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Abstract

A hyperbolic group G acts by homeomorphisms on its Gromov boundary. We show that if G is a topological n—
sphere the action is topologically stable in the dynamical sense: any nearby action is semi-conjugate to the standard
boundary action.

1. Introduction

Calabi—Weil local rigidity [Cal61l [Wei62]] (an important precursor to Mostow rigidity) states that, for
n > 3, the action of the fundamental group of a hyperbolic n-manifold by conformal maps on the
boundary sphere $”~! is locally rigid: any nearby conformal action is conjugate in SO*(n, 1) to the
original action. Inspired by this, we investigate rigidity for the actions on boundary spheres of the
broader class of all Gromov hyperbolic groups with sphere boundary. These boundaries do not typically
admit a natural conformal or even a C! structure, so the relevant notion of local stability is that from
topological dynamics.

Recall that an action pg: G — Homeo(X) of a group G on a topological space X is a fopological
factor of an action p: G — Homeo(Y) if there is a surjective, continuous map 4: Y — X such that
ho p = pgo h.Such amap £ is called a semi-conjugacy. An action of a group G on a topological space
X is topologically stable or C° stable if it is a factor of any sufficiently close action in the compact-open
topology on Hom(G, Homeo(X)). We prove the following.

Theorem 1.1 (Topological stability). Let G be a hyperbolic group with sphere boundary. Then the
action of G on 3G is topologically stable. More precisely, given any neighborhood V of the identity in
the space of continuous self-maps of S", there exists a neighborhood U of the standard boundary action
in Hom(G, Homeo(S")) such that any representation in U has po as a factor, with semi-conjugacy
contained in'V.

In parallel with Calabi—Weil rigidity, this says that these boundary actions exhibit the strongest
possible form of local rigidity. While there is overlap in the groups considered (fundamental groups
of closed hyperbolic manifolds are Gromov hyperbolic), our result is neither a special case nor a
generalization of the classical case. We consider a much broader space of deformations — actions by
homeomorphisms rather than conformal maps — but semi-conjugacy is of course weaker than conformal
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conjugacy, which one cannot hope for when considering general continuous deformations (see in
particular the examples of [BM 19, Section 4]).

History and related results

“Stability from hyperbolicity" is an important and recurring theme in dynamical systems. For instance,
hyperbolic (Anosov) diffeomorphisms are topologically stable, thanks to the well known shadowing
lemma. However, in much of the existing literature, hyperbolicity is described using some smooth or
at least C' structure, while the actions we consider are typically not differentiable, only having Holder
regularity.

Regarding boundary actions of groups, Sullivan’s 1985 Structural stability implies hyperbolicity for
Kleinian groups [Sul85], characterizes convex-cocompact subgroups of PSL(2, C) as those subgroups
whose action on their limit set is stable under C' perturbations. Sullivan uses the fact that group elements
expand neighborhoods of points to produce a coding of orbits that is insensitive to perturbation. This
technique was recently generalized by Kapovich—Kim-Lee [KKL] to a much broader setting, including
Lipschitz perturbations of many group actions on metric spaces which satisfy a generalized version of
Sullivan’s expansivity condition.

Matsumoto [Mat87] gives a more robust form of rigidity for the actions of fundamental groups of
compact surfaces on their boundary at infinity. In this case the boundary is a topological circle, and
Matsumoto’s work implies that any deformation of such a boundary action is semi-conjugate to the
original action. Motivated by this, Bowden and the first author studied the actions of the fundamental
groups of compact Riemannian manifolds on their boundaries at infinity, showing these satisfy a form
of local rigidity. Again hyperbolicity played a role, this time in the form of the Anosov property of
geodesic flow on such negatively curved manifolds.

Theorem [I.1] generalizes aspects of both Sullivan’s and Matsumoto’s program. While hyperbolic
groups acting on their boundaries are among the examples studied by Kapovich—Kim-Lee, their methods
only apply to pertubations which continue to have Sullivan’s expansivity, for instance Lipschitz-close
actions. General C° perturbations need not be Lipschitz close, so Sullivan’s coding no longer applies,
and we need an entirely new method of proof. Our strategy is more in the spirit of [BM19], but uses
large-scale geometry in place of the Riemannian manifold structure and Anosov geodesic flow.

Our focus on spheres is motivated in part by the fact that these are the most homogeneous group
boundaries. At the other end of the spectrum, Kapovich and Kleiner [KKO0Q] constructed hyperbolic
groups that are boundary rigid in the sense that any homeomorphism of the boundary comes from the
action of an element of the group. These groups trivially satisfy local rigidity since Homeo(0G) = G
is discrete. By contrast, homeomorphisms of the sphere are very easy to perturb, each having an infinite
dimensional family of deformations. The reader may consult [CP93] or [KBO02| for more background
on the dynamics of hyperbolic groups acting on their boundaries.

Scope

Bartels, Liick and Weinberger [BLW 10, Ex.5.2] give, for all £k > 2, examples of torsion-free hyperbolic
groups G with G = S*~! that are not the fundamental group of any smooth, closed, aspherical manifold
(note that such an example with G = S? would give a counterexample to the Cannon Conjecture).
These examples show that, even in the torsion free case, Theorem is a strict generalization of the
work of [BM19] on Riemannian manifold fundamental groups. Of course, groups with torsion provide
numerous other examples, and the tools introduced within the large scale geometric framework of the
proof should be of independent interest.
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Outline

The broad strategy of the proof is to translate the data of a G—action on S” into a G—action on a sphere
bundle over a particular space quasi-isometric to G, then show that nearby actions can be related by a
G-equivariant map between their respective bundles that is close to the identity on large compact sets.
This lets us promote metrically stable notions in coarse negative curvature (such as the property of a
subset being bounded Hausdorff distance from a geodesic) into stability for the group action.

In Section 2] we collect general results and preliminary lemmas on hyperbolic metric spaces. In
Section 3] we construct the bundles and equivariant map advertised above, in the broader context of (not
necessarily hyperbolic) groups acting on manifolds, which is the natural setting for this technique.

To apply this technique to the proof of Theorem [I.T} we need to find a suitably nice space X with
a proper, free, cocompact action of G by isometries. If G is torsion free, the space of distinct triples
in 0G is a natural choice, but if G has torsion the action of G on triples may not be free. We remedy
this in sections [f]and [3] first reducing to the case where G acts faithfully on G, and then showing that
one may remove a small neighborhood of the space of fixed boundary triples without losing too much
geometry, giving a suitable space to use in the rest of the proof. We also prove several technical lemmas
on the triple space for reference in later sections.

Section|[6]sets up the main proof and specifies a neighborhood of the boundary action where Theorem
[[.T]holds. The bundles from Section [3|come with natural topological foliations, and Section [6.2] shows
that the image of one of these foliations in the source space (whose leaves are parameterized by points
of dG) intersects leaves in the target along coarsely geodesic sets. Section [7] shows that the endpoints
of these coarse geodesics depend only on the original leaf, thus giving a map £ from the leaf space of
one foliation to the Gromov boundary of X. Both the leaf space and the Gromov boundary of X are
canonically homeomorphic to G, and the map /% is our semi-conjugacy.

2. Background

We set notation, collect some general results on hyperbolic metric spaces and prove some preliminary
lemmas needed for the main theorem.

2.1. Setup

We fix the following notation. G denotes a non-elementary hyperbolic group; in this section we do not
require G to be a sphere. We fix a generating set S, which gives us a Cayley graph I" and metric dr
on I'. Vertices of I" are identified with group elements. In particular the identity e is a vertex of I'. The
metric dr is v—hyperbolic (in the sense that geodesic triangles are v—thin) for some v > 0. We will fix
a constant § > v with some other convenient properties later. The Gromov boundary of the group is
denoted 0G, this is of course equal to the Gromov boundary of I.

We write (x | y), for the Gromov product of x and y at z. The point z must lie in T, but x, y may be
in ' U G, using the standard definition of the Gromov product at infinity (see eg [BH99| II1.H.3.15]),
as follows:

(x]y)p =sup {l.iminf(xi [yj)p | limx; =x, lim y; = y} .
1,] i—00 i—o00

We also fix a visual metric dyis on dG. This means a metric so that there are constants A > 1 and
ko > k| > 0O satisfying, for all a, b € 3G,
kA~ @lPle < g (a, b) < kya= @10, (1)

(See [BH99, II1.H.3] or [[GdIH90, 7.3] for more details, including the existence of such a metric.) Unless
otherwise specified, all metric notions in dG (such as balls B, (p)) will be defined using this visual
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metric. Occasionally, when specializing to G = S” we also make use of the standard round metric on
S".

We will need to use the following lemma for estimating the Gromov product of points at infinity in
a v-hyperbolic space.

Lemma 2.1. Let M be v—hyperbolic, and let p € M. Let a, 8 € OM be represented by geodesic rays
Ya»Yp Starting at p. For any points a € yo, b € yg,

(@|B)p = (alb), —2v.

Proof. From the definition of Gromov product at infinity, it follows that
(@|)p = liminf(va(s) | 75(1),.

To simplify notation, consider p as a basepoint and write | - | for das (p, -). Suppose that ¢ is a point on
Yo and d a point on yg so that [c| > |a| and |d| > |b|. We want to show that (c |d), > (a|b), —2v.

