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Abstract
A hyperbolic group 𝐺 acts by homeomorphisms on its Gromov boundary. We show that if 𝜕𝐺 is a topological 𝑛–
sphere the action is topologically stable in the dynamical sense: any nearby action is semi-conjugate to the standard
boundary action.

1. Introduction

Calabi–Weil local rigidity [Cal61, Wei62] (an important precursor to Mostow rigidity) states that, for
𝑛 ≥ 3, the action of the fundamental group of a hyperbolic 𝑛-manifold by conformal maps on the
boundary sphere 𝑆𝑛−1 is locally rigid: any nearby conformal action is conjugate in 𝑆𝑂+ (𝑛, 1) to the
original action. Inspired by this, we investigate rigidity for the actions on boundary spheres of the
broader class of all Gromov hyperbolic groups with sphere boundary. These boundaries do not typically
admit a natural conformal or even a 𝐶1 structure, so the relevant notion of local stability is that from
topological dynamics.

Recall that an action 𝜌0 : 𝐺 → Homeo(𝑋) of a group 𝐺 on a topological space 𝑋 is a topological
factor of an action 𝜌 : 𝐺 → Homeo(𝑌 ) if there is a surjective, continuous map ℎ : 𝑌 → 𝑋 such that
ℎ ◦ 𝜌 = 𝜌0 ◦ ℎ. Such a map ℎ is called a semi-conjugacy. An action of a group 𝐺 on a topological space
𝑋 is topologically stable or 𝐶0 stable if it is a factor of any sufficiently close action in the compact-open
topology on Hom(𝐺,Homeo(𝑋)). We prove the following.

Theorem 1.1 (Topological stability). Let 𝐺 be a hyperbolic group with sphere boundary. Then the
action of 𝐺 on 𝜕𝐺 is topologically stable. More precisely, given any neighborhood 𝑉 of the identity in
the space of continuous self-maps of 𝑆𝑛, there exists a neighborhood𝑈 of the standard boundary action
in Hom(𝐺,Homeo(𝑆𝑛)) such that any representation in 𝑈 has 𝜌0 as a factor, with semi-conjugacy
contained in 𝑉 .

In parallel with Calabi–Weil rigidity, this says that these boundary actions exhibit the strongest
possible form of local rigidity. While there is overlap in the groups considered (fundamental groups
of closed hyperbolic manifolds are Gromov hyperbolic), our result is neither a special case nor a
generalization of the classical case. We consider a much broader space of deformations – actions by
homeomorphisms rather than conformal maps – but semi-conjugacy is of course weaker than conformal
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conjugacy, which one cannot hope for when considering general continuous deformations (see in
particular the examples of [BM19, Section 4]).

History and related results

“Stability from hyperbolicity" is an important and recurring theme in dynamical systems. For instance,
hyperbolic (Anosov) diffeomorphisms are topologically stable, thanks to the well known shadowing
lemma. However, in much of the existing literature, hyperbolicity is described using some smooth or
at least 𝐶1 structure, while the actions we consider are typically not differentiable, only having Hölder
regularity.

Regarding boundary actions of groups, Sullivan’s 1985 Structural stability implies hyperbolicity for
Kleinian groups [Sul85], characterizes convex-cocompact subgroups of PSL(2,C) as those subgroups
whose action on their limit set is stable under𝐶1 perturbations. Sullivan uses the fact that group elements
expand neighborhoods of points to produce a coding of orbits that is insensitive to perturbation. This
technique was recently generalized by Kapovich–Kim–Lee [KKL] to a much broader setting, including
Lipschitz perturbations of many group actions on metric spaces which satisfy a generalized version of
Sullivan’s expansivity condition.

Matsumoto [Mat87] gives a more robust form of rigidity for the actions of fundamental groups of
compact surfaces on their boundary at infinity. In this case the boundary is a topological circle, and
Matsumoto’s work implies that any deformation of such a boundary action is semi-conjugate to the
original action. Motivated by this, Bowden and the first author studied the actions of the fundamental
groups of compact Riemannian manifolds on their boundaries at infinity, showing these satisfy a form
of local rigidity. Again hyperbolicity played a role, this time in the form of the Anosov property of
geodesic flow on such negatively curved manifolds.

Theorem 1.1 generalizes aspects of both Sullivan’s and Matsumoto’s program. While hyperbolic
groups acting on their boundaries are among the examples studied by Kapovich–Kim–Lee, their methods
only apply to pertubations which continue to have Sullivan’s expansivity, for instance Lipschitz-close
actions. General 𝐶0 perturbations need not be Lipschitz close, so Sullivan’s coding no longer applies,
and we need an entirely new method of proof. Our strategy is more in the spirit of [BM19], but uses
large-scale geometry in place of the Riemannian manifold structure and Anosov geodesic flow.

Our focus on spheres is motivated in part by the fact that these are the most homogeneous group
boundaries. At the other end of the spectrum, Kapovich and Kleiner [KK00] constructed hyperbolic
groups that are boundary rigid in the sense that any homeomorphism of the boundary comes from the
action of an element of the group. These groups trivially satisfy local rigidity since Homeo(𝜕𝐺) ≅ 𝐺
is discrete. By contrast, homeomorphisms of the sphere are very easy to perturb, each having an infinite
dimensional family of deformations. The reader may consult [CP93] or [KB02] for more background
on the dynamics of hyperbolic groups acting on their boundaries.

Scope

Bartels, Lück and Weinberger [BLW10, Ex.5.2] give, for all 𝑘 ≥ 2, examples of torsion-free hyperbolic
groups𝐺 with 𝜕𝐺 = 𝑆4𝑘−1 that are not the fundamental group of any smooth, closed, aspherical manifold
(note that such an example with 𝜕𝐺 = 𝑆2 would give a counterexample to the Cannon Conjecture).
These examples show that, even in the torsion free case, Theorem 1.1 is a strict generalization of the
work of [BM19] on Riemannian manifold fundamental groups. Of course, groups with torsion provide
numerous other examples, and the tools introduced within the large scale geometric framework of the
proof should be of independent interest.
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Outline

The broad strategy of the proof is to translate the data of a 𝐺–action on 𝑆𝑛 into a 𝐺–action on a sphere
bundle over a particular space quasi-isometric to 𝐺, then show that nearby actions can be related by a
𝐺-equivariant map between their respective bundles that is close to the identity on large compact sets.
This lets us promote metrically stable notions in coarse negative curvature (such as the property of a
subset being bounded Hausdorff distance from a geodesic) into stability for the group action.

In Section 2, we collect general results and preliminary lemmas on hyperbolic metric spaces. In
Section 3 we construct the bundles and equivariant map advertised above, in the broader context of (not
necessarily hyperbolic) groups acting on manifolds, which is the natural setting for this technique.

To apply this technique to the proof of Theorem 1.1, we need to find a suitably nice space 𝑋 with
a proper, free, cocompact action of 𝐺 by isometries. If 𝐺 is torsion free, the space of distinct triples
in 𝜕𝐺 is a natural choice, but if 𝐺 has torsion the action of 𝐺 on triples may not be free. We remedy
this in sections 4 and 5, first reducing to the case where 𝐺 acts faithfully on 𝜕𝐺, and then showing that
one may remove a small neighborhood of the space of fixed boundary triples without losing too much
geometry, giving a suitable space to use in the rest of the proof. We also prove several technical lemmas
on the triple space for reference in later sections.

Section 6 sets up the main proof and specifies a neighborhood of the boundary action where Theorem
1.1 holds. The bundles from Section 3 come with natural topological foliations, and Section 6.2 shows
that the image of one of these foliations in the source space (whose leaves are parameterized by points
of 𝜕𝐺) intersects leaves in the target along coarsely geodesic sets. Section 7 shows that the endpoints
of these coarse geodesics depend only on the original leaf, thus giving a map ℎ from the leaf space of
one foliation to the Gromov boundary of 𝑋 . Both the leaf space and the Gromov boundary of 𝑋 are
canonically homeomorphic to 𝜕𝐺, and the map ℎ is our semi-conjugacy.

2. Background

We set notation, collect some general results on hyperbolic metric spaces and prove some preliminary
lemmas needed for the main theorem.

2.1. Setup

We fix the following notation. 𝐺 denotes a non-elementary hyperbolic group; in this section we do not
require 𝜕𝐺 to be a sphere. We fix a generating set S, which gives us a Cayley graph Γ and metric 𝑑Γ
on Γ. Vertices of Γ are identified with group elements. In particular the identity e is a vertex of Γ. The
metric 𝑑Γ is 𝜈–hyperbolic (in the sense that geodesic triangles are 𝜈–thin) for some 𝜈 > 0. We will fix
a constant 𝛿 ≥ 𝜈 with some other convenient properties later. The Gromov boundary of the group is
denoted 𝜕𝐺, this is of course equal to the Gromov boundary of Γ.

We write (𝑥 | 𝑦)𝑧 for the Gromov product of 𝑥 and 𝑦 at 𝑧. The point 𝑧 must lie in Γ, but 𝑥, 𝑦 may be
in Γ ∪ 𝜕𝐺, using the standard definition of the Gromov product at infinity (see eg [BH99, III.H.3.15]),
as follows:

(𝑥 | 𝑦)𝑝 = sup
{︃

lim inf
𝑖, 𝑗→∞

(𝑥𝑖 | 𝑦 𝑗 )𝑝
|︁|︁|︁|︁ lim
𝑖→∞

𝑥𝑖 = 𝑥, lim
𝑖→∞

𝑦𝑖 = 𝑦

}︃
.

We also fix a visual metric 𝑑vis on 𝜕𝐺. This means a metric so that there are constants 𝜆 > 1 and
𝑘2 > 𝑘1 > 0 satisfying, for all 𝑎, 𝑏 ∈ 𝜕𝐺,

𝑘1𝜆
−(𝑎 | 𝑏)e ≤ 𝑑vis (𝑎, 𝑏) ≤ 𝑘2𝜆

−(𝑎 | 𝑏)e . (1)

(See [BH99, III.H.3] or [GdlH90, 7.3] for more details, including the existence of such a metric.) Unless
otherwise specified, all metric notions in 𝜕𝐺 (such as balls 𝐵𝑟 (𝑝)) will be defined using this visual
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metric. Occasionally, when specializing to 𝜕𝐺 = 𝑆𝑛 we also make use of the standard round metric on
𝑆𝑛.

We will need to use the following lemma for estimating the Gromov product of points at infinity in
a 𝜈-hyperbolic space.

Lemma 2.1. Let 𝑀 be 𝜈–hyperbolic, and let 𝑝 ∈ 𝑀 . Let 𝛼, 𝛽 ∈ 𝜕𝑀 be represented by geodesic rays
𝛾𝛼, 𝛾𝛽 starting at 𝑝. For any points 𝑎 ∈ 𝛾𝛼, 𝑏 ∈ 𝛾𝛽 ,

(𝛼 | 𝛽)𝑝 ≥ (𝑎 | 𝑏)𝑝 − 2𝜈.

Proof. From the definition of Gromov product at infinity, it follows that

(𝛼 | 𝛽)𝑝 ≥ lim inf
𝑠,𝑡→∞

(𝛾𝛼 (𝑠) | 𝛾𝛽 (𝑡))𝑝 .

To simplify notation, consider 𝑝 as a basepoint and write | · | for 𝑑𝑀 (𝑝, ·). Suppose that 𝑐 is a point on
𝛾𝛼 and 𝑑 a point on 𝛾𝛽 so that |𝑐 | > |𝑎 | and |𝑑 | > |𝑏 |. We want to show that (𝑐 | 𝑑)𝑝 ≥ (𝑎 | 𝑏)𝑝 − 2𝜈.

Consider the triple of Gromov products (𝑐 | 𝑑)𝑝 , (𝑏 | 𝑑)𝑝 = |𝑏 |, and (𝑐 | 𝑏)𝑝 ≤ |𝑏 |. As is well known it
follows from 𝜈–hyperbolicity that any one of such a triple is bounded below by 𝜈 less than the minimum
of the other two, so we have

(𝑐 | 𝑑)𝑝 ≥ (𝑐 | 𝑏)𝑝 − 𝜈. (2)

Considering next the triple (𝑐 | 𝑏)𝑝 , (𝑐 | 𝑎)𝑝 = |𝑎 |, and (𝑎 | 𝑏)𝑝 ≤ |𝑎 |, we conclude

(𝑐 | 𝑏)𝑝 ≥ (𝑎 | 𝑏)𝑝 − 𝜈. (3)

Together (2) and (3) give (𝑐 | 𝑑)𝑝 ≥ (𝑎 | 𝑏)𝑝 − 2𝜈, as desired. □

2.2. The space of triples

Write Ξ for the space of ordered distinct triples of points in the Gromov boundary 𝜕Γ = 𝜕𝐺. We use
the following well known property.

Proposition 2.2 (Convergence group property (see [Bow98, Tuk98] and [Gro87] 8.2.M)). 𝐺 acts
properly discontinuously and cocompactly onΞ, and each point 𝑎 ∈ 𝜕𝐺 is a conical limit point, meaning
that there exists {𝑔𝑖}𝑖∈N ⊂ 𝐺 and 𝑝 ≠ 𝑞 ∈ 𝜕𝐺 such that 𝑔𝑖 (𝑎) → 𝑝 and 𝑔𝑖 (𝑧) → 𝑞 for all 𝑧 ∈ 𝜕𝐺−{𝑎}.

The following definition can be thought of as giving a coarse projection map from Ξ to Γ. (Compare
[Gro87, 8.2.K].) When 𝑆 is a subset of a metric space, we use the notation 𝑁𝑟 (𝑆) to indicate the open
𝑟–neighborhood of 𝑆.

Definition 2.3 (Coarse projection). For each 𝑟 > 0 we define a projection map 𝜋𝑟 from Ξ to subgraphs
of Γ as follows. For (𝑎, 𝑏, 𝑐) ∈ Ξ let G(𝑎, 𝑏, 𝑐) be the set of geodesics in Γ with endpoints in {𝑎, 𝑏, 𝑐}.
For each 𝑟 > 0 define 𝜋𝑟 (𝑎, 𝑏, 𝑐) ⊂ Γ to be the smallest subgraph of Γ containing

⋂︁
𝛾∈G(𝑎,𝑏,𝑐) 𝑁𝑟−1 (𝛾).

If 𝑍 is a subset of Ξ, we define 𝜋𝑟 (𝑍) =
⋃︁

𝑧∈𝑍 𝜋𝑟 (𝑧). For 𝑠 ∈ Γ, we define 𝜋−1
𝑟 (𝑠) = {(𝑎, 𝑏, 𝑐) | 𝑠 ∈

𝜋(𝑎, 𝑏, 𝑐)}; for 𝑆 ⊂ Γ, define 𝜋−1
𝑟 (𝑆) = ⋃︁

𝑠∈𝑆 𝜋
−1
𝑟 (𝑠).

Remark 2.4. If 𝑟 is sufficiently large (depending on the hyperbolicity constant of Γ), then 𝜋𝑟 (𝑎, 𝑏, 𝑐) is
always nonempty. Moreover, for any 𝑥 ∈ 𝜋𝑟 (𝑎, 𝑏, 𝑐) and any geodesic 𝛾 with endpoints in {𝑎, 𝑏, 𝑐}, we
have 𝑑Γ (𝑥, 𝛾) ≤ 𝑟. We will make frequent use of this estimate.

Lemma 2.5. For every 𝑟 ≥ 0, there is a 𝑄(𝑟) ≥ 0 so diam(𝜋𝑟 (𝑎, 𝑏, 𝑐)) ≤ 𝑄(𝑟) for all (𝑎, 𝑏, 𝑐) ∈ Ξ.

