

**Considerable genetic diversity and structure despite narrow endemism and limited ecological specialization in the Hayden's ringlet,
*Coenonympha haydenii***

Amy Springer¹, Zachariah Gompert^{1,2}

¹ Department of Biology, Utah State University, Logan, UT 84322, USA

² Ecology Center, Utah State University, Logan, UT 84322, USA

Send correspondence to:

amy.mo.springer@gmail.com and zach.gompert@usu.edu

¹ Abstract

² Understanding the processes that underlie the development of population genetic structure is
³ central to the study of evolution. Patterns of genetic structure, in turn, can reveal signatures
⁴ of isolation by distance, barriers to gene flow, or even the genesis of speciation. However,
⁵ it is unclear how severe range restriction might impact the processes that dominate the de-
⁶ velopment of genetic structure. In narrow endemic species, is population structure likely
⁷ to be adaptive in nature, or rather the result of genetic drift? In this study, we investi-
⁸ gated patterns of genetic diversity and structure in the narrow endemic Hayden's ringlet
⁹ butterfly. Specifically, we asked to what degree genetic structure in the Hayden's ringlet can
¹⁰ be explained by isolation by distance, isolation by resistance (in the form of geographic or
¹¹ ecological barriers to migration between populations), and isolation by environment (in the
¹² form of differences in host plant availability and preference). We employed a genotyping-
¹³ by-sequencing (GBS) approach coupled with host preference assays, Bayesian modeling, and
¹⁴ population genomic analyses to answer these questions. Our results suggest that despite
¹⁵ their restricted range, levels of genetic diversity in the Hayden's ringlet are comparable to
¹⁶ those seen in more widespread butterfly species. Hayden's ringlets showed a strong prefer-
¹⁷ ence for feeding on grasses relative to sedges, but neither larval preference nor potential host
¹⁸ availability at sampling sites correlated with genetic structure. We conclude that geography,
¹⁹ in the form of isolation by resistance and simple isolation by distance, was the major driver
²⁰ of contemporary patterns of differentiation in this narrow endemic species.

²¹ **Keywords:** *Coenonympha haydenii*, population structure, hierarchical Bayesian
²² models, narrow endemism

²³ Introduction

²⁴ Determining the evolutionary processes underlying the development of population genetic
²⁵ structure can provide important insights into the causes and potential consequences of evolu-
²⁶ tion. Patterns of genetic structure, or the organization of genetic diversity across geographic
²⁷ space, can help reveal contemporary gene flow and migratory routes (e.g., Gompert et al.,
²⁸ 2021; Hemstrom et al., 2022), ecological specialization (e.g., Nosil et al., 2008; Ferrari et al.,
²⁹ 2012; Chaturvedi et al., 2018; Michell et al., 2023), patterns of admixture (e.g., Prüfer et al.,
³⁰ 2014), or even the initial stages of speciation (Mayr, 1942; Avise et al., 2000; Harvey et al.,
³¹ 2017). The development of genetic structure is driven by three major evolutionary processes:
³² genetic drift, gene flow, and natural selection (Wright, 1931). But the degree to which each of
³³ these processes dominate—and what patterns of structure might arise as a result—depends
³⁴ heavily on geographic, ecological, and demographic conditions.

³⁵ Narrow endemism (restriction of a species' range to a limited geographic area relative
³⁶ to dispersal capacity) is a condition that would, at first glance, appear to limit the potential
³⁷ for genetic structure to develop. Historically, it was predicted that narrow endemic species
³⁸ should show low levels of genetic diversity (Frankham, 1997; Soltis and Soltis, 1991). At
³⁹ small population sizes, genetic drift will more readily drive alleles to fixation, leading to loss
⁴⁰ of diversity over time (Wright, 1931; Gillespie, 2001; Montgomery et al., 2000; Rivera-Ortíz
⁴¹ et al., 2015). Low levels of genetic diversity coupled with a narrowly limited geographic range
⁴² (relative to dispersal capacity and habitat heterogeneity) would seem to leave little genetic
⁴³ or geographic potential for differentiation to arise among populations. But a growing body
⁴⁴ of evidence suggests that endemic species—particularly plants—can show both high levels
⁴⁵ of genetic diversity (Forrest et al., 2017; Medrano and Herrera, 2008) as well as substantial
⁴⁶ genetic structure (Jiménez-Mejías et al., 2015; Hobbs et al., 2013; Turchetto et al., 2016).
⁴⁷ But is genetic structure in endemic species likely to be adaptive in nature (see Robitzch
⁴⁸ et al., 2023), or simply the result of limited gene flow and drift?

49 To help tease apart the processes driving the development of genetic structure, we can
50 categorize the patterns of structure into three major cases. In the simplest case, population
51 genetic structure can arise from a combination of geographic distance and genetic drift alone
52 (Wright, 1943). This pattern is known as isolation by distance (IBD), and occurs when
53 intrinsic limitations to dispersal lead to non-random mating and the accumulation of genetic
54 differences across space via genetic drift, even in a perfectly uniform environment (Wright,
55 1943; Slatkin, 1993). If narrow endemic species experience a greater degree of genetic drift
56 due to population size limitations, then it might be predicted that IBD should more often be a
57 key driver of patterns of structure in such species.

58 In cases where the environment connecting populations is not uniform, geographic
59 or ecological barriers (e.g., mountains, rivers, low host availability) can reduce rates of gene
60 flow among populations. Reduced rates of gene flow, in turn, can drive differentiation among
61 isolated populations via genetic drift (Rivera-Ortíz et al., 2015). Geographically or ecolog-
62 ically favorable conditions, on the other hand, can create corridors of increased gene flow,
63 homogenizing populations (Slatkin, 1987; Sharma et al., 2013). These conditions can result
64 in patterns of genetic differentiation correlated with functional connectivity (i.e., heterogene-
65 ity in resistance of the landscape to gene flow) rather than physical distances (i.e. isolation
66 by resistance, or IBR (McRae, 2006; Thomas et al., 2015; Moreno-Contreras et al., 2023).
67 Because narrow endemics occur within a limited geographic range, in some cases there sim-
68 ply may not be enough environmental variation within a narrow endemic's range to result
69 in substantial patterns of IBR. However, in many cases narrow endemic species are associ-
70 ated with ecologically unique environments and may be ecological specialists (for example,
71 species endemic to white sands or serpentine soils; see Lavergne et al., 2004; Anacker et al.,
72 2011; Metzler, 2014; Nery et al., 2023; Anacker, 2014). If narrow endemism is coupled with
73 niche specialization, then narrow endemic species might be more likely to experience habitat
74 fragmentation—especially if they also exhibit limited dispersal capacity—allowing isolation
75 by resistance to develop even on a fine geographic scale.

Finally, if individual populations occupy ecologically divergent environments (as opposed to geographic or environmental barriers existing between two or more equivalent environments), natural selection can drive population divergence via local adaptation, resulting in a pattern known as isolation by environment (which subsumes isolation by adaptation) (Nosil et al., 2008, 2009; Orsini et al., 2013; Funk et al., 2011; Wang and Bradburd, 2014; Driscoe et al., 2019; Luna et al., 2023). Isolation by environment is specifically characterized by genetic differentiation increasing with environmental differences between populations that are independent of geographic distances (Wang and Bradburd, 2014; Sexton et al., 2014). This can occur as a result of direct selection at loci affecting fitness, as well as indirect selection at neutral loci (Nosil et al., 2008, 2009). Thus, this pattern is the result of divergent selection coupled with reduced effective rates of gene flow (either via increased immigrant mortality or reduced hybrid fitness) increasing the potential for genetic hitchhiking, as well as limiting the extent to which gene flow erases the effects of natural selection (Nosil et al., 2008, 2009, 2008; Wang and Bradburd, 2014). Natural selection is more likely to overcome the effects of genetic drift when effective population sizes are large, and higher levels of standing genetic variation provide more raw material upon which natural selection can act. While narrow endemism implies that a species occurs over a limited geographic range, it does not imply that population sizes and genetic diversity levels are necessarily low. To the contrary, depending on various factors such as body size and local carrying capacity, small geographic ranges (from a human perspective) can support large, viable populations of some species. Moreover, the degree to which genetic diversity—particularly adaptive genetic diversity—decreases with range size reduction is predicted to be initially slow, with major reductions in diversity occurring only after the majority of a species' range has been eliminated (Exposito-Alonso et al., 2022). As narrow endemic species have increasingly been shown to harbor unexpectedly high levels of genetic diversity (Forrest et al., 2017; Medrano and Herrera, 2008), there is a possibility that patterns of genetic structure in such species could be adaptive in nature.

103 As narrow endemism is associated with increased extinction risk (Frankham, 1998;
104 Pitman and Jørgensen, 2002), determining the degree to which genetic structure in narrow
105 endemic species reflects patterns of local adaptation vs. genetic drift could have vital con-
106 sequences for conservation. In species where genetic structure has arisen largely as a result
107 of anthropogenic habitat fragmentation and drift (Ripperger et al., 2013; Johansson et al.,
108 2007), populations might be better managed as a single unit. On the other hand, populations
109 showing patterns of local adaptation might harbor vital adaptive variation, as well as show
110 an increased risk for outbreeding depression due to high immigrant mortality or low hybrid
111 fitness if not managed separately (Frankham et al., 2011). More broadly, understanding the
112 nature of genetic structure in narrow endemic species could help shed light on the degree
113 to which range size might influence the processes that dominate the development of genetic
114 structure.