Consider the triple of Gromov products (¢ | d),, (b | d), = |b|,and (c | b),, < |b|. Asis well known it
follows from v—hyperbolicity that any one of such a triple is bounded below by v less than the minimum
of the other two, so we have

(cld)p 2 (c|b)p —v. )
Considering next the triple (¢ | b),, (c|a)p = |a|, and (a|b), < |a|, we conclude
(c1b)p = (alb)y - . 3)

Together (Z) and (3) give (¢ |d), > (a|b), — 2v, as desired. m|

2.2. The space of triples

Write E for the space of ordered distinct triples of points in the Gromov boundary dI" = dG. We use
the following well known property.

Proposition 2.2 (Convergence group property (see [Bow98| [Tuk98] and [Gro87] 8.2.M)). G acts
properly discontinuously and cocompactly on E, and each point a € 0G is a conical limit point, meaning
that there exists {g; }ien C G and p # q € G suchthat g;(a) — p and g;(z) — q forallz € dG —{a}.

The following definition can be thought of as giving a coarse projection map from = to I'. (Compare
[Gro87 8.2.K].) When S is a subset of a metric space, we use the notation N, (S) to indicate the open
r—neighborhood of S.

Definition 2.3 (Coarse projection). For each r > 0 we define a projection map n, from E to subgraphs

of T as follows. For (a,b,c) € 2 let G(a, b, c) be the set of geodesics in I" with endpoints in {a, b, c}.

Foreachr > 0 define n,(a, b, c) C T to be the smallest subgraph of T containing (\yega,p,c) Nr-1(7)-
If Z is a subset of B, we define n,(Z) = U,ez 7, (2). For s € T, we define n;'(s) = {(a,b,c) | s €

n(a,b,c)}; for S C T, define i1 (S) = Uges 7,1 (5).

Remark 2.4. Ifr is sufficiently large (depending on the hyperbolicity constant of T'), then n,-(a, b, ¢) is

always nonempty. Moreover, for any x € n.(a, b, ¢) and any geodesic y with endpoints in {a, b, c}, we
have dr(x,y) < r. We will make frequent use of this estimate.

Lemma 2.5. Foreveryr > 0, there is a Q(r) > 0 so diam(n,(a, b, c)) < Q(r) for all (a,b,c) € E.

Proof. Recall T is v—hyperbolic, meaning that triangles are v—thin. Let (a,b,c) € X be given. Fix
bi-infinite geodesics [a, b], [b, c] and [a,c] in I". Approximate this ideal triangle by a triangle in "
by choosing points @’ b’ and ¢’ € I" on the geodesics [a, b], [b, c] and [a, c], respectively, satisfying
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dr(a’,la,c]) < vanddr(a’,[b,c]) > r+2v, and such that the same two inequalities also hold when
the letters a, b, ¢ are cyclically permuted. Then 7, (a, b, ¢) is a subset of

Sr = r+v([alsb,]) n Nr+v([b/’cl]) N NV+V([C”a/])

so it suffices to show this set has diameter bounded by Q(r), for some suitable function Q.

Let p denote the map from the triangle with sides [a’, '], [b’, ¢’] and [a’, ¢’] to a tripod witnessing
that the triangle is v—thin, and let Z be the preimage of the center, this is a set of three points with
diameter at most v. We now claim that S, lies in the 3r 4+ 5v neighborhood of Z, which is enough to prove
the lemma. To prove the claim, suppose s € S,, so there exist points x,x, and x3 on [a’,b’], [b’, ']
and [a’, ¢] respectively with dr(x;,s) < r + v. Then for any i = 1,2, 3, there exists some j so that
p(x;) and p(x;) lie on different prongs of the tripod, so there is a path between them passing through
the midpoint m of the tripod. Thus, we have

dr(x;,Z) = dr(p(x;),m) < dr(p(x;), p(x;)) < dr(x;,x;) +2v < 2r +4v

where the last inequality follows from the fact that dr(x;, s) < r + v. This proves the claim. O
Lemma 2.6. Let r > 0. For any compact K C B, the set nr,(K) is bounded.

Proof. Let K C E be compact. Increasing r makes 7, (K) larger. Using Remark 2.4] we can therefore
assume that for every (a, b, ¢) there is some x € n,(a, b, c).

For each (a, b, c) € K, there is an open neighborhood U of (a, b, ¢) in E such that, for each point
(u,v,w) € U, any geodesics joining points in {u, v, w} come within 2v + r of the point x. In particular
x € mrpy(u,v,w). If y € m.(u,v,w) then dr(x,y) < Q(r + 2v), so n,(U) has diameter at most
20(r +2v).

By compactness we can cover K with finitely many neighborhoods U as in the last paragraph, so
7, (K) is bounded. |

It will be convenient to choose a hyperbolicity constant for I" that simultaneously satisfies several
properties. The properties we use are collected in the following lemma.

Lemma 2.7. There exists 6 > 0 so that all of the following hold:

(61) Every geodesic triangle in I is 6—thin.
(62) Every geodesic bigon or triangle with vertices in I' U G is 6—slim.
(63) For any point p € T', and any a,b,c € ' U 0G,

(a|b), = min{(a|c)p. (b|c)y} - .

(04) Forallp €T, ngl(p) is non-empty.
(65) The set ns({a} x {b} X (0G — {a, b})) contains every geodesic joining a to b.

Proof. Since T' is v—hyperbolic, items [(61)] and hold for any 6 > 2v. For item [(63)] see [BH99\
III.H.3.17.(4)]. Item follows from G-equivariance and the fact that 7s(a, b, ¢) is nonempty when
¢ is large enough. For [(65)} suppose we are given a point z on a geodesic y joining a and b, take
¢ € 0G minimizing max{(« | ¢);, (b | ¢).}. Co-compactness of the action of G allows one to bound this
minimum from above, independently of a, b and ¢, and this can be used to give an upper bound on the
distance from z to any geodesic joining a or b with c. O

Notation 2.8. For the rest of the paper we fix some § > 0 so the conclusions of Lemma [2.7| hold, and
denote the coarse projection nt s by 7.

Definition 2.9 (Minimum separation). For x = (a, b, c) € E, we define

minsep(x) = min{dvis(aa b)a dvis(‘% C), dvis(ba C)}
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Notice that 1/minsep is a proper function on X, so minsep is bounded away from zero on any compact
set. For a subset D C B, we define minsep(D) = inf{minsep(x) | x € D}.

2.3. A criterion for a set to be close to a geodesic

The following lemma gives a criterion for a piecewise geodesic curve to be close to a geodesic. There
are various similar statements in the literature (e.g. [Min0S, Lemma 4.2], [BH99, 1I1.H.1.13]), but this
form will be convenient for us. We use it to prove Lemma [2.12] which is the main technical ingredient
of this section.

Lemma 2.10. Let X be a 6—hyperbolic geodesic metric space, and let | > 0. Suppose that c is a
piecewise geodesic in X made of segments of length greater than 21 + 86, with Gromov products in the
corners at most l. Let y be a geodesic with the same endpoints as c. The Hausdorff distance between y
and c is at most | + 46.

We remark that this lemma only uses §—hyperbolicity, and not the other properties from Lemma[2.7]

Proof. A standard argument, using only the fact that y is a geodesic in a §-hyperbolic space, shows
that it is enough to prove ¢ is contained in the closed (/ + 3§)—-neighborhood of y. We will not give the
details as this is classical. We write ¢ as a concatenation cg - - - ¢ of geodesics so each c¢; joins some
pi—1 to some p;. The endpoints of y are pg and p. If kK < 2, we are done by slimness of triangles, so
we assume k > 3.

Let x be the farthest point from y on ¢, and let M = d(x, y). Without loss of generality, we suppose
that M > 26. It is then straightforward to show that x is within 26 of some breakpoint p;. (Consider the
triangle made up of the segment ¢; containing x, together with geodesics joining the endpoints of c; to
a point x” € y closest to x.)

Since M > 26, the breakpoint p; cannot be either endpoint of the geodesic vy; in particulari ¢ {0, k}.
There are two cases, depending on whether or noti € {1,k — 1}.

We suppose i ¢ {1,k — 1}; the case i € {1,k — 1} is similar but easier. By the assumption that
segments are long, d(x, {p;+1}) > 2/+66. Choose a geodesic o joining p;_; to p;,1. By the assumption
on Gromov products in the corners, we have (p;_1 | pi+1)p; < . It follows that d(x,0) <[ +6. Let y
be a closest point to p;_; in y, and let z be a closest point to p;;; in y. Choose geodesics [y, z] C v,
[pi-1,y], and [pi+1,z]. The point x lies within / + 36 of some point w on the union of these three
geodesics. We claim that w € [y, z], so we have M < [ + 36.

Indeed, suppose that w € [p;_1, y] (the case w € [p;41, z] being identical). Now we have

0<d(x,y)—d(pi-1,y) <d(x,w) +d(w,y) = (d(pi-1,w) +d(w,y))
=d(x,w) —d(pi-1,w)
<d(x,w) = (d(x,pi-1) —d(x,w))
=2d(x,w) —d(x, pi-1)
<2(1+36)—-d(x,pi-1) <0

a contradiction. We have thus established that M < [ + 38, and so c lies in the / + 36—neighborhood of
Y- O

Definition 2.11. Let r > 0, and let M be a metric space. A subset S of M is r—connected if any two
points p, q of S can be connected by a chain of points in S,

P =DPo, P1>---sPk =4,

so that dpy(pi, piv1) < 1 for all i. An r—connected component of S is a maximal subset of S which is
r—connected.
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Lemma 2.12. Let H > 0, and let R > 24H + 165. Let S C T" be a %—connected set so that for every
s € S, there is a bi-infinite geodesic vy, satisfying:

SN Br(s) C Nu(ys), and ys N Br(s) € Ny (S).