Proof. Recall Γ is 𝜈–hyperbolic, meaning that triangles are 𝜈–thin. Let (𝑎, 𝑏, 𝑐) ∈ 𝑋 be given. Fix
bi-infinite geodesics [𝑎, 𝑏], [𝑏, 𝑐] and [𝑎, 𝑐] in Γ. Approximate this ideal triangle by a triangle in Γ

by choosing points 𝑎′ 𝑏′ and 𝑐′ ∈ Γ on the geodesics [𝑎, 𝑏], [𝑏, 𝑐] and [𝑎, 𝑐], respectively, satisfying
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𝑑Γ (𝑎′, [𝑎, 𝑐]) < 𝜈 and 𝑑Γ (𝑎′, [𝑏, 𝑐]) > 𝑟 + 2𝜈, and such that the same two inequalities also hold when
the letters 𝑎, 𝑏, 𝑐 are cyclically permuted. Then 𝜋𝑟 (𝑎, 𝑏, 𝑐) is a subset of

𝑆𝑟 := 𝑁𝑟+𝜈 ( [𝑎′, 𝑏′]) ∩ 𝑁𝑟+𝜈 ( [𝑏′, 𝑐′]) ∩ 𝑁𝑟+𝜈 ( [𝑐′, 𝑎′])

so it suffices to show this set has diameter bounded by 𝑄(𝑟), for some suitable function 𝑄.
Let 𝑝 denote the map from the triangle with sides [𝑎′, 𝑏′], [𝑏′, 𝑐′] and [𝑎′, 𝑐′] to a tripod witnessing

that the triangle is 𝜈–thin, and let 𝑍 be the preimage of the center, this is a set of three points with
diameter at most 𝜈. We now claim that 𝑆𝑟 lies in the 3𝑟 +5𝜈 neighborhood of 𝑍 , which is enough to prove
the lemma. To prove the claim, suppose 𝑠 ∈ 𝑆𝑟 , so there exist points 𝑥1, 𝑥2 and 𝑥3 on [𝑎′, 𝑏′], [𝑏′, 𝑐′]
and [𝑎′, 𝑐′] respectively with 𝑑Γ (𝑥𝑖 , 𝑠) < 𝑟 + 𝜈. Then for any 𝑖 = 1, 2, 3, there exists some 𝑗 so that
𝑝(𝑥𝑖) and 𝑝(𝑥 𝑗 ) lie on different prongs of the tripod, so there is a path between them passing through
the midpoint 𝑚 of the tripod. Thus, we have

𝑑Γ (𝑥𝑖 , 𝑍) = 𝑑Γ (𝑝(𝑥𝑖), 𝑚) ≤ 𝑑Γ (𝑝(𝑥𝑖), 𝑝(𝑥 𝑗 )) ≤ 𝑑Γ (𝑥𝑖 , 𝑥 𝑗 ) + 2𝜈 ≤ 2𝑟 + 4𝜈

where the last inequality follows from the fact that 𝑑Γ (𝑥𝑖 , 𝑠) < 𝑟 + 𝜈. This proves the claim. □

Lemma 2.6. Let 𝑟 ≥ 0. For any compact 𝐾 ⊂ Ξ, the set 𝜋𝑟 (𝐾) is bounded.

Proof. Let 𝐾 ⊂ Ξ be compact. Increasing 𝑟 makes 𝜋𝑟 (𝐾) larger. Using Remark 2.4, we can therefore
assume that for every (𝑎, 𝑏, 𝑐) there is some 𝑥 ∈ 𝜋𝑟 (𝑎, 𝑏, 𝑐).

For each (𝑎, 𝑏, 𝑐) ∈ 𝐾 , there is an open neighborhood 𝑈 of (𝑎, 𝑏, 𝑐) in Ξ such that, for each point
(𝑢, 𝑣, 𝑤) ∈ 𝑈, any geodesics joining points in {𝑢, 𝑣, 𝑤} come within 2𝜈 + 𝑟 of the point 𝑥. In particular
𝑥 ∈ 𝜋𝑟+2𝜈 (𝑢, 𝑣, 𝑤). If 𝑦 ∈ 𝜋𝑟 (𝑢, 𝑣, 𝑤) then 𝑑Γ (𝑥, 𝑦) ≤ 𝑄(𝑟 + 2𝜈), so 𝜋𝑟 (𝑈) has diameter at most
2𝑄(𝑟 + 2𝜈).

By compactness we can cover 𝐾 with finitely many neighborhoods 𝑈 as in the last paragraph, so
𝜋𝑟 (𝐾) is bounded. □

It will be convenient to choose a hyperbolicity constant for Γ that simultaneously satisfies several
properties. The properties we use are collected in the following lemma.

Lemma 2.7. There exists 𝛿 > 0 so that all of the following hold:

(𝛿1) Every geodesic triangle in Γ is 𝛿–thin.
(𝛿2) Every geodesic bigon or triangle with vertices in Γ ∪ 𝜕𝐺 is 𝛿–slim.
(𝛿3) For any point 𝑝 ∈ Γ, and any 𝑎, 𝑏, 𝑐 ∈ Γ ∪ 𝜕𝐺,

(𝑎 | 𝑏)𝑝 ≥ min{(𝑎 | 𝑐)𝑝 , (𝑏 | 𝑐)𝑝} − 𝛿.

(𝛿4) For all 𝑝 ∈ Γ, 𝜋−1
𝛿
(𝑝) is non-empty.

(𝛿5) The set 𝜋𝛿 ({𝑎} × {𝑏} × (𝜕𝐺 − {𝑎, 𝑏})) contains every geodesic joining 𝑎 to 𝑏.

Proof. Since Γ is 𝜈–hyperbolic, items (𝛿1) and (𝛿2) hold for any 𝛿 ≥ 2𝜈. For item (𝛿3) see [BH99,
III.H.3.17.(4)]. Item (𝛿4) follows from 𝐺-equivariance and the fact that 𝜋𝛿 (𝑎, 𝑏, 𝑐) is nonempty when
𝛿 is large enough. For (𝛿5), suppose we are given a point 𝑧 on a geodesic 𝛾 joining 𝑎 and 𝑏, take
𝑐 ∈ 𝜕𝐺 minimizing max{(𝑎 | 𝑐)𝑧 , (𝑏 | 𝑐)𝑧}. Co-compactness of the action of 𝐺 allows one to bound this
minimum from above, independently of 𝑎, 𝑏 and 𝑐, and this can be used to give an upper bound on the
distance from 𝑧 to any geodesic joining 𝑎 or 𝑏 with 𝑐. □

Notation 2.8. For the rest of the paper we fix some 𝛿 > 0 so the conclusions of Lemma 2.7 hold, and
denote the coarse projection 𝜋𝛿 by 𝜋.

Definition 2.9 (Minimum separation). For 𝑥 = (𝑎, 𝑏, 𝑐) ∈ Ξ, we define

minsep(𝑥) = min{𝑑vis (𝑎, 𝑏), 𝑑vis (𝑎, 𝑐), 𝑑vis (𝑏, 𝑐)}.
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Notice that 1/minsep is a proper function on 𝑋 , so minsep is bounded away from zero on any compact
set. For a subset 𝐷 ⊂ Ξ, we define minsep(𝐷) = inf{minsep(𝑥) | 𝑥 ∈ 𝐷}.

2.3. A criterion for a set to be close to a geodesic

The following lemma gives a criterion for a piecewise geodesic curve to be close to a geodesic. There
are various similar statements in the literature (e.g. [Min05, Lemma 4.2], [BH99, III.H.1.13]), but this
form will be convenient for us. We use it to prove Lemma 2.12 which is the main technical ingredient
of this section.

Lemma 2.10. Let 𝑋 be a 𝛿–hyperbolic geodesic metric space, and let 𝑙 > 0. Suppose that 𝑐 is a
piecewise geodesic in 𝑋 made of segments of length greater than 2𝑙 + 8𝛿, with Gromov products in the
corners at most 𝑙. Let 𝛾 be a geodesic with the same endpoints as 𝑐. The Hausdorff distance between 𝛾
and 𝑐 is at most 𝑙 + 4𝛿.

We remark that this lemma only uses 𝛿–hyperbolicity, and not the other properties from Lemma 2.7.

Proof. A standard argument, using only the fact that 𝛾 is a geodesic in a 𝛿-hyperbolic space, shows
that it is enough to prove 𝑐 is contained in the closed (𝑙 + 3𝛿)–neighborhood of 𝛾. We will not give the
details as this is classical. We write 𝑐 as a concatenation 𝑐1 · · · 𝑐𝑘 of geodesics so each 𝑐𝑖 joins some
𝑝𝑖−1 to some 𝑝𝑖 . The endpoints of 𝛾 are 𝑝0 and 𝑝𝑘 . If 𝑘 ≤ 2, we are done by slimness of triangles, so
we assume 𝑘 ≥ 3.

Let 𝑥 be the farthest point from 𝛾 on 𝑐, and let 𝑀 = 𝑑 (𝑥, 𝛾). Without loss of generality, we suppose
that 𝑀 > 2𝛿. It is then straightforward to show that 𝑥 is within 2𝛿 of some breakpoint 𝑝𝑖 . (Consider the
triangle made up of the segment 𝑐𝑖 containing 𝑥, together with geodesics joining the endpoints of 𝑐𝑖 to
a point 𝑥′ ∈ 𝛾 closest to 𝑥.)

Since 𝑀 > 2𝛿, the breakpoint 𝑝𝑖 cannot be either endpoint of the geodesic 𝛾; in particular 𝑖 ∉ {0, 𝑘}.
There are two cases, depending on whether or not 𝑖 ∈ {1, 𝑘 − 1}.

We suppose 𝑖 ∉ {1, 𝑘 − 1}; the case 𝑖 ∈ {1, 𝑘 − 1} is similar but easier. By the assumption that
segments are long, 𝑑 (𝑥, {𝑝𝑖±1}) > 2𝑙 +6𝛿. Choose a geodesic 𝜎 joining 𝑝𝑖−1 to 𝑝𝑖+1. By the assumption
on Gromov products in the corners, we have (𝑝𝑖−1 | 𝑝𝑖+1)𝑝𝑖 ≤ 𝑙. It follows that 𝑑 (𝑥, 𝜎) ≤ 𝑙 + 𝛿. Let 𝑦
be a closest point to 𝑝𝑖−1 in 𝛾, and let 𝑧 be a closest point to 𝑝𝑖+1 in 𝛾. Choose geodesics [𝑦, 𝑧] ⊂ 𝛾,
[𝑝𝑖−1, 𝑦], and [𝑝𝑖+1, 𝑧]. The point 𝑥 lies within 𝑙 + 3𝛿 of some point 𝑤 on the union of these three
geodesics. We claim that 𝑤 ∈ [𝑦, 𝑧], so we have 𝑀 ≤ 𝑙 + 3𝛿.

Indeed, suppose that 𝑤 ∈ [𝑝𝑖−1, 𝑦] (the case 𝑤 ∈ [𝑝𝑖+1, 𝑧] being identical). Now we have

0 ≤ 𝑑 (𝑥, 𝑦) − 𝑑 (𝑝𝑖−1, 𝑦) ≤ 𝑑 (𝑥, 𝑤) + 𝑑 (𝑤, 𝑦) − (𝑑 (𝑝𝑖−1, 𝑤) + 𝑑 (𝑤, 𝑦))
= 𝑑 (𝑥, 𝑤) − 𝑑 (𝑝𝑖−1, 𝑤)
≤ 𝑑 (𝑥, 𝑤) − (𝑑 (𝑥, 𝑝𝑖−1) − 𝑑 (𝑥, 𝑤))
= 2𝑑 (𝑥, 𝑤) − 𝑑 (𝑥, 𝑝𝑖−1)
≤ 2(𝑙 + 3𝛿) − 𝑑 (𝑥, 𝑝𝑖−1) < 0

a contradiction. We have thus established that 𝑀 ≤ 𝑙 + 3𝛿, and so 𝑐 lies in the 𝑙 + 3𝛿–neighborhood of
𝛾. □

Definition 2.11. Let 𝑟 > 0, and let 𝑀 be a metric space. A subset 𝑆 of 𝑀 is 𝑟–connected if any two
points 𝑝, 𝑞 of 𝑆 can be connected by a chain of points in 𝑆,

𝑝 = 𝑝0, 𝑝1, . . . , 𝑝𝑘 = 𝑞,

so that 𝑑𝑀 (𝑝𝑖 , 𝑝𝑖+1) ≤ 𝑟 for all 𝑖. An 𝑟–connected component of 𝑆 is a maximal subset of 𝑆 which is
𝑟–connected.
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Lemma 2.12. Let 𝐻 > 0, and let 𝑅 > 24𝐻 + 16𝛿. Let 𝑆 ⊂ Γ be a 𝑅
4 -connected set so that for every

𝑠 ∈ 𝑆, there is a bi-infinite geodesic 𝛾𝑠 satisfying:

𝑆 ∩ 𝐵𝑅 (𝑠) ⊂ 𝑁𝐻 (𝛾𝑠), and 𝛾𝑠 ∩ 𝐵𝑅 (𝑠) ⊂ 𝑁𝐻 (𝑆).

Then there is an oriented bi-infinite geodesic 𝛾 so that

1. 𝑑Haus (𝛾, 𝑆) ≤ 3𝐻 + 6𝛿; and
2. for every 𝑠 ∈ 𝑆, we may orient 𝛾𝑠 so the Gromov products (𝛾+∞ | 𝛾+∞𝑠 )𝑠 and (𝛾−∞ | 𝛾−∞𝑠 )𝑠 are

bounded below by 𝑅 − (4𝐻 + 10𝛿).

Proof. Choose any 𝑠0 in 𝑆, and let 𝛾0 = 𝛾𝑠0 be a bi-infinite geodesic as in the hypothesis, parameterized
so that 𝛾0 (0) is within 𝐻 of 𝑠0. Since the points 𝛾0 (±𝑅

2 ) lie in 𝐵𝑅 (𝑠), there are points 𝑠±1 ∈ 𝑆 whose
distances from 𝛾0 (±𝑅

2 ) are at most 𝐻. Since 𝑑Γ (𝑠0, 𝑠±1) ≤ 𝑅
2 + 2𝐻 and 𝑑Γ (𝑠−1, 𝑠1) ≥ 𝑅 − 2𝐻, we

deduce (𝑠−1 | 𝑠1)𝑠0 ≤ 3𝐻. In particular we have the following estimates:

𝑑Γ (𝑠0, 𝑠±1) ≥
𝑅

2
− 2𝐻 and (𝑠−1 | 𝑠1)𝑠0 ≤ 3𝐻, (4)

Now we inductively find 𝑠𝑖 and 𝛾𝑖 for all integers 𝑖.
For clarity we focus on 𝑖 > 1. The construction for 𝑖 < 0 is entirely analogous. Suppose we have

chosen points 𝑠−1, 𝑠0, . . . 𝑠𝑖−1 in 𝑆, and that for each positive 𝑗 ≤ 𝑖 − 1 we have chosen a bi-infinite
geodesic 𝛾 𝑗 = 𝛾𝑠 𝑗 , and some 𝑡 𝑗 within 4𝐻 of −𝑅

2 so that

𝑑Γ (𝛾𝑖−1 (0), 𝑠𝑖−1) ≤ 𝐻, and
𝑑Γ (𝛾𝑖−1 (𝑡𝑖−1), 𝑠𝑖−2) ≤ 𝐻.

Since 𝑅 > 8𝐻, the number 𝑡𝑖−1 is negative. The point 𝛾𝑖−1 ( 𝑅2 ) lies in the 𝑅–ball around 𝑠𝑖−1, so we may
choose a point 𝑠𝑖 ∈ 𝑆 so that 𝑑Γ (𝑠𝑖 , 𝛾𝑖−1 ( 𝑅2 )) ≤ 𝐻. Let 𝛾𝑖 be the geodesic 𝛾𝑠𝑖 provided by the hypothesis
of the lemma. We can assume that 𝛾𝑖 (0) is within 𝐻 of 𝑠𝑖 . The distance 𝑑Γ (𝑠𝑖−1, 𝑠𝑖) differs from 𝑅

2 by
at most 2𝐻. Thus for some 𝑡𝑖 of absolute value in [ 𝑅2 − 4𝐻, 𝑅2 + 4𝐻], we have 𝑑Γ (𝛾𝑖 (𝑡𝑖), 𝑠𝑖−1) ≤ 𝐻. We
parameterize 𝛾𝑖 so that 𝑡𝑖 < 0. This completes the inductive construction.

