value of 1e~*° and a minimum percent identity of 92. Only matches of >10,000
bps were considered [54]. Then, in R (4.0.2), we computed the total length of matches between
each of the 13 linkage groups from the melanic 7. cristinae genome and the 13 large scaffolds
from the newer, green striped genome. In most cases, there was an unambiguous correspon-
dence between linkage groups and chromosome scaffolds. However, our linkage groups 9 and
13 were under-assembled on the linkage map as both corresponded to a single scaffold, and
much of the new scaffold 14101 was not mapped to any linkage group. Thus, our old linkage
groups 9 and 13 were combined and are hereafter referred to as chromosome 9, and our new
scaffold 14101 was denoted chromosome 13 (Table S2).

We then used cactus (version 1.0.0) to align the 7. knulli genome to the green striped 7.
cristinae genome [55,56]. For this, we first used RepeatMasker (version 4.0.7) to mask
repetitive regions of the genome [57]; this was done using a repeat library developed for
Timema [28]. We then performed a pairwise alignment between the genomes with cactus.
The HalSynteny tool was then used to extract syntenic alignment blocks from the com-
parative alignment [58] (https://github.com/ComparativeGenomicsToolkit/
hal). We then identified homologous chromosomes by summing the total length of syntenic
segments between each T. cristinae and T. knulli genome. There was a one-to-one correspon-
dence between 1. cristinae and T. knulli chromosomes with one exception, 7. cristinae chro-

mosomes 1 and 3 were represented by a single fused chromosome in 7. knulli (hereafter chro-
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mosome 1), consistent with cytological work showing that 7. knulli has one fewer chromosome
than 7. cristinae [34]. Thus, we were able to map our older 7. cristinae linkage map numbers to
the large scaffolds (i.e., chromosomes) in 7. knulli.

Timema knulli sample collection. In spring 2019 (March 16-18), we collected 138 7. knulli
for population genomic analyses and for use in a performance rearing experiment (described
below). Most stick insects were collected at one of two localities—=BCTURN, where Ceanothus
is the main host and Timema are not found on Redwood (N = 37), and BCE where both Cean-
othus and Redwood are hosts (N = 68 and N = 24, respectively) (Table S3). Ten additional 7
knulli were collected from three localities near BCE; BCOG (N = 1 on Ceanothus), BCSH (N
= 1 on Redwood) and BCXD (N = 8 on Ceanothus). Stick insects were collected in sweep nets
by beating host plants with a stick, as in past work [31,59]. Captured insects were placed in
plastic tubes, and kept in a cooler with ice for 1-2 days during transplantation to the laboratory
for use in the performance experiment, as detailed below.

DNA extraction, library preparation and sequencing. After the performance experiment
(see details below), we isolated DNA from each of 138 7. knulli. Frozen legs from each indi-
vidual were ground into powder form using a Qiagen TissueLyser (Qiagen Inc., Valencia, CA).
Genomic DNA was then extracted using Qiagen DNeasy Blood and Tissue kits, using a proto-
col with slightly altered incubation temperatures and times. We used a reduced-representation
technique (i.e., genotyping-by-sequencing or GBS) to construct DNA sequencing libraries fol-
lowing the protocol detailed in [60]. Genomic DNA from each individual was digested with
two restriction endonucleases, Msel (four base recognition site) and EcoRI (six base recogni-
tion site). [llumina adaptors with unique 8-10 bp DNA barcodes for each individual were ligated
to EcoRlI cut sites, and a base Illumina adaptor was ligated to Msel cut sites. Barcoded fragment
libraries were then PCR amplified using Illumina primers and a high-fidelity proofreading poly-

merase (Iproof, BioRad, Hercules, CA). PCR products were pooled into a single library which
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was then quality screened using an Agilent BioAnalzyer automated electrophoresis device. To
reduce the portion of the genome targeted for sequencing, the reduced-representation library
was then size-selected for DNA fragments 350-450 bp in length using a Pippin Prep quanti-
tative electrophoresis unit (Sage Science, Beverly, MA) at the University of Texas Genome
Sequencing and Analysis Facility (UTGSAF). The size-selected library was then sequenced
using S2 chemistry and a single lane on an Illumina NovaSeq 4000 at UTGSAF.
DNA sequence alignment, variant calling, filtering and genotype estimation. We aligned
the newly acquired 7. knulli GBS reads to our new 7. knulli reference genome. This was done
with the aln and samse algorithms from bwa (version 0.7.17-r1188) [61]. For alignment, we
set the maximum number of allowed mismatches to 4, allowed only 2 mismatches in the first
20 bp of the alignment, trimmed bases with quality scores <10, and only output alignments
for reads with a single, best alignment. We then used samtools (version 1.5) to compress,
sort and index the alignments [62]. We then used samtools (version 1.5) and bcftools
(version 1.6) for variant calling [62]. Here, we used the consensus caller (-c), applied the
recommended mapping quality adjustment for [llumina data (-C 50), and only output SNPs
when the probability of all individuals being homozygous for the reference allele conditional on
the data was <0.01. We then used a series of Per1 scripts to filter the variant set. Specifically,
we only retained SNPs that met the following criteria: 2X minimum coverage per individual,
a minimum of 10 reads supporting the non-reference allele, Mann-Whitney P-values for base
quality, mapping quality and read position rank-sum tests > 0.005, a minimum ratio of variant
confidence to non-reference read depth of 2, a minimum mapping quality of 30, no more than
20% of individuals with missing data, only two alleles observed, and coverage not exceeding 3
SDs of the mean coverage (at the SNP level). This left us with 64,650 SNPs for further analysis.
We then used the (ad)mixture model implemented in entropy (version 1.2) to obtain