Then there is an oriented bi-infinite geodesic y so that

1. dpaus(y,S) < 3H + 65; and
2. for every s € S, we may orient yg so the Gromov products (y*® |y;f°°)s and (y= |y;®)s are
bounded below by R — (4H + 1006).

Proof. Choose any s in S, and let yy = y,, be a bi-infinite geodesic as in the hypothesis, parameterized
so that o (0) is within H of sg. Since the points yo(ig) lie in Bg(s), there are points s.; € S whose
distances from yo(ig) are at most H. Since dr(sg, s+1) < % +2H and dr(s-1,s1) = R — 2H, we
deduce (s_1 | s1)s, < 3H. In particular we have the following estimates:

R
dr(so,s+1) = 7 2H and (s-1|s1)s, < 3H, )

Now we inductively find s; and y; for all integers i.

For clarity we focus on i > 1. The construction for i < 0 is entirely analogous. Suppose we have
chosen points s_y, sg,...s;—1 in S, and that for each positive j < i — 1 we have chosen a bi-infinite
geodesic y; = ys;, and some 7; within 4H of —§ so that

dr(yi-1(0),s;-1) < H, and
dr(yi-1(ti=1),8i-2) < H.

Since R > 8H, the number #;_; is negative. The point y;_; (%) lies in the R—ball around s;_1, so we may
choose a point s; € S so that dr(s;, yi-1 (%)) < H.Lety, be the geodesic y;, provided by the hypothesis
of the lemma. We can assume that v, (0) is within H of s;. The distance dr(s;_1, s;) differs from % by
at most 2H. Thus for some #; of absolute value in [§ —4H, § +4H], we have dr(yi(#;), si-1) < H. We
parameterize y; so that #; < 0. This completes the inductive construction.

From the construction, we have

R
dr(si, sis1) < ) +2H @)

and

dr(si-1,sie1) = 5 + 1l = 2H = R~ 6H.
(The lower bound when i = 0 is slightly better.) This implies a bound on Gromov products
(Si=118i+1)s; < 5H. (6)
Let ¢ be a piecewise geodesic formed by concatenating geodesics

[S—ksS—ke1] - [Sk—1,8k].

We verify the hypotheses of Lemma [2.10| with [ = 5H. The inequality (6} gives the bound on Gromov
products in in the corners. The inequality () gives that the segments [s;, s;+1] have length at least
% —2H > 10H + 86 = 2l + 86 as required. Thus if By is the geodesic joining the endpoints of ¢y, we
have dyaus(cr, Br) < H+46.

Since I is proper, and the geodesics By all pass through the (H +46§)-ball about s, they subconverge
to a bi-infinite geodesic y. Notice that all the segments [s;, s;4+1] lie in the (H +46§)—neighborhood of y.

We will show this vy satisfies the conclusions of the lemma.
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If s € S, then there is a %—coarse path joining sg to s, that is to say there exist points sg =

Po> P1» ---» Pk = §in S satisfying.
R .
dr(pi, pi+1) < e Vi.
We first claim that for each p;, there is some s ;) with dr(s;y, pi) < R 1 2H. Clearly this is true
for po. Arguing by induction, we see that dr(p;+1, 5j(;)) is at most % +2H. In particular there is a point

g on ys;,, within H of p;.. Recalling that s, (0) lies within H of s5;(;), we see that g = s, (¢) for
some ¢t with

R 3
t| < —+3H < -R.
||_2+ <4

Thus for some ¢’ € {—%, 0, %}, we have [t —1'| < % Since the points ys; ,, (t%) are within H of 5;(;)41,
there is some s (j+1) € {8;(i)-1,Sj(1)» S ji)+1} SO that dr(pis1, sj(i+1)) < 2H + &, as desired.

Now let s; = s;(k), so we have dr (s, s;) < ¥ +2H, and let g be a closest point to s on y;. Without loss
of generality we suppose that g = y;(¢) for ¢ > 0. Any quadrilateral with corners s, 5 j+1,%,(0), ¥ j(g)
is 20—thin, so there is a point 7 on [s, s j+1] within H + 26 of ¢. This point r is within H + 45 of some
point z on y. Adding up the constants we have

dF(S’Z) < dF(SJ])"‘dF(C]J’)‘*'dF(V’Z)
<H+H+26+H+46 =3H+66.

This shows
S C N3m65(y). @)

Conversely, let x € y. Then x € By for some k, and so for some i, there is a point y € [s;, 541 ] with
dr(x,y) < H +46. This point is within H + 26 of a point on vy;, which is within H of a point of S, so
we have

Y C N3g465(S). ®)

Together, (7) and (8) imply the first statement of the Lemma, that is to say the bound on Hausdorff
distance. It remains to show the statement about Gromov products. Breaking symmetry, we consider
just the ray y,|[0, 00). Let y” be a point on y,|[0, o) at distance R from s. Let s” € S be a point within
H of y’, and let z’ be a point on y within 3H + 66 of s’. Let « be a ray starting at s with limit point y¥,
and let B be a ray starting at s with limit point Y. There are points y on « and z on 8 which are within
o of y’, 7/, respectively. We have dr(s,y) > R—6,dr(s,z) > R—(4H+76) and dr(y,z) < 3H+86, so

lz)s = %(R—6+R—(4H+76)—(4H+86)) =R - (4H + 89).

Lemma[2.1]allows us to conclude (y{* [ y*®); > R — (4H + 106) as desired. o

3. An equivariant map from X x 9G to itself.

The first step in the proof of Theorem [I.1]is the following construction, which can be thought of as a
generalization of that in [BM19, Lemma 3.1]. If X is a space with a proper, free and cocompact action
of G,and p: G — Homeo(Y) an action of G on a topological space, one can capture the information of
this action as the holonomy of a foliated Y-bundle over X /G this is simply the quotient of X x Y by the
diagonal action of G. Here the case of interest to us is when ¥ = dG = S™. The following proposition
gives a construction of a “nice" map between the foliated bundles associated to the boundary action pg
and a small perturbation p.
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The same proof works with any manifold Y in place of S”, and any two nearby actions of an arbitrary
group G on the space, so we state it in this general context, as follows.

Let Y be a metric space such that Homeo(Y') is metrizable and locally contractible. For instance, one
may take Y to be any compact manifold, in which case local contractibility of Homeo(Y) follows from
Edwards—Kirby [EK71]]. Metrizability of Homeo(Y) has the following easy consequence.

Observation 3.1. Let W be a neighborhood of the identity in Homeo(Y), and let F C Homeo(Y) be
finite. Then there is a neighborhood V.C W of the identity so that the union

L rvety

feF
liesin W.
Using this, we prove the following.

Proposition 3.2. Let G be a group, Y a metric space as above, and fix an action py: G — Homeo(Y).
Let X be a metric space on which G acts properly, freely and cocompactly by isometries.

For any compact K C X and € > 0, there is a neighborhood U of pg so that for each p € U there is
a homeomorphism fP: X XY — X XY with the following properties:

1. (Covers idy) If mx is the projection from X XY to X, then nx o fP = nx. In other words, fP covers
the identity on X.
2. (Equivariance) For every g € G we have

fP(g-x.p(8)-0) = (g po(g) - f*(x,0).
3. (Near flatness.) For any 6 € Y we have
fP(K x{08}) Cc X X B(0).

Proof of Proposition[3.2] Since the action is proper, free, and cocompact, there is some r > 0 so that
every nontrivial element of G moves every point of X a distance at least . Choose a G—equivariant
locally finite cover U = {U; | i € I} of X by open balls of radius r/3, and let N be the nerve of U.
Since U was G—equivariant and locally finite, the group G acts cocompactly on the simplicial complex
N. Since any g € G — {1} moves every set U; off of itself, G acts freely on N.

We choose a G—equivariant partition of unity {¢;: X — [0, 1] | i € I} subordinate to the cover U.
This partition determines a proper G—equivariant map ¢: X — N.

To define f*, we first define a map ¢*: N — Homeo(Y), and then define

JP(x.0) = (x, (¢ 0 ¥(x))(6)) . )

The map ¢* will be G—equivariant with respect to the “mixed” left action of G by homeomorphisms of
Homeo(Y) given by

g-h=po(e)hp(g™). (10)

Definition of ¢”.