From the construction, we have

𝑑Γ (𝑠𝑖 , 𝑠𝑖+1) ≤
𝑅

2
+ 2𝐻 (5)

and

𝑑Γ (𝑠𝑖−1, 𝑠𝑖+1) ≥
𝑅

2
+ |𝑡𝑖 | − 2𝐻 ≥ 𝑅 − 6𝐻.

(The lower bound when 𝑖 = 0 is slightly better.) This implies a bound on Gromov products

(𝑠𝑖−1 | 𝑠𝑖+1)𝑠𝑖 ≤ 5𝐻. (6)

Let 𝑐𝑘 be a piecewise geodesic formed by concatenating geodesics

[𝑠−𝑘 , 𝑠−𝑘+1] · · · [𝑠𝑘−1, 𝑠𝑘] .

We verify the hypotheses of Lemma 2.10 with 𝑙 = 5𝐻. The inequality (6) gives the bound on Gromov
products in in the corners. The inequality (5) gives that the segments [𝑠𝑖 , 𝑠𝑖+1] have length at least
𝑅
2 − 2𝐻 > 10𝐻 + 8𝛿 = 2𝑙 + 8𝛿 as required. Thus if 𝛽𝑘 is the geodesic joining the endpoints of 𝑐𝑘 , we
have 𝑑Haus (𝑐𝑘 , 𝛽𝑘) ≤ 𝐻 + 4𝛿.

Since Γ is proper, and the geodesics 𝛽𝑘 all pass through the (𝐻 +4𝛿)–ball about 𝑠0, they subconverge
to a bi-infinite geodesic 𝛾. Notice that all the segments [𝑠𝑖 , 𝑠𝑖+1] lie in the (𝐻 + 4𝛿)–neighborhood of 𝛾.
We will show this 𝛾 satisfies the conclusions of the lemma.
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If 𝑠 ∈ 𝑆, then there is a 𝑅
4 –coarse path joining 𝑠0 to 𝑠, that is to say there exist points 𝑠0 =

𝑝0, 𝑝1, . . . , 𝑝𝑘 = 𝑠 in 𝑆 satisfying.

𝑑Γ (𝑝𝑖 , 𝑝𝑖+1) ≤
𝑅

4
, ∀𝑖.

We first claim that for each 𝑝𝑖 , there is some 𝑠 𝑗 (𝑖) with 𝑑Γ (𝑠 𝑗 (𝑖) , 𝑝𝑖) ≤ 𝑅
4 + 2𝐻. Clearly this is true

for 𝑝0. Arguing by induction, we see that 𝑑Γ (𝑝𝑖+1, 𝑠 𝑗 (𝑖) ) is at most 𝑅
2 + 2𝐻. In particular there is a point

𝑞 on 𝛾𝑠 𝑗 (𝑖) within 𝐻 of 𝑝𝑖+1. Recalling that 𝛾𝑠 𝑗 (𝑖) (0) lies within 𝐻 of 𝑠 𝑗 (𝑖) , we see that 𝑞 = 𝛾𝑠 𝑗 (𝑖) (𝑡) for
some 𝑡 with

|𝑡 | ≤ 𝑅

2
+ 3𝐻 <

3
4
𝑅.

Thus for some 𝑡′ ∈ {−𝑅
2 , 0,

𝑅
2 }, we have |𝑡− 𝑡′ | ≤ 𝑅

4 . Since the points 𝛾𝑠 𝑗 (𝑖) (±𝑅
2 ) are within 𝐻 of 𝑠 𝑗 (𝑖)±1,

there is some 𝑠 𝑗 (𝑖+1) ∈ {𝑠 𝑗 (𝑖)−1, 𝑠 𝑗 (𝑖) , 𝑠 𝑗 (𝑖)+1} so that 𝑑Γ (𝑝𝑖+1, 𝑠 𝑗 (𝑖+1) ) ≤ 2𝐻 + 𝑅
4 , as desired.

Now let 𝑠 𝑗 = 𝑠 𝑗 (𝑘 ) , so we have 𝑑Γ (𝑠, 𝑠 𝑗 ) ≤ 𝑅
4 +2𝐻, and let 𝑞 be a closest point to 𝑠 on 𝛾 𝑗 . Without loss

of generality we suppose that 𝑞 = 𝛾 𝑗 (𝑡) for 𝑡 ≥ 0. Any quadrilateral with corners 𝑠 𝑗 , 𝑠 𝑗+1, 𝛾 𝑗 (0), 𝛾 𝑗 ( 𝑅2 )
is 2𝛿–thin, so there is a point 𝑟 on [𝑠 𝑗 , 𝑠 𝑗+1] within 𝐻 + 2𝛿 of 𝑞. This point 𝑟 is within 𝐻 + 4𝛿 of some
point 𝑧 on 𝛾. Adding up the constants we have

𝑑Γ (𝑠, 𝑧) ≤ 𝑑Γ (𝑠, 𝑞) + 𝑑Γ (𝑞, 𝑟) + 𝑑Γ (𝑟, 𝑧)
≤ 𝐻 + 𝐻 + 2𝛿 + 𝐻 + 4𝛿 = 3𝐻 + 6𝛿.

This shows
𝑆 ⊂ 𝑁3𝐻+6𝛿 (𝛾). (7)

Conversely, let 𝑥 ∈ 𝛾. Then 𝑥 ∈ 𝛽𝑘 for some 𝑘 , and so for some 𝑖, there is a point 𝑦 ∈ [𝑠𝑖 , 𝑠𝑖+1] with
𝑑Γ (𝑥, 𝑦) ≤ 𝐻 + 4𝛿. This point is within 𝐻 + 2𝛿 of a point on 𝛾𝑖 , which is within 𝐻 of a point of 𝑆, so
we have

𝛾 ⊂ 𝑁3𝐻+6𝛿 (𝑆). (8)

Together, (7) and (8) imply the first statement of the Lemma, that is to say the bound on Hausdorff
distance. It remains to show the statement about Gromov products. Breaking symmetry, we consider
just the ray 𝛾𝑠 | [0,∞). Let 𝑦′ be a point on 𝛾𝑠 | [0,∞) at distance 𝑅 from 𝑠. Let 𝑠′ ∈ 𝑆 be a point within
𝐻 of 𝑦′, and let 𝑧′ be a point on 𝛾 within 3𝐻 + 6𝛿 of 𝑠′. Let 𝛼 be a ray starting at 𝑠 with limit point 𝛾+∞𝑠 ,
and let 𝛽 be a ray starting at 𝑠 with limit point 𝛾+∞. There are points 𝑦 on 𝛼 and 𝑧 on 𝛽 which are within
𝛿 of 𝑦′, 𝑧′, respectively. We have 𝑑Γ (𝑠, 𝑦) ≥ 𝑅− 𝛿, 𝑑Γ (𝑠, 𝑧) ≥ 𝑅− (4𝐻 +7𝛿) and 𝑑Γ (𝑦, 𝑧) ≤ 3𝐻 +8𝛿, so

(𝑦 | 𝑧)𝑠 ≥
1
2
(𝑅 − 𝛿 + 𝑅 − (4𝐻 + 7𝛿) − (4𝐻 + 8𝛿)) = 𝑅 − (4𝐻 + 8𝛿).

Lemma 2.1 allows us to conclude (𝛾+∞𝑠 | 𝛾+∞)𝑠 ≥ 𝑅 − (4𝐻 + 10𝛿) as desired. □

3. An equivariant map from 𝑋 × 𝜕𝐺 to itself.

The first step in the proof of Theorem 1.1 is the following construction, which can be thought of as a
generalization of that in [BM19, Lemma 3.1]. If 𝑋 is a space with a proper, free and cocompact action
of𝐺, and 𝜌 : 𝐺 → Homeo(𝑌 ) an action of𝐺 on a topological space, one can capture the information of
this action as the holonomy of a foliated 𝑌 -bundle over 𝑋/𝐺; this is simply the quotient of 𝑋 ×𝑌 by the
diagonal action of 𝐺. Here the case of interest to us is when 𝑌 = 𝜕𝐺 = 𝑆𝑛. The following proposition
gives a construction of a “nice" map between the foliated bundles associated to the boundary action 𝜌0
and a small perturbation 𝜌.
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The same proof works with any manifold𝑌 in place of 𝑆𝑛, and any two nearby actions of an arbitrary
group 𝐺 on the space, so we state it in this general context, as follows.

Let 𝑌 be a metric space such that Homeo(𝑌 ) is metrizable and locally contractible. For instance, one
may take 𝑌 to be any compact manifold, in which case local contractibility of Homeo(𝑌 ) follows from
Edwards–Kirby [EK71]. Metrizability of Homeo(𝑌 ) has the following easy consequence.

Observation 3.1. Let 𝑊 be a neighborhood of the identity in Homeo(𝑌 ), and let 𝐹 ⊂ Homeo(𝑌 ) be
finite. Then there is a neighborhood 𝑉 ⊂ 𝑊 of the identity so that the union⋃︂

𝑓 ∈𝐹
𝑓 𝑉 𝑓 −1𝑉

lies in𝑊 .

Using this, we prove the following.

Proposition 3.2. Let 𝐺 be a group, 𝑌 a metric space as above, and fix an action 𝜌0 : 𝐺 → Homeo(𝑌 ).
Let 𝑋 be a metric space on which 𝐺 acts properly, freely and cocompactly by isometries.

For any compact 𝐾 ⊂ 𝑋 and 𝜖 > 0, there is a neighborhood 𝑈 of 𝜌0 so that for each 𝜌 ∈ 𝑈 there is
a homeomorphism 𝑓 𝜌 : 𝑋 × 𝑌 → 𝑋 × 𝑌 with the following properties:

1. (Covers id𝑋) If 𝜋𝑋 is the projection from 𝑋 ×𝑌 to 𝑋 , then 𝜋𝑋 ◦ 𝑓 𝜌 = 𝜋𝑋. In other words, 𝑓 𝜌 covers
the identity on 𝑋 .

2. (Equivariance) For every 𝑔 ∈ 𝐺 we have

𝑓 𝜌 (𝑔 · 𝑥, 𝜌(𝑔) · 𝜃) = (𝑔, 𝜌0 (𝑔)) · 𝑓 𝜌 (𝑥, 𝜃).

3. (Near flatness.) For any 𝜃 ∈ 𝑌 we have

𝑓 𝜌 (𝐾 × {𝜃}) ⊂ 𝑋 × 𝐵𝜖 (𝜃).

Proof of Proposition 3.2. Since the action is proper, free, and cocompact, there is some 𝑟 > 0 so that
every nontrivial element of 𝐺 moves every point of 𝑋 a distance at least 𝑟 . Choose a 𝐺–equivariant
locally finite cover U = {𝑈𝑖 | 𝑖 ∈ 𝐼} of 𝑋 by open balls of radius 𝑟/3, and let 𝑁 be the nerve of U.
Since U was 𝐺–equivariant and locally finite, the group 𝐺 acts cocompactly on the simplicial complex
𝑁 . Since any 𝑔 ∈ 𝐺 − {1} moves every set𝑈𝑖 off of itself, 𝐺 acts freely on 𝑁 .

We choose a 𝐺–equivariant partition of unity {𝜙𝑖 : 𝑋 → [0, 1] | 𝑖 ∈ 𝐼} subordinate to the cover U.
This partition determines a proper 𝐺–equivariant map 𝜓 : 𝑋 → 𝑁 .

To define 𝑓 𝜌, we first define a map 𝜑𝜌 : 𝑁 → Homeo(𝑌 ), and then define

𝑓 𝜌 (𝑥, 𝜃) = (𝑥, (𝜑𝜌 ◦ 𝜓(𝑥)) (𝜃)) . (9)

The map 𝜑𝜌 will be 𝐺–equivariant with respect to the “mixed” left action of 𝐺 by homeomorphisms of
Homeo(𝑌 ) given by

𝑔 · ℎ = 𝜌0 (𝑔)ℎ𝜌(𝑔−1). (10)

Definition of 𝝋𝝆 .
The definition of 𝜑𝜌 is designed to keep track of the compact set 𝐾 and constant 𝜖 > 0 for the near

flatness condition in the Proposition. Let 𝐷 be a connected union of open simplices in 𝑁 which meets
every𝐺–orbit exactly once. Let 𝐾 be a compact subcomplex of 𝑁 , which we assume contains the closed
star of any cell of 𝐷. (Note that any compact 𝐶 ⊂ 𝑋 has 𝜓(𝐶) ⊂ 𝐾 for some such complex.) Let 𝜖 > 0.
Let 𝑆 be the (finite) set of group elements 𝑠 so that 𝑠𝐷 meets the closed star of some vertex in 𝐷. Let 𝐹
be the (still finite) set of group elements 𝑔 so that 𝑔𝐷 ∩ 𝐾 is non-empty.
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Letting𝑊 = 𝑁𝜖 (id), we choose a neighborhood𝑉 as in Observation 3.1 so that 𝜌0 (𝑔)𝑉𝜌0 (𝑔)−1𝑉 lies
in𝑊 for all 𝑔 ∈ 𝐹. Now let 𝑚 = dim(𝑁). Apply Observation 3.1 and local contractibility of Homeo(𝑌 )
to choose a nested sequence of contractible neighborhoods of 1 inside 𝑉 :

𝑉0 ⊂ 𝑉1 ⊂ · · · ⊂ 𝑉𝑚 ⊂ 𝑉

so that for each 𝑖 and all 𝑠 ∈ 𝑆, we have

𝜌0 (𝑠)𝑉𝑖𝜌0 (𝑠)−1𝑉𝑖 ⊂ 𝑉𝑖+1. (11)

By taking 𝜌 sufficiently close to 𝜌0, we may assume that 𝜌0 (𝑔)𝜌(𝑔−1) lies in𝑉0 for all 𝑔 ∈ 𝐹. We define
𝜑𝜌 inductively over the 𝑘–skeleta of 𝑁 in such a way that 𝜑𝜌 (𝜎) ⊂ 𝑉𝑘 for every 𝑘–cell in the closed star
of a vertex of 𝐷.

0-skeleton. Define 𝜑𝜌 on 𝑁 (0) as follows. If 𝑣 = 𝑔𝑣0 for some 𝑣0 ∈ 𝐷, then

𝜑𝜌 (𝑣) = 𝜌0 (𝑔)𝜌(𝑔−1).

If 𝑣 lies in the closed star of some cell of 𝐷, then 𝑔 ∈ 𝑆, so 𝜑𝜌 (𝑣) ∈ 𝑉0 as desired.

Inductive step. Suppose that 𝜑𝜌 has been defined on all (𝑘 − 1)–cells, and let 𝜎 be a 𝑘–cell. We may
write 𝜎 = 𝑔𝜎0, where 𝜎0 is an open 𝑘–cell in 𝐷. The map 𝜑𝜌 has already been defined on the boundary
of 𝜎0, and sends this boundary into 𝑉𝑘−1 by induction. Using the contractibility of 𝑉𝑘−1 we extend 𝜑𝜌
over 𝜎0 in such a way that 𝜑𝜌 (𝜎0) ⊂ 𝑉𝑘−1. We define 𝜑𝜌 |𝜎 (𝑥 ) = 𝜌0 (𝑔)𝜑𝜌 (𝑔−1 (𝑥))𝜌(𝑔−1). Since the
action on 𝑁 is free, there is no ambiguity in this definition.