115 In this study, we characterize patterns of genetic diversity and structure in the nar-
116 row endemic Hayden's ringlet butterfly. The Hayden's ringlet, *Coenonympha haydenii*, is
117 a brown Satyrid butterfly found only in mountain meadows and forest clearings of south-
118 western Montana, southeastern Idaho, and western Wyoming (i.e., the Greater Yellowstone
119 Ecosystem) (Debinski and Pritchard, 2002; Pyle, 1981; Howe and Bauer, 1975; Scott, 1992).
120 Known for both high local abundances (Caruthers and Debinski, 2006) and weak flying abil-
121 ity (Glassberg, 2001; Kaufman and Brock, 2003), it is possible that enough genetic variation
122 and dispersal limitations could exist in this species to result in population genetic structure
123 even at small spatial scales. Larvae of *C. haydenii* are thought to feed on one or more
124 species of grasses (family Poaceae) or sedges (family Cyperaceae) (Debinski and Pritchard,
125 2002; Glassberg, 2001; Feltwell, 1993; Pyle, 1981). Female Hayden's ringlets are associated
126 with moist, hydric meadows or bogs (Pyle, 1981; Scott, 1992), and population sizes decline
127 during periods of drought (Debinski et al., 2013). This is consistent with the possibility that
128 *C. haydenii* could be specialized on one or more endemic Yellowstone wetland species like
129 sedges. Conversely, the congeneric and sympatric common ringlet (*Coenonympha tullia*) is

known to be a broad generalist, even feeding successfully on introduced species such as Kentucky bluegrass (Debinski and Pritchard, 2002). If the Hayden's ringlet is also able to utilize multiple host plants, it is possible natural selection could be driving local adaptation to host plant use across its range, particularly in disrupted environments where novel, invasive grass species dominate. These factors make the Hayden's ringlet an ideal system for investigating the processes driving patterns of genetic structure in narrow endemic species. Specifically, in this study we asked the following questions: (1) how much genetic diversity and structure exists within the Hayden's ringlet, and (2) to what degree is the development of genetic structure in this narrow endemic species associated with (a) geographic distance and genetic drift alone (isolation by distance), (b) geographic or ecological barriers to dispersal between populations (isolation by resistance), and/or (c) ecological differences and local adaptation to larval host plants among sites (isolation by environment). This will provide much-needed data regarding host use and population connectivity in an iconic Yellowstone butterfly, as well as contribute another example of how genetic structure can develop in a narrow endemic species.

Materials and Methods

Butterfly Sample Collection

Over the course of two years, we collected adult *C. haydenii* specimens of both sexes from 14 sampling sites across the species' range (see Fig. 1a). We surveyed for *C. haydenii* presence at two additional locations in the Yellowstone Plateau region (AVP and GLR, see Table S1) and along approximately 10 miles of trail on the John D. Rockefeller Jr. Memorial Parkway, but we only observed a single Hayden's ringlet across this entire region. Due to low abundance between Yellowstone National Park and Grand Teton National Park, we were unable to collect butterflies from this area. At each of the 14 sites where Hayden's ringlet populations

were abundant, we collected an average of 27 butterflies per location (see Table 1 for specific sample sizes). Male butterflies were immediately frozen to preserve tissue for subsequent DNA extraction, while females were maintained temporarily in the lab for egg collection and oviposition preference assays and frozen afterwards. Butterfly specimens sampled within Yellowstone and Grand Teton National Parks were collected under permits YELL-2018-SCI-8064, YELL-2019-SCI-8064, GRTE-2018-SCI-0041, and GRTE-2019-SCI-0055.

160 DNA Sequencing, Alignment, and Variant Calling

We used Qiagen DNeasy 96 Blood and Tissue Kits to extract DNA from the thoracic tissue of 287 butterfly specimens representing 14 sampling locations (see Fig. 1 and Table 1). When available, an equal number of male and female specimens were chosen for sequencing from each site. Reduced-representation restriction-fragment based DNA libraries were prepared for genotyping-by-sequencing (GBS) following methods similar to those in Gompert et al. (2014a). Briefly, whole-genome DNA was digested using *Mse*1 and *Eco*R1 enzymes, ligated to custom barcode sequences, and amplified via PCR. Barcoded DNA fragments were then pooled across samples, purified, and size-selected using a BluePippin. DNA fragments between 300-450 bp were selected for sequencing. The resulting DNA fragment libraries were sequenced on the University of Texas Illumina HiSeq 4000 sequencing platform. The resulting DNA sequences were first filtered to remove PhiX sequences and poly-G tails. PhiX is a bacterial sequence introduced during HiSeq sequencing as an internal control. We used **SAMtools** version 1.10 and custom scripts to find and remove all reads that aligned to the PhiX reference genome, leaving 347,375,794 individual reads. Barcode sequences were then removed from these remaining reads using custom Perl scripts, allowing us to match each DNA sequence to the individual butterfly from which it came.

To date, no reference genome has been published for the Hayden's ringlet. In the absence of a full reference genome, we constructed a *de novo* set of reference contigs for *Coenonympha haydenii* using the program **CD-hit** version 4.8.1 (Li and Godzik, 2006). See

180 the Supplemental Information for further details regarding our construction of the reference
181 contig set. Reads that were aligned to this reference contig set using **BWA** version 0.7.17-
182 r1188 (Li and Durbin, 2009). We used the **BWA** `aln` algorithm, with the total number of
183 mismatches allowed per read (`-n`) set to 5, or approximately 6% of each read. We set seed
184 length (`-l`) equal to 20 bp, and the maximum allowed mismatches in the seed sequence (`-k`)
185 equal to 2.

186 We identified sites with single nucleotide polymorphisms (SNPs) in our genomic data
187 using **samtools** and **bcftools** version 1.9 (Li et al., 2009). We used the original consensus
188 caller (`-c`) to call variants, and set the threshold probability (`-p`) for accepting variants to
189 0.01 (i.e., we only called variants if the posterior probability the nucleotide was invariant was
190 less than 0.01). Variants were then filtered for quality using custom Perl scripts. We retained
191 variable sites for which there were at least 2x more reads than the number of individuals we
192 sequenced (i.e., mean coverage per $\geq 2x$), contained a minimum of 10 reads for the alternative
193 allele (to filter out possible sequencing errors), and had a phred-scaled mapping quality > 30 .
194 We removed variant sites with base-quality rank-sum test, mapping-quality rank-sum test,
195 and read-position rank-sum test p-values less than 0.001, 0.0001, and 0.001 respectively. We
196 also removed any variable sites missing data for 20% or more of the individuals we sequenced.
197 We set a maximum read depth of 8000 (3 standard deviations greater than the mean coverage
198 level across loci) to remove possible paralogs/gene families, and removed all SNPs located
199 less than 2 bps apart along a contig. After quality filtering, we were left with a total of 9313
200 SNPs for downstream analysis.

201 Assessing Patterns of Genetic Diversity and Structure

202 To measure overall levels of genetic diversity in the Hayden's ringlet, we calculated both
203 Watterson's θ (θ_W) and nucleotide diversity (π). We estimated both diversity statistics
204 and their 95% block bootstrap intervals using the program **ANGSD** version 0.933-71-g604e1a4
205 (Korneliussen et al., 2014), which uses the full set of aligned contigs (not our quality-filtered

206 SNP set) to account for uncertainty in the number of segregating sites present. We then
 207 calculated per-base-pair values of both θ_W and π based on the estimated number of bases
 208 sequenced from ANGSD using R version 4.2.2 (R Core Team, 2022).

209 To summarize patterns of genetic structure in the Hayden's ringlet, we first used the
 210 program ENTROPY version 2.0 to estimate admixture proportions (Gompert et al., 2014b;
 211 Shastry et al., 2021). ENTROPY is a program similar to the admixture model in STRUCTURE,
 212 but has the added feature of accounting for uncertainty in genotypes as captured by genotype
 213 likelihoods. It uses a Bayesian framework to co-estimate genotypes and the proportion of
 214 a particular individual's genome that would be derived from each of K hypothetical source
 215 populations. The purpose of this in our case was not to estimate the optimal value of K ,
 216 but rather to assess patterns of coarse vs. fine-scale substructure within the species. To this
 217 end, we ran ENTROPY for all K -values between two and seven using our 9313-SNP set as
 218 input. For each value of K , we ran 10 Markov chain Monte Carlo (MCMC) chains with
 219 a 10,000-step burn-in period, 20,000 sampling iterations, a thinning interval of 5, and a
 220 Dirichlet initialization value of 50. As an additional summary of genetic structure, we then
 221 conducted a PCA in R using the (unscaled) posterior genotype estimates from ENTROPY.

222 We used Nei's F_{ST} (Nei, 1973) to quantify the magnitude of the genetic differentiation
 223 among the sampled populations. To calculate this, we first used estpEM version 0.1 (Soria-
 224 Carrasco et al., 2014) to obtain a maximum likelihood estimate of allele frequencies for each
 225 SNP ($N = 9313$) for each population ($N = 14$) of Hayden's ringlets we sampled. The program
 226 estpEM uses an expectation-maximization (EM) algorithm to account for uncertainty in
 227 genotypes arising from finite coverage and sequencing error (Soria-Carrasco et al., 2014). We
 228 set the tolerance level for EM convergence to 0.001, the maximum number of EM iterations
 229 to 20, and used our filtered genotype likelihood files split by population as input. With
 230 the allele frequency estimates for each population generated by estpEM, we then calculated
 231 pairwise Nei's F_{ST} values for each combination of populations, as well as overall F_{ST} across
 232 all populations. Briefly, we calculated the mean F_{ST} across all 9313 loci using the formula

233 $F_{ST} = \frac{1/L \sum_{i=1}^L (H_T - H_S)}{1/L \sum_{i=1}^L (H_T)}$ where H_T is the expected heterozygosity for the total population (i.e.
 234 across all subpopulation), H_S is the average of the expected heterozygosities within each
 235 subpopulation, and L is the number of loci (Lucek et al., 2019). These calculations were
 236 completed in R.

237 Tests for Isolation by Distance and Resistance

238 To determine the degree to which patterns of genetic structure in the Hayden's ringlet cor-
 239 relate to the geographic distances among sites (i.e. isolation by distance), we first conducted
 240 a Mantel test. We used the logit of pairwise F_{ST} and the natural log of euclidean distances
 241 among sites to produce our genetic and geographic distance matrices for comparison. The
 242 Mantel test was conducted in R version 4.2.2 using the package **vegan** version 2.6-4 (R Core
 243 Team, 2022; Oksanen et al., 2022). We used the Pearson correlation method, and ran the
 244 test for 999 permutations.