The definition of ¢ is designed to keep track of the compact set K and constant € > O for the near
flatness condition in the Proposition. Let D be a connected union of open simplices in N which meets
every G—orbit exactly once. Let K be a compact subcomplex of N, which we assume contains the closed
star of any cell of D. (Note that any compact C C X has y(C) c K for some such complex.) Let € > 0.
Let S be the (finite) set of group elements s so that sD meets the closed star of some vertex in D. Let F
be the (still finite) set of group elements g so that gD N K is non-empty.
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Letting W = N, (id), we choose a neighborhood V as in Observation so that po(g)Vpo(g)~'V lies
in W for all g € F. Now let m = dim(N). Apply Observation[3.1]and local contractibility of Homeo(Y)
to choose a nested sequence of contractible neighborhoods of 1 inside V:

VwcVic---CV,, CV
so that for each i and all 5 € S, we have
po()Vipo(s)™'Vi C Via. (11)

By taking p sufficiently close to pg, we may assume that po(g)p(g~") lies in V, for all g € F. We define
¢” inductively over the k—skeleta of N in such a way that ¢” (o) C Vj for every k—cell in the closed star
of a vertex of D.

0-skeleton. Define ¢ on N©) as follows. If v = gv for some vy € D, then

¢ (v) = po(g)p(g™").
If v lies in the closed star of some cell of D, then g € S, so ¢ (v) € Vj as desired.

Inductive step. Suppose that ¢ has been defined on all (k — 1)—cells, and let o be a k—cell. We may
write o = goy, where oy is an open k—cell in D. The map ¢* has already been defined on the boundary
of 0y, and sends this boundary into Vi_; by induction. Using the contractibility of Vi_; we extend ¢*
over oy in such a way that ¢°(0qg) C Vi_i. We define ¢°|,(x) = po(2)e? (g7 (x))p(g™"). Since the
action on N is free, there is no ambiguity in this definition.

Now suppose that o lies in the closed star of some vertex of D, so o = sy for some s € S. The set

P (o) lies in
po($)Vi1p(s™1) = po(s)Vie1p0(5) "' po(s)p(s) ™" € po(s)Vi—1p0(s) ™' Vo,

which lies in Vi by (I1). Having verified the inductive hypothesis, we see that we can continue until
we have defined ¢ equivariantly on all of N. Moreover, we have defined it so that ¢* (0y) lies in the
neighborhood V for any oy meeting D.

Properties of f*
Having defined ¢, we define f* as in (9).

JP(x.0) = (x. (¢ 09 (x))(0)) .

By definition, this covers the identity map on X. To simplify notation, let ®” denote ¢* o i. Note that
d* satisfies equivariance as ¢* does. This also gives equivariance of f¥, as follows:
fP(g-x,p(8) - 0) = (g-x,(P(g-x)p(g)) - 0)
= (g X, (po(g)<1>" (x)p(g")p(g)) 0)

= (g x. (po(8) P’ (x)) - 0)
= (8. p0(8)) - (x, @ (x) - 0)
= (8.p0(8)) - [P (x,0).
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It remains to check near flatness. For any cell o of the larger compact complex K there is some g € F
and some oy C D so that o = goy. Equivariance tells us that

¢ () = po(8)¢” (d0)p(g™")
= po(8)¢” (0)po(8) ™" - po(g)p(g™")
c po(g)Vpo(g) -V w.

Since every homeomorphism in W moves every point of Y a distance of at most €, we have f* (o-x{0}) C
B¢ (0) as desired. O

4. Reduction to the main case

In this section we reduce to the case G = S” for n > 2, and also to the case where G acts faithfully
on its boundary. The first reduction (to n > 2) comes from combining work of Matsumoto with the
Convergence Group Theorem.

Proposition 4.1. Let G be a hyperbolic group with circle boundary. Then the action of G on 3G is
topologically stable.

This can quite likely be derived from Matsumoto’s original proof, as the main techniques are Euler
characteristic and lifting to covers. For completeness, we give a short argument using standard tools
from circle dynamics.

Proof. Let G be a hyperbolic group with circle boundary. By the Convergence Group Theorem [[Gab92|
CJ94], there exists a normal, finite index torsion-free subgroup G’ of G that is isomorphic to the
fundamental group of a closed surface. Let p be a perturbation of the standard boundary action pg of G.
By [Mat87], there exists a continuous, surjective, degree onemap / : S' — S such that hp(g) = po(g)h
for each g € G’. if the action of G’ is minimal, then /% is a conjugacy. If the action of G’ is not minimal,
then there exists a unique invariant exceptional minimal set X, homeomorphic to a Cantor set, and h
collapses the closure of each complementary interval to a point and is otherwise injective (See e.g.
[GhyO1}, Proposition 5.6].) It is also easy to see that & varies continuously with p, so can be taken as
close to the identity as desired by taking p close to py.

Since G’ is normal in G, the set X is p(G)-invariant. It follows that G permutes the point-preimages
of h. From this we will now deduce that / in fact defines a semiconjugachy intertwining the actions
of po(G) and p(G). To see this, we use the fact that attracting fixed points of elements of po(G’) are
dense in S!. If x is the attracting fixed point of po(y) for some y € G’, then po(g)x is the attracting
fixed point of po(gyg~'), an element which also lies in G’. Thus, for any y € h~!(x), we have
p(g)(y) € h™'po(g)(x); equivalently, hp(g)(y) = po(g)h(y). Since h is continuous, and the union of
preimages of attracting fixed points is dense in S', this shows that 2p(g) = po(g)h holds globally. O

Proposition 4.2. Suppose G is a hyperbolic group with sphere boundary, and let F < G be the subgroup
of elements which act trivially on 0G. Then G is topologically stable if and only if G | F is topologically
stable.

Proof. Since F is a finite normal subgroup, the canonical action of G on its boundary factors through
the canonical action of G/ F on its boundary, and these boundaries are the same. Let N be the maximum
order of an element of F. By a theorem of Newman [New31], there is a neighborhood U of the identity
in Homeo(S™) so that any torsion element in U has order greater than N. Thus for any sufficiently small
perturbation of the canonical action, the elements of F will still act trivially, and so small perturbations
of the canonical action of G on its boundary are in one-to-one correspondence with small perturbations
of G/F on its boundary. O

We therefore make the following assumptions for the remainder of the paper.
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Assumption 4.3. The hyperbolic group G acts faithfully on its boundary 0G.

Assumption 4.4. The boundary of G is a topological sphere of dimension at least two.

5. A space with a proper, cocompact and free action of G

Recall that E is the space of distinct triples in dG. Since dG is assumed to be a sphere of dimension
n > 2 (Assumption #.4), the triple space Z is a connected 3n—manifold. The following is an easy
consequence of [AMNI1, Theorem 1.1].

Proposition 5.1. There is a proper G—invariant metric on E.

We fix such a metric d= now. If additionally no nontrivial element of G fixes more than two points of
dG, then the action of G on E is free and E can play the role of the metric space X in Proposition[3.2} In
general G may not act freely on E, so a different space is needed. In this section, we show how to build
such a space with a free action by deleting a small, G-equivariant neighborhood of the set of points in
= with nontrivial stabilizer.

Notation 5.2. For g € G, we denote by fix(g) C dG the set of points fixed by the natural action of g.
We set

F ={(a,b,c) € E|{a,b,c} c fix(g) for some nontrivial g € G} .

Recall a subset S of a metric space M is e—dense if every point of M is distance at most € of a point
of S. Also recall that N, (S) denotes the open k—neighborhood of a set S. If S is a subset of E, this
neighborhood is to be taken with respect to d=. Our first goal is to establish the following.

Proposition 5.3 (F is sparse). For any € > 0, there exists k > 0 such E — N, (F) is e~dense in E.
Since we will frequently refer to E — N, (F), we fix the following notation.

Notation 5.4. For k > O we let X, = E — N (F).
Proposition[5.3]has the following useful corollary.

Corollary 5.5. For sufficiently small k, property of Lemma 2.7 still holds with s replaced by the
restriction of ms to X,.

Proof. By equivariance and the fact that 7 (x) is non-empty for every triple in E, Property [(§4)|holds as
soon as X, is non-empty. ]

The proof of Proposition[5.3|requires several preliminary results, starting with the following.

Lemma 5.6. For any torsion element g € G, such that fix(g) has at least three points, there exists a
quasi-convex subgroup Qo C G such that A(Qg) = fix(g)

Here we use the standard notation A(Q,) for the limit set of Q, in dG.

Proof. This proof is adapted from an argument of Misha Kapovich [Kap]|. Fix a torsion element g. Let H
be a maximal torsion subgroup pointwise fixing fix(g), and let Q be the normalizer of H in G. We claim
Q is the stabilizer of fix(H) = fix(g). That Q preserves this set is immediate. For the reverse inclusion,
if f € G preserves fix(H) then fH f~! pointwise fixes fix(H) as well. Since fix(H) has at least 3 points
in it, the subgroup generated by H and fHf~' cannot contain a loxodromic, and is therefore finite
[GdIH90, Ch. 8, §3]. By maximality of H, we have that f € Q. This shows Q is the stabilizer of fix(g).

To conclude the proof we wish to show that Q is quasi-convex and A(Q) = fix(g). We can then take
Q. = Q in the conclusion. Let C denote the quasi-convex hull of fix(g), meaning the set of all bi-infinite
geodesics with both endpoints in G. Note that there is a uniform bound, say r’, on distance that any
h € H can translate any point in C.



Forum of Mathematics, Sigma 13

We now show Q acts cocompactly on C, which is enough to show Q has the desired properties. To
see this, assume for contradiction that C contains infinitely many distinct cosets {Qg}. Since every
h € H translates each g, a distance at most 7', the conjugates g;lH g all lie in the r” ball about the
identity in I'. It follows that for infinitely many pairs i, j the subgroups gi’lH gi = gjle g; agree, and
thus gig;l € Q. We conclude the cosets {Qgy} were not distinct, giving the desired contradiction. O

Recall that a null sequence in a metric space is a collection of subsets D so that for every € > 0, the
set {D € D | diam(D) > €} is finite.