Bayesian estimates of genotypes [63, 64]. This model uses a mixture prior on genotypes for
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each locus and individual based on co-estimated allele frequencies from a series of k hypotheti-
cal source populations (similar to the admixture model from [65]). The model also accounts for
uncertainty in genotypes arising from finite sequence coverage and possible sequencing errors
as captured by the genotype likelihoods computed with bcftools. We estimated genotypes
using Markov chain Monte Carlo (MCMC) and assuming either 2 or 3 source populations (i.e.,
our estimates integrate over these two possibilities). We ran 10 MCMC chains total (5 each for
2 and 3 source populations), each comprising 8000 steps, a 5000 step burnin and a thinning
interval of 3. MCMC output was visually inspected to ensure (probable) convergence of the
chains to the posterior distribution. Bayesian genotype estimates were then obtained by tak-
ing the posterior mean of the number of non-reference alleles (0, 1, or 2) for each locus and
individual (these estimates are not constrained to integer values).

Delineating the Perform locus. We used principal component analysis (PCA) to delineate the
region of 7. knulli chromosome 11 associated with host-plant use (feeding on Ceanothus versus
Redwood), i.e., the Perform locus. First, we conducted separate PCA ordinations of the genetic
data (centered but not standardized genotype matrixes) for the 62,093 SNPs not on chromo-
some 11 and the 2557 SNPs on chromosome 11. Only the PCA of chromosome 11 showed
host-associated genetic structure, and thus we then focused on chromosome 11. To localize
the portion of chromosome 11 exhibiting this pattern, we performed PCA in 100-SNP sliding
windows along chromosome 11. We summarized each PCA by the eigenvalue associated with
the first eigenvector. Larger values coincide with greater genetic structure along this first PCA
axis. All PCAs were done with the prcomp function in R (version 4.0.2). Visual inspection
of the eigenvalues indicated a broad peak of high eigenvalues (accentuated structure) spanning
much of chromosome 11. We fit a Hidden Markov model to the eigenvalues in R with the
HiddenMarkov package (version 1.8.13) [66]. We allowed for two hidden states, which we

initialized with expected values equal to the 25th and 75th percentiles of the empirical eigen-
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value distribution across chromosome 11. We assumed a normal distribution for the observed
eigenvalues with standard deviations initialized at half the empirical standard deviation. We
then estimated the hidden state means, standard deviations, and transitions between hidden
states using the Baum-Welch algorithm (i.e., we set initial values for means and standard devi-
ations but these were then refined with the Baum-Welch algorithm) [67]. For this, we allowed a
maximum of 500 iterations and set the tolerance to 1le~*. This procedure identified high (mean
eigenvalue = 4.6, SD = 0.45) and low (mean eigenvalue = 2.8, SD = 0.29) states. We then used
the Viterbi algorithm for decoding, that is for inferring the most likely hidden state for each 100
SNP window [68]. A single contiguous set of 100 SNP windows was assigned to the high state,
which we hereafter refer to as the Perform locus. This region (i.e., the Perform locus) includes
base positions 13,093,370 to 43,606,674 (i.e., ~30 megabases) of T. knulli chromosome 11.

Determining Perform is a chromosomal inversion. We used a series of comparative genome
alignments to test the hypothesis that the Perform locus is an inversion. Specifically, we
performed pairwise whole-genome alignments for our de novo chromosome-level reference
genomes for 7. knulli (described in this paper), T. cristinae (the green striped morph) [28], and

T. chumash [27]. Repetitive genomic regions were masked prior to genome alignment using

RepeatMasker (version 4.0.7) and a Timema repeat library from [28]. We ran RepeatMasker

using the slow/sensitive search (-s) with the NCBI engine. We then used cactus (version
1.0.0) to align each pair of genomes [55,56]. cactus creates genome alignment graphs, which
can represent genome rearrangements and copy number variation. We then used HAL (Hierar-
chical Alignment) t ools (version 2.1) to extract synteny blocks from the genome graphs. This
was specifically done with HalSynteny with the default lower bound for synteny blocks of
5000 bps [58]. We then constructed sequence alignment dot plots from the synteny blocks using
R (version 4.0.2) to visualize inversions and other structural variation between species. These

patterns of structural variation were compared to the bounds of the Perform locus, delimited
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within 7. knulli as described above using the PCA approach .