245 To identify geographic or ecological barriers to dispersal (i.e. isolation by resistance)
 246 separating *C. haydenii* sites, we used the statistical method Estimating Effective Migration
 247 Surfaces (EEMS), developed by Petkova et al. (2016). EEMS is based on the stepping-stone
 248 model of migration, and estimates effective migration rates by comparing the actual degree
 249 of genetic differentiation found among sites to the expectation under a null isolation-by-
 250 distance model. The model uses a resistance distance, which is a distance from circuit
 251 theory, to integrate over all possible dispersal paths between pairs of populations (Petkova
 252 et al., 2016). In contrast to some other circuit-theory based approaches (e.g., McRae, 2006;
 253 McRae et al., 2008), resistance distances are not defined *a priori* based on habitat features,
 254 but instead inferred from the data as part of model fitting (Petkova et al., 2016). This
 255 allows the identification of geographic regions among sites that might be serving as either
 256 environmental or geographic barriers or conduits to gene flow. We ran EEMS using a grid
 257 density of N-demes = 50, 100, and 150 demes. The number of demes corresponds to the

258 number of nodes EEMS produces in the triangular grid to which individual samples can be
259 assigned. For each grid density level, we ran three MCMC chains of 4,000,000 steps each, a
260 burn-in of 2,000,000 steps, and thinning interval of 9999.

261 **Tests for Ecological Divergence Among Localities and Populations**

262 We collected potential host plant specimens from 9 of our 14 sampling sites and species
263 presence data from 12 of our 14 sampling sites as a measure of community assemblage. These
264 data were collected to assess whether ecological differences among sampling sites correlate
265 with genetic structure in the Hayden's ringlet (i.e. isolation by environment/adaptation).
266 We additionally collected these data to serve as a record of potential host plants likely to be
267 encountered by Hayden's ringlet populations across their range, and to inform which plant
268 species would make the strongest candidates for oviposition and larval preference assays.
269 The larvae of the Hayden's ringlet are suggested to feed generally on grasses (Debinski and
270 Pritchard, 2002; Kaufman and Brock, 2003; Glassberg, 2001), at least some of which may
271 overlap with the host genera used by the closely-related common ringlet butterfly, *C. tullia*.
272 As such, we collected voucher specimens of each unique species of *Poa*, *Stipa*, and *Melica*
273 grasses found in sampling site meadows where Hayden's ringlets were observed. All three
274 of these grass genera are known to be suitable hosts for the congeneric and often sympatric
275 common ringlet butterfly (*Coenonympha tullia*). It has also been suggested that Hayden's
276 ringlets may be able to feed on sedges (family Cyperaceae) (Feltwell, 1993; Pyle, 1981),
277 so we collected voucher specimens of all species of *Carex* sedges we found as well. After
278 collection, plant specimens from different sites were classified by morphotype (or species
279 where possible), and differences in community assemblage among sites were assessed using
280 the Sørensen index. The Sørensen index measures the number of species shared between
281 two sites as compared to the total number of species present across both sites, with greater
282 weight given to shared than to non-shared species (Hao et al., 2019).

283 As a second test for potential host use differences among populations of Hayden's

284 ringlets, we conducted both female preference and larval preference assays and assessed dif-
285 ferences in preference among populations. Since the preferred host(s) of the Hayden's ringlet
286 are unknown, these assays were also conducted to determine whether this species is generally
287 more likely to use grasses (Poaceae) or sedges (Cyperaceae) as their larval host. For these as-
288 says, we chose to compare preference for Hood's sedge (*Carex hoodii*) vs. Kentucky bluegrass
289 (*Poa pratensis*). Both species are abundant throughout *C. haydenii*'s range, and represent
290 the two plant families Hayden's ringlets are hypothesized to feed upon: sedges (Cyperaceae)
291 and grasses (Poaceae). Furthermore, the results of our plant community assemblage surveys
292 showed that these species were the most well-represented members of their genus across our
293 sampling sites, with *Carex hoodii* being observed at 10 out of 12 meadows and *Poa pratensis*
294 being observed at 7 out of 12 meadows we collected Hayden's ringlets from.

295 Whereas feral Kentucky bluegrass was the most common species of *Poa* we found at
296 our sampling sites for this study, it is also a non-native species. Kentucky bluegrass was
297 introduced to the Great Plains and Rocky Mountain region as a forage crop for domestic
298 livestock (McArthur et al., 1995). It is now one of the most abundant and widespread feral
299 exotic plants in the region (Kay, 2001; Kauffman et al., 2023; McArthur et al., 1995), often
300 reaching very high densities in meadows (Kay, 2001) and representing up to 40-50% of the
301 vegetation cover in certain riparian regions across Yellowstone and the Grand Tetons (Kauff-
302 man et al., 2023). Feral Kentucky bluegrass is especially prevalent in meadows overgrazed
303 by bison and elk (Kay, 2001; Kauffman et al., 2023), and now represents one of the dominant
304 grass species in the Lamar Valley of Yellowstone National Park (Hunter et al., 2018).

305 Due to the high abundance of this exotic species throughout the range of the Hayden's
306 ringlet and its propensity to alter the ecology and community structure of meadows it invades
307 (Sanderson et al., 2017), the presence of Kentucky bluegrass could impose a strong selective
308 pressure on Hayden's ringlet populations, setting the stage for local adaptation. The response
309 of butterfly species to the presence of novel, exotic plant species is both well-documented
310 and varied, with non-native species in some cases creating an ecological trap (for example,

311 if adult butterflies preferentially lay their eggs on an unsuitable, exotic host, e.g. Davis
312 and Cipollini, 2014), and in other cases providing a lifeline for endangered species whose
313 native host has gone extinct (Braga, 2023; Graves and Shapiro, 2003). In either case, the
314 invasion of exotic plant species can have a substantial ecological and evolutionary impact on
315 butterfly populations, even in remote areas. Indeed, in another Yellowstone area butterfly
316 (genus *Lycaeides*), certain local populations have adapted to feed on feral roadside alfalfa
317 (*Medicago sativa*), with alfalfa-adapted populations showing reduced oviposition preference
318 for their native hosts (Forister et al., 2020; Chaturvedi et al., 2018). Similarly, the congener of
319 the Hayden's ringlet, *Coenonympha tullia*, is both found in the greater Yellowstone area and
320 known to successfully utilize Kentucky bluegrass as a larval host (Debinski and Pritchard,
321 2002)). Unlike the Hayden's ringlet, the common ringlet has rapidly expanded its range
322 across the United States over the past 60 years (Wiernasz, 1983, 1989). It is possible the
323 ability to feed on exotic species like Kentucky bluegrass could have played a role in this range
324 expansion. Together, this makes Kentucky bluegrass both an ecologically relevant species to
325 test as a potential host for the Hayden's ringlet, as well as a plant species with reasonable
326 potential to be correlated with patterns of local adaptation in this species.

327 Finally, we chose harebell (*Campanula rotundifolia*) as a control group because it is
328 a common herbaceous flower in the area (Craighead, 2005). Harebell is often found growing
329 in meadows in association with grassland communities (Stevens et al., 2012), and thus may
330 realistically be encountered by *C. haydenii* larvae in the wild. Harebell stem leaves are also
331 long and narrow like those of grasses and sedges (Craighead, 2005; McGhan, 2023), which
332 allowed us to control for leaf shape and size during our larval preference assays.

333 We conducted oviposition preference assays following standard procedures described
334 in Forister et al. (2009), and assessed differences in preference across populations using a
335 hierarchical Bayesian model. Briefly, we collected adult female butterflies from eight of our
336 sampling sites (see Table 1) and placed them individually in plastic cups containing three
337 plant samples each: Hood's sedge (*Carex hoodii*), Kentucky bluegrass (*Poa pratensis*), and

338 harebell (*Campanula rotundifolia*). All plant specimens used for these assays (from all three
339 species) were collected from a meadow in greater Yellowstone area where Hayden's ringlets
340 were abundant. Females were maintained in these cups for 72 hours, after which we counted
341 the number of eggs adhered by each butterfly to each species of plant. Since female butterflies
342 were given the choice of three plant species for oviposition, we modeled the number of eggs
343 laid on each host plant multinomially. Specifically, we assumed the number of eggs laid on
344 each host to follow the distribution multinomial($P_{1:3}, n$), where $P_{1:3}$ are the probabilities of
345 oviposition on each host of the three host plants, and n is the total number of eggs laid.
346 Each butterfly population was allowed its own oviposition probability values to account for
347 potential differences in preference across populations. The oviposition probabilities ($P_{1:3}$)
348 from each population were assigned a Dirichlet prior with $\alpha = \tau * S$. Here, the vector τ
349 represents the global probability of oviposition on each host plant across all populations and
350 S is a scaling factor that describes that variability in preference among populations. Finally,
351 τ was assigned a Dirichlet hyperprior with $\alpha = 1$, and S a uniform hyperprior with lower
352 and upper bounds of 1 and 200, respectively. We fit our model using `rjags` version 4.3.1
353 (Plummer, 2003, 2013). We ran three MCMC chains of 80,000 sampling steps each, with a
354 burn-in of 10,000 steps and thinning interval of 50. We checked convergence of the MCMC
355 chains using the Gelman diagnostic (Gelman and Rubin, 1992).

356 After female oviposition preference assays were complete, all eggs laid in the ovipo-
357 sition cups were gently removed from their substrate and stored in vented petri dishes un-
358 der ambient temperature and light conditions until they hatched (approximately 10 days).
359 Within one day of hatching, we performed larval preference assays following standard pro-
360 tocols (Gómez Jiménez et al., 2014; Gamberale-Stille et al., 2014; Wang et al., 2017; Gu and
361 Walter, 1999) to assess differences in larval feeding preferences across populations. We tested
362 up to 40 neonate larvae each from 10 of our sampling sites (see Table 1). Larvae were placed
363 in the center of petri dishes equidistant from three 1-cm long leaf segments representing each
364 of our test species (Kentucky bluegrass, Hood's sedge, and harebell). We took pictures of

365 the leaf tissue flattened between glass slides both before and after the 72 hour herbivory
 366 trial with a Canon EOS M6 camera. We used the program ImageJ version 1.52A (Schneider
 367 et al., 2012) to trace outlines around each leaf image and calculate leaf surface area both
 368 before and after herbivory. The surface area lost by each leaf was calculated as the surface
 369 area before herbivory minus the surface area after herbivory (measured in cm^2). In addition,
 370 each leaf was manually assigned a binary value indicating whether signs of herbivory (i.e.
 371 jagged leaf margins) were observed (see the Supplemental Information for more details about
 372 our ImageJ protocol).