Now suppose that 𝜎 lies in the closed star of some vertex of 𝐷, so 𝜎 = 𝑠𝜎0 for some 𝑠 ∈ 𝑆. The set
𝜑𝜌 (𝜎) lies in

𝜌0 (𝑠)𝑉𝑘−1𝜌(𝑠−1) = 𝜌0 (𝑠)𝑉𝑘−1𝜌0 (𝑠)−1𝜌0 (𝑠)𝜌(𝑠)−1 ⊂ 𝜌0 (𝑠)𝑉𝑘−1𝜌0 (𝑠)−1𝑉0,

which lies in 𝑉𝑘 by (11). Having verified the inductive hypothesis, we see that we can continue until
we have defined 𝜑𝜌 equivariantly on all of 𝑁 . Moreover, we have defined it so that 𝜑𝜌 (𝜎0) lies in the
neighborhood 𝑉 for any 𝜎0 meeting 𝐷.

Properties of 𝒇 𝝆

Having defined 𝜑𝜌, we define 𝑓 𝜌 as in (9).

𝑓 𝜌 (𝑥, 𝜃) = (𝑥, (𝜑𝜌 ◦ 𝜓(𝑥)) (𝜃)) .

By definition, this covers the identity map on 𝑋 . To simplify notation, let Φ𝜌 denote 𝜑𝜌 ◦ 𝜓. Note that
Φ𝜌 satisfies equivariance as 𝜑𝜌 does. This also gives equivariance of 𝑓 𝜌, as follows:

𝑓 𝜌 (𝑔 · 𝑥, 𝜌(𝑔) · 𝜃) = (𝑔 · 𝑥, (Φ𝜌 (𝑔 · 𝑥)𝜌(𝑔)) · 𝜃)

=

(︂
𝑔 · 𝑥,

(︂
𝜌0 (𝑔)Φ𝜌 (𝑥)𝜌(𝑔−1)𝜌(𝑔)

)︂
· 𝜃

)︂
= (𝑔 · 𝑥, (𝜌0 (𝑔)Φ𝜌 (𝑥)) · 𝜃)
= (𝑔, 𝜌0 (𝑔)) · (𝑥,Φ𝜌 (𝑥) · 𝜃)
= (𝑔, 𝜌0 (𝑔)) · 𝑓 𝜌 (𝑥, 𝜃).
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It remains to check near flatness. For any cell 𝜎 of the larger compact complex 𝐾 there is some 𝑔 ∈ 𝐹
and some 𝜎0 ⊂ 𝐷 so that 𝜎 = 𝑔𝜎0. Equivariance tells us that

𝜑𝜌 (𝜎) = 𝜌0 (𝑔)𝜑𝜌 (𝜎0)𝜌(𝑔−1)
= 𝜌0 (𝑔)𝜑𝜌 (𝜎0)𝜌0 (𝑔)−1 · 𝜌0 (𝑔)𝜌(𝑔−1)
⊂ 𝜌0 (𝑔)𝑉𝜌0 (𝑔)−1 · 𝑉 ⊂ 𝑊.

Since every homeomorphism in𝑊 moves every point of𝑌 a distance of at most 𝜖 , we have 𝑓 𝜌 (𝜎×{𝜃}) ⊂
𝐵𝜖 (𝜃) as desired. □

4. Reduction to the main case

In this section we reduce to the case 𝜕𝐺 = 𝑆𝑛 for 𝑛 ≥ 2, and also to the case where 𝐺 acts faithfully
on its boundary. The first reduction (to 𝑛 ≥ 2) comes from combining work of Matsumoto with the
Convergence Group Theorem.

Proposition 4.1. Let 𝐺 be a hyperbolic group with circle boundary. Then the action of 𝐺 on 𝜕𝐺 is
topologically stable.

This can quite likely be derived from Matsumoto’s original proof, as the main techniques are Euler
characteristic and lifting to covers. For completeness, we give a short argument using standard tools
from circle dynamics.

Proof. Let𝐺 be a hyperbolic group with circle boundary. By the Convergence Group Theorem [Gab92,
CJ94], there exists a normal, finite index torsion-free subgroup 𝐺′ of 𝐺 that is isomorphic to the
fundamental group of a closed surface. Let 𝜌 be a perturbation of the standard boundary action 𝜌0 of𝐺.
By [Mat87], there exists a continuous, surjective, degree one map ℎ : 𝑆1 → 𝑆1 such that ℎ𝜌(𝑔) = 𝜌0 (𝑔)ℎ
for each 𝑔 ∈ 𝐺′. if the action of 𝐺′ is minimal, then ℎ is a conjugacy. If the action of 𝐺′ is not minimal,
then there exists a unique invariant exceptional minimal set 𝑋 , homeomorphic to a Cantor set, and ℎ
collapses the closure of each complementary interval to a point and is otherwise injective (See e.g.
[Ghy01, Proposition 5.6].) It is also easy to see that ℎ varies continuously with 𝜌, so can be taken as
close to the identity as desired by taking 𝜌 close to 𝜌0.

Since 𝐺′ is normal in 𝐺, the set 𝑋 is 𝜌(𝐺)-invariant. It follows that 𝐺 permutes the point-preimages
of ℎ. From this we will now deduce that ℎ in fact defines a semiconjugachy intertwining the actions
of 𝜌0 (𝐺) and 𝜌(𝐺). To see this, we use the fact that attracting fixed points of elements of 𝜌0 (𝐺′) are
dense in 𝑆1. If 𝑥 is the attracting fixed point of 𝜌0 (𝛾) for some 𝛾 ∈ 𝐺′, then 𝜌0 (𝑔)𝑥 is the attracting
fixed point of 𝜌0 (𝑔𝛾𝑔−1), an element which also lies in 𝐺′. Thus, for any 𝑦 ∈ ℎ−1 (𝑥), we have
𝜌(𝑔) (𝑦) ∈ ℎ−1𝜌0 (𝑔) (𝑥); equivalently, ℎ𝜌(𝑔) (𝑦) = 𝜌0 (𝑔)ℎ(𝑦). Since ℎ is continuous, and the union of
preimages of attracting fixed points is dense in 𝑆1, this shows that ℎ𝜌(𝑔) = 𝜌0 (𝑔)ℎ holds globally. □

Proposition 4.2. Suppose𝐺 is a hyperbolic group with sphere boundary, and let 𝐹 < 𝐺 be the subgroup
of elements which act trivially on 𝜕𝐺. Then 𝐺 is topologically stable if and only if 𝐺/𝐹 is topologically
stable.

Proof. Since 𝐹 is a finite normal subgroup, the canonical action of 𝐺 on its boundary factors through
the canonical action of𝐺/𝐹 on its boundary, and these boundaries are the same. Let 𝑁 be the maximum
order of an element of 𝐹. By a theorem of Newman [New31], there is a neighborhood𝑈 of the identity
in Homeo(𝑆𝑛) so that any torsion element in𝑈 has order greater than 𝑁 . Thus for any sufficiently small
perturbation of the canonical action, the elements of 𝐹 will still act trivially, and so small perturbations
of the canonical action of 𝐺 on its boundary are in one-to-one correspondence with small perturbations
of 𝐺/𝐹 on its boundary. □

We therefore make the following assumptions for the remainder of the paper.
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Assumption 4.3. The hyperbolic group 𝐺 acts faithfully on its boundary 𝜕𝐺.

Assumption 4.4. The boundary of 𝐺 is a topological sphere of dimension at least two.

5. A space with a proper, cocompact and free action of 𝐺

Recall that Ξ is the space of distinct triples in 𝜕𝐺. Since 𝜕𝐺 is assumed to be a sphere of dimension
𝑛 ≥ 2 (Assumption 4.4), the triple space Ξ is a connected 3𝑛–manifold. The following is an easy
consequence of [AMN11, Theorem 1.1].

Proposition 5.1. There is a proper 𝐺–invariant metric on Ξ.

We fix such a metric 𝑑Ξ now. If additionally no nontrivial element of𝐺 fixes more than two points of
𝜕𝐺, then the action of𝐺 on Ξ is free and Ξ can play the role of the metric space 𝑋 in Proposition 3.2. In
general 𝐺 may not act freely on Ξ, so a different space is needed. In this section, we show how to build
such a space with a free action by deleting a small, 𝐺-equivariant neighborhood of the set of points in
Ξ with nontrivial stabilizer.

Notation 5.2. For 𝑔 ∈ 𝐺, we denote by fix(𝑔) ⊂ 𝜕𝐺 the set of points fixed by the natural action of 𝑔.
We set

𝐹 = {(𝑎, 𝑏, 𝑐) ∈ Ξ | {𝑎, 𝑏, 𝑐} ⊂ fix(𝑔) for some nontrivial 𝑔 ∈ 𝐺} .

Recall a subset 𝑆 of a metric space 𝑀 is 𝜖–dense if every point of 𝑀 is distance at most 𝜖 of a point
of 𝑆. Also recall that 𝑁𝜅 (𝑆) denotes the open 𝜅–neighborhood of a set 𝑆. If 𝑆 is a subset of Ξ, this
neighborhood is to be taken with respect to 𝑑Ξ. Our first goal is to establish the following.

Proposition 5.3 (F is sparse). For any 𝜖 > 0, there exists 𝜅 > 0 such Ξ − 𝑁𝜅 (𝐹) is 𝜖–dense in Ξ.

Since we will frequently refer to Ξ − 𝑁𝜅 (𝐹), we fix the following notation.

Notation 5.4. For 𝜅 > 0 we let 𝑋𝜅 = Ξ − 𝑁𝜅 (𝐹).

Proposition 5.3 has the following useful corollary.

Corollary 5.5. For sufficiently small 𝜅, property (𝛿4) of Lemma 2.7 still holds with 𝜋𝛿 replaced by the
restriction of 𝜋𝛿 to 𝑋𝜅 .

Proof. By equivariance and the fact that 𝜋(𝑥) is non-empty for every triple in Ξ, Property (𝛿4) holds as
soon as 𝑋𝜅 is non-empty. □

The proof of Proposition 5.3 requires several preliminary results, starting with the following.

Lemma 5.6. For any torsion element 𝑔 ∈ 𝐺, such that fix(𝑔) has at least three points, there exists a
quasi-convex subgroup 𝑄𝑔 ⊂ 𝐺 such that Λ(𝑄𝑔) = fix(𝑔)

Here we use the standard notation Λ(𝑄𝑔) for the limit set of 𝑄𝑔 in 𝜕𝐺.

Proof. This proof is adapted from an argument of Misha Kapovich [Kap]. Fix a torsion element 𝑔. Let𝐻
be a maximal torsion subgroup pointwise fixing fix(𝑔), and let𝑄 be the normalizer of 𝐻 in𝐺. We claim
𝑄 is the stabilizer of fix(𝐻) = fix(𝑔). That 𝑄 preserves this set is immediate. For the reverse inclusion,
if 𝑓 ∈ 𝐺 preserves fix(𝐻) then 𝑓 𝐻 𝑓 −1 pointwise fixes fix(𝐻) as well. Since fix(𝐻) has at least 3 points
in it, the subgroup generated by 𝐻 and 𝑓 𝐻 𝑓 −1 cannot contain a loxodromic, and is therefore finite
[GdlH90, Ch. 8, §3]. By maximality of 𝐻, we have that 𝑓 ∈ 𝑄. This shows 𝑄 is the stabilizer of fix(𝑔).

To conclude the proof we wish to show that 𝑄 is quasi-convex and Λ(𝑄) = fix(𝑔). We can then take
𝑄𝑔 = 𝑄 in the conclusion. Let𝐶 denote the quasi-convex hull of fix(𝑔), meaning the set of all bi-infinite
geodesics with both endpoints in 𝐺. Note that there is a uniform bound, say 𝑟 ′, on distance that any
ℎ ∈ 𝐻 can translate any point in 𝐶.
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We now show 𝑄 acts cocompactly on 𝐶, which is enough to show 𝑄 has the desired properties. To
see this, assume for contradiction that 𝐶 contains infinitely many distinct cosets {𝑄𝑔𝑘}. Since every
ℎ ∈ 𝐻 translates each 𝑔𝑛 a distance at most 𝑟 ′, the conjugates 𝑔−1

𝑘
𝐻𝑔𝑘 all lie in the 𝑟 ′ ball about the

identity in Γ. It follows that for infinitely many pairs 𝑖, 𝑗 the subgroups 𝑔−1
𝑖
𝐻𝑔𝑖 = 𝑔

−1
𝑗
𝐻𝑔 𝑗 agree, and

thus 𝑔𝑖𝑔−1
𝑗

∈ 𝑄. We conclude the cosets {𝑄𝑔𝑘} were not distinct, giving the desired contradiction. □

Recall that a null sequence in a metric space is a collection of subsets D so that for every 𝜖 > 0, the
set {𝐷 ∈ D | diam(𝐷) > 𝜖} is finite.

Corollary 5.7. The collection of fixed point sets of nontrivial torsion elements is a null sequence in 𝜕𝐺.

Proof. Since 𝐺 is hyperbolic, it contains only finitely many conjugacy classes of torsion elements (see
[Gro87, 2.2 B]). It therefore suffices to show the fixed point sets of elements in a single conjugacy
class form a null sequence. These fixed point sets are exactly the 𝐺–translates of fix(𝑔) for some
torsion element 𝑔. By Lemma 5.6, fix(𝑔) is equal to Λ(𝑄𝑔) for a quasi-convex subgroup 𝑄𝑔 of 𝐺. By
Assumption 4.3, 𝑔 does not fix all of 𝜕𝐺, so this subgroup𝑄𝑔 must be infinite index in𝐺. By [GMRS98,
Corollary 2.5], the 𝐺–translates of Λ(𝑄𝑔) form a null sequence. □

Proposition 5.8. 𝐹 is a closed set with empty interior.

Proof. Let 𝐾 ⊂ Ξ be an arbitrary compact set. By Corollary 5.7 there are only finitely many elements
𝑔 so that diam(fix(𝑔)) ≥ minsep(𝐾). There are therefore only finitely many nontrivial 𝑔 so that 𝐾
contains a triple of points in fix(𝑔). For each such 𝑔, the set fix(𝑔) × fix(𝑔) × fix(𝑔) intersects 𝐾 in a
closed subset with empty interior in Ξ. It follows that 𝐹 ∩ 𝐾 is closed with empty interior. Since Ξ can
be exhausted by compact sets, the conclusion follows. □

We also need the following general result about closed sets with empty interior in compact metric
spaces.

Lemma 5.9. Let 𝐴 be a compact metric space and 𝐶 ⊂ 𝐴 a closed subset with empty interior. Given
any 𝜖 > 0, there exists 𝜅 > 0 so that 𝐴 − 𝑁𝜅 (𝐶) is 𝜖–dense in 𝐴.

Proof. Let 𝑑𝐴 denote the metric on 𝐴. Since 𝐶 has empty interior, for all 𝑥 ∈ 𝐴 there exists a point
𝑝𝑥 ∉ 𝐶 with 𝑑𝐴(𝑝𝑥 , 𝑥) < 𝜖 . Since 𝐴 is compact, there is a finite collection 𝑥1, . . . , 𝑥𝑘 so that the open
𝜖–balls 𝐵𝜖 (𝑝𝑥𝑖 ) cover 𝐴. The set 𝐶 is closed, so the distance 𝑑𝐴(𝑝𝑥𝑖 , 𝐶) is positive for each 𝑖. We let 𝜅
be half the minimum of the distances 𝑑𝐴(𝑝𝑥𝑖 , 𝐶). Each 𝑥 ∈ 𝐴 is contained in one of the balls 𝐵𝜖 (𝑝𝑥𝑖 ),
so the set {𝑝𝑥1 , . . . , 𝑝𝑥𝑘 } ⊂ 𝐴 − 𝑁𝜅 (𝐶) is 𝜖–dense. □

Proof of Proposition 5.3. By Proposition 5.8, 𝐹 is closed with empty interior. Recall from Proposi-
tion 2.2 that 𝐺 acts properly discontinuously and cocompactly on Ξ. Thus 𝐹/𝐺 ⊂ Ξ/𝐺 is closed
with empty interior and the proposition follows immediately from Lemma 5.9, taking 𝐴 = Ξ/𝐺 and
𝐶 = 𝐹/𝐺. □

5.1. Additional properties of 𝑋𝜅

We establish some properties of the sets 𝑋𝜅 := Ξ − 𝑁𝜅 (𝐹). First we make the following observation,
relevant to the application of Propositon 3.2.