The comparative alignments described above demonstrated that Perform coincides with an
inversion in the Redwood T. knulli allele relative to T. cristinae and T. chumash. We used
Oxford Nanopore long-read sequencing [69] to verify that this genomic region is a segregating
inversion within 7. knulli (as strongly suggested by the PCA results). We chose this approach as
we expected long DNA sequence reads to have a substantial chance of spanning and accurately
detecting the expected large inversion [70]. To do this, we extracted high-molecular weight
DNA from a single 7. knulli collected from BCEC (on Ceanothus) where the Ceanothus allele
(that is the expected ancestral, non-inverted allele) occurs at high frequency. This was done
with Qiagen’s MatAttract HMW DNA kit (Qiagen, Inc.) in accordance with the manufacturer’s
protocol. We extracted DNA from two samples taken from the thorax of this individual, which
yielded 803 and 1018 nanograms of DNA respectively on a dsSDNA HS (high sensitivity) assay
with a Qubit f4 fluorometer (Thermo Fisher). We then repaired and polished the DNA molecules
with the NEBNEXT FFPE DNA Repair Mix and NEBNEXT Ultra II end-repair/dA-tailing
module in accordance with Oxford Nanopore’s suggested protocol. The two DNA samples
were then pooled and adaptor oligos for sequencing were added with the Oxford Nanopore
ligation sequencing kit (SQK-LSK109). We sequenced the resulting library on a R9.4 flow cell
with a MinilON using a 72 hour run time. We used guppy_basecaller (version 6.1.7_gpu)
to call nucleotides from the raw output. This generated 471,648 sequences with a total length of
863 megabases (about 0.5x genome coverage). Note that while this is low coverage, it proved
sufficient to validate the expected inversion as described below.

We first used NanoFilt [71] to remove bases with quality scores less than 6 and then
aligned the filtered nanopore DNA sequences to the 7. knulli reference genome withminimap?2
(version 2.23-r1117) [72]. We used the preset option for mapping Nanopore reads against a ref-

erence (-x map-ont) and used soft clipping for supplementary alignments. samtools (ver-
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sion 1.12) was used to compress, sort and index the alignments [62]. We thenused sniffles?2
(version 2.0.3) to call structural variants [73]. We required an alignment length of at least 100
bps, a mapping quality of at least 15, and a minimum structural variant length of 35 bps sup-
ported by at least one read for variant calling. We then focused specifically on inversions on
chromosome 11 that were 1 mbp or greater in length; there were five of these, one of which
spanned the Perform locus (see our results above and Figure S2 for details).

Performance experiment. We conducted a laboratory experiment to test for a potential effect
of the Perform locus on performance (here growth and survival) in 7. knulli reared on Ceanothus
or Redwood. For this experiment, each of the 138 T. knulli collected (see “T. knulli sample
collection” above) were placed individually in 500 millimeter plastic containers, with air holes
for breathing punched into the lid containers using a needle. Each stick insect was then fed
fresh plant material from either Ceanothus or Redwood every second day (when survival was
recorded, see below). Host-plant treatment was determined randomly and was independent of
the host from which the stick insect was collected. We then measured weight and survival at
15 and 21 days as metrics of performance, and survival (dead or alive) was monitored every
second day for the course of the 21-day experiment.

Testing for associations between Perform and T. knulli performance. We next tested for an
association between Perform genotype and weight and survival on Ceanothus and Redwood
during the performance experiment. We used PCA and k-means clustering to assign Peform
genotypes (following, e.g., [12]). Specifically, we performed a PCA of the SNP genotypes for
SNPs within the Perform locus; this was done on the centered but not standardized genotype
matrix. We then used k-means clustering with three centers to assign each individual to a
cluster based on the first PC from the ordination of SNPs in the Perform locus. We then fit
models for 15 and 21 day weight (linear models) and survival (generalized linear model with

binomial response and logit link) on each host plant as a function of Perform genotype (i.e., we
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fit distinct models for each of the two host-plant treatments). Here, genotype corresponds to
the assigned cluster number with homozygous clusters coded as 0 and 2 and the heterozygous
(intermediate on PC1) cluster coded as 1 [12]. We removed the effects of sex and developmental
stage on weight prior to the analyses, and dropped 7. knulli from BCTURN to avoid possible
confounding effects of population structure. Models were fit in R with the 1m and g1m functions
(version 4.0.2).

Modeling gene flow and selection. We used approximate Bayesian computation (ABC) to
fit and compare alternative models for selection with gene flow in the 7. knulli-Ceanothus-
Redwood system [74,75]. We first fit a Bayesian F-model to estimate (putative neutral) migra-
tion rates Nm (number of migrants per generation) between our three main populations: BCE
C (BCE on Ceanothus), BCE RW (BCE on Redwood; parapatric with BCE C) and BCTURN
(on Ceanothus, allopatric with respect to BCE C and BCE RW) [6, 76]. This statistical model
approximates several population genetic models, including an island model of drift-gene flow
equilibrium [77-80]. Estimates of gene flow were based on allele frequencies in each popula-
tion, but excluding chromosome 11 (i.e., the chromosome harboring the Perform locus). For this
analysis, we placed Cauchy priors on N'm (the number of migrants) with bounds of 0 and 50,
a location parameter of 0 and a scale parameter of 10, and Jeffery’s beta priors on the migrant
allele frequencies (lower bounds = 0, upper bounds = 1, o = 0.5, 5 = 0.5). We fit this model in
R using Hamiltonian Monte Carlo via the R interface with STAN (rstan version 2.21.2) [81].
Posteriors were inferred from 10 independent Markov chain Monte Carlo (MCMC) analyses,
with each chain using a random subset of 5000 (out of 62,093) SNPs (this was done to increase
computation speed and reduced linkage disequilibrium among loci). For each run, we used 4 in-
dependent chains, each comprising 2000 iterations and a 1000 iteration burnin. The No-U-Turn
sampler (NUTS) was used for updates [82]. The Gelman-Rubin convergence diagnostic was