373 We estimated larval preferences among populations using a hierarchical Bayesian
 374 model. In our model, we assumed leaf area lost during the herbivory assays could be at-
 375 tributed to two main causes: (1) larval feeding, and (2) shrinkage of the leaf tissue due to
 376 moisture loss over time. We assumed total leaf area loss to follow a normal distribution with
 377 a mean and standard deviation as follows:

$$\text{total leaf area lost} \sim N(\text{shrinkage} + \text{herbivory} * \mathbb{1}, \sigma_{loss}).$$

378 Here, $\mathbb{1}$ is a binary indicator set equal to 1 if herbivory was observed, and equal to 0
 379 if no herbivory was observed. Thus, in cases where herbivory was observed, mean leaf area
 380 lost was defined as the sum of shrinkage plus larval herbivory. If no herbivory was observed,
 381 mean leaf area lost was defined as shrinkage only. We defined herbivory as following a normal
 382 distribution where the mean (μ_{herb}) and standard deviation (σ_{herb}) were allowed to vary by
 383 each unique plant species \times butterfly population combination. Shrinkage was defined as
 384 following a normal distribution where the mean (μ_{shrink}) and standard deviation (σ_{shrink})
 385 were allowed to vary by host plant only since the population each caterpillar was obtained
 386 from should have no effect on the amount of moisture lost by each leaf over time. The
 387 standard deviation parameters σ_{loss} , σ_{shrink} , and σ_{herb} were all assigned gamma priors with
 388 parameters $k = 2$ and $\theta = 0.1$, while μ_{shrink} was assigned a normal prior with $\mu = 0$ and

389 $\sigma = 2$. Meanwhile, μ_{herb} was defined as the sum of population and host effects multiplied by
 390 the probability of the caterpillar eating (P). The host effect was distributed normally with
 391 a mean of μ_{host} and standard deviation of 0.5, with μ_{host} assigned a normal prior of $N(0, 20)$.
 392 A normal prior was also placed on the population effect, but with a sum-to-zero constraint
 393 for model identifiability and a gamma prior for the standard deviation ($k = 2$, $\theta = 0.1$).
 394 For each host plant species \times butterfly population combination, the total number of trials
 395 where larvae consumed leaf tissue was assigned to a binomial distribution with $n =$ number
 396 of trials and $p =$ the probability of a larva eating. We wrote this model in the language
 397 STAN (Stan Development Team, 2022b) and implemented it using the R-interface **RStan**
 398 version 2.21.5 (Stan Development Team, 2022a). We used a warm-up period of 15,000 steps
 399 and ran the model for 30,000 Hamiltonian Monte Carlo (HMC) steps.

400 Tests for Isolation by Environment

401 We quantified the degree to which patterns of genetic structure in the Hayden's ringlet
 402 are explained by geographic distance (i.e. isolation by distance) vs. ecological distance (i.e.
 403 ecological differences between the sites themselves, isolation by environment) using three
 404 different metrics of ecological distance: (i) the potential host plants available, (ii) oviposition
 405 preference distances, and (iii) larval herbivory preference distances. Each ecological distance
 406 was analyzed separately. For this, we used a Bayesian linear mixed model introduced by
 407 Gompert et al. (2014a), which extends a similar maximum-likelihood model from Clarke
 408 et al. (2002). This model accounts for the lack of independence among sampling site pairs
 409 (i.e. the genetic distance between populations A vs. B is not independent from the genetic
 410 distance between populations A vs. C because both comparisons include population A)
 411 (Gompert et al., 2014a). We modeled the effect of geographic and ecological distance on
 412 logit F_{ST} as follows:

$$413 \text{logit}(F_{ST_{ij}}) = \beta_0 + \beta_{geo}X_{ij}^{geo} + \beta_{eco}X_{ij}^{eco} + \lambda_i + \lambda_j.$$

413 Where X_{ij}^{geo} is the geographic distance (calculated as Euclidean distances) between
 414 each pair of sites and X_{ij}^{eco} is either (i) the potential host plant community dissimilarity
 415 (as measured by the Sørensen index), (ii) the median difference in oviposition preference
 416 for Kentucky bluegrass (*Poa pratensis*), or (iii) the median difference in larval preference for
 417 Kentucky bluegrass (*Poa pratensis*) for each pairwise combination of populations. Population
 418 random effects are represented by λ_i and λ_j . All distances were centered and standardized
 419 prior to running the model to account for differences in unit scale. We fit this model in R
 420 using `rjags` version 4.3.1 (Plummer, 2003, 2013). We ran 3 MCMC chains of 5000 sampling
 421 steps each, with a burn-in of 2000 steps and thinning interval of 5. We fit the full model shown
 422 above, along with sub-models including only geographic distance, only ecological distance,
 423 or neither distance (i.e. a null model). Deviance information criterion was used to compare
 424 the relative performance of the full model and sub-models for each ecological variable.

425 Results

426 Moderate genetic diversity and population structure exist in Hay- 427 den's Ringlet

428 Estimates of nucleotide diversity across populations of the Hayden's ringlet varied from
 429 $\pi = 0.00284$ at JSM (95% bootstrap interval 0.00281-0.00288) to $\pi = 0.00344$ at USL (95%
 430 bootstrap interval 0.00342-0.00347) (see Table 2). Estimates of θ_W were similar, ranging
 431 from a low of 0.00280 (95% bootstrap interval 0.00277-0.00282) at JSM to a high of 0.00360
 432 (95% bootstrap interval 0.00359-0.00362) at BNP (see Table 2). Genetic structure across
 433 sites was moderate but notable, with an overall F_{ST} of 0.10. Pairwise F_{ST} comparisons
 434 (see Table 3) ranged from 0.0181 to 0.1191. The population pairs that showed the highest
 435 degree of genetic differentiation were USL vs. JSM ($F_{ST} = 0.1191$) and USL vs. PSP (F_{ST}
 436 = 0.1071). Meanwhile, the least-differentiated population pairs were TRL vs. BNP ($F_{ST} =$

437 0.0181) and HRP vs. MRF ($F_{ST} = 0.0186$). JSM and SKI, which are located very closely
 438 in geographic space (~ 5 km apart, see Fig. 1a and Table 3) nevertheless showed a degree of
 439 differentiation comparable to population pairs much further apart in geographic space (F_{ST}
 440 = 0.0609). Principal component analysis (PCA) shows individuals clustering by sampling
 441 site (see Fig. 1b). In particular, we saw that PC 1 separates the northern Hayden's ringlet
 442 populations from southern populations, while PC 2 separates the southern populations of
 443 Hayden's ringlets along a NE to SW gradient. The PCA does not perfectly mirror the map
 444 of our sampling locations, but is nevertheless suggestive of isolation by distance.

445 Admixture analysis (Fig. 2) showed the presence of meaningful structure across pop-
 446 ulations of Hayden's ringlets across multiple levels of K . The most prominent pattern was
 447 a clinal split between the northern and southern populations of Hayden's ringlets at $K=2$.
 448 Higher values of K revealed additional substructure within the species. At $K = 3$, ENTROPY
 449 split the southern populations of Hayden's ringlets along a North-South axis. In particu-
 450 lar, we saw the southernmost population of Hayden's ringlets, PSP, being separated from
 451 the remainder of the populations. Similarly, $K = 4$ split the northern populations across a
 452 roughly West-East axis, separating northern populations east of the Gallatin mountain range
 453 (BNP, HNV, TRL) from those west of this range (GNP, WTC). Higher levels of K continued
 454 to refine the northeast-to-southwest clinal pattern seen across the southern populations of
 455 Hayden's ringlets. A small number of individual butterflies (specifically from BCR, MRF,
 456 GNP, and HNV) showed ancestry values that differed considerably from both the typical
 457 values of their own population, as well as those of other populations we surveyed. This sug-
 458 gests that these individuals could be migrants or of mixed ancestry. Overall, our admixture
 459 analysis suggests that the greatest degree of genetic differentiation in the Hayden's ringlet
 460 exists between northern and southern populations, with additional substructure occurring
 461 within those geographic regions.

**462 Isolation by distance and resistance both contribute to population
463 structure in *C. haydenii***

464 We saw a strong signal for isolation by distance (see Fig. 4), with the Mantel test showing a
465 significant and strong correlation between geographic and genetic distance in the Hayden's
466 ringlet ($R = 0.7$, $P = 0.001$). In addition to isolation by distance (IBD), EEMS analysis
467 showed several geographic areas with credibly increased or reduced relative migration rates
468 (see Fig. 1c and 1d). Results for each of the three chains for grid sizes of 50, 100, and 150
469 were similar (see Fig. S1). There were several geographic areas within *C. haydenii*'s range
470 where genetic differentiation among populations was either lower (low resistance) or higher
471 (high resistance) than expected under a null IBD model alone, a pattern consistent with
472 isolation by resistance. In particular, we saw a region of credibly reduced relative migration
473 rates separating the northern and southern populations in our study, consistent with results
474 from PC1 of the PCA (see Fig. 1d and 1b). This geographic region of credibly reduced gene
475 flow produced by the EEMS model corresponds to the location of the Yellowstone plateau,
476 roughly following the southern edge of the geothermally active Yellowstone volcanic area
477 (see Fig. 1a). There was also a region of credibly increased relative migration connecting
478 the majority of the southern populations of Hayden's ringlets with the exception of PSP, the
479 southernmost population. This region of increased connectivity among southern Hayden's
480 ringlet populations follows the river valley region known as Jackson hole, a low-elevation
481 region between the Teton and Gros Ventre mountain regions (see Fig. 1a). The southernmost
482 population (PSP), which showed credibly lower levels of gene flow with the remaining ringlet
483 populations than expected under a null IBD model, is separated from the Jackson hole valley
484 region by the Wyoming mountain range.