Lemma 5.10. For any 𝜅 > 0, the group 𝐺 acts properly, freely, and cocompactly by isometries on 𝑋𝜅 .

Proof. The group 𝐺 already acts properly and cocompactly on 𝑋 , and 𝑁𝜅 (𝐹) is open and 𝐺–invariant,
so 𝐺 still acts properly and cocompactly on 𝑋𝜅 . The only points of Ξ with nontrivial stabilizer are in 𝐹,
which has been removed. □

Next we give a technical refinement of Proposition 5.3, which is what we actually use in the next
section.
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Lemma 5.11. Suppose we are given a compact set 𝐷 ⊂ Ξ, and 𝜖 ′′ < 𝜖 ′ < minsep(𝐷)/2. There exists
𝜅 > 0 such that, for any (𝑎, 𝜃, 𝑐) ∈ 𝐷, there exists 𝑐′ so that 𝑑vis (𝑐, 𝑐′) < 𝜖 ′′ and {𝑎} × 𝐵𝜖 ′ (𝜃) × {𝑐′}
lies in the interior of 𝑋𝜅 .

We recall that minsep is defined in terms of the visual metric 𝑑vis.

Proof. Let 𝐷′ be a compact subset of Ξ containing 𝐵𝜖 ′ (𝑥) ×𝐵𝜖 ′ (𝑦) ×𝐵𝜖 ′ (𝑧) for all (𝑥, 𝑦, 𝑧) ∈ 𝐷. Let 𝐹
be the set of elements 𝑔 ∈ 𝐺−{e} so that 𝑔 fixes some triple in𝐷′. By Corollary 5.7, the fixed point sets of
torsion elements form a null sequence in 𝜕𝐺. For each 𝑔 ∈ 𝐹, we have diam(fix(𝑔)) ≥ minsep(𝐷′) > 0,
so 𝐹 is finite. Let 𝐶 =

⋃︁{fix(𝑔) | 𝑔 ∈ 𝐹} be the union of these fixed sets in 𝜕𝐺. Since 𝐶 is a finite
union of closed sets with empty interior, 𝐶 is closed with empty interior.

By Lemma 5.9, we can choose a positive 𝜆 < 𝜖 ′′ such that 𝜕𝐺 − 𝑁𝜆 (𝐶) is 𝜖 ′′–dense in 𝜕𝐺. Choose
𝜅 small enough so that 𝑁2𝜅 (𝐹) ∩ 𝐷′ is a subset of the neighborhood of 𝐹 of radius 𝜆 in the product
visual metric on (𝜕𝐺)3.

To verify this 𝜅 works, choose (𝑎, 𝜃, 𝑐) ∈ 𝐷. Since 𝜕𝐺 − 𝑁𝜆 (𝐶) is 𝜖 ′′–dense, we can find 𝑐′ ∈
𝜕𝐺 − 𝑁𝜆 (𝐶) with 𝑑vis (𝑐, 𝑐′) < 𝜖 ′′. We claim that {𝑎} × 𝐵𝜖 ′ (𝜃) × {𝑐′} is contained in Ξ − 𝑁2𝜅 (𝐹), and
hence in the interior of 𝑋𝜅 . Indeed, for any 𝑏 ∈ 𝐵𝜖 ′ (𝜃), we have (𝑎, 𝑏, 𝑐′) ∈ 𝐷′. Suppose (𝑥, 𝑦, 𝑧) ∈ 𝐹
is a closest point of 𝐹 to (𝑎, 𝑏, 𝑐′) in the product metric. If the visual distance between each coordinate
of (𝑥, 𝑦, 𝑧) and (𝑎, 𝑏, 𝑐) were less than 𝜆, which is less than 𝜖 ′, then we would have (𝑥, 𝑦, 𝑧) ∈ 𝐷′ ∩ 𝐹.
By our definition of 𝐶, this means that 𝑥, 𝑦, and 𝑧 all belong to 𝐶. But the minimum distance from 𝑐′ to
a point of 𝐶 is greater than 𝜆 by construction, so we conclude (𝑎, 𝑏, 𝑐′) lies outside the 𝜆–neighborhood
of 𝐹 in the product metric, and hence outside 𝑁2𝜅 (𝐹). □

Finally, we need a technical result which will come into play at the very end of the proof, when we
show our semi-conjugacy is well-defined. To state it we need a definition.

Definition 5.12 (𝜅 path property). We say a compact 𝐷 ⊂ Ξ has the 𝜅 path property if the following
holds:

For each 𝑏 ∈ 𝜕𝐺, and pair of points (𝑎, 𝑏, 𝑐) and (𝑎′, 𝑏, 𝑐′) in 𝐷, there is a path 𝑎𝑡 from 𝑎 to 𝑎′ and
𝑐′′ ∈ 𝜕𝐺 such that (𝑎𝑡 , 𝑏, 𝑐′′) ∈ 𝐷 − 𝑁𝜅 (𝐹) for all 𝑡.

Lemma 5.13. For any compact set 𝐾 ⊂ Ξ, there exists 𝜅 > 0 and a compact set 𝐷 ⊃ 𝐾 so that 𝐷 has
the 𝜅 path property.

Proof. Fix a round metric 𝑑rnd on 𝜕𝐺 = 𝑆𝑛. The collection

𝐶𝑚 :=
{︁
(𝑎, 𝑏, 𝑐) ∈ Ξ | 𝑑rnd (𝑎, 𝑏) ≥ 1

𝑚
, 𝑑rnd (𝑎, 𝑐) ≥ 1

𝑚
, 𝑑rnd (𝑏, 𝑐) ≥ 1

𝑚

}︁
forms an exhaustion of Ξ by compact sets, so we may choose 𝑚 sufficiently large so that 𝐾 ⊂ 𝐶𝑚 and
the diameter of 𝑆𝑛 in the round metric is larger than 10

𝑚
.

Since 𝐷 is compact, only finitely many elements of 𝐺 fix a triple of points that meets 𝐷. Let 𝐶 ⊂ 𝑆𝑛

denote the union of these finitely many fixed sets; it is a closed subset of 𝜕𝐺 with empty interior.
By Lemma 5.9, there exists 𝜆 < 1

𝑚
such that 𝑆𝑛 − 𝑁𝜆 (𝐶) is 1

𝑚
-dense in 𝑆𝑛 (again, using the round

metric). Consider a shortest length geodesic path with respect to the round metric on 𝑆𝑛 between 𝑎 and
𝑎′. If this path does not meet the closed 1

𝑚
-ball about 𝑏, then call this path 𝑎𝑡 . Otherwise, modify this

path by removing the segment that intersects the closed 1
𝑚

-ball, replacing it with a path that lies on the
boundary of this ball, and call the resulting path 𝑎𝑡 . (We are here using our Assumption 4.4 that 𝑛 ≥ 2.)
In either case, 𝑎𝑡 lies in the union of a radius 1

𝑚
ball and a geodesic segment.

Since the diameter of 𝑆𝑛 in the chosen round metric is larger than 10
𝑚

, we may find a point 𝑐̂ ∈ 𝑆𝑛
that avoids both the 2

𝑚
-neighborhood of this path 𝑎𝑡 and the 2

𝑚
neighborhood of 𝑏. Since 𝑆𝑛 − 𝑁𝜆 (𝐶)

is 1
𝑚

–dense, we may move this point a distance of at most 1
𝑚

to find a point 𝑐′′ ∉ 𝑁𝜆 (𝐶). Thus we have,
(𝑎𝑡 , 𝑏, 𝑐′′) ∈ 𝐷 for all 𝑡.
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Finally, choose 𝜅 small enough so that any element of a triple in 𝑁𝜅 (𝐹) ∩ 𝐷 lies within the 𝜆-
neighborhood (in the round metric) of some point of 𝐶. Note that this choice of 𝜅 only depends on 𝐷
and 𝜆, which both depended only on the set 𝐾 . The point 𝑐′′ was chosen so that 𝑐′′ ∉ 𝑁𝜆 (𝐶). Thus, we
conclude that (𝑎𝑡 , 𝑏, 𝑐′′) ∉ 𝑁𝜅 (𝐹) holds for all 𝑡, as desired.

□

Note that even though 𝑑vis and the round metric give the same topology on 𝑆𝑛, the metric 𝑑vis may
be rather strange-looking. In particular 𝑑vis is not Riemannian, so even very small balls with respect to
𝑑vis may not be connected. This is the reason for the use of the round metric in the proof above.

6. Nearby representations give quasi-geodesic partitions

In this section we fix a constant 𝜅 to define a space 𝑋𝜅 ⊂ Ξ as in Section 5, and fix a neighborhood of
𝜌0. Our goal is to show that every representation 𝜌 in this neighborhood has 𝜌0 as a factor. In Section
6.2 we show that representations in this neighborhood induce quasi-geodesic partitions of a section of
𝑋𝜅 × 𝜕𝐺 → 𝑋𝜅 . The endgame of the proof, carried out in Section 7, consists of using the endpoints of
these quasi-geodesics to build a semi-conjugacy.

6.1. Fixing a neighborhood of 𝜌0

We first fix a neighborhood𝑉 of the identity in the set of continuous self-maps 𝜕𝐺 → 𝜕𝐺. By shrinking
𝑉 if necessary, we may assume that 𝑉 consists of degree one maps. There is some 𝐶𝑉 > 0 so that any
map ℎ satisfying the lower bound on Gromov products

∀𝑥 ∈ 𝜕𝐺, (ℎ(𝑥) | 𝑥)e > 𝐶𝑉 (†)

lies in 𝑉 .
In Definition 6.4 we will specify a neighborhood U(𝑉) of 𝜌0 in Hom(𝐺,Homeo(𝜕𝐺)), ultimately

showing that any 𝜌 ∈ U(𝑉) is semiconjugate to 𝜌0 by a map ℎ satisfying (†). This is sufficient to prove
Theorem 1.1.

To specify U(𝑉) and set up the proof, we need to fix several intermediate constants and compact
sets. Recall S denotes our chosen generating set for 𝐺.

Notation 6.1. Let 𝐻 = max{2𝛿, 𝑄(3𝛿)} + 1, where 𝑄(·) is from Lemma 2.5.

Lemma 6.2. There exist compact sets 𝐷0 ⊂ 𝐷 1
2
⊂ 𝐷1 ⊂ 𝐷2 in Ξ and positive constants 𝜖2 ≤ 𝜖1 and

𝜅0 satisfying the following.

1. 𝐷0 contains 𝜋−1 (e). (Hence 𝐺𝐷0 = Ξ.)
2. 𝐷 1

2
=
⋃︁{𝑔𝐷0 | 𝑔 ∈ S ∪ S−1 ∪ {e}}.

3. 𝜖1 <
1
2 minsep(𝐷 1

2
).

4. 𝐷1 contains 𝐵𝜖1 (𝑥) × 𝐵𝜖1 (𝑦) × 𝐵𝜖1 (𝑧) for every (𝑥, 𝑦, 𝑧) ∈ 𝐷 1
2
.

5. 𝐷1 contains 𝜋−1 (𝐵𝑅 (e)) where

𝑅 > max{24𝐻 + 52𝛿 + diam(𝜋(𝐷0)), 𝐶𝑉 + 4𝐻 + 11𝛿}. (∗∗)

6. For all 𝜅 < 𝜅0, the 𝜅 path property of Lemma 5.13 holds for 𝐷1,
7. 𝜖2 <

1
2 minsep(𝐷1).

8. 𝐷2 contains 𝐵𝜖2 (𝑥) × 𝐵𝜖2 (𝑦) × 𝐵𝜖2 (𝑧) for every (𝑥, 𝑦, 𝑧) ∈ 𝐷1.

The sets 𝐷0, 𝐷1, and 𝐷2 play a major role in the rest of the proof. The set 𝐷 1
2

will only appear in
the last step.
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Proof. We let 𝐷0 be a compact subset of Ξ containing 𝜋−1 (𝐵1 (e)) and define 𝐷 1
2

as in item (2). We
fix any positive 𝜖1 satisfying item (3). Let 𝐾 ⊂ Ξ be a compact set large enough to contain the union
of 𝜋−1 (𝐵𝑅 (e)), where 𝑅 is in equation (∗∗), as well as the union of the sets 𝐵𝜖1 (𝑥) × 𝐵𝜖1 (𝑦) × 𝐵𝜖1 (𝑧)
for every (𝑥, 𝑦, 𝑧) ∈ 𝐷 1

2
. Applying Lemma 5.13 to 𝐾 gives us a constant 𝜅0 and set 𝐷1 containing 𝐾 so

that the 𝜅0 path property holds for 𝐷1; note that by definition the 𝜅 path property remains true for any
𝜅 < 𝜅0, since 𝑁𝜅 (𝐹) ⊂ 𝑁𝜅0 (𝐹). Then take any 𝜖2 and 𝐷2 as described. □

Lemma 6.3. There exists positive 𝜖 < 1
2 𝜖2 such that the following hold:

(𝜖1) Any geodesic between points 𝑎, 𝑏 with 𝑑vis (𝑎, 𝑏) ≤ 2𝜖 has distance at least 10𝛿 from 𝜋(𝐷2) (and
hence from 𝐵𝑅 (e)).

(𝜖2) For every 𝑝 ∈ 𝜕𝐺, there is a closed contractible set 𝐵𝑝 so that

𝐵𝜖 (𝑝) ⊂ 𝐵𝑝 ⊂ 𝐵𝜖2 (𝑝).

Proof. That the first condition can be met is a consequence of compactness. Indeed, by Lemma 2.6, the
10𝛿-neighborhood of the set 𝜋(𝐷2) is bounded in Γ, hence contained in some compact ball centered at
e. Thus, there is a positive lower bound on the visual distance between the endpoints of any geodesic
passing through that ball.

We now address the second condition. Since 𝑆𝑛 is compact, the visual and round metrics are uniformly
equivalent. Thus there is a 𝜇 > 0 so that the round ball of radius 2𝜇 about 𝑝 is contained in 𝐵𝜖2 (𝑝)
for every 𝑝 ∈ 𝑆𝑛, so we can take 𝐵𝑝 to be the closed round 𝜇–ball. There is then some 𝜖 > 0 so that
𝐵𝜖 (𝑝) ⊂ 𝐵𝑝 for every 𝑝. □

Definition 6.4 (The neighborhood U(𝑉)). Recall we fixed 𝐶𝑉 > 0 at the beginning of the subsection,
see Equation (†). Using this 𝐶𝑉 , fix the compact sets 𝐷0 ⊂ 𝐷 1

2
⊂ 𝐷1 ⊂ 𝐷2 ⊂ Ξ and positive constants

𝜖 < 𝜖2 ≤ 𝜖1 and 𝜅0 satisfying the conclusions of Lemmas 6.2 and 6.3 above.
Fix some 𝜅 > 0 satisfying

1. 𝜅 < 𝜅0 and
2. For any (𝑎, 𝑐, 𝜃) ∈ 𝐷1, there exists 𝑐′ ∈ 𝐵𝜖 (𝑐) so that {𝑎}×𝐵𝜖2 (𝜃) × {𝑐′} lies in the interior of 𝑋𝜅 .