Corollary 5.7. The collection of fixed point sets of nontrivial torsion elements is a null sequence in 0G.

Proof. Since G is hyperbolic, it contains only finitely many conjugacy classes of torsion elements (see
[Gro87, 2.2 B]). It therefore suffices to show the fixed point sets of elements in a single conjugacy
class form a null sequence. These fixed point sets are exactly the G-translates of fix(g) for some
torsion element g. By Lemma fix(g) is equal to A(Q,) for a quasi-convex subgroup Q, of G. By
Assumption g does not fix all of G, so this subgroup Q, must be infinite index in G. By [GMRS98]
Corollary 2.5], the G—translates of A(Q,) form a null sequence. m}

Proposition 5.8. F is a closed set with empty interior.

Proof. Let K C E be an arbitrary compact set. By Corollary [5.7] there are only finitely many elements
g so that diam(fix(g)) > minsep(K). There are therefore only finitely many nontrivial g so that K
contains a triple of points in fix(g). For each such g, the set fix(g) x fix(g) X fix(g) intersects K in a
closed subset with empty interior in E. It follows that F' N K is closed with empty interior. Since E can
be exhausted by compact sets, the conclusion follows. O

We also need the following general result about closed sets with empty interior in compact metric
spaces.

Lemma 5.9. Let A be a compact metric space and C C A a closed subset with empty interior. Given
any € > 0, there exists k > 0 so that A — N (C) is e~dense in A.

Proof. Let d4 denote the metric on A. Since C has empty interior, for all x € A there exists a point
px € C with da(py,x) < €. Since A is compact, there is a finite collection x, . .., x; so that the open
e-balls B¢ (py,) cover A. The set C is closed, so the distance da(py,, C) is positive for each i. We let «
be half the minimum of the distances d4(py,, C). Each x € A is contained in one of the balls B (py,),
sothe set {py,,...,Px.} € A— N,(C) is e—dense. O

Proof of Proposition[5.3] By Proposition [5.8] F is closed with empty interior. Recall from Proposi-
tion that G acts properly discontinuously and cocompactly on E. Thus F/G c E/G is closed
with empty interior and the proposition follows immediately from Lemma taking A = Z/G and
C=F/G. O

5.1. Additional properties of X,

We establish some properties of the sets X, := E — N, (F). First we make the following observation,
relevant to the application of Propositon

Lemma 5.10. For any « > 0, the group G acts properly, freely, and cocompactly by isometries on X,.

Proof. The group G already acts properly and cocompactly on X, and N, (F) is open and G—invariant,
so G still acts properly and cocompactly on X,.. The only points of E with nontrivial stabilizer are in F,
which has been removed. O

Next we give a technical refinement of Proposition [5.3] which is what we actually use in the next
section.
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Lemma 5.11. Suppose we are given a compact set D C E, and €” < €’ < minsep(D)/2. There exists
k > 0 such that, for any (a, 8, c) € D, there exists ¢’ so that dyis(c,c’) < €” and {a} X B¢/ (0) X {c'}
lies in the interior of X,.

We recall that minsep is defined in terms of the visual metric dys.

Proof. Let D’ be a compact subset of 2 containing B/ (x) X B¢/ (y) X Bes(z) forall (x,y,z) € D. Let F
be the set of elements g € G—{e} so that g fixes some triple in D’. By Corollary[5.7] the fixed point sets of
torsion elements form a null sequence in dG. For each g € F, we have diam(fix(g)) > minsep(D’) > 0,
so F is finite. Let C = |J{fix(g) | g € F} be the union of these fixed sets in dG. Since C is a finite
union of closed sets with empty interior, C is closed with empty interior.

By Lemma[5.9] we can choose a positive 4 < €” such that 3G — N,(C) is €”’—dense in dG. Choose
k small enough so that N, (F) N D’ is a subset of the neighborhood of F of radius A in the product
visual metric on (0G)3.

To verify this x works, choose (a,0,c) € D. Since G — N (C) is €’—dense, we can find ¢’ €
0G — N (C) with dyis(c, ¢’) < €”. We claim that {a} X B¢/ (6) X {c’} is contained in E — N, (F), and
hence in the interior of X,. Indeed, for any b € B/ (6), we have (a, b, c’) € D’. Suppose (x,y,z) € F
is a closest point of F to (a, b, ¢’) in the product metric. If the visual distance between each coordinate
of (x,y,z) and (a, b, ¢) were less than A, which is less than €, then we would have (x,y,z) € D' N F.
By our definition of C, this means that x, y, and z all belong to C. But the minimum distance from ¢’ to
a point of C is greater than A by construction, so we conclude (a, b, ¢’) lies outside the A-neighborhood
of F in the product metric, and hence outside Ny, (F). O

Finally, we need a technical result which will come into play at the very end of the proof, when we
show our semi-conjugacy is well-defined. To state it we need a definition.

Definition 5.12 (« path property). We say a compact D C E has the k path property if the following
holds:

For each b € 3G, and pair of points (a, b, c) and (a’, b, c’) in D, there is a path a; from a to a’ and
¢"" € 0G such that (a;,b,c"”’) € D — N (F) forall t.

Lemma 5.13. For any compact set K C E, there exists k > 0 and a compact set D D K so that D has
the k path property.

Proof. Fix a round metric dipg on dG = S™. The collection

Cn = {(a,b,c) € E | dmala,b) 2 %7 dma(a,c) 2 %’ dina(b,c) 2 %}
forms an exhaustion of E by compact sets, so we may choose m sufficiently large so that K c C,, and
the diameter of S” in the round metric is larger than I—W?.

Since D is compact, only finitely many elements of G fix a triple of points that meets D. Let C c §"
denote the union of these finitely many fixed sets; it is a closed subset of G with empty interior.

By Lemma there exists A4 < % such that $" — N(C) is %-dense in S” (again, using the round
metric). Consider a shortest length geodesic path with respect to the round metric on S between a and
a’. If this path does not meet the closed %-ball about b, then call this path a,. Otherwise, modify this
path by removing the segment that intersects the closed %-ball, replacing it with a path that lies on the
boundary of this ball, and call the resulting path a,. (We are here using our Assumption[d.4|that n > 2.)
In either case, a, lies in the union of a radius # ball and a geodesic segment.

Since the diameter of S in the chosen round metric is larger than %), we may find a point ¢ € §"
that avoids both the %-neighborhood of this path a, and the % neighborhood of b. Since " — N,(C)
is %—dense, we may move this point a distance of at most % to find a point ¢’” ¢ N, (C). Thus we have,
(as,b,c”) € D forall t.
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Finally, choose « small enough so that any element of a triple in N,(F) N D lies within the A-
neighborhood (in the round metric) of some point of C. Note that this choice of k only depends on D
and A, which both depended only on the set K. The point ¢”” was chosen so that ¢’ ¢ Na(C). Thus, we
conclude that (a;, b, ¢”’) ¢ N, (F) holds for all ¢, as desired.

O

Note that even though dis and the round metric give the same topology on S", the metric d;; may
be rather strange-looking. In particular d.;s is not Riemannian, so even very small balls with respect to
dyis may not be connected. This is the reason for the use of the round metric in the proof above.

6. Nearby representations give quasi-geodesic partitions

In this section we fix a constant « to define a space X, C E as in Section[5} and fix a neighborhood of
po- Our goal is to show that every representation p in this neighborhood has pg as a factor. In Section
[6.2] we show that representations in this neighborhood induce quasi-geodesic partitions of a section of
X« X G — X,. The endgame of the proof, carried out in Section[7] consists of using the endpoints of
these quasi-geodesics to build a semi-conjugacy.

6.1. Fixing a neighborhood of pg

We first fix a neighborhood V of the identity in the set of continuous self-maps G — dG. By shrinking
V if necessary, we may assume that V consists of degree one maps. There is some Cy > 0 so that any
map h satisfying the lower bound on Gromov products

Vx € 0G, (h(x)|x)e > Cy ()

liesin V.

In Definition [6.4] we will specify a neighborhood U (V) of pg in Hom(G, Homeo(dG)), ultimately
showing that any p € U(V) is semiconjugate to po by a map h satisfying (f). This is sufficient to prove
Theorem [L.11

To specify U(V) and set up the proof, we need to fix several intermediate constants and compact
sets. Recall S denotes our chosen generating set for G.

Notation 6.1. Let H = max{25, Q(36)} + 1, where Q(-) is from Lemma 2.3]

Lemma 6.2. There exist compact sets Do C D 1 C D1 C Dj in E and positive constants €; < €| and
Ko satisfying the following.

Dy contains 1~ (e). (Hence GDy = E.)
Dy =U{gDo|geSUS U{e}}.
€ < %minsep(D%).

D contains B¢, (x) X B¢, () X B, (2) for every (x,y,z) € D%.

LR Wb~

D contains n~' (Bg(e)) where
R > max{24H + 526 + diam(n(Dy)), Cy +4H + 116}. (se)

6. For all k < ko, the k path property of Lemmal[5.13] holds for D,
7. €< %minsep(Dl).
8. Dj contains B, (x) X B¢, (y) X Be,(2) for every (x,y,z) € Dy.