485 ***C. haydenii* shows strong preference for grass host, but limited**
 486 **evidence for isolation by environment**

487 All populations of *C. haydenii* we assessed laid credibly more eggs on Kentucky bluegrass
 488 than expected if females had no oviposition host preference (posterior probability [p.p.] for
 489 percent oviposition on *P. pratensis* $> 33\% > 0.98$ for all, see Fig. 3). Oviposition rates on
 490 Kentucky bluegrass varied from a low of 51% (95% CI 33-65%) to a high of 74% (95% CI 61-
 491 87%) across populations. The median global preference for oviposition on Kentucky bluegrass
 492 across populations was 57% (95% CI 47-67%; p.p. percent oviposition on *P. pratensis* $> 33\%$
 493 > 0.99), while the global preference for oviposition on Hood's sedge, *Carex hoodii*, was only
 494 24% (95% CI 17-35%; p.p. percent oviposition on *C. hoodii* $< 33\% = 0.96$). Median global
 495 preference for oviposition on harebell, our control species, was the lowest at only 17% (95%
 496 CI 10-26%; p.p. preference for *C. rotundifolia* $< 0.33 > 0.99$), 16 percentage points lower than
 497 expected if butterflies distributed their eggs equally across available substrates. The strength
 498 of oviposition preference varied credibly between several Hayden's ringlet population pairs,
 499 with both TRL and BTB showing credibly higher rates of oviposition on *Poa pratensis* than
 500 PIN, HRP, and WTC (p.p. > 0.99 for all six comparisons).

501 As with oviposition, Hadyen's ringlet larvae showed a strong preference for Kentucky
 502 bluegrass, *Poa pratensis*. The species-level preference for Kentucky bluegrass produced by
 503 the Bayesian model was 71% (95% CI 64%-79%), meaning we would expect 71% of the
 504 leaf tissue consumed by a randomly sampled group of Hayden's ringlet larvae to be from
 505 Kentucky bluegrass when given a choice of Kentucky bluegrass, Hood's sedge, and harebell.
 506 Unlike in the female oviposition assays, no harebell herbivory was observed from any of
 507 the larvae we assayed. All populations we assayed showed a trend toward consuming more
 508 grass (*Poa pratensis*) than sedge (*Carex hoodii*), with every population consuming credibly
 509 more grass than sedge (p.p. consumed more grass than sedge > 0.99) except SKI (p.p. SKI
 510 consumed more grass than sedge = 0.85).

511 The proportion of each host plant species eaten by larvae varied considerably by
 512 population. BCR and HRP showed the greatest preference for *Poa pratensis*, consuming
 513 100% grass (95% CI 87-100% and 75-100% respectively) and 0% *Carex hoodii* sedge (95%
 514 CI 0-13% and 0-25% respectively). SKI, meanwhile, showed the lowest degree of herbivory
 515 preference, consuming 56.4% *Poa pratensis* grass (95% CI 44-71%) vs. 44% *Carex hoodii*
 516 sedge (95% CI 29-56%). Due to differences in total leaf tissue consumption across populations
 517 (25 out of 45 population pairs showed credible differences), we assessed differences in host
 518 preference across populations as differences in the proportion of grass vs. sedge leaf tissue
 519 consumed (see the Supplemental Information for details). We saw credible differences in
 520 the proportion of grass vs. sedge leaf tissue consumed for 21 out of 45 pairwise population
 521 comparisons. The pairs with the greatest differences in preference were BCR vs. SKI and
 522 HRP vs. TRL, with BCR and HRP consuming 42.1 (95% CI 27-55) and 41.9 (95% CI 17-55)
 523 percentage points more *Poa pratensis* grass and 42.1 (95% CI 27-55) and 41.9 (95% CI 17-55)
 524 percentage points less *Carex hoodii* than SKI and TRL respectively.

525 Despite finding credible differences in larval feeding and oviposition preferences across
 526 populations, we found no evidence that these differences correlated with genetic distances
 527 among Hayden's ringlet populations. The credible intervals for both the effect of larval
 528 preference and oviposition preference on $\text{logit}(F_{ST})$ overlapped zero (p.p. $\beta_{herb} > 0 = 22\%$;
 529 p.p. $\beta_{ovipos} > 0 = 36\%$, see Fig. 4c-d). This suggests that there is no measurable correlation
 530 between either larval host preference or oviposition preference for Kentucky bluegrass and
 531 genetic distances among Hayden's ringlet populations. The deviance information criterion
 532 (DIC) values for sub-models testing only the effect of larval preference (mean DIC = -21.65)
 533 or oviposition preference (mean DIC = -16) on genetic distance were substantially greater
 534 than for models and sub-models that included geographic distance as a variable (mean DIC
 535 ranged from -66 to -60). This suggests that our geographic distance models (both sub-
 536 models and the full models) better predict genetic distances in the Hayden's ringlet than
 537 models including oviposition or larval preference alone. Similarly, we found no measurable

538 effect of potential host community distance (as measured by the Sørensen index) on degree
539 of genetic differentiation in the Hayden's ringlet (see Fig. 4b). The credible interval for
540 β_{comm} overlapped zero (p.p. $\beta_{comm} > 0 = 73\%$), indicating there was no credible effect of the
541 availability of *Poa*, *Stipa*, *Melica*, and *Carex* species across sites on genetic differentiation
542 in the Hayden's ringlet. The DIC value for the sub-model including only host community
543 as a variable was 15, while the sub-model and full model including geographic distance
544 ranged from -63 to -62, again suggesting that the sub-model including only host community
545 information was less predictive than models containing geographic distance information.
546 Taken together, our data suggest that isolation by adaptation to the host plant communities
547 we measured (a form of isolation by environment) is unlikely to be a driver of patterns of
548 contemporary genetic structure in the Hayden's ringlet.

549 Discussion

550 In this study, we assessed patterns of genetic diversity and structure in the narrow endemic
551 Hayden's ringlet. We also assessed patterns of oviposition and larval host preference, and
552 used Bayesian methods and EEMS modeling to assess the role of isolation by distance, barriers
553 to dispersal (i.e. isolation by resistance), and potential host availability and preference (i.e.
554 isolation by environment) contribute to population structure in this species. Our results
555 indicate that despite range restriction, the Hayden's ringlet shows genetic diversity levels
556 comparable to other more widely-distributed species. The Hayden's ringlet also appears to
557 consistently prefer grass (*Poa pratensis*) over sedge (*Carex hoodii*), but this host association
558 is unlikely to be driving patterns of population structure. Instead, we found that both
559 isolation by distance and barriers to dispersal were most closely associated with genetic
560 distances in this species. We discuss the implications of these results in more detail below.

561 **Narrow endemism not associated with notable genetic diversity**
562 **reduction in the Hayden's ringlet**

563 Despite its restricted distribution, the Hayden's ringlet showed levels of genetic diversity
564 comparable to more widely-distributed butterfly species. The average nucleotide diversity
565 across Hayden's ringlet populations we sampled was $\pi = 0.003$, while nucleotide diversity
566 in *Leptidea* sp., *Lycaeides melissa*, and *Parnassius mnemosyne* (all widely-distributed, non-
567 migratory butterfly species) ranged from $\pi = 0.001$ to $\pi = 0.005$ (Talla et al., 2019; Gompert
568 et al., 2014b; Talla et al., 2023). In contrast, both migratory monarchs (*Danaeus plexippus*)
569 and non-migratory *Heliconius* sp. showed comparatively high nucleotide diversity ($\pi = 0.01$ -
570 0.06 and 0.020-0.28, respectively (Talla et al., 2020; Hemstrom et al., 2022; Martin et al.,
571 2016; Kryvokhyzha, 2014). Migratory butterfly species have been shown to harbor higher
572 levels of genetic diversity than non-migratory species in general, possibly due to greater
573 population sizes and connectivity (García-Berro et al., 2023), so the substantial difference in
574 nucleotide diversity between monarchs and Hayden's ringlets is not unexpected. However,
575 *Heliconius* species are both non-migratory and have low dispersal ability (Kronforst and
576 Fleming, 2001), so why this species group shows far higher genetic diversity levels than
577 reported in other non-migratory species is unclear.

578 Many butterfly species have wide distributions, but are locally rare. The Hayden's
579 ringlet, by contrast, is narrowly restricted in range, but locally prolific. Within their range,
580 Hayden's ringlets are often so abundant they are the most common butterfly species sur-
581veyed (Caruthers and Debinski, 2006). High local abundances in the Hayden's ringlet could
582 be one factor contributing to the maintenance of genetic diversity in this species. Conversely,
583 poor dispersal (as seen in *Lycaeides melissa* and *Parnassius mnemosyne*) (Gompert et al.,
584 2010; Talla et al., 2019; Gorbach and Kabanen, 2010) or poor connectivity among popu-
585lations could lead to high levels of genetic drift, reducing nucleotide diversity estimates in
586 more widespread butterfly species. In particular, the widely-distributed *Lycaeides melissa*

587 is known for low local population sizes, patchy distributions and metapopulation dynamics
588 (Scott 1992; Gompert et al. 2010, 2012; but also see Guiney et al. 2010). While even low
589 levels of gene flow can be enough to maintain nucleotide diversity across populations—even
590 in the face of low effective population sizes for individual demes and substantial genetic drift
591 (Whitlock and Barton, 1997; Gompert et al., 2021)—the more widespread a species is, the
592 more likely it is that insurmountable geographic barriers to gene flow (even if this barrier is
593 distance alone) might exist within their distribution. This could cause widespread species
594 to behave more similarly to multiple, smaller demes with no gene flow amongst them than
595 a single, panmictic population. Thus, the genetic diversity levels maintained in widely-
596 distributed butterfly species might be expected to be more similar to those of geographically
597 restricted species than global census sizes alone would suggest (Gompert et al., 2010). This
598 could help explain why genetic diversity levels in non-migratory butterfly species do not
599 appear to scale linearly with population size in nature (i.e. Lewontin’s paradox) (Lewontin
600 et al., 1974; Gompert et al., 2021; Charlesworth and Jensen, 2022).