computed to verify likely convergence of the MCMC algorithm to the posterior distribution.
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We next fit ABC models for selection on Perform, with gene flow based on our estimates
from the F-model described in the preceding section. Our goal here was to compare models of
divergent selection (directional selection in opposing directions on different hosts) to balancing
selection while accounting for drift and gene flow, and to estimate the strength of selection
under these models. Here, we assumed three populations, BCE C (on Ceanothus), BCE RW
(on Redwood) and BCTURN (on Ceanothus) with host-dependent selection on Perform, that
is, we assumed one set of selection coefficients for BCE C and BCTURN and a second set of
selection coefficients for BCE RW. We allowed for one of two models for selection on each
host: (i) directional selection, where one homozygote was the most fit, or (ii) overdominance,
where the Perform heterozygotes were the most fit. With directional selection, we assumed
wyp = 1+ 8, wis = 1+ hs, and wyy = 1, where wy;, wiz and wqs are relative fitnesses for
the Perform genotypes, s is the selection coefficient, and & is the heterozygote effect, and w;
refers to the genotype that was more fit on Redwood in the experiments and that was at higher
frequency in BCE RW (i.e., the PgPg homozygote). We placed uniform priors on i (lower
bounds = 0 upper bounds = 1) and log uniform priors on the absolute value of s with bounds
of 0.001 and 0.9 (-6.91 and -0.11 on the natural-log scale). We assumed s was positive on
Redwood and negative on Ceanothus (i.e., alternative homozygotes favored on each host). For
overdominance, we assumed wi; = 1 — s1, wia = 1, and wey = 1 — s2, where s1 and s2
denote the decrease in relative fitness of the two alternative homozygotes (PgPg and PsPs,
respectively). We used the same log-uniform priors on s1 and s2 as were used for s, with the
added constraint of s1 < s2 on Redwood and s1 > s2 on Ceanothus. We placed equal prior
probabilities of directional versus balancing selection on each host (i.e., 0.5 each) and allowed
for the models to differ on the two hosts.

We modeled evolution following a generalized Wright-Fisher model with selection and gene

flow. Specifically, the expected allele frequency change at Perform for each population was
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E[Ap] = Aps + Ap,,, where Ap, and Ap,, are the expected change caused by selection and
gene flow respectively. We assumed Ap; = sp(1—p)[p+ h(1 —2p)] for directional selection or
Aps = p(1 —p)[s2 — p(s1 + s2)] for overdominance, and Ap,,, = My (Pa — Pb) + Mea(Pa — Pe)
where my, and m,, are the migration rates (proportions) from populations b and c to population
Da» and py, and p,. are the corresponding migrant and source population allele frequencies [83].
We then assumed that the actual allele frequency in each population following selection, gene
flow and drift was p; 1 ~ binomial(p = p; + E[Ap]|,2N.), where N, is the variance effective
population size for the relevant population (BCE C, BCE RW, or BCTURN). We did not attempt
to estimate V., but rather to integrate over uncertainty in contemporary /N, (i.e., we treat this as
a nuisance parameter). Specifically, we assumed re-scaled beta priors on N, for each population
with a lower bound of 50, an upper bound of 1000 and « and 3 set to 6 (symmetrical about the
mean of N, = 525 and relatively flat over the range). We allowed for asymmetric gene flow
with expectations set by the neutral gene flow Bayesian F-model defined above. Specifically,
for population pair ¢ and j, we assumed re-scaled beta priors on Nm;; and Nm;; with lower and
upper bounds set to the 2.5th and 97.5th percentiles of the posterior from the neutral F-model

and o and f3 set to 10 (again symmetrical and relatively but slightly less flat over the range). We

Nm
Ne

then solved for, e.g., m;; as m;; = —~ (with N, denoting NN, for population j).

We conducted 25 million simulations of evolution to estimate the model and parameter pos-
terior probabilities. In each case, the selection models and all relevant parameters were sampled
from their priors. We then simulated evolution for 2500 generations starting from Perform al-
lele frequencies of 0.5 for all populations (this was sufficient time to remove sensitivity to our
initial allele frequency but not so long to ensure one allele was lost, as will always ultimately
be the case given sufficient time without recurrent mutation). Simulations were performed us-

ing a custom program written in C++ with functions from the Gnu Scientific Library [84]. We

used the vector of final (at generation 2500) Perform allele frequencies for the three popula-
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tions as the output (summary statistics) from the simulations. Thus, the allele frequency vectors
from the 25 million simulations were compared to the actual Perform allele frequency vector
for the three populations. Using the rejection algorithm from the abc R package (version 2.1;
R version 4.0.2) [85] we identified the 0.004% (1000 out of 25 million) of simulations result-
ing in the smallest Euclidean distance between the simulated and observed allele frequencies.
Model posteriors were computed as the proportion of these retained simulations arising from
each model (i.e., each combination of directional versus balancing selection for the two host
plants). The model of balancing selection on both host plants had the highest posterior prob-
ability. Consequently, we estimated the selection coefficients (s1 and s2) on each host plant
under the balancing selection model (model-averaging is not appropriate as the selection coef-
ficients do not have a consistent definition across models). This was done by considering the
0.015% (~1000) of simulations with balancing selection on both hosts with smallest distance
between observed and simulated summary statistics, and performing ridge regression for pa-
rameter adjustment on the log-transformed selection coefficients. This was also done with the
abc R package (version 2.1) [85].