The sets Dy, D1, and D, play a major role in the rest of the proof. The set D 1 will only appear in
the last step.



16 Forum of Mathematics, Sigma

Proof. We let D be a compact subset of Z containing 7~! (B (e)) and define D 1 as in item (2). We
fix any positive € satisfying item (3)). Let K C E be a compact set large enough to contain the union
of 77!(Bg(e)), where R is in equation (%), as well as the union of the sets B, (x) X B¢, (¥) X B¢, (2)
for every (x,y,z) € D 1 Applying Lemmato K gives us a constant kp and set D containing K so
that the o path property holds for D; note that by definition the « path property remains true for any
Kk < Ko, since N (F) € N, (F). Then take any €, and D as described. O

Lemma 6.3. There exists positive € < %62 such that the following hold:

(e1) Any geodesic between points a, b with dyis(a, b) < 2€ has distance at least 106 from n(D3) (and
hence from Bg(e)).
(e2) Forevery p € 0G, there is a closed contractible set B, so that

Be(p) C B, C Bg(p).

Proof. That the first condition can be met is a consequence of compactness. Indeed, by Lemma[2.6] the
106-neighborhood of the set 7(D>) is bounded in I', hence contained in some compact ball centered at
e. Thus, there is a positive lower bound on the visual distance between the endpoints of any geodesic
passing through that ball.

We now address the second condition. Since S” is compact, the visual and round metrics are uniformly
equivalent. Thus there is a ¢ > 0 so that the round ball of radius 2u about p is contained in B, (p)
for every p € §", so we can take B, to be the closed round u—ball. There is then some € > 0 so that
Be(p) C B, for every p. O

Definition 6.4 (The neighborhood U (V)). Recall we fixed Cy > 0 at the beginning of the subsection,
see Equation (f). Using this Cy, fix the compact sets Do C D 1 C D c D, C E and positive constants
€ < & < € and kg satisfying the conclusions of Lemmas|6.2] and|[6.3] above.

Fix some « > 0 satisfying

1. k < kg and
2. Forany (a,c,0) € Dy, there exists ¢’ € B¢ (c) so that {a} X B¢, (0) x{c’} lies in the interior of Xy.

That such a « exists follows by applying Lemma with D = Dy, € = €, and €’ = €. Note that
€ < eo < minsep(D1)/2, so the hypotheses of that lemma are satisfied.

Define U(V) to be a neighborhood of po in Hom(G,Homeo(dG)) consisting of representations
satisfying both of the following:

3. dvis(p(8), po(8)) < € for everyg € SUS™; and
4. the map [P defined in Section[3] taking X = Xy, has the property that f*((D2NX)x{6}) C B¢(6)
for every 6.

‘We now fix notation.

Convention 6.5. Fix some p € U(V). Since p is fixed, we henceforth drop it from the notation, writing
f = fF. Since « is also fixed, we also drop it from our notation when convenient, writing X for X,.

We keep this convention for the remainder of the work. Our eventual goal is to show that pg is a
factor of p via a semiconjugacy satisfying (f). The reader will note that when F = 0, then X = E. (For
example, this holds when G is torsion-free.) It may be helpful on a first reading to keep this special case
in mind, thinking of X as the space of distinct triples.
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6.2. A section partitioned into coarsely geodesic sets

We begin by describing a natural foliation on a section of Ex dG — E.Let 0: E — (E X dG) be the
section given by o ((a, b, ¢)) = ((a, b, c), b). The image of o has a topological foliation by leaves

L, :={((a,b,c),b) | b,c € 0G —{a},b #c}.

The leaves of this foliation are coarsely geodesic in the following sense. For any a # 6, the set
L, N (Ex{0}) is the image in o (E) of a set whose projection to I" is Hausdorff distance at most § from
any geodesic joining a and 6. The set L, N (E X {a}) is empty.

We will show that the sets

La N fP(X % {6)) € o (X)

behave much like the sets L, N (E X {6}), in the sense that for each a and 0 in JG, this set is either
empty or looks “coarsely geodesic,” meaning the projection of each nonempty set L, N fP(X x {6}) to
the Cayley graph I" lies at a uniformly bounded Hausdorff distance from a bi-infinite geodesic in I'.

To formalize this, define 7 on o(X) by 7 = moo-~!. It follows from the definition of 7 on sets that for
Z c o(X), the set 7(Z) is equal to the union | J,c 7(z). Our goal for the section can now be restated:

Proposition 6.6. For any (a,8) € dG?, either Ly N fP(X X {6}) is empty, or i(La N fP(X x {8})) is
uniformly bounded Hausdorff distance from a bi-infinite geodesic in I" with one endpoint equal to a.

In fact, we eventually prove something slightly stronger (Proposition [6.11), but the statement and
proof requires some some set-up.

Notation 6.7. For 6 € 3G, we let Yy = f(X x{6}) € X X dG. For a,c,0 € 0G, we let f, . ¢ denote
the map x — fg(a,x,c). This map is defined on all points x € G such that (a,x,c) € X and it is
continuous on its domain of definition.

Recall L, N (Ex{0}) is nonempty provided a # 6. Our first lemma ensures that L, NYy is nonempty
provided a and 6 are far apart, as follows:

Lemma 6.8. For any (a,0,c) € D), the set L, N Yy is nonempty, and contains a point of the form
((a,bg,c"),bg) where by € B¢(0), and ¢’ € B¢(c); in particular we have (a,bg,c’) € Dy N X.

Proof. By Item () of Definition[6.4} there exists a point ¢’ € B¢ (c) such that {a} X B¢, (0) X {¢'} C X.
Thus f,.. ¢ is defined on B, (#) and Definition [6.4] item () implies that f, . ¢(Be,(8)) C Bc(6).
Lemma [6.3] states that there exists a closed, contractible set By such that

Be(0) € Bg C B, (9).

Thus,

fa,c’,Q(BQ) - fa,c’,H(Bsz(e)) C Be(e) C BH~

By the Lefschetz fixed point theorem, f, ./ ¢ has a fixed point by € B, (8), which means exactly that
((a,bg,c"),bg) € Ly NYy. Recall that € < €, so by our choice of sets and constants as in Lemma 6.2}
we have also (a, by, c’) € D». O

Notation 6.9. Going forward, we define S(a,0) :=a(L,NYy) C T

Our goal is to show that, whenever S(a, #) is nonempty, it is bounded Hausdorff distance from a
bi-infinite geodesic with one endpoint equal to a. The following lemma gives a local estimate. Recall
we have fixed H = max{25, Q(36)} + 1, where Q(-) is the function from Lemma[2.5]
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Lemma 6.10. Suppose there is a point ((a, by, cg), bg) in (D) N L, NYy. Let y be a geodesic from
atobyinl. Then

S(a,0) N Bg(e) € Ngy(y), andy N Br(e) C Ny (S(a,0)).

Proof. For the first inclusion, suppose that p lies in S(a, 8)NBg (e). Then, since D contains 7~ ! (Bg (e)),
we have p € T(f((D1 N X)x{0}) N L,). In particular, there exist b, ¢ € G, such that all the following
hold simultaneously:

1. pen(a,b,c),
2. (a,b,c) e DN X,
3. fo(a,b,c)=b.

Both (a, b, ¢) and (a, bg, co) liein (D1 NX) c (DN X). By item (@) in Definition[6.4] we conclude that
b = fg(a,b,c) and by = fg(a, by, co) both lie in B, (). In particular dis(b, bg) < 2€, so any geodesic
from b to by misses Bg(e) by at least 106 (Lemma [6.3][(€])). By é—slimness of ideal triangles this
implies that if [a, b] is any geodesic joining a to b, then [a, b] N Br4gs(e) lies in the §—neighborhood
of y (the geodesic joining a to bg). By definition of n, the point p lies within & of a point on [a, b]
which is at most R + § from e, so lies within 26 of y. This shows the first inclusion.

For the second inclusion suppose that p € y N Bg(e). By assumption [(§5)| on 6, there is some ¢ so
that p € 7(a, by, c). Since D contains 7~ ! (Bg(e)), we have (a, by, ¢) € D;.

By Item (2)) of Definition[6.4] there exists ¢’ € B¢ (c) such that

{a} X B¢, (bo) x {c’} € (X N Dy).

Let B = By be the contractible set from Lemma This set contains B¢ (#), so in particular
by € B. We have {a} X Bx {c¢’} € X N Dy, so as in the proof of Lemma fo induces a map
fa.cr.0: B — Be(0) C B, and f, . ¢ fixes some b’ € B.(0) C By (byg). The point ((a,b’,c’),b’) is
therefore in L, N Yg, so mt(a, b’, ¢’) is a subset of S(a, 6). Let ¢ € n(a,b’,c’). See Figure[]

neighborhood. {ps, eps,pdf} not found (or no BBox)
Figure 1. p € n(a, b, c) is close to any point q of n(a, b’, c’).

We claim ¢ is close to p. To see this, we first show p is within 26 of any geodesic from a to b’. Fix
such a geodesic [a, b’], and geodesics [bg, b’] and [by, a]. Since p € Bg(e), it lies distance at least 106
from any point on [bg, b]. Also we have that p lies within ¢ of some point on [bg, a], so by §-thinness,
p is distance at most 26 from a point on [a, b’].