601 In all, the similarity in diversity levels between the Hayden’s ringlet vs. widely-
602 distributed butterfly species suggest this is yet another case where narrow endemism is
603 not associated with a notable reduction in genetic diversity. This adds to a growing body
604 of research showing that even narrow endemic species can still harbor substantial genetic
605 diversity (Forrest et al., 2017; Medrano and Herrera, 2008; Robitzch et al., 2023; Hobbs
606 et al., 2013; Jiménez-Mejías et al., 2015). That said, nucleotide diversity amongst eukary-
607 otes ranges from approximately $\pi = 0.001$ to $\pi = 0.15$ (Charlesworth and Jensen, 2022),
608 placing the Hayden’s ringlet firmly on the low end for eukaryotes as a whole. Other butterfly
609 species with similar nucleotide diversity levels to the Hayden’s ringlet have been targeted
610 for conservation efforts (Talla et al., 2023). But neutral diversity should not be conflated
611 with adaptive genetic diversity. Simulations suggest that loss of adaptive genetic diversity is
612 likely to proceed more slowly than loss of neutral genetic diversity (Exposito-Alonso et al.,
613 2022), so one must be cautious in presuming that species with low nucleotide diversity and

614 a limited distribution necessarily lack adaptive genetic potential. Nucleotide diversity lev-
615 els alone are not sufficient to interpret whether or not the Hayden's ringlet is a species of
616 conservation concern. While its narrow distribution put the Hayden's ringlet at greater risk
617 of extirpation due to natural disasters (e.g., catastrophic fires or volcanic activity across the
618 entire Yellowstone area), high local abundances coupled with genetic diversity levels compa-
619 rable to more widely-distributed butterfly species suggests that the Hayden's ringlet is not
620 necessarily at higher conservation risk due to genetic factors (i.e. inbreeding depression, etc.;
621 see Frankham, 2005) than many other non-migratory, geographically widespread butterfly
622 species.

623 **Geography informs patterns of population genetic structure in the**
624 **Hayden's ringlet**

625 We saw clear evidence of population structure across the range of the Hayden's ringlet.
626 The strongest signal of genetic differentiation was a geographic split between northern and
627 southern populations of *C. haydenii*, with additional genetic substructure occurring within
628 each of these groups.

629 The correlation between geographic and genetic distances in the Hayden's ringlet
630 was $R = 0.7$, substantially higher than correlations seen in many other non-migratory but-
631 terfly species. Specifically, correlations between geographic and genetic distance for the
632 Langue's metalmark (*Apodemia mormo langei*), heath fritillaries (*Melitaea athalia* and *Meli-*
633 *taea celadussa*), and checkerspots (*Euphydryas aurinia* and *Euphydryas editha*) ranged be-
634 tween $R = 0.39$ and $R = 0.53$ (Dupuis et al., 2018; Tahami et al., 2021; Mikheyev et al.,
635 2013). This suggests that isolation by distance is able to explain a greater degree of the
636 population structure observed in the Hayden's ringlet than in other non-migratory butter-
637 fly species. The high correlation between genetic and geographic distances in the Hayden's
638 ringlet suggests much of the population structure observed in this narrow endemic species

639 can be attributed to genetic drift and limited dispersal.

640 Despite the clear patterns of genetic structure present in this species, F_{ST} values be-
641 tween populations of Hayden's ringlets were low to moderate. The scale of differentiation we
642 observed is consistent with fine- to moderate-scale genetic population structure (F_{ST} between
643 0.01-0.2) seen in other non-migratory butterfly species (Talla et al., 2019; Pertoldi et al., 2021;
644 Talla et al., 2023; Hinojosa et al., 2023), and on average greater than in migratory species
645 like monarchs ($F_{ST} = 0.0001$) (Talla et al., 2020). While the F_{ST} values we observed may
646 be considered low in other groups of organisms, in many cases F_{ST} values between nominal
647 species of butterflies are not considerably greater than what we found within populations of
648 the Hayden's ringlet (i.e. Talla et al., 2019; Tahami et al., 2021), and in some cases variation
649 within butterfly species is higher than that observed between species. For example, in the
650 El Segundo blue (*Euphilotes battoides allynii*), F_{ST} among populations of the same species
651 ranged from 0.1 to 0.5 (Dupuis et al., 2020), while in heath fritillaries, F_{ST} between two
652 nominal species (*Melitaea celadussa* and *Melitaea athalia*) was only 0.1-0.2 (Tahami et al.,
653 2021). Thus, our results are clearly in-line with results from other butterfly species, and
654 consistent with expectations for a non-migratory species with limited dispersal ability.

655 We saw several geographic regions with credibly increased or reduced relative migra-
656 tion rates in the Hayden's ringlet. The largest of these was a wide region of credibly reduced
657 relative gene flow between northern and southern *C. haydenii* populations corresponding
658 to the southern border of the Yellowstone plateau and John D. Rockefeller, Jr. Memorial
659 Parkway. Despite having visited two additional sites (Avalanche Peak AVP, Grassy Lake
660 Reservoir GLR; see Table S1 for coordinates) and surveyed approximately 10 miles of trail
661 in this region, we found no viable populations of Hayden's ringlets connecting our northern
662 and southern sampling sites. Much of the habitat in this region consisted of dense lodgepole
663 pine monocultures and previous burn sites (Parmenter et al., 2003; Turner and Simard, 2017;
664 Rothermel, 1994). Hayden's ringlets prefer open grassy meadows and sunny forest edges (De-
665 binski and Pritchard, 2002; Kaufman and Brock, 2003), so this densely-forested region could

666 present an ecological barrier to migration. Regardless, the fact that our field observations
667 are consistent with the results from our EEMS model suggests that this geographic region
668 presents a true barrier to gene flow for the Hayden's ringlet, and that isolation by resistance
669 contributes to patterns of genetic structure in this species. Interestingly, the geographic split
670 we found between northern and southern *C. haydenii* populations corresponds to a similar
671 boundary observed between northern *Lycaeides idas* populations and southern, admixed
672 *Lycaeides* (Gompert et al., 2010, 2012). This suggests that a combination of geographic
673 (elevation; mountain ranges) and ecological (forest type) conditions present in the John D.
674 Rockefeller, Jr. Memorial Parkway may present a barrier to gene flow more generally, and
675 could apply to other non-migratory butterfly species in the greater Yellowstone ecosystem
676 as well.

677 Despite being a non-migratory species known for poor flight (Kaufman and Brock,
678 2003; Glassberg, 2001), we nevertheless saw evidence of long-distance dispersal in *C. hay-
679 denii*. Several individuals in our admixture analysis matched neither the population from
680 which they were sampled, nor any other population we sampled. In particular, one individ-
681 ual each from MRF, GNP, and HNV in our admixture plots did not match the admixture
682 proportions of any other butterflies we sampled. These individuals appear to be either of
683 mixed origin or migrants from an area we did not sample. One individual from BCR, on
684 the other hand, appears to be a migrant from PSP (or near PSP). The distance between
685 PSP and BCR is over 65 km, indicating that long-distance dispersal does occur in *C. hay-
686 denii* at least occasionally. Hayden's ringlets are notoriously poor fliers (Glassberg, 2001;
687 Kaufman and Brock, 2003), so we expect typical dispersal distances in the Hayden's ringlet
688 to be similar to those reported for other poor dispersers like *Lycaeides melissa*, *Parnassius*
689 sp., and *Heliconius* sp. (Gompert et al., 2010; Gorbach and Kabanen, 2010; Kronforst and
690 Fleming, 2001), which rarely disperse further than 2 km during their lifetime. We suggest
691 that the instances of long-distance dispersal we report here are likely a result of rare gene
692 flow events such as butterflies being blown long distances during adverse weather conditions.

693 But as even small amounts of gene flow are sufficient to erase patterns of genetic differen-
694 tiation, these occasional long-distance dispersal events likely still play a role in determining
695 the magnitude of population genetic structure present in this species.

696 **Strong preference for grass host, but no evidence of isolation by**
697 **environment in the Hayden's ringlet**

698 We observed strong oviposition and larval herbivory preference for Kentucky bluegrass (*Poa*
699 *pratensis*) over Hood's sedge (*Carex hoodii*) in *C. haydenii*. Preference for grass was both
700 strong and remarkably consistent, with all populations showing a credible preference for
701 *Poa* in both oviposition and herbivory assays with the exception of SKI. While it has been
702 previously suggested that Hayden's ringlets might feed on sedges due to their association
703 with bogs and hydric habitats (Pyle, 1981; Scott, 1992), our evidence overwhelmingly points
704 to grasses as being the preferred host of the Hayden's ringlet. However, the fact that larvae
705 did often feed on both the sedge and grass host, while completely refusing the control host,
706 suggests that Hayden's ringlets may accept more than one host, and are more likely generalist
707 feeders like their congener the common ringlet, *C. tullia*, than narrow host-specialists (Scott,
708 1992; Debinski and Pritchard, 2002). This is consistent with preliminary host acceptance
709 data we collected which showed that Hayden's ringlet larvae will consume tissue from many
710 genera of grasses and sedges including *Stipa*, *Carex*, *Poa*, *Phleum*, and *Elymus* when given
711 no other choice. Anecdotal evidence also suggests that Hayden's ringlet larvae can be reared
712 to adulthood on *Carex* species (Stout, 2017), which would indeed suggest that the Hayden's
713 ringlet is a broad generalist given their strong preference for *Poa*. That said, our study only
714 compared only a single species of sedge with a single species of grass. It is possible these
715 species alone are not sufficient to provide a full picture of *C. haydenii*'s preference for grasses
716 vs. sedges. Additional work is needed to further elucidate the degree of host specificity and
717 preference in *C. haydenii*.