Additional simulations testing if a combination of processes buffers populations against
the loss of genetic variation. We conducted an additional set of forward-time simulations of
evolution to determine whether and to what extent our best fit model (balancing selection with
gene flow) maintained variation at the Perform locus (i.e., we conducted a predictive check of
this model) and how this compared to two counterfactual models—one with directional selection
and gene flow and one with balancing selection and no gene flow. We used the same general
model described above. For the balancing selection with gene flow simulations, we sampled
effective population size and gene flow parameters from the same prior distributions used above
and then sampled selection coefficients from the posterior distributions inferred from ABC. For

the balancing selection without gene flow simulations, we did the same thing, except we set the

27



624

625

626

627

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

migration rates to 0. Lastly, for directional selection with gene flow, we sampled selection co-
efficients from a posterior inferred from the ABC model when only considering the directional
selection model (i.e., forcing directional selection). We ran 50 simulations (50 samples from
the prior or posterior distributions depending on the parameters) under each of the three models
with each running for 250,000 generations. Initial Perform allele frequencies were set to 0.5 for
all simulations. These simulations were conducted in R (version 4.1.3). We then compared the
outcome of these simulations to the observed variability at the Perform locus.

Dating the chromosomal inversion. We first used a phylogenetic approach to estimate the
divergence time between the Perform chromosomal variants, i.e., alleles (as in [12]. For this,
we used GBS data from 138 7. knulli described above, along with 69 newly sequenced 7. pe-
tita (from site 101S, latitude = 35.73°N, longitude = 121.31°W), and 329 T. poppensis and
86 T. californicum originally described in [28]. These data were aligned to the 7. knulli ref-
erence genome using the bwa aln algorithm (version 0.7.17-r1198) and alignments were
compressed, sorted and indexed with samtools as described above for the 7. knulli sam-
ples [61,62]. We identified variable nucleotides (SNPs) across this full set of samples but only
within the Perform locus using samtools (version 1.5) and bcftools (version 1.6). Other
than considering only the Perform locus, variant calling options and subsequent filtering were
as described above for 7. knulli. We then determined the number of invariant bases of each
type (A, C, G, or T) within the Perform locus, as this information is part of the phylogenetic
model. Specifically, using the samtools depth command, we determined coverage for
each individual at each site within Perform that was not called as a SNP (even before filter-
ing). We counted the site as invariant if we had data for at least 80% of the individuals with
a mean coverage of at least 2x per individual. This resulted in 789 variable sites (SNPs) and
18,425, 11,610, 12,007, and 18,570 invariant As, Cs, Gs, and Ts, respectively. We then used

Perl scripts to convert the variant file to a nexus alignment and to choose a subset of indi-
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viduals for phylogenetic analysis (the conversion scripts are from [12] and are available from
GitHub, https://github.com/zgompert/TimemaFusion). Specifically, for the out-
group taxa 7. californicum, T. poppensis and T. petita, we chose the 8-10 (10 for 7. petita only)
individuals with the least missing data for the aligned SNPs, and for 7. knulli we retained 33
individuals from BCE C (host = Ceanothus) and 25 from the parapatric population BCE RW
(host = Redwood).

We then used BEAST?2 (version 2.6.6) [86] to estimate the divergence times between the
Perform chromosomal variants in 7. knulli. We encoded information on the invariant sites us-
ing the constantSiteWeights option. We fit the GTR sequence evolution model with rate
heterogeneity that approximated a gamma distribution using four rate categories. We assumed a
relaxed log-normal clock [87] with a coalescent extended Bayesian skyline tree prior [88]. Fol-
lowing [12], we fit a gamma distribution to the previously inferred divergence time for all four
of our taxa—T. knulli, T. petita, T. californicum, and T. poppensis—using the £itdi st r function
in R. This gives a gamma with o = 10.8509 and 8 = 0.973, which has a mean of 11.5 million
years and standard deviation of 3.4 million years. We used this as the prior on the root diver-
gence time and thus as a calibration point for our key divergence time of interest, that is between
the two chromosomal variants in 7. knulli. Our input xm1 file (tknulli perform og.xml)
is available from GitHub (https://github.com/zgompert/TimemaFusion). We es-
timated the tree and associated divergence times based on 3 chains each comprising 10 million
iterations. Posteriors were summarized in R.