Repeating this argument with ¢’ in place of b’ shows that p is within 26 of any geodesic from a to
¢’. A slight modification shows that p is within 36 of any geodesic [b’, ¢’], as follows: Considering a
quadrilateral with sides [bg, c], [c¢,c’], [b’,¢’] and [bg, b'], we know that p is within § of some point
on [by, ¢] and this must lie within 26 of a point on [5’, ¢’] since the other two sides are each distance
at least 106 from p. Thus, p € m35(a, b’, ¢’), and of course ¢ lies in this set as well.

By Lemma m3s(a, b, c) has diameter at most Q(36). In particular dr(p,q) < Q(36). Since
q € S(a, ), this shows the second inclusion. O

We will now combine this work with Lemma to prove Proposition [6.6] We will actually prove
the following slightly stronger statement.

Proposition 6.11. If S(a,0) # 0, then S(a,0) is Hausdorff distance less than 3H + 65 + 1 from a
geodesic y with one endpoint at a.

If in addition L, N Yg N 0(Dy) is non-empty, then y joins a to a point et so that (e*|60)e =
R — (4H + 116).
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estimates. {ps,eps,pdf} not found (or no BBox)

Figure 2. vy and yg should both be close to Sy on the shaded region Bg(s), giving a contradiction if a
is not an endpoint of y..

Proof. We first verify the hypotheses of Lemma for the set S = S(a,6) N G. (Recall that G is
canonically identified with the vertices of I'.) By Corollary[5.5] 7 is surjective, so for each s € S we can
choose some by, ¢, so that o (a, by, cs) € Ly NYg and s € 7(a, by, cy). Since 77! (€) C Dy, the point
o(a, by, c,) lies in o (s - Do) N Ly N Y. Left translating by s~!, we have

(s 'a,s7'bg, 57 cg) € (Do) N Ly-1, N Yois-1)e-
Let ¥, be any bi-infinite geodesic from s~'a to s~ !b. Lemmaimplies
s7'S N Bgr(e) € Ny(¥,), and #, N Br(e) C Ny (S).
Setting v equal to s - ¥, we find that
SN BRr(s) € Nu(ys), and ys N Br(s) € Nu(S).

Now fix any %—connected component Sy of § so that we may apply Lemma (We will see
later that S is %—connected, so in fact Sp = S.) The paragraph above shows that all the hypotheses of
Lemmahold for Sy so we conclude that there is a bi-infinite geodesic y with dyaus (v, So) < 3H+66.

We next claim that one of the endpoints of y is a. We argue by contradiction. Using é—slimness
of ideal triangles, there is a point p € vy so that p is within 20 of any geodesic joining a to any
endpoint of y. Since Sy is Hausdorff distance at most 3H + 66 from v, there is some s € Sy so that
dr(s,p) < 3H + 66. Now vy, has an endpoint at a, and we have y; N Br(s) € Ng(S). From the
inclusions S N Br(s) € Nu(ys), and v, N Br(s) C Ny(S) and the inequality 6H < %, we conclude
that Ng(ys) NS C Sp. Choosing x € 7y, at distance % from s, in the direction of a, we find some
point s’ € So with dr(x, s”) < H. See Figure 2] for a schematic. By repeated applications of the triangle
inequality, one can easily show that this s is further than 3H + 66 from 7, a contradiction.

We now argue that S = Sp. To see this, suppose that S; were some other component. We may apply
the same argument to S; to produce a bi-infinite geodesic ;. The geodesics y and ;| share an endpoint
a, and so contain points within ¢ of one another. This implies that Sy and S; contain points within
6H + 135 < % of one another, so they cannot be different %—connected components.

We have established the first conclusion, since dyaus(S, S(a, 0)) < 1.

Now we suppose that s € S is in 7(0(Dg) N L, N Yy). By Lemma we may take s to be in
7((a,b,c),b) for some b € B.(6). We can therefore take y; in the first part of this argument to be a
geodesic joining a to b. The second conclusion of Lemma[2.12implies that (e* | b); > R — (4H +106),
where e is the endpoint of y which is not equal to a. We thus have

(e"|b)e = (" | b)s —dr(e,s)
> (e | b)s — diam(7(Dy))
> R — (4H + 105)

The first condition on € in Lemma[6.3]implies that (b | 8) > R. We have

(e"0)e = min{(e™ | b)e, (b]6)e} — 6
> R - (4H + 116),

establishing the last claim of the Proposition. )
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7. The endpoint map

To summarize the results of the previous section, for each pair a,6 € dG X G so that L, N Yy # 0,
there is a geodesic in I" at (uniformly) bounded Hausdorff distance from S(a,8) = (L, N Yy), with
one endpoint equal to a. Say this geodesic is shadowed by S(a,#), and orient it so that the negative
endpoint is a. Any two bi-infinite geodesics shadowed by S(a, 8) are bounded Hausdorff distance from
each other, so they have the same endpoints in dG. This gives us positive and negative “endpoint maps”
e* and e~ assigning to each pair (a, 8) where L, N Yy # 0 the positive and negative endpoints of the
shadowed geodesic. For any such (a, 8), we have ¢”(a,0) = a and e*(a,0) # a. Furthermore, the
equivariance property in Proposition [3.2]implies that for any g € G, we have

8S(a,0) = S(ga, p(8)0) =7(Lga NYp(g)0)-

This implies the following equivariance of the positive endpoint map.

g€ (a,0) =e"(ga,p(g)h). (12)

Here and in what follows, we will frequently omit py from the notation when it is clear that we are
referring to the natural action of G on its boundary. Thus, we will write ga rather than py(g)a when a is
aboundary point. For x € X, we also write gx for its image under the standard actionof g € Gon X C E.

We will first establish continuity of the positive endpoint map on a large set, then use it to define a
semi-conjugacy.

7.1. Continuity

Proposition 7.1 (Continuity in a, 6 over D). Suppose ag, 0y € 0G X OG is such that there exists ¢ with
(ag, 89, ¢) € D1. Then the map (a, 0) — e*(a, 0) is continuous at (ay, 0y).

Proposition|/. 1| will be a quick consequence of the following technical lemma.

Lemma 7.2. Suppose Ly, N Yy, is nonempty. For any r > 0O, there is a neighborhood N = N(r) of
(ag,0p) € 3G X 0G so that if (a,0) € N, then B, (e) NS(ay, 0y) lies in the diam(n(D))-neighborhood
of S(a, 0).

The main idea behind the proof of Lemma([7.2]comes from the proof of Lemma[6.8] and the fact that
the fixed point property used there is stable under small perturbations of the map f, . ¢.

Proof of Lemma[7.2] If B,(e) N S(ao,6) is empty there is nothing to show, so we suppose B, (e) N
S(ao, 6p) is non-empty. Let K C X be the closure of 77! (B, (e)).

Recall from Notation that fa.c.o denotes the map x — fy(a,x, c), and recall that Dy € D has
the following properties

1. X c GD,
2. Forany (a, b, c) € Dy, the set B¢, (a) X B¢, (b) X B¢ (¢) is contained in D. (See Lemma[6.2] @).)

Recall also that €] > e, > 2e.
We cover o (K) N (Lg, NYg,) with translates of Dy, as follows. Since K is compact, there are finitely
many elements g1, g2, ...8x € G so that

k

7 (K) N (Lay N Yg,) < |_J o (:Do).
i=1

By deleting elements from the list if necessary we may assume

O'(giD()) N (Lao N Ygo) +0
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for each i.

Our next goal is to show that, for each i, the projection of the larger translate g;D to the Cayley
graph contains a point of S(a, #), provided that (a, 6) is chosen close enough to (ag, 8y). Here “close
enough” depends on the set K and hence on the constant r.

Translating back to Dy, for each i we have o (Dg) N (Lgi—la() N Yp(gi)—leo) # 0. Let b;,c; € G be
such that

((gi_lag, b;,ci), bl-) € o(Dg) N (Lgi—la() N Yp(gi)—leo) .
Because (g7 'ag, bi, ¢;) € Do C Do, Deﬁnition@ implies that

bi = foen-10,(8 @0, bisci) € Be(p(gi)~"00).

hence, dyis (b, p(gi)~'00) < €, and so (g; a0, p(g:1)~'60.ci) € D1.

Let p; = p(gi)~'60. By Item of Definition there is some s ¢, € Be(c;) so that {a;} X
Be,(pi) x {c}} lies in the interior of X. Furthermore by Lemma there is a closed contractible
set B, € G with B.(p;) C By, C B (pi), and

v aer.p (Ber(pD) € Be(po),

SO fgi—lao’ chpi has a fixed point in B (p;). The property of taking the compact set B, into the open
ball B¢(p;) is open (in the compact-open topology on continuous maps), so also holds for any map
sufficiently close to fgi—laoycl{, ;> provided the map is defined on B),, . Recall that the domain of definition
of fry.z is the set {w | (x,w, z) € X}. Thus, if a function fy y . is defined on a set {x} X B¢, (p;) X {z}
contained in the interior of X, and B, (p;) D Bp,, then for all sufficiently close x’, y’, z’ the function
fx'y.z» will be defined on B, as well. Additionally, the functions fy , , vary continuously in the
arguments (x, y, z). Thus, we may take a neighborhood N; of (ag, 6p) such that for each (a, 8) € Nj,

1. the map fo-1, o1 (g,)-10 1S defined on B,
2. the map fgi—la’c;,p(gi)fl o has a fixed point contained in B¢ (p;); and

3. dvis(gi_la’gi_IGO) < €.