That such a 𝜅 exists follows by applying Lemma 5.11 with 𝐷 = 𝐷1, 𝜖 ′ = 𝜖2, and 𝜖 ′′ = 𝜖 . Note that
𝜖 < 𝜖2 < minsep(𝐷1)/2, so the hypotheses of that lemma are satisfied.

Define U(𝑉) to be a neighborhood of 𝜌0 in Hom(𝐺,Homeo(𝜕𝐺)) consisting of representations
satisfying both of the following:

3. 𝑑vis (𝜌(𝑔), 𝜌0 (𝑔)) < 𝜖 for every 𝑔 ∈ S ∪ S−1; and
4. the map 𝑓 𝜌 defined in Section 3, taking 𝑋 = 𝑋𝜅 , has the property that 𝑓 𝜌 ((𝐷2∩𝑋)×{𝜃}) ⊂ 𝐵𝜖 (𝜃)

for every 𝜃.

We now fix notation.

Convention 6.5. Fix some 𝜌 ∈ U(𝑉). Since 𝜌 is fixed, we henceforth drop it from the notation, writing
𝑓 = 𝑓 𝜌. Since 𝜅 is also fixed, we also drop it from our notation when convenient, writing 𝑋 for 𝑋𝜅 .

We keep this convention for the remainder of the work. Our eventual goal is to show that 𝜌0 is a
factor of 𝜌 via a semiconjugacy satisfying (†). The reader will note that when 𝐹 = ∅, then 𝑋 = Ξ. (For
example, this holds when 𝐺 is torsion-free.) It may be helpful on a first reading to keep this special case
in mind, thinking of 𝑋 as the space of distinct triples.
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6.2. A section partitioned into coarsely geodesic sets

We begin by describing a natural foliation on a section of Ξ × 𝜕𝐺 → Ξ. Let 𝜎 : Ξ → (Ξ × 𝜕𝐺) be the
section given by 𝜎((𝑎, 𝑏, 𝑐)) = ((𝑎, 𝑏, 𝑐), 𝑏). The image of 𝜎 has a topological foliation by leaves

𝐿𝑎 := {((𝑎, 𝑏, 𝑐), 𝑏) | 𝑏, 𝑐 ∈ 𝜕𝐺 − {𝑎}, 𝑏 ≠ 𝑐 }.

The leaves of this foliation are coarsely geodesic in the following sense. For any 𝑎 ≠ 𝜃, the set
𝐿𝑎 ∩ (Ξ× {𝜃}) is the image in 𝜎(Ξ) of a set whose projection to Γ is Hausdorff distance at most 𝛿 from
any geodesic joining 𝑎 and 𝜃. The set 𝐿𝑎 ∩ (Ξ × {𝑎}) is empty.

We will show that the sets

𝐿𝑎 ∩ 𝑓 𝜌 (𝑋 × {𝜃}) ⊂ 𝜎(𝑋)

behave much like the sets 𝐿𝑎 ∩ (Ξ × {𝜃}), in the sense that for each 𝑎 and 𝜃 in 𝜕𝐺, this set is either
empty or looks “coarsely geodesic,” meaning the projection of each nonempty set 𝐿𝑎 ∩ 𝑓 𝜌 (𝑋 × {𝜃}) to
the Cayley graph Γ lies at a uniformly bounded Hausdorff distance from a bi-infinite geodesic in Γ.

To formalize this, define 𝜋̄ on 𝜎(𝑋) by 𝜋̄ = 𝜋 ◦𝜎−1. It follows from the definition of 𝜋 on sets that for
𝑍 ⊂ 𝜎(𝑋), the set 𝜋̄(𝑍) is equal to the union

⋃︁
𝑧∈𝑍 𝜋̄(𝑧). Our goal for the section can now be restated:

Proposition 6.6. For any (𝑎, 𝜃) ∈ 𝜕𝐺2, either 𝐿𝑎 ∩ 𝑓 𝜌 (𝑋 × {𝜃}) is empty, or 𝜋̄(𝐿𝑎 ∩ 𝑓 𝜌 (𝑋 × {𝜃})) is
uniformly bounded Hausdorff distance from a bi-infinite geodesic in Γ with one endpoint equal to 𝑎.

In fact, we eventually prove something slightly stronger (Proposition 6.11), but the statement and
proof requires some some set-up.

Notation 6.7. For 𝜃 ∈ 𝜕𝐺, we let 𝑌𝜃 = 𝑓 (𝑋 × {𝜃}) ⊂ 𝑋 × 𝜕𝐺. For 𝑎, 𝑐, 𝜃 ∈ 𝜕𝐺, we let 𝑓𝑎,𝑐, 𝜃 denote
the map 𝑥 ↦→ 𝑓𝜃 (𝑎, 𝑥, 𝑐). This map is defined on all points 𝑥 ∈ 𝜕𝐺 such that (𝑎, 𝑥, 𝑐) ∈ 𝑋 and it is
continuous on its domain of definition.

Recall 𝐿𝑎∩ (Ξ×{𝜃}) is nonempty provided 𝑎 ≠ 𝜃. Our first lemma ensures that 𝐿𝑎∩𝑌𝜃 is nonempty
provided 𝑎 and 𝜃 are far apart, as follows:

Lemma 6.8. For any (𝑎, 𝜃, 𝑐) ∈ 𝐷1, the set 𝐿𝑎 ∩ 𝑌𝜃 is nonempty, and contains a point of the form
((𝑎, 𝑏𝜃 , 𝑐′), 𝑏𝜃 ) where 𝑏𝜃 ∈ 𝐵𝜖 (𝜃), and 𝑐′ ∈ 𝐵𝜖 (𝑐); in particular we have (𝑎, 𝑏𝜃 , 𝑐′) ∈ 𝐷2 ∩ 𝑋 .

Proof. By Item (2) of Definition 6.4, there exists a point 𝑐′ ∈ 𝐵𝜖 (𝑐) such that {𝑎} × 𝐵𝜖2 (𝜃) × {𝑐′} ⊂ 𝑋 .
Thus 𝑓𝑎,𝑐′ , 𝜃 is defined on 𝐵𝜖2 (𝜃) and Definition 6.4 item (4) implies that 𝑓𝑎,𝑐′ , 𝜃 (𝐵𝜖2 (𝜃)) ⊂ 𝐵𝜖 (𝜃).
Lemma 6.3 states that there exists a closed, contractible set 𝐵𝜃 such that

𝐵𝜖 (𝜃) ⊂ 𝐵𝜃 ⊂ 𝐵𝜖2 (𝜃).

Thus,

𝑓𝑎,𝑐′ , 𝜃 (𝐵𝜃 ) ⊂ 𝑓𝑎,𝑐′ , 𝜃 (𝐵𝜖2 (𝜃)) ⊂ 𝐵𝜖 (𝜃) ⊂ 𝐵𝜃 .

By the Lefschetz fixed point theorem, 𝑓𝑎,𝑐′ , 𝜃 has a fixed point 𝑏𝜃 ∈ 𝐵𝜖 (𝜃), which means exactly that
((𝑎, 𝑏𝜃 , 𝑐′), 𝑏𝜃 ) ∈ 𝐿𝑎 ∩𝑌𝜃 . Recall that 𝜖 < 𝜖2, so by our choice of sets and constants as in Lemma 6.2,
we have also (𝑎, 𝑏𝜃 , 𝑐′) ∈ 𝐷2. □

Notation 6.9. Going forward, we define 𝑆(𝑎, 𝜃) := 𝜋̄(𝐿𝑎 ∩ 𝑌𝜃 ) ⊂ Γ

Our goal is to show that, whenever 𝑆(𝑎, 𝜃) is nonempty, it is bounded Hausdorff distance from a
bi-infinite geodesic with one endpoint equal to 𝑎. The following lemma gives a local estimate. Recall
we have fixed 𝐻 = max{2𝛿, 𝑄(3𝛿)} + 1, where 𝑄(·) is the function from Lemma 2.5.
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Lemma 6.10. Suppose there is a point ((𝑎, 𝑏0, 𝑐0), 𝑏0) in 𝜎(𝐷1) ∩ 𝐿𝑎 ∩ 𝑌𝜃 . Let 𝛾 be a geodesic from
𝑎 to 𝑏0 in Γ. Then

𝑆(𝑎, 𝜃) ∩ 𝐵𝑅 (e) ⊂ 𝑁𝐻 (𝛾), and 𝛾 ∩ 𝐵𝑅 (e) ⊂ 𝑁𝐻 (𝑆(𝑎, 𝜃)).

Proof. For the first inclusion, suppose that 𝑝 lies in 𝑆(𝑎, 𝜃)∩𝐵𝑅 (e). Then, since𝐷1 contains 𝜋−1 (𝐵𝑅 (e)),
we have 𝑝 ∈ 𝜋( 𝑓 ((𝐷1 ∩ 𝑋) × {𝜃}) ∩ 𝐿𝑎). In particular, there exist 𝑏, 𝑐 ∈ 𝜕𝐺, such that all the following
hold simultaneously:

1. 𝑝 ∈ 𝜋(𝑎, 𝑏, 𝑐),
2. (𝑎, 𝑏, 𝑐) ∈ 𝐷1 ∩ 𝑋 ,
3. 𝑓𝜃 (𝑎, 𝑏, 𝑐) = 𝑏.

Both (𝑎, 𝑏, 𝑐) and (𝑎, 𝑏0, 𝑐0) lie in (𝐷1∩𝑋) ⊂ (𝐷2∩𝑋). By item (4) in Definition 6.4, we conclude that
𝑏 = 𝑓𝜃 (𝑎, 𝑏, 𝑐) and 𝑏0 = 𝑓𝜃 (𝑎, 𝑏0, 𝑐0) both lie in 𝐵𝜖 (𝜃). In particular 𝑑vis (𝑏, 𝑏0) < 2𝜖 , so any geodesic
from 𝑏 to 𝑏0 misses 𝐵𝑅 (e) by at least 10𝛿 (Lemma 6.3.(𝜖1)). By 𝛿–slimness of ideal triangles this
implies that if [𝑎, 𝑏] is any geodesic joining 𝑎 to 𝑏, then [𝑎, 𝑏] ∩ 𝐵𝑅+8𝛿 (e) lies in the 𝛿–neighborhood
of 𝛾 (the geodesic joining 𝑎 to 𝑏0). By definition of 𝜋, the point 𝑝 lies within 𝛿 of a point on [𝑎, 𝑏]
which is at most 𝑅 + 𝛿 from e, so lies within 2𝛿 of 𝛾. This shows the first inclusion.

For the second inclusion suppose that 𝑝 ∈ 𝛾 ∩ 𝐵𝑅 (e). By assumption (𝛿5) on 𝛿, there is some 𝑐 so
that 𝑝 ∈ 𝜋(𝑎, 𝑏0, 𝑐). Since 𝐷1 contains 𝜋−1 (𝐵𝑅 (e)), we have (𝑎, 𝑏0, 𝑐) ∈ 𝐷1.

By Item (2) of Definition 6.4, there exists 𝑐′ ∈ 𝐵𝜖 (𝑐) such that

{𝑎} × 𝐵𝜖2 (𝑏0) × {𝑐′} ⊂ (𝑋 ∩ 𝐷2).

Let 𝐵 = 𝐵𝜃 be the contractible set from Lemma 6.3.(𝜖2). This set contains 𝐵𝜖 (𝜃), so in particular
𝑏0 ∈ 𝐵. We have {𝑎} × 𝐵 × {𝑐′} ⊂ 𝑋 ∩ 𝐷2, so as in the proof of Lemma 6.8, 𝑓𝜃 induces a map
𝑓𝑎,𝑐′ , 𝜃 : 𝐵 → 𝐵𝜖 (𝜃) ⊂ 𝐵, and 𝑓𝑎,𝑐′ , 𝜃 fixes some 𝑏′ ∈ 𝐵𝜖 (𝜃) ⊂ 𝐵2𝜖 (𝑏0). The point ((𝑎, 𝑏′, 𝑐′), 𝑏′) is
therefore in 𝐿𝑎 ∩ 𝑌𝜃 , so 𝜋(𝑎, 𝑏′, 𝑐′) is a subset of 𝑆(𝑎, 𝜃). Let 𝑞 ∈ 𝜋(𝑎, 𝑏′, 𝑐′). See Figure 1.
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Figure 1. 𝑝 ∈ 𝜋(𝑎, 𝑏, 𝑐) is close to any point 𝑞 of 𝜋(𝑎, 𝑏′, 𝑐′).

We claim 𝑞 is close to 𝑝. To see this, we first show 𝑝 is within 2𝛿 of any geodesic from 𝑎 to 𝑏′. Fix
such a geodesic [𝑎, 𝑏′], and geodesics [𝑏0, 𝑏

′] and [𝑏0, 𝑎]. Since 𝑝 ∈ 𝐵𝑅 (e), it lies distance at least 10𝛿
from any point on [𝑏0, 𝑏]. Also we have that 𝑝 lies within 𝛿 of some point on [𝑏0, 𝑎], so by 𝛿-thinness,
𝑝 is distance at most 2𝛿 from a point on [𝑎, 𝑏′].

Repeating this argument with 𝑐′ in place of 𝑏′ shows that 𝑝 is within 2𝛿 of any geodesic from 𝑎 to
𝑐′. A slight modification shows that 𝑝 is within 3𝛿 of any geodesic [𝑏′, 𝑐′], as follows: Considering a
quadrilateral with sides [𝑏0, 𝑐], [𝑐, 𝑐′], [𝑏′, 𝑐′] and [𝑏0, 𝑏

′], we know that 𝑝 is within 𝛿 of some point
on [𝑏0, 𝑐] and this must lie within 2𝛿 of a point on [𝑏′, 𝑐′] since the other two sides are each distance
at least 10𝛿 from 𝑝. Thus, 𝑝 ∈ 𝜋3𝛿 (𝑎, 𝑏′, 𝑐′), and of course 𝑞 lies in this set as well.

By Lemma 2.5, 𝜋3𝛿 (𝑎, 𝑏, 𝑐) has diameter at most 𝑄(3𝛿). In particular 𝑑Γ (𝑝, 𝑞) ≤ 𝑄(3𝛿). Since
𝑞 ∈ 𝑆(𝑎, 𝜃), this shows the second inclusion. □

We will now combine this work with Lemma 2.12 to prove Proposition 6.6. We will actually prove
the following slightly stronger statement.

Proposition 6.11. If 𝑆(𝑎, 𝜃) ≠ ∅, then 𝑆(𝑎, 𝜃) is Hausdorff distance less than 3𝐻 + 6𝛿 + 1 from a
geodesic 𝛾 with one endpoint at 𝑎.

If in addition 𝐿𝑎 ∩ 𝑌𝜃 ∩ 𝜎(𝐷0) is non-empty, then 𝛾 joins 𝑎 to a point 𝑒+ so that (𝑒+ | 𝜃)e ≥
𝑅 − (4𝐻 + 11𝛿).
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Figure 2. 𝛾 and 𝛾𝑠 should both be close to 𝑆0 on the shaded region 𝐵𝑅 (𝑠), giving a contradiction if 𝑎
is not an endpoint of 𝛾..

Proof. We first verify the hypotheses of Lemma 2.12 for the set 𝑆 = 𝑆(𝑎, 𝜃) ∩ 𝐺. (Recall that 𝐺 is
canonically identified with the vertices of Γ.) By Corollary 5.5, 𝜋 is surjective, so for each 𝑠 ∈ S we can
choose some 𝑏𝑠 , 𝑐𝑠 so that 𝜎(𝑎, 𝑏𝑠 , 𝑐𝑠) ∈ 𝐿𝑎 ∩ 𝑌𝜃 and 𝑠 ∈ 𝜋(𝑎, 𝑏𝑠 , 𝑐𝑠). Since 𝜋−1 (e) ⊂ 𝐷0, the point
𝜎(𝑎, 𝑏𝑠 , 𝑐𝑠) lies in 𝜎(𝑠 · 𝐷0) ∩ 𝐿𝑎 ∩ 𝑌𝜃 . Left translating by 𝑠−1, we have

(𝑠−1𝑎, 𝑠−1𝑏𝑠 , 𝑠
−1𝑐𝑠) ∈ 𝜎(𝐷0) ∩ 𝐿𝑠−1𝑎 ∩ 𝑌𝜌(𝑠−1 ) 𝜃 .