Second, we estimated the divergence time in a population genetic context with the diffu-
sion approximation approach implemented in dadi [35]. We specifically followed an approach
inspired by [89], which modeled recombination between subgenomes (in polyploids) as being
analogous to gene flow between populations. We focused on the BCE population and designated

two “populations”, each comprising individuals homozygous for one of the Perform inversion
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alleles. We assumed these populations were descended from a single ancestral population with
a mutation-scaled effective population size of 6 (4N,,.11, where p is the locus mutation rate)
that diverged at time T,;;; (measured in 2/N,,,. generations), which corresponds with the origin
time for the inversion (i.e., the creation of the two distinct inversion haplotypes). We allowed
for the relative effective sizes of the two inversion “populations” to increase or decrease over
time based on population growth parameters 11 = Ni/N,p. and vo = No/N,,.); this could
reflect selection or drift in inversion allele frequencies. We modeled potential genetic exchange
(recombination or gene conversion) between inversion alleles (populations) using the migration
rate parameter from dadi, My = 2Nyemie and Moy = 2N,,.mo; (here mqs and mo; are
propotions), as in [89]. Thus, our estimate of the divergence time between inversion alleles
accounts for possible reduced DNA sequence divergence resulting from recombination within
the inversion.

We used dadi (with Python 3.9.7) to first infer the joint site frequency spectrum for our
two populations, one comprising 25 PgPg homozygote (the allele more common on Redwood)
and one comprising 33 PsPs homozygotes (the all more common on Ceanothus) (all from
BCE); this was done within dadi directly from the filtered vcf file. We down-sampled the
data at this stage to 70% of the smaller size (i.e., 70% of 25 diploids). We then used dadi to
estimate the model parameters, specifically 0, T, V1, 12, and the genetic exchnage param-
eters Mis = 2Ng,emqo and Mo12N,,.moy (here myo and mo; are propotions) (see https:
//github.com/zgompert/TimemaFusion/blob/main/im_dadi_old.py). We
used three rounds of numerical optimization, comprising 20, 10 and five iterations each to esti-
mate the model parameters.

We then used the average of two published per-base mutation rates for insects, 2.9¢~ for
Heliconius and 2.8¢ for Drosophila [90], to convert our estimates of divergence time to time

in years (or equivalently generations as Timema are univoltine). This conversion also required
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an estimate of the number of sequenced bases for the Perform locus so that we could compute
the per-locus mutation rate (1 in adi). Importantly, this is not the same as the total length of
the locus as not all bases were sequenced, and even considering only sequenced bases not all
were sequenced to high coverage or exhibited properties that would have allowed a SNP to have
been called at a nucleotide position even if it were variable. Thus, we first used the samtools
(version 1.5) depth command to determine the number of bases within Perform sequenced to
at least 2x coverage (average per individual), which was the same threshold used for variant
calling. We then tried to account for the fact that a subset of these sites would not pass other fil-
tering criteria. Specifically, we calculated the proportion of SNPs that passed the coverage filter
but failed quality control based on other filters (about 2/3rds of the initial SNPs) and assumed
that this same proportion of non-SNPs would have been filtered out if they had been variable.
This gave us an effective number of sequenced bases of 53,538.3, which we used in combi-
nation with the per-base mutation rate to calculate the divergence time in years (see https:
//github.com/zgompert/TimemaFusion/blob/main/ComputeDate.R). Con-
fidence intervals on the divergence time were inferred using a block-jackknife procedure to
account for the non-independence among SNPs within Perform. Specifically, the SNPs within
Perform were divided into 100 contiguous 18 SNP windows and divergence time estimates were