718 While the degree of preference for *Poa* varied credibly across populations, we saw
719 no evidence of host-associated genetic differentiation across populations in the Hayden's
720 ringlet. Neither potential host community differences nor differences in larval herbivory
721 preference were predictive of genetic distances among Hayden's ringlet populations in our
722 study. If the Hayden's ringlet is in fact a generalist feeder, and host use does not substantially
723 impact larval fitness, then the composition and abundance of potential host species may
724 have a limited effect on genetic differentiation. This could explain the absence of host-
725 associated population structure we observed in this species. But how then do we interpret
726 the phenotypic variation in host preference among populations we observed? It is possible
727 the variation we saw reflects true variation for preference that exists among Hayden's ringlet
728 populations in the wild. However, laboratory experiments must always be interpreted with
729 caution with regard to their applicability in the field. In this case, we note that the Hayden's
730 ringlet populations that showed the highest degree of herbivory preference also happened
731 to be the populations that consumed the least total amount of plant material. Because
732 our preference measure was scaled by total tissue consumed, the lower the total level of
733 consumption, the more sensitive (and stochastic) our preference measure will be to small
734 differences in herbivory. In other words, when total consumption is low, each bite of tissue
735 a larva consumes will have a proportionally larger impact on preference than that same bite
736 of tissue in a case where total consumption is high. Thus, in cases where total herbivory
737 was low, herbivory preferences have the potential to appear exaggerated compared to cases
738 where larvae ate a greater amount of total leaf tissue.

739 If the Hayden's ringlet is not limited to feeding on a narrow endemic Yellowstone-area
740 plant species, what might be driving current patterns of range restriction in the Hayden's
741 ringlet? Since we only assayed two species of potential hosts, one of which is an inva-
742 sive species, we cannot definitively say that host specialization is not a driver of genetic
743 differentiation and narrow endemism in the Hayden's ringlet. But preliminary work we con-
744 ducted on larval performance showed that Hayden's ringlet larvae can survive on Kentucky

745 bluegrass through at least the 4th instar, at which point our larvae entered—and did not
746 survive—diapause. Kentucky bluegrass, *Poa pratensis*, is one of the most widespread turf
747 grass species in the United States (Huff et al., 2003). It is ubiquitous along roadsides and
748 in lawns, occurs in all 50 states, and is highly invasive across the northern Great Plains and
749 Yellowstone region, forming high-density feral populations throughout Yellowstone and the
750 Grand Teton National Parks (DeKeyser et al., 2015; Hunter et al., 2018; McArthur et al.,
751 1995; Kay, 2001; Kauffman et al., 2023). Counter to what might be expected if the presence
752 of this novel, exotic species were exerting a strong selective pressure on Hayden's ringlet pop-
753 ulations due to its unsuitability as a host, we saw no evidence that any of the populations we
754 surveyed have developed a strong preference against feeding or ovipositing on this species.
755 If Kentucky bluegrass is in fact a viable host for the Hayden's ringlet, it would strongly sug-
756 gest that host specialization is not the key factor preventing contemporary range expansion
757 in the Hayden's ringlet. Instead, other environmental factors not considered in this study,
758 such as site elevation, temperature, rainfall, or forest cover, could play a greater role. In
759 particular, the fact that populations of Hayden's ringlets decline during periods of drought
760 (Debinski et al., 2013) suggest that the Hayden's ringlet might be restricted to wetter habi-
761 tats. Perhaps a factor other than host plant use could be driving *C. haydenii*'s association
762 with wetland areas. Hayden's ringlets overwinter as larvae, so it is possible moisture lev-
763 els could have an effect on larval survival through winter diapause. On the other hand, it
764 has also been suggested that the Hayden's ringlet could be a narrow endemic today simply
765 because it is a remnant species left behind from a larger, pre-glaciation distribution, and
766 it's range simply has not yet returned to its former size (Pyle, 1981). Unlike the Hayden's
767 ringlet, the range of the common ringlet (*Coenonympha tullia*) is both able to use Kentucky
768 bluegrass as a larval host and has expanded rapidly over the past 60 years (Debinski and
769 Pritchard, 2002; Wiernasz, 1983, 1989). This expansion is thought to have been driven in
770 part by a shift from univoltinism to multivoltinism (Wiernasz, 1983, 1989). Whether the
771 Hayden's ringlet is univoltine or multivoltine does not appear to have been documented.

772 If the Hayden's ringlet is obligately univoltine, this could help explain why the Hayden's
773 ringlet has remained endemic, while its congener has become widespread in distribution.
774 More exploration of the life history and ecological requirements of the Hayden's ringlet are
775 necessary to more fully understand the causes of genetic structure and narrow endemism in
776 this species.

777 Conclusions

778 Despite their restricted range, we found that the Hayden's ringlet harbors genetic diversity
779 levels comparable to geographically widespread, non-migratory butterfly species with similar
780 dispersal ability. We found strong evidence that the Hayden's ringlet prefers grasses (*Poa*)
781 over sedges (*Carex*) as a larval host, but work to determine the degree of host specificity in
782 this species remains to be done. Geography, specifically isolation by distance and isolation
783 by resistance (i.e. barriers to dispersal such as mountain ranges and/or regions of poor
784 habitat) appear to be the driving factors producing patterns of population structure in the
785 Hayden's ringlet. We found no evidence that either host preferences or host availability were
786 correlated with genetic divergence, and it does not appear that isolation by environment is
787 driving population divergence in this narrow endemic species. Instead, population structure
788 in this species has likely developed largely via genetic drift, suggesting that the Hayden's
789 ringlet would not necessarily benefit from being managed as more than one unit. That said,
790 it is always possible that local adaptation to ecological factors we did not measure could be
791 contributing to genetic structure in this species. Questions remain as to how evolutionary
792 processes unfold in the face of narrow endemism, but in some cases at least, it appears that
793 patterns of genetic diversity and structure in restricted vs. widespread species may not differ
794 as greatly as one might initially suspect.

795 Acknowledgments

796 Thank you to Megan Brady for invaluable assistance with both field collections and pref-
797 erence experiments, to Angélica Traslaviña for many months of assistance with DNA ex-
798 tractions, and to both Camden Treat and Daniel Johnson for their extensive assistance
799 cataloguing larval herbivory results. Support and resources from the Center for High Per-
800 formance Computing at the University of Utah are gratefully acknowledged. This work was
801 funded by the National Science Foundation (NSF GRFP awarded to AS, fellow 2017239847;
802 NSF DEB 1844941 to ZG) and Utah State University.

803 Literature Cited

804 Anacker, B. L., 2014. The nature of serpentine endemism. *American Journal of Botany*
805 101:219–224.

806 Anacker, B. L., J. B. Whittall, E. E. Goldberg, and S. P. Harrison, 2011. Origins and
807 consequences of serpentine endemism in the California flora. *Evolution* 65:365–376.

808 Avise, J. C. et al., 2000. *Phylogeography: the History and Formation of Species*. Harvard
809 university press.

810 Braga, M. P., 2023. Are exotic host plants a life raft or a trap for butterflies? *Current*
811 *Opinion in Insect Science* P. 101074.

812 Caruthers, J. C. and D. M. Debinski, 2006. Montane meadow butterfly species distribu-
813 tions in the greater Yellowstone ecosystem. *University of Wyoming National Park Service*
814 *Research Center Annual Report* 30:85–96.

815 Charlesworth, B. and J. D. Jensen, 2022. How can we resolve Lewontin's paradox? *Genome*
816 *biology and evolution* 14:evac096.

817 Chaturvedi, S., L. K. Lucas, C. C. Nice, J. A. Fordyce, M. L. Forister, and Z. Gompert,
818 2018. The predictability of genomic changes underlying a recent host shift in melissa blue
819 butterflies. *Molecular Ecology* 27:2651–2666.

820 Clarke, R. T., P. Rothery, and A. F. Raybould, 2002. Confidence limits for regression
821 relationships between distance matrices: estimating gene flow with distance. *Journal of*
822 *Agricultural, Biological, and Environmental Statistics* 7:361–372.

823 Craighead, C., 2005. Common Wildflowers of Grand Teton National Park. Grand Teton
824 Natural History Association.

825 Davis, S. L. and D. Cipollini, 2014. Do mothers always know best? oviposition mistakes
826 and resulting larval failure of *pieris virginensis* on *alliaria petiolata*, a novel, toxic host.
827 *Biological Invasions* 16:1941–1950.

828 Debinski, D. M., J. C. Caruthers, D. Cook, J. Crowley, and H. Wickham, 2013. Gradient-
829 based habitat affinities predict species vulnerability to drought. *Ecology* 94:1036–1045.

830 Debinski, D. M. and J. Pritchard, 2002. A field guide to butterflies of the Greater Yellowstone
831 Ecosystem. Roberts Rinehart.

832 DeKeyser, E. S., L. A. Dennhardt, and J. Hendrickson, 2015. Kentucky bluegrass (*poa*
833 *pratensis*) invasion in the northern great plains: a story of rapid dominance in an endan-
834 gered ecosystem. *Invasive Plant Science and Management* 8:255–261.

835 Driscoe, A. L., C. C. Nice, R. W. Busbee, G. R. Hood, S. P. Egan, and J. R. Ott, 2019. Host
836 plant associations and geography interact to shape diversification in a specialist insect
837 herbivore. *Molecular Ecology* 28:4197–4211.

838 Dupuis, J. R., S. M. Geib, K. H. Osborne, and D. Rubinoff, 2020. Genomics confirms
839 surprising ecological divergence and isolation in an endangered butterfly. *Biodiversity and*
840 *Conservation* 29:1897–1921.

841 Dupuis, J. R., J. C. Oliver, B. M. Brunet, T. Longcore, J. J. Johnson, and F. A. Sperling,
842 2018. Genomic data indicate ubiquitous evolutionary distinctiveness among populations
843 of California metalmark butterflies. *Conservation Genetics* 19:1097–1108.

844 Exposito-Alonso, M., T. R. Booker, L. Czech, L. Gillespie, S. Hateley, C. C. Kyriazis, P. L.
845 Lang, L. Leventhal, D. Nogues-Bravo, V. Pagowski, et al., 2022. Genetic diversity loss in
846 the anthropocene. *Science* 377:1431–1435.

847 Feltwell, J., 1993. *The Encyclopedia of Butterflies*. Prentice Hall.

848 Ferrari, J., J. A. West, S. Via, and H. C. J. Godfray, 2012. Population genetic structure and
849 secondary symbionts in host-associated populations of the pea aphid complex. *Evolution*
850 66:375–390.

851 Forister, M. L., C. C. Nice, J. A. Fordyce, and Z. Gompert, 2009. Host range evolution
852 is not driven by the optimization of larval performance: the case of *lycaeides melissa*
853 (lepidoptera: Lycaenidae) and the colonization of alfalfa. *Oecologia* 160:551–561.

854 Forister, M. L., S. A. Yoon, C. S. Philbin, C. D. Dodson, B. Hart, J. G. Harrison, O. Shelef,
855 J. A. Fordyce, Z. H. Marion, C. C. Nice, et al., 2020. Caterpillars on a phytochemical
856 landscape: The case of alfalfa and the melissa blue butterfly. *Ecology and Evolution*
857 10:4362–4374.

858 Forrest, A., M. Escudero, M. Heuertz, Y. Wilson, E. Cano, and P. Vargas, 2017. Testing the
859 hypothesis of low genetic diversity and population structure in narrow endemic species:
860 the endangered *antirrhinum charidemi* (plantaginaceae). *Botanical Journal of the Linnean*
861 Society 183:260–270.

862 Frankham, R., 1997. Do island populations have less genetic variation than mainland pop-
863 ulations? *Heredity* 78:311–327.

864 ———, 1998. Inbreeding and extinction: island populations. *Conservation biology* 12:665–
865 675.

866 ———, 2005. Genetics and extinction. *Biological conservation* 126:131–140.

867 Frankham, R., J. D. Ballou, M. D. Eldridge, R. C. Lacy, K. Ralls, M. R. Dudash, and C. B.
868 Fenster, 2011. Predicting the probability of outbreeding depression. *Conservation Biology*
869 25:465–475.

870 Funk, D. J., S. P. Egan, and P. Nosil, 2011. Isolation by adaptation in *neochlamisus* leaf
871 beetles: Host-related selection promotes neutral genomic divergence. *Molecular Ecology*
872 20:4671–4682.

873 Gamberale-Stille, G., L. Söderlind, N. Janz, and S. Nylin, 2014. Host plant choice in the
874 comma butterfly—larval choosiness may ameliorate effects of indiscriminate oviposition.
875 *Insect science* 21:499–506.

876 García-Berro, A., V. Talla, R. Vila, H. K. Wai, D. Shipilina, K. G. Chan, N. E. Pierce,
877 N. Backström, and G. Talavera, 2023. Migratory behaviour is positively associated with
878 genetic diversity in butterflies. *Molecular Ecology* 32:560–574.

879 Gelman, A. and D. B. Rubin, 1992. Inference from iterative simulation using multiple
880 sequences. *Statistical Science* 7:457–472.

881 Gillespie, J. H., 2001. Is the population size of a species relevant to its evolution? *Evolution*
882 55:2161–2169.

883 Glassberg, J., 2001. Butterflies through binoculars: the west. Oxford University Press.

884 Gómez Jiménez, M. I., C. E. Sarmiento, M. F. Díaz, A. Chautá, A. Peraza, A. Ramírez,
885 and K. Poveda, 2014. Oviposition, larval preference, and larval performance in two
886 polyphagous species: does the larva know best? *Entomologia Experimentalis et Applicata*
887 153:24–33.

888 Gompert, Z., L. K. Lucas, C. A. Buerkle, M. L. Forister, J. A. Fordyce, and C. C. Nice,
889 2014a. Admixture and the organization of genetic diversity in a butterfly species complex
890 revealed through common and rare genetic variants. *Molecular ecology* 23:4555–4573.

891 ———, 2014b. Admixture and the organization of genetic diversity in a butterfly species
892 complex revealed through common and rare genetic variants. *Molecular ecology* 23:4555–
893 4573.

894 Gompert, Z., L. K. Lucas, J. A. Fordyce, M. L. Forister, and C. C. Nice, 2010. Secondary
895 contact between *lycaeides idas* and *l. melissa* in the rocky mountains: extensive admixture
896 and a patchy hybrid zone. *Molecular ecology* 19:3171–3192.

897 Gompert, Z., L. K. Lucas, C. C. Nice, J. A. Fordyce, M. L. Forister, and C. A. Buerkle, 2012.
898 Genomic regions with a history of divergent selection affect fitness of hybrids between two
899 butterfly species. *Evolution* 66:2167–2181.

900 Gompert, Z., A. Springer, M. Brady, S. Chaturvedi, and L. K. Lucas, 2021. Genomic time-
901 series data show that gene flow maintains high genetic diversity despite substantial genetic
902 drift in a butterfly species. *Molecular Ecology* 30:4991–5008.

903 Gorbach, V. and D. Kabanen, 2010. Spatial organization of the clouded apollo population
904 (*parnassius mnemosyne*) in onega lake basin. *Entomological Review* 90:11–22.

905 Graves, S. D. and A. M. Shapiro, 2003. Exotics as host plants of the california butterfly
906 fauna. *Biological conservation* 110:413–433.

907 Gu, H. and G. Walter, 1999. Is the common sowthistle (*sonchus oleraceus*) a primary host
908 plant of the cotton bollworm, *helicoverpa armigera* (lep., noctuidae)? oviposition and
909 larval performance. *Journal of Applied Entomology* 123:99–105.

910 Guiney, M. S., D. A. Andow, and T. T. Wilder, 2010. Metapopulation structure and dy-
911 namics of an endangered butterfly. *Basic and Applied Ecology* 11:354–362.

912 Hao, M., J. J. Corral-Rivas, M. S. González-Elizondo, K. N. Ganeshaiyah, M. G. Nava-
913 Miranda, C. Zhang, X. Zhao, and K. Von Gadow, 2019. Assessing biological dissimilarities
914 between five forest communities. *Forest Ecosystems* 6:1–8.

915 Harvey, M. G., G. F. Seeholzer, B. T. Smith, D. L. Rabosky, A. M. Cuervo, and R. T. Brum-
916 field, 2017. Positive association between population genetic differentiation and speciation
917 rates in new world birds. *Proceedings of the National Academy of Sciences* 114:6328–6333.

918 Hemstrom, W. B., M. G. Freedman, M. P. Zalucki, S. R. Ramírez, and M. R. Miller,
919 2022. Population genetics of a recent range expansion and subsequent loss of migration in
920 monarch butterflies. *Molecular Ecology* 31:4544–4557.

921 Hinojosa, J. C., C. Montiel-Pantoja, M. Sanjurjo-Franch, I. Martínez-Pérez, K. M. Lee,
922 M. Mutanen, and R. Vila, 2023. Diversification linked to larval host plant in the butterfly
923 *eumedonia eumedon*. *Molecular Ecology* .

924 Hobbs, J.-P. A., L. Van Herwerden, D. R. Jerry, G. P. Jones, and P. L. Munday, 2013. High
925 genetic diversity in geographically remote populations of endemic and widespread coral
926 reef angelfishes (genus: *Centropyge*). *Diversity* 5:39–50.

927 Howe, W. H. and D. L. Bauer, 1975. *the Butterflies of north America*. Garden City, NY:
928 Doubleday.

929 Huff, D. R., M. Casler, and R. Duncan, 2003. Kentucky bluegrass. *Turfgrass biology,*
930 *genetics, and breeding*. Wiley, Hoboken, NJ Pp. 27–38.

931 Hunter, H. E., P. O. Husby, J. Fidel, and J. C. Mosley, 2018. Ecological health of grasslands
932 and sagebrush steppe on the northern yellowstone range. *Rangelands* 40:212–223.

933 Jiménez-Mejías, P., M. Fernández-Mazuecos, M. E. Amat, and P. Vargas, 2015. Narrow
934 endemics in european mountains: high genetic diversity within the monospecific genus

935 pseudomisopates (plantaginaceae) despite isolation since the late pleistocene. Journal of
936 Biogeography 42:1455–1468.

937 Johansson, M., C. R. Primmer, and J. Merilä, 2007. Does habitat fragmentation reduce
938 fitness and adaptability? a case study of the common frog (*rana temporaria*). Molecular
939 Ecology 16:2693–2700.

940 Kauffman, J. B., D. L. Cummings, C. Kauffman, R. L. Beschta, J. Brooks, K. MacNeill,
941 and W. J. Ripple, 2023. Bison influences on composition and diversity of riparian plant
942 communities in yellowstone national park. Ecosphere 14:e4406.

943 Kaufman, K. and J. Brock, 2003. Field guide to butterflies of north america. Hillstar Editions
944 LC .

945 Kay, C., 2001. Long-term aspen exclosures in the Yellowstone ecosystem. US Department
946 of Agriculture, Forest Service, Rocky Mountain Research

947 Korneliussen, T. S., A. Albrechtsen, and R. Nielsen, 2014. ANGSD: Analysis of next gener-
948 ation sequencing data. BMC Bioinformatics 15:356.

949 Kronforst, M. R. and T. H. Fleming, 2001. Lack of genetic differentiation among widely
950 spaced subpopulations of a butterfly with home range behaviour. Heredity 86:243–250.

951 Kryvokhyzha, D., 2014. Whole genome resequencing of heliconius butterflies revolutionizes
952 our view of the level of admixture between species.

953 Lavergne, S., J. D. Thompson, E. Garnier, and M. Debussche, 2004. The biology and ecology
954 of narrow endemic and widespread plants: a comparative study of trait variation in 20
955 congeneric pairs. Oikos 107:505–518.

956 Lewontin, R. C. et al., 1974. The genetic basis of evolutionary change, vol. 560. Columbia
957 University Press New York.

958 Li, H. and R. Durbin, 2009. Fast and accurate short read alignment with burrows-wheeler
959 transform. *bioinformatics* 25:1754–1760.

960 Li, H., B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, G. Abecasis,
961 and R. Durbin, 2009