Let 𝛾̂𝑠 be any bi-infinite geodesic from 𝑠−1𝑎 to 𝑠−1𝑏𝑠 . Lemma 6.10 implies

𝑠−1𝑆 ∩ 𝐵𝑅 (e) ⊂ 𝑁𝐻 (𝛾̂𝑠), and 𝛾̂𝑠 ∩ 𝐵𝑅 (e) ⊂ 𝑁𝐻 (𝑆).

Setting 𝛾𝑠 equal to 𝑠 · 𝛾̂𝑠 , we find that

𝑆 ∩ 𝐵𝑅 (𝑠) ⊂ 𝑁𝐻 (𝛾𝑠), and 𝛾𝑠 ∩ 𝐵𝑅 (𝑠) ⊂ 𝑁𝐻 (𝑆).

Now fix any 𝑅
4 –connected component 𝑆0 of 𝑆 so that we may apply Lemma 2.12. (We will see

later that 𝑆 is 𝑅
4 –connected, so in fact 𝑆0 = 𝑆.) The paragraph above shows that all the hypotheses of

Lemma 2.12 hold for 𝑆0 so we conclude that there is a bi-infinite geodesic 𝛾 with 𝑑Haus (𝛾, 𝑆0) ≤ 3𝐻+6𝛿.
We next claim that one of the endpoints of 𝛾 is 𝑎. We argue by contradiction. Using 𝛿–slimness

of ideal triangles, there is a point 𝑝 ∈ 𝛾 so that 𝑝 is within 2𝛿 of any geodesic joining 𝑎 to any
endpoint of 𝛾. Since 𝑆0 is Hausdorff distance at most 3𝐻 + 6𝛿 from 𝛾, there is some 𝑠 ∈ 𝑆0 so that
𝑑Γ (𝑠, 𝑝) ≤ 3𝐻 + 6𝛿. Now 𝛾𝑠 has an endpoint at 𝑎, and we have 𝛾𝑠 ∩ 𝐵𝑅 (𝑠) ⊂ 𝑁𝐻 (𝑆). From the
inclusions 𝑆 ∩ 𝐵𝑅 (𝑠) ⊂ 𝑁𝐻 (𝛾𝑠), and 𝛾𝑠 ∩ 𝐵𝑅 (𝑠) ⊂ 𝑁𝐻 (𝑆) and the inequality 6𝐻 < 𝑅

4 , we conclude
that 𝑁𝐻 (𝛾𝑠) ∩ 𝑆 ⊂ 𝑆0. Choosing 𝑥 ∈ 𝛾𝑠 at distance 𝑅

2 from 𝑠, in the direction of 𝑎, we find some
point 𝑠′ ∈ 𝑆0 with 𝑑Γ (𝑥, 𝑠′) ≤ 𝐻. See Figure 2 for a schematic. By repeated applications of the triangle
inequality, one can easily show that this 𝑠′ is further than 3𝐻 + 6𝛿 from 𝛾, a contradiction.

We now argue that 𝑆 = 𝑆0. To see this, suppose that 𝑆1 were some other component. We may apply
the same argument to 𝑆1 to produce a bi-infinite geodesic 𝛾1. The geodesics 𝛾 and 𝛾1 share an endpoint
𝑎, and so contain points within 𝛿 of one another. This implies that 𝑆0 and 𝑆1 contain points within
6𝐻 + 13𝛿 < 𝑅

4 of one another, so they cannot be different 𝑅
4 –connected components.

We have established the first conclusion, since 𝑑Haus (𝑆, 𝑆(𝑎, 𝜃)) ≤ 1.
Now we suppose that 𝑠 ∈ 𝑆 is in 𝜋̄(𝜎(𝐷0) ∩ 𝐿𝑎 ∩ 𝑌𝜃 ). By Lemma 6.8, we may take 𝑠 to be in

𝜋̄((𝑎, 𝑏, 𝑐), 𝑏) for some 𝑏 ∈ 𝐵𝜖 (𝜃). We can therefore take 𝛾𝑠 in the first part of this argument to be a
geodesic joining 𝑎 to 𝑏. The second conclusion of Lemma 2.12 implies that (𝑒+ | 𝑏)𝑠 ≥ 𝑅− (4𝐻 + 10𝛿),
where 𝑒+ is the endpoint of 𝛾 which is not equal to 𝑎. We thus have

(𝑒+ | 𝑏)e ≥ (𝑒+ | 𝑏)𝑠 − 𝑑Γ (e, 𝑠)
≥ (𝑒+ | 𝑏)𝑠 − diam(𝜋(𝐷0))
≥ 𝑅 − (4𝐻 + 10𝛿)

The first condition on 𝜖 in Lemma 6.3 implies that (𝑏 | 𝜃)e ≥ 𝑅. We have

(𝑒+ | 𝜃)e ≥ min{(𝑒+ | 𝑏)e, (𝑏 | 𝜃)e} − 𝛿
≥ 𝑅 − (4𝐻 + 11𝛿),

establishing the last claim of the Proposition. □
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7. The endpoint map

To summarize the results of the previous section, for each pair 𝑎, 𝜃 ∈ 𝜕𝐺 × 𝜕𝐺 so that 𝐿𝑎 ∩ 𝑌𝜃 ≠ ∅,
there is a geodesic in Γ at (uniformly) bounded Hausdorff distance from 𝑆(𝑎, 𝜃) = 𝜋(𝐿𝑎 ∩ 𝑌𝜃 ), with
one endpoint equal to 𝑎. Say this geodesic is shadowed by 𝑆(𝑎, 𝜃), and orient it so that the negative
endpoint is 𝑎. Any two bi-infinite geodesics shadowed by 𝑆(𝑎, 𝜃) are bounded Hausdorff distance from
each other, so they have the same endpoints in 𝜕𝐺. This gives us positive and negative “endpoint maps”
𝑒+ and 𝑒− assigning to each pair (𝑎, 𝜃) where 𝐿𝑎 ∩ 𝑌𝜃 ≠ ∅ the positive and negative endpoints of the
shadowed geodesic. For any such (𝑎, 𝜃), we have 𝑒− (𝑎, 𝜃) = 𝑎 and 𝑒+ (𝑎, 𝜃) ≠ 𝑎. Furthermore, the
equivariance property in Proposition 3.2 implies that for any 𝑔 ∈ 𝐺, we have

𝑔𝑆(𝑎, 𝜃) = 𝑆(𝑔𝑎, 𝜌(𝑔)𝜃) = 𝜋(𝐿𝑔𝑎 ∩ 𝑌𝜌(𝑔) 𝜃 ).

This implies the following equivariance of the positive endpoint map.

𝑔 · 𝑒+ (𝑎, 𝜃) = 𝑒+ (𝑔𝑎, 𝜌(𝑔)𝜃). (12)

Here and in what follows, we will frequently omit 𝜌0 from the notation when it is clear that we are
referring to the natural action of𝐺 on its boundary. Thus, we will write 𝑔𝑎 rather than 𝜌0 (𝑔)𝑎 when 𝑎 is
a boundary point. For 𝑥 ∈ 𝑋 , we also write 𝑔𝑥 for its image under the standard action of 𝑔 ∈ 𝐺 on 𝑋 ⊂ Ξ.

We will first establish continuity of the positive endpoint map on a large set, then use it to define a
semi-conjugacy.

7.1. Continuity

Proposition 7.1 (Continuity in 𝑎, 𝜃 over 𝐷1). Suppose 𝑎0, 𝜃0 ∈ 𝜕𝐺 × 𝜕𝐺 is such that there exists 𝑐 with
(𝑎0, 𝜃0, 𝑐) ∈ 𝐷1. Then the map (𝑎, 𝜃) ↦→ 𝑒+ (𝑎, 𝜃) is continuous at (𝑎0, 𝜃0).

Proposition 7.1 will be a quick consequence of the following technical lemma.

Lemma 7.2. Suppose 𝐿𝑎0 ∩ 𝑌𝜃0 is nonempty. For any 𝑟 > 0, there is a neighborhood 𝑁 = 𝑁 (𝑟) of
(𝑎0, 𝜃0) ∈ 𝜕𝐺 ×𝜕𝐺 so that if (𝑎, 𝜃) ∈ 𝑁 , then 𝐵𝑟 (e) ∩ 𝑆(𝑎0, 𝜃0) lies in the diam(𝜋(𝐷1))–neighborhood
of 𝑆(𝑎, 𝜃).

The main idea behind the proof of Lemma 7.2 comes from the proof of Lemma 6.8, and the fact that
the fixed point property used there is stable under small perturbations of the map 𝑓𝑎,𝑐, 𝜃 .

Proof of Lemma 7.2. If 𝐵𝑟 (e) ∩ 𝑆(𝑎0, 𝜃0) is empty there is nothing to show, so we suppose 𝐵𝑟 (e) ∩
𝑆(𝑎0, 𝜃0) is non-empty. Let 𝐾 ⊂ 𝑋 be the closure of 𝜋−1 (𝐵𝑟 (e)).

Recall from Notation 6.7 that 𝑓𝑎,𝑐, 𝜃 denotes the map 𝑥 ↦→ 𝑓𝜃 (𝑎, 𝑥, 𝑐), and recall that 𝐷0 ⊂ 𝐷1 has
the following properties

1. 𝑋 ⊂ 𝐺𝐷0
2. For any (𝑎, 𝑏, 𝑐) ∈ 𝐷0, the set 𝐵𝜖1 (𝑎) × 𝐵𝜖1 (𝑏) × 𝐵𝜖1 (𝑐) is contained in 𝐷1. (See Lemma 6.2.(4).)

Recall also that 𝜖1 > 𝜖2 > 2𝜖 .
We cover 𝜎(𝐾) ∩ (𝐿𝑎0 ∩𝑌𝜃0 ) with translates of 𝐷0, as follows. Since 𝐾 is compact, there are finitely

many elements 𝑔1, 𝑔2, . . . 𝑔𝑘 ∈ 𝐺 so that

𝜎(𝐾) ∩ (𝐿𝑎0 ∩ 𝑌𝜃0 ) ⊂
𝑘⋃︂
𝑖=1

𝜎(𝑔𝑖𝐷0).

By deleting elements from the list if necessary we may assume

𝜎(𝑔𝑖𝐷0) ∩
(︁
𝐿𝑎0 ∩ 𝑌𝜃0

)︁
≠ ∅
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for each 𝑖.
Our next goal is to show that, for each 𝑖, the projection of the larger translate 𝑔𝑖𝐷1 to the Cayley

graph contains a point of 𝑆(𝑎, 𝜃), provided that (𝑎, 𝜃) is chosen close enough to (𝑎0, 𝜃0). Here “close
enough” depends on the set 𝐾 and hence on the constant 𝑟 .

Translating back to 𝐷0, for each 𝑖 we have 𝜎(𝐷0) ∩
(︂
𝐿𝑔−1

𝑖
𝑎0

∩ 𝑌𝜌(𝑔𝑖 )−1 𝜃0

)︂
≠ ∅. Let 𝑏𝑖 , 𝑐𝑖 ∈ 𝜕𝐺 be

such that (︂
(𝑔−1

𝑖 𝑎0, 𝑏𝑖 , 𝑐𝑖), 𝑏𝑖
)︂
∈ 𝜎(𝐷0) ∩

(︂
𝐿𝑔−1

𝑖
𝑎0

∩ 𝑌𝜌(𝑔𝑖 )−1 𝜃0

)︂
.

Because
(︁
𝑔−1
𝑖
𝑎0, 𝑏𝑖 , 𝑐𝑖

)︁
∈ 𝐷0 ⊂ 𝐷2, Definition 6.4 (4) implies that

𝑏𝑖 = 𝑓𝜌(𝑔𝑖 )−1 𝜃0 (𝑔
−1
𝑖 𝑎0, 𝑏𝑖 , 𝑐𝑖) ∈ 𝐵𝜖 (𝜌(𝑔𝑖)−1𝜃0).

hence, 𝑑vis (𝑏𝑖 , 𝜌(𝑔𝑖)−1𝜃0) < 𝜖 , and so (𝑔−1
𝑖
𝑎0, 𝜌(𝑔𝑖)−1𝜃0, 𝑐𝑖) ∈ 𝐷1.

Let 𝑝𝑖 = 𝜌(𝑔𝑖)−1𝜃0. By Item 2 of Definition 6.4, there is some s 𝑐′
𝑖
∈ 𝐵𝜖 (𝑐𝑖) so that {𝑎𝑖} ×

𝐵𝜖2 (𝑝𝑖) × {𝑐′
𝑖
} lies in the interior of 𝑋 . Furthermore by Lemma 6.3.((𝜖2)) there is a closed contractible

set 𝐵𝑝𝑖 ⊂ 𝜕𝐺 with 𝐵𝜖 (𝑝𝑖) ⊂ 𝐵𝑝𝑖 ⊂ 𝐵𝜖2 (𝑝𝑖), and

𝑓𝑔−1
𝑖

𝑎0 ,𝑐
′
𝑖
, 𝑝𝑖

(𝐵𝜖2 (𝑝𝑖)) ⊂ 𝐵𝜖 (𝑝𝑖),

so 𝑓𝑔−1
𝑖

𝑎0 ,𝑐
′
𝑖
, 𝑝𝑖

has a fixed point in 𝐵𝜖 (𝑝𝑖). The property of taking the compact set 𝐵𝑝𝑖 into the open
ball 𝐵𝜖 (𝑝𝑖) is open (in the compact-open topology on continuous maps), so also holds for any map
sufficiently close to 𝑓𝑔−1

𝑖
𝑎0 ,𝑐

′
𝑖
, 𝑝𝑖

, provided the map is defined on 𝐵𝑝𝑖 . Recall that the domain of definition
of 𝑓𝑥,𝑦,𝑧 is the set {𝑤 | (𝑥, 𝑤, 𝑧) ∈ 𝑋}. Thus, if a function 𝑓𝑥,𝑦,𝑧 is defined on a set {𝑥} × 𝐵𝜖2 (𝑝𝑖) × {𝑧}
contained in the interior of 𝑋 , and 𝐵𝜖2 (𝑝𝑖) ⊃ 𝐵𝑝𝑖 , then for all sufficiently close 𝑥′, 𝑦′, 𝑧′ the function
𝑓𝑥′ ,𝑦′ ,𝑧′ will be defined on 𝐵𝑝𝑖 as well. Additionally, the functions 𝑓𝑥,𝑦,𝑧 vary continuously in the
arguments (𝑥, 𝑦, 𝑧). Thus, we may take a neighborhood 𝑁𝑖 of (𝑎0, 𝜃0) such that for each (𝑎, 𝜃) ∈ 𝑁𝑖 ,

1. the map 𝑓𝑔−1
𝑖

𝑎,𝑐′
𝑖
,𝜌(𝑔𝑖 )−1 𝜃 is defined on 𝐵𝑝𝑖

2. the map 𝑓𝑔−1
𝑖

𝑎,𝑐′
𝑖
,𝜌(𝑔𝑖 )−1 𝜃 has a fixed point contained in 𝐵𝜖 (𝑝𝑖); and

3. 𝑑vis (𝑔−1
𝑖
𝑎, 𝑔−1

𝑖
𝑎0) < 𝜖1.