obtained for each unique data subset of 99 of the 100 SNP windows.
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Figure 1: Conceptual overview and evidence of host-associated differentiation. Panel (A) il-
lustrates our two alternative hypotheses of (H1) an ongoing sweep and (H2) polymorphism
maintained by selection. Under the first hypothesis the inversion is young and in the process
of sweeping; variation will not be maintained. Under the second hypothesis balancing selec-
tion promotes the long-term maintenance of inversion polymorphism. (B) Shows illustrations
of Timema stick insects and their host plants, for the taxa studied here. Panel (C) summa-
rizes genome-wide genetic differentiation for parapatric Timema populations on different hosts.
Points denote mean Fgr for each of 13 T. cristinae linkage groups with horizontal lines extend-
ing to the 75th percentile of Fgr for that linkage group. Host abbreviations are A = Adenostoma,
C = Ceanothus, P = Pseudotsuga menziesii (Douglas Fir), Pi = Pinus (pine), Q = Quercus (0ak),
and RW = Sequoia sempervirens (Redwood).
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Figure 2: Genetic differentiation and structure associated with Redwood feeding in Timema
knulli. These results are all based on the new reference genome for 7. knulli. (A) Manhattan
plot of Fg between stick insects collected on Ceanothus versus Redwood at BCE. Points denote
Fgr for individual SNPs. Timema knulli chromosomes are used here (chromosome 3 from T.
cristinae is fused to chromosome 1; X = the X sex chromosome). Panel (B) shows eigenvalues
for the first principal component of genetic variation in 7. knulli (excluding BCTURN) in 100
SNP overlapping, sliding windows along chromosome 11. Colors denote alternative states as
identified by a Hidden Markov model (HMM), with red denoting the elevated eigenvalue state
and defining the bounds for the ‘Perform’ locus on chromosome 11 (text for details). Panels (C)
and (D) show summaries of genetic variation in 7. knulli based on principal components analysis
(PCA) for all SNPs not on chromosome 11 (C) and for the Perform locus only (D). Values for
the first two principal components are shown with colors and symbols denoting locations and
hosts. The inset in (C) is a schematic for the model used to infer neutral rates of gene flow
among populations: BCE C (on Ceanothus), BCE RW (on Redwood) and BCTURN C (on
Ceanothus). Point estimates of Nm, that is the number of migrants exchanged per generation,
are shown on lines connecting the populations, and are consistent with a pattern of isolation by
geographic distance.
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Figure 3: Genome alignments and evidence Perform is an ancient inversion. Dot plots show
alignments of chromosome 11 for 7. knulli and T. cristinae (A), T. knulli and T. chumash (B),
and T. cristiane and T. chumash (C). Red line segments denote aligned genome regions with the
orientation of the alignment shown by the direction of the lines. The bounds of the Perform lo-
cus in the 7. knulli genome are denoted by the gray shaded region. A large inversion coinciding
with the Perform locus is evident between 7. knulli and both T. cristiane (A) and T. chumash
(B), but no such inversion is found for 7. cristinae versus 1. chumash. Panel (D) summarizes
the evidence for and estimated bounds of the Perform inversion within 7. knulli. Specifically,
horizontal black lines show the inferred bounds based on the 7. knulli nanopore data, the com-
parative alignments in (A) and (B), and the eigenvalues from a PCA in T. knulli (see Figure
2B). Panel (E) shows the phylogeny for the Perform locus estimated with BEAST2. Colored
points indicate taxa and inversion alleles (for 7. knulli only) (Redwood = RW, Ceanothus =
C). Bifurcations with posterior probability > 0.5 are shown with pie charts colored to denote
posterior probabilities. Panel (F) shows the corresponding Bayesian posterior distributions for
divergence times for 7. knulli and T. poppensis based on genome-wide SNP data, for the T.
knulli RW chromosomal variant and 7. poppensis based on SNPs within the Perform locus, and
for SNPs within the 7. knulli RW and C Perform chromosomal variants. Points and horizontal
lines denote posterior medians and 95% equal-tail probability intervals [ETPIs], respectively.
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Figure 4: Summary of the rearing and genetic mapping experiments. Panel (A) illustrates the
experimental design. Panels (B) and (C) show 15-and 21-day weight for 7. knulli reared on
Ceanothus based on their Perform genotype (i.e., 0 and 2 are alternative homozygotes, with 0
being homozygous for the Redwood allele, and 1 is the heterozygote). Points denote individuals
(with a small jitter applied to the x-axis), horizontal lines give means for each genotype. The
P-value for the null hypothesis of no effect of Perform is shown. A barplot (D) shows survival
proportions on Ceanothus along with the P-value for the null model of no effect of genotype on
survival. Analogous results are shown for 7. knulli on Redwood (RW, Sequoia) in (E) (15-day
weight), (F) (21-day weight) and (G) (survival).
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Figure 5: Summary of the ABC model and inferences. Panel (A) illustrates the fitness schemes
and definitions of selection coefficients under directional versus balancing selection. Specifi-
cally, for directional selection s denotes the difference in relative fitness for alternative homozy-
gotes and h gives the heterozygote effect (with 0 < h < 1), whereas for balancing selection s1
and s2 denote the reductions in fitness for homozygotes relative to the heterozygote. Panel (B)
summarizes the demographic component of the model. Colored circles correspond with pop-
ulations with colors denoting host, red = Redwood and blue = Ceanothus. Populations have
distinct effective population sizes (Ne) and selection coefficients (either s and h or sl and s2)
dictated by host (RW or C). Asymmetric gene flow is allowed as indicated by the migration
edges. Panels (C) and (D) given model posterior probabilities. In (C) posteriors are given for
DS = divergent directional selection on both hosts, BS/RW = balancing selection on Redwood
and directional selection on Ceanothus, BS/C = directional selection on Redwood and balancing
selection on Ceanothus, and BS = balancing selection on both hosts. In (D) marginal posteri-
ors are shown for directional (DS) versus balancing selection (BS) on each host (indicated by
color). Panel (E) shows the joint posterior for the fitness of RW versus C allele homozygotes
on each host, where points denote individual samples from the posterior with contours over-
lain. (F) gives posterior estimates of the selection coefficients s1 and s2 (balancing selection)
on Ceanothus (C) versus Redwood (RW). Points and numbers denote posterior medians and
vertical bars indicate 95% credible intervals.
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Figure 6: Summary of simulations testing the effects of balancing selection and gene flow on
the maintenance of polymorphism at the Perform locus. Panel (A) illustrates the three models—
balancing selection with gene flow (our best model), directional selection with gene flow, and
balancing selection without gene flow—that we consider for the three focal populations ana-
lyzed with the ABC model, BCE on Ceanothus (BCE C), BCE on Redwood (BCE RW) and
BCTURN (an allopatric Ceanothus population). Panels (B)—(D) show the proportion of repli-
cate simulations in which variation at Perform was lost over time in BCTURN (B), BCE RW
(C) and BCE C (D).

51



« Supplement Tables and Figures

«s Supplemental Tables

Table S1: Summary of samples and genetic data used to measure host-associated genetic differ-
entiation. Host abbreviations are: C = Ceanothus, P = Pseudotsuga menziesii (Douglas fir), A =
Arctostaphylos (Manzanita), Pi = Pinus, Q = Quercus, RW = Sequoia sempervirens (Redwood).
N1 and N2 denote the sample sizes for populations 1 and 2, respectively. See Riesch et al. [31]
for additional information about these populations.