Set N = ﬂf.‘zl N;. Thus, for any (a,8) € N, each of the sets Lgi—l(a) NY, )10 contains a point
o (g7 a, zi, c}) where z; € B¢ (p;). In particular, we have

dvis(g; 'a, g; 'ao) < € and
dyis(zi, b;) < 2e < €.

Since (gl._lao, b;,c;) € Dy, this means that (gi_la, Zi» c;) € D;. Multiplying on the left by g;, we obtain
(a,gizi,gic;) € giD1 and o (a, g;z;, gic;) € Ly NYg, so the intersection

o(giD1) N (Ly NYyp)

is non-empty for each of the elements g;. Projecting to the Cayley graph, we have B, (e) N S(ao, 6o)
contained in the diam(z(D))-neighborhood of S(a, 6), which proves the lemma. O

Proof of Proposition[/ 1| from Lemma[7.2] Suppose (ao,6p) € dG x dG is such that there exists ¢
with (ag, 6p,c) € Di. Then by Lemma L4, N Yg, contains a point of o (D7), so is nonempty.
Lemma states that, given r > 0, there is a neighborhood N of (ag, 6p) so that if (a,6) € N, then
B,(e) N S(ag, bp) lies in the diam(r(D))-neighborhood of S(a, §). By Proposition[6.11]both S(a, 8y)
and S(a, 0) are Hausdorff distance at most 3H +66 + 1 from some bi-infinite geodesic, so these geodesics
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onlytheta. {ps,eps,pdf} not found (or no BBox)

Figure 3. Paths of endpoints (in red) on G = 9l and associated near-geodesic sets in I (blue) with
endpoints in the €-balls about p and q..

will 2(3H + 66 + 1) + diam(n (D)) fellow-travel each other over a compact set, which can be taken as
large as we wish by taking r large. This gives continuity. O

We now establish continuity of a similar positive endpoint map defined everywhere on X. Since f is
a homeomorphism and the sets X X {6} partition X X dG, so do their images Y. Likewise, the sets L,
give a partition of o"(X) C X x dG, so for each x € X, there exists a unique a(x) and 6(x) such that
0(x) € Lyx) NYg(x). Note if x = (a, b, c) then a(x) = a. We have a sequence of maps:

x=(a,b,c) = ((a,b,c),b) — (a,b(x)) — e*(a,d(x)). (13)

Proposition 7.3 (Continuity on X). Let E*(x) = e*(a(x), 0(x)) be the map given by the composition
in (13). Then E* is continuous on all of X.

Proof. Equivariance of each map in the composition implies that we have the equivariance property

& (gx) = &' (ga(x), p(8)0(x)).

It therefore suffices to check continuity of the composition above on the set Dy N X containing a
fundamental domain for the action of G on X.

By definition, the section o is continuous. For the second map in (T3), note that (x) is simply
projection onto the second coordinate of f~!(o(x)) € X x dG. Since f~! is a homeomorphism of
X X 0@, its projection 6(x) is continuous. Finally, Propositionsays that (a, 8(a, b,c)) — e*(a,0)
is continuous for (a, b, c) € D;. m]

Going forward we will abuse notation and often think of &* as a map defined on o (X), via the
identification of X with o (X).

7.2. Proof of Theorem
Using the work above, we may now conclude the proof of our main theorem. First recall the statement.

Theorem 1.1 (Topological stability). Let G be a hyperbolic group with sphere boundary. Then the
action of G on 0G is topologically stable. More precisely, given any neighborhood V of the identity in
the space of continuous self-maps of S™, there exists a neighborhood U of the standard boundary action
in Hom(G, Homeo(S")) such that any representation in U has po as a factor, with semi-conjugacy
contained in'V.

Our neighborhood U = U (V) was determined by our desired lower bound Cy on Gromov products
when we set our conventions in Section In this section, we show that e* (a, 0) is (locally) a function
only of 6, hence can be thought of a map from G to dG. We will then show that this map has the
properties of the desired semi-conjugacy between pg and p.

Lemma 7.4 (e* is locally a function of 6). Let 8 € G and let {a; | t € [0, 1]} be a path in G so that
e*(ay, 0) is defined and continuous at all points. Then e*(a;, ) is constant.

Proof. We argue by contradiction. Suppose we have such a path where ¢* is nonconstant. Truncating
and reparameterizing, we may suppose that

1. e*(ay,0) is not locally constant at ¢ = 0,
2. forallt € [0, 1], a; # e*(ag, §), and
3. e*(a1,0) # e (agp,0).
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The second item can be ensured by taking any sufficiently short path that is nonconstant at 0, since
e*(a,0) # a holds for all a, 6.

Since G acts on G as a uniform convergence action (see Proposition [2.2), the point e*(ag, ) is a
conical limit point so there exists a sequence {g;} C G and points p # g € G suchthatg;e*(agp,0) — p
and g;z — ¢ for all z € 4G — {e*(ag, ) }. Modifying the sequence {g;} if needed by postcomposing
with some fixed g € G, we may also assume there exists ¢ with (p, g, ¢) € Dy. In particular this implies
that B (p) N B¢ (q) = 0. Since dG is compact we may assume by passing to a subsequence that p(g;)6
converges to some point f., € 0G.

For i large enough, g; - €*(a1,0) € B¢2(gq) and g; - e*(aop, 8) € B¢ j2(p). Thus, for each sufficiently
large i, there exists #; such that p; := g; - e (ay,, 0) is visual distance exactly € from p. Since the arc
a, does not meet e*(ag, ) we have g;a, € B¢(q) for all ¢ and sufficiently large i. See Figurefor a
schematic illustration. Consider the sets g;S(ay,,0) = S(gi(ay,), p(gi)(0)). Recall by Equation (12)) we
have

e*(giar, p(g)b) = gi - e*(a;,0).

This implies that the geodesics shadowed by the sets S(g;(a,), p(gi)(0)) all pass through some compact
subset of the Cayley graph I', and so the sets themselves all meet some compact K C X.

For each i, fix a point y; € Lg,q, NYp(g)(6) N K. After passing to a further subsequence, the points
yi converge to some y., € K. Now g;a,, — g and p(g;)(0) — 6w, 50 yoo € Ly NYg, N K. Using the
notation from Proposition continuity of positive endpoints implies that E* (yeo) = lim,—e E (y;)
which is by construction some point at distance € from p.

Now consider instead the constant sequence ¢ = 0 instead of #;. By the same reasoning, for i sufficiently
large, Lg,ay N Yy (g:)(6) Will contain a point z; in K. After passing to a subsequence, these converge to a
point z, € Ly NYg, N K. By continuity of &* we have £ (200) = lim, . E¥(z;) = p. Thus, we have
found two points, ye and ze, both in Yg_ N L, with different positive endpoints E*(ze) # E* (Vo).
This directly contradicts Proposition [6.11] and this contradiction concludes the proof. O

Recall that item (6] from Lemma says that, if (a, 0, ¢) and (a’, 6, ¢’) lie in D1, then there exists a
path a; with ap = @ and a; = a’ and a point ¢’ such that (a,, 8, ¢”’) € D, for all 7. Proposition[7.1| says
that the map e*(a,, 0) is therefore continuous at each point, and thus by Lemma[7.4] we conclude it is
constant. In summary, we have the following.

Corollary 7.5. If (a,0,c) and (a’,0,c’) lie in D1, then e*(a,0) = e*(a’, 0).

Definition 7.6. Define h : S"~' — S™"~! by h() = e*(a, 0) where a is any point such that there exists
¢ with (a,0,c) € Dy.

Note that £ is defined everywhere, and is continuous by the continuity of e*(a, ) given by Proposi-
tion[7.1] It remains to check that & satisfies the other properties of the semi-conjugacy required to prove
Theorem|L.1] The second point in Proposition[6.11|states that (7(6) | 8)e > R — (4H + 116). Our choice
of R in Lemmal6.2] implies that (2(0) | 8)e > Cy, satisfying equation (f)) as desired, and showing
that A lies in our chosen neighborhood V. This neighborhood contains only degree one maps, so % is
surjective.

We now check equivariance. Let g be an element of the generating set S U S™! used in the definition
of I' and let 6 be given. Choose a so that (a, 8, c) € Dy. We have

po(g)h(0) = ge™(a,0) = e*(ga, p(g)0)

By definition of D%, and our conditions on p, we have (ga, g0, gc) € D%. By definition of D, and

item (3] of Definition [6.4] which defines the neighborhood U (V), we then have (ga, p(g)6, gc) € D;.
Thus, by Corollary e*(ga,p(g)0,gc) = e*(a’, p(g)d,c’) for any choice of a’ and ¢’ such that
(a’,p(g)0,c") € Dy, thus giving

po(g)h(8) = h(p(g)0) (14)
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for all & € dG. Since (]EI) holds for generators of G, it holds, inductively, for all elements g € G. This
shows that /4 is a semiconjugacy in the specified neighborhood of the identity map of S”, completing
the proof of the theorem. O
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