Set 𝑁 =
⋂︁𝑘

𝑖=1 𝑁𝑖 . Thus, for any (𝑎, 𝜃) ∈ 𝑁 , each of the sets 𝐿𝑔−1
𝑖

(𝑎) ∩ 𝑌𝜌(𝑔𝑖 )−1 𝜃 contains a point
𝜎(𝑔−1

𝑖
𝑎, 𝑧𝑖 , 𝑐

′
𝑖
) where 𝑧𝑖 ∈ 𝐵𝜖 (𝑝𝑖). In particular, we have

𝑑vis (𝑔−1
𝑖 𝑎, 𝑔−1

𝑖 𝑎0) < 𝜖1 and
𝑑vis (𝑧𝑖 , 𝑏𝑖) ≤ 2𝜖 < 𝜖1.

Since (𝑔−1
𝑖
𝑎0, 𝑏𝑖 , 𝑐𝑖) ∈ 𝐷0, this means that (𝑔−1

𝑖
𝑎, 𝑧𝑖 , 𝑐

′
𝑖
) ∈ 𝐷1. Multiplying on the left by 𝑔𝑖 , we obtain

(𝑎, 𝑔𝑖𝑧𝑖 , 𝑔𝑖𝑐′𝑖) ∈ 𝑔𝑖𝐷1 and 𝜎(𝑎, 𝑔𝑖𝑧𝑖 , 𝑔𝑖𝑐′𝑖) ∈ 𝐿𝑎 ∩ 𝑌𝜃 , so the intersection

𝜎(𝑔𝑖𝐷1) ∩ (𝐿𝑎 ∩ 𝑌𝜃 )

is non-empty for each of the elements 𝑔𝑖 . Projecting to the Cayley graph, we have 𝐵𝑟 (e) ∩ 𝑆(𝑎0, 𝜃0)
contained in the diam(𝜋(𝐷1))–neighborhood of 𝑆(𝑎, 𝜃), which proves the lemma. □

Proof of Proposition 7.1 from Lemma 7.2. Suppose (𝑎0, 𝜃0) ∈ 𝜕𝐺 × 𝜕𝐺 is such that there exists 𝑐
with (𝑎0, 𝜃0, 𝑐) ∈ 𝐷1. Then by Lemma 6.8, 𝐿𝑎0 ∩ 𝑌𝜃0 contains a point of 𝜎(𝐷2), so is nonempty.
Lemma 7.2 states that, given 𝑟 > 0, there is a neighborhood 𝑁 of (𝑎0, 𝜃0) so that if (𝑎, 𝜃) ∈ 𝑁 , then
𝐵𝑟 (e) ∩𝑆(𝑎0, 𝜃0) lies in the diam(𝜋(𝐷1))–neighborhood of 𝑆(𝑎, 𝜃). By Proposition 6.11 both 𝑆(𝑎0, 𝜃0)
and 𝑆(𝑎, 𝜃) are Hausdorff distance at most 3𝐻+6𝛿+1 from some bi-infinite geodesic, so these geodesics
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Figure 3. Paths of endpoints (in red) on 𝜕𝐺 = 𝜕Γ and associated near-geodesic sets in Γ (blue) with
endpoints in the 𝜖-balls about 𝑝 and 𝑞..

will 2(3𝐻 + 6𝛿 + 1) + diam(𝜋(𝐷1)) fellow-travel each other over a compact set, which can be taken as
large as we wish by taking 𝑟 large. This gives continuity. □

We now establish continuity of a similar positive endpoint map defined everywhere on 𝑋 . Since 𝑓 is
a homeomorphism and the sets 𝑋 × {𝜃} partition 𝑋 × 𝜕𝐺, so do their images 𝑌𝜃 . Likewise, the sets 𝐿𝑎

give a partition of 𝜎(𝑋) ⊂ 𝑋 × 𝜕𝐺, so for each 𝑥 ∈ 𝑋 , there exists a unique 𝑎(𝑥) and 𝜃 (𝑥) such that
𝜎(𝑥) ∈ 𝐿𝑎 (𝑥 ) ∩ 𝑌𝜃 (𝑥 ) . Note if 𝑥 = (𝑎, 𝑏, 𝑐) then 𝑎(𝑥) = 𝑎. We have a sequence of maps:

𝑥 = (𝑎, 𝑏, 𝑐) ↦→ ((𝑎, 𝑏, 𝑐), 𝑏) ↦→ (𝑎, 𝜃 (𝑥)) ↦→ 𝑒+ (𝑎, 𝜃 (𝑥)). (13)

Proposition 7.3 (Continuity on 𝑋). Let E+ (𝑥) = 𝑒+ (𝑎(𝑥), 𝜃 (𝑥)) be the map given by the composition
in (13). Then E+ is continuous on all of 𝑋 .

Proof. Equivariance of each map in the composition implies that we have the equivariance property

E+ (𝑔𝑥) = E+ (𝑔𝑎(𝑥), 𝜌(𝑔)𝜃 (𝑥)).

It therefore suffices to check continuity of the composition above on the set 𝐷0 ∩ 𝑋 containing a
fundamental domain for the action of 𝐺 on 𝑋 .

By definition, the section 𝜎 is continuous. For the second map in (13), note that 𝜃 (𝑥) is simply
projection onto the second coordinate of 𝑓 −1 (𝜎(𝑥)) ∈ 𝑋 × 𝜕𝐺. Since 𝑓 −1 is a homeomorphism of
𝑋 × 𝜕𝐺, its projection 𝜃 (𝑥) is continuous. Finally, Proposition 7.1 says that (𝑎, 𝜃 (𝑎, 𝑏, 𝑐)) ↦→ 𝑒+ (𝑎, 𝜃)
is continuous for (𝑎, 𝑏, 𝑐) ∈ 𝐷1. □

Going forward we will abuse notation and often think of E+ as a map defined on 𝜎(𝑋), via the
identification of 𝑋 with 𝜎(𝑋).

7.2. Proof of Theorem 1.1

Using the work above, we may now conclude the proof of our main theorem. First recall the statement.

Theorem 1.1 (Topological stability). Let 𝐺 be a hyperbolic group with sphere boundary. Then the
action of 𝐺 on 𝜕𝐺 is topologically stable. More precisely, given any neighborhood 𝑉 of the identity in
the space of continuous self-maps of 𝑆𝑛, there exists a neighborhood𝑈 of the standard boundary action
in Hom(𝐺,Homeo(𝑆𝑛)) such that any representation in 𝑈 has 𝜌0 as a factor, with semi-conjugacy
contained in 𝑉 .

Our neighborhood 𝑈 = U(𝑉) was determined by our desired lower bound 𝐶𝑉 on Gromov products
when we set our conventions in Section 6.1. In this section, we show that 𝑒+ (𝑎, 𝜃) is (locally) a function
only of 𝜃, hence can be thought of a map from 𝜕𝐺 to 𝜕𝐺. We will then show that this map has the
properties of the desired semi-conjugacy between 𝜌0 and 𝜌.

Lemma 7.4 (𝑒+ is locally a function of 𝜃). Let 𝜃 ∈ 𝜕𝐺 and let {𝑎𝑡 | 𝑡 ∈ [0, 1]} be a path in 𝜕𝐺 so that
𝑒+ (𝑎𝑡 , 𝜃) is defined and continuous at all points. Then 𝑒+ (𝑎𝑡 , 𝜃) is constant.

Proof. We argue by contradiction. Suppose we have such a path where 𝑒+ is nonconstant. Truncating
and reparameterizing, we may suppose that

1. 𝑒+ (𝑎𝑡 , 𝜃) is not locally constant at 𝑡 = 0,
2. for all 𝑡 ∈ [0, 1], 𝑎𝑡 ≠ 𝑒+ (𝑎0, 𝜃), and
3. 𝑒+ (𝑎1, 𝜃) ≠ 𝑒+ (𝑎0, 𝜃).
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The second item can be ensured by taking any sufficiently short path that is nonconstant at 0, since
𝑒+ (𝑎, 𝜃) ≠ 𝑎 holds for all 𝑎, 𝜃.

Since 𝐺 acts on 𝜕𝐺 as a uniform convergence action (see Proposition 2.2), the point 𝑒+ (𝑎0, 𝜃) is a
conical limit point so there exists a sequence {𝑔𝑖} ⊂ 𝐺 and points 𝑝 ≠ 𝑞 ∈ 𝜕𝐺 such that 𝑔𝑖𝑒+ (𝑎0, 𝜃) → 𝑝

and 𝑔𝑖𝑧 → 𝑞 for all 𝑧 ∈ 𝜕𝐺 − {𝑒+ (𝑎0, 𝜃)}. Modifying the sequence {𝑔𝑖} if needed by postcomposing
with some fixed 𝑔 ∈ 𝐺, we may also assume there exists 𝑐 with (𝑝, 𝑞, 𝑐) ∈ 𝐷0. In particular this implies
that 𝐵𝜖 (𝑝) ∩ 𝐵𝜖 (𝑞) = ∅. Since 𝜕𝐺 is compact we may assume by passing to a subsequence that 𝜌(𝑔𝑖)𝜃
converges to some point 𝜃∞ ∈ 𝜕𝐺.

For 𝑖 large enough, 𝑔𝑖 · 𝑒+ (𝑎1, 𝜃) ∈ 𝐵𝜖 /2 (𝑞) and 𝑔𝑖 · 𝑒+ (𝑎0, 𝜃) ∈ 𝐵𝜖 /2 (𝑝). Thus, for each sufficiently
large 𝑖, there exists 𝑡𝑖 such that 𝑝𝑖 := 𝑔𝑖 · 𝑒+ (𝑎𝑡𝑖 , 𝜃) is visual distance exactly 𝜖 from 𝑝. Since the arc
𝑎𝑡 does not meet 𝑒+ (𝑎0, 𝜃) we have 𝑔𝑖𝑎𝑡 ∈ 𝐵𝜖 (𝑞) for all 𝑡 and sufficiently large 𝑖. See Figure 3 for a
schematic illustration. Consider the sets 𝑔𝑖𝑆(𝑎𝑡𝑖 , 𝜃) = 𝑆(𝑔𝑖 (𝑎𝑡𝑖 ), 𝜌(𝑔𝑖) (𝜃)). Recall by Equation (12) we
have

𝑒+ (𝑔𝑖𝑎𝑡 , 𝜌(𝑔𝑖)𝜃) = 𝑔𝑖 · 𝑒+ (𝑎𝑡 , 𝜃).

This implies that the geodesics shadowed by the sets 𝑆(𝑔𝑖 (𝑎𝑡𝑖 ), 𝜌(𝑔𝑖) (𝜃)) all pass through some compact
subset of the Cayley graph Γ, and so the sets themselves all meet some compact 𝐾 ⊂ 𝑋 .

For each 𝑖, fix a point 𝑦𝑖 ∈ 𝐿𝑔𝑖𝑎𝑡𝑖 ∩𝑌𝜌(𝑔𝑖 ) (𝜃 ) ∩ 𝐾 . After passing to a further subsequence, the points
𝑦𝑖 converge to some 𝑦∞ ∈ 𝐾 . Now 𝑔𝑖𝑎𝑡𝑖 → 𝑞 and 𝜌(𝑔𝑖) (𝜃) → 𝜃∞, so 𝑦∞ ∈ 𝐿𝑞 ∩ 𝑌𝜃∞ ∩ 𝐾 . Using the
notation from Proposition 7.3, continuity of positive endpoints implies that E+ (𝑦∞) = lim𝑛→∞ E+ (𝑦𝑖)
which is by construction some point at distance 𝜖 from 𝑝.

Now consider instead the constant sequence 𝑡 = 0 instead of 𝑡𝑖 . By the same reasoning, for 𝑖 sufficiently
large, 𝐿𝑔𝑖𝑎0 ∩𝑌𝜌(𝑔𝑖 ) (𝜃 ) will contain a point 𝑧𝑖 in 𝐾 . After passing to a subsequence, these converge to a
point 𝑧∞ ∈ 𝐿𝑞 ∩ 𝑌𝜃∞ ∩ 𝐾 . By continuity of E+ we have E+ (𝑧∞) = lim𝑛→∞ E+ (𝑧𝑖) = 𝑝. Thus, we have
found two points, 𝑦∞ and 𝑧∞, both in 𝑌𝜃∞ ∩ 𝐿𝑞 with different positive endpoints E+ (𝑧∞) ≠ E+ (𝑦∞).
This directly contradicts Proposition 6.11, and this contradiction concludes the proof. □

Recall that item (6) from Lemma 6.2 says that, if (𝑎, 𝜃, 𝑐) and (𝑎′, 𝜃, 𝑐′) lie in 𝐷1, then there exists a
path 𝑎𝑡 with 𝑎0 = 𝑎 and 𝑎1 = 𝑎′ and a point 𝑐′′ such that (𝑎𝑡 , 𝜃, 𝑐′′) ∈ 𝐷1 for all 𝑡. Proposition 7.1 says
that the map 𝑒+ (𝑎𝑡 , 𝜃) is therefore continuous at each point, and thus by Lemma 7.4 we conclude it is
constant. In summary, we have the following.

Corollary 7.5. If (𝑎, 𝜃, 𝑐) and (𝑎′, 𝜃, 𝑐′) lie in 𝐷1, then 𝑒+ (𝑎, 𝜃) = 𝑒+ (𝑎′, 𝜃).

Definition 7.6. Define ℎ : 𝑆𝑛−1 → 𝑆𝑛−1 by ℎ(𝜃) = 𝑒+ (𝑎, 𝜃) where 𝑎 is any point such that there exists
𝑐 with (𝑎, 𝜃, 𝑐) ∈ 𝐷0.

Note that ℎ is defined everywhere, and is continuous by the continuity of 𝑒+ (𝑎, 𝜃) given by Proposi-
tion 7.1. It remains to check that ℎ satisfies the other properties of the semi-conjugacy required to prove
Theorem 1.1. The second point in Proposition 6.11 states that (ℎ(𝜃) | 𝜃)e ≥ 𝑅 − (4𝐻 + 11𝛿). Our choice
of 𝑅 in Lemma 6.2 (∗∗) implies that (ℎ(𝜃) | 𝜃)e ≥ 𝐶𝑉 , satisfying equation (†) as desired, and showing
that ℎ lies in our chosen neighborhood 𝑉 . This neighborhood contains only degree one maps, so ℎ is
surjective.

We now check equivariance. Let 𝑔 be an element of the generating set S ∪S−1 used in the definition
of Γ and let 𝜃 be given. Choose 𝑎 so that (𝑎, 𝜃, 𝑐) ∈ 𝐷0. We have

𝜌0 (𝑔)ℎ(𝜃) = 𝑔𝑒+ (𝑎, 𝜃) = 𝑒+ (𝑔𝑎, 𝜌(𝑔)𝜃)

By definition of 𝐷 1
2
, and our conditions on 𝜌, we have (𝑔𝑎, 𝑔𝜃, 𝑔𝑐) ∈ 𝐷 1

2
. By definition of 𝐷1, and

item (3) of Definition 6.4 which defines the neighborhood U(𝑉), we then have (𝑔𝑎, 𝜌(𝑔)𝜃, 𝑔𝑐) ∈ 𝐷1.
Thus, by Corollary 7.5, 𝑒+ (𝑔𝑎, 𝜌(𝑔)𝜃, 𝑔𝑐) = 𝑒+ (𝑎′, 𝜌(𝑔)𝜃, 𝑐′) for any choice of 𝑎′ and 𝑐′ such that
(𝑎′, 𝜌(𝑔)𝜃, 𝑐′) ∈ 𝐷0, thus giving

𝜌0 (𝑔)ℎ(𝜃) = ℎ(𝜌(𝑔)𝜃) (14)
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for all 𝜃 ∈ 𝜕𝐺. Since (14) holds for generators of 𝐺, it holds, inductively, for all elements 𝑔 ∈ 𝐺. This
shows that ℎ is a semiconjugacy in the specified neighborhood of the identity map of 𝑆𝑛, completing
the proof of the theorem. □
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