Species Population 1 ~ Population 2 N1 N2 Number of SNPs
T. californicum SM on A SM on Q 17 20 7858
T. knulli BCEonRW  BCWPonC 15 12 1139
T. knulli BCTUR on C BCTUR on Pi 17 16 1139
T landelsensis BCBOG on C BCBOG on Q 23 20 8548
T. landelsensis BCSUMon C BCSUM on Q 20 11 8548
T. poppensis TBARNonP TBARNonRW 20 20 7157
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Table S2: Summary of the relationships between our current chromosome number system
(based on T. cristinae), our previous 1. cristinae genome that used linkage groups [5], and the
numbers (IDs) for the chromosome-scale scaffolds in 7. cristinae (GS = green striped morph),
T. knulli, and T. chumash genomes here based on whole genome-alignments. Note that our
earlier linkage groups corresponded with 7. cristinae chromosomes with two exceptions, one
chromosome (now 9 = T cristinae GS scaffold 16151) was split between two linkage groups,
and the sex chromosome, X (now 13 = T. cristinae GS scaffold 14101) was not assigned to any
linkage group.

T. cristinae OId T. cristinae T. cristinae (GS) T. knulli T. chumash
chromosome number  linkage group  scaffold number scaffold number scaffold number

1 1 8483 29 43

2 2 14640 813 1392

3 3 42935 29 43

4 4 42912 6886 43

5 5 18722 6895 56

6 6 9928 6839 1469

7 7 10660 934 1510

8 8 7748 6852 113

9 9,13 16151 1305 43

10 10 14160 30 1213

11 11 12033 500 48

12 12 12380 6840 1403

13 NA 14101 775 1308

Table S3: Summary of samples for the 7. knulli performance experiment and associated genetic
analyses. Host abbreviations are: C = Ceanothus and RW = Redwood (Sequoia sempervirens).
N denotes sample size

Population Host Latitude (°N) Longitude (°W) N

BCE C 36.07 121.60 68
BCE RW 36.07 121.60 24
BCSH RW c3.07 121.60 1
BCTURN C 36.08 121.61 37
BCXD C 36.07 121.60 8
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Table S4: Proportion of 7. knulli surviving to the end of the experiment as a function of Perform
genotype, host treatment (Redwood or Ceanothus) and sex.

Redwood Ceanothus
Genotype | female male | female male
PgPg 1.00 1.00 | 0.86 0.57
PgPs 0.79 088 | 094 0.80
PsPs 092 1.00 | 1.00 1.00

Table S5: Model parameter estimates from dadi. The scaled parameters presented are defined
as follows: 6 = 4Nanc,u’ n = Nl/Nanc, Vo = NQ/Nanca Tsplit = 2Nanctsplit’ My = 2Nancmia,
Msy = 2N,4,cmo1, where N and ¢ denote actual effective population sizes and time in genera-
tions (years) and p is the total mutation rate for the locus. 95%Cls denote 95% block-jackknife
confidence intervals. Here, populations 1 and 2 refer to homozygoes for P; (more common on
Ceanothus) and P, (more common on Redwood), respectively.

Parameter | Estimate 95%CI lower 95%CI upper
0 111.184 41.845 234.364
2 0.231 0.106 0.631
Vo 3.901 1.875 10.386
Tprit 13.833 2.573 28.976
M, 0.367 0.134 0.782
Mo,y 0.110 0.040 0.248
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«s Supplemental Figures
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Figure S2: The dot plot shows the alignment of chromosome 11 for 7. knulli (from Redwood)
and T. cristinae. Line segments denote aligned genome regions with the orientation of the
alignment shown by the direction of the lines. The bounds of the Perform locus in the 7. knulli
genome are denoted by the vertical red lines. The location of the five inversions detected on
chromosome 11 for the 7. knulli genome from Ceanothus relative to the Redwood 7. knulli
genome are shown with horizontal orange lines. The location of these along the y-axis is arbi-
trary. These inversions were delineated based on nanopore DNA sequence data. The main text
focuses on the largest of these five inversions.
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Figure S3: Boxplots show the RW (Pg) allele frequency from simulations for BCTURN (A),
BCE RW (B) and BCE C (C) after 250,000 generations of evolution with balancing selection
(BS) and gene flow, directional selection (DS) and gene flow, or BS without gene flow. Results
are shown for 50 replicate simulations under each set of conditions. Boxes denote the 1st and
3rd quartile, with the median given by the midline and whiskers extending to the minimum
and maximum value or 1.5 x the interquartile range. Points show the allele frequency for each
replicate simulation. The observed RW allele frequency in each population is shown with a red,
dashed line.
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Figure S4: Summary of model fit for divergence time models in dadi. The top panels show
the observed (data) and predicted (model) joint site frequency spectra for Perform locus. The
bottom panels show the corresponding residuals, that is the deviation between the observed and
model-predicted joint site frequency spectra.
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Figure S5: Inversion divergence time estimates from dadi. The boxplot summarizes estimates
of divergence time (in millions of years ago = MYA) for each of 100 block-jackknife replicates.
Boxes denote the 1st and 3rd quartile, with the median given by the midline and whiskers
extending to the minimum and maximum value or 1.5x the interquartile range. Gray points
denote the estimate for each replicate; the larger black dot indicates the estimate from the full
data set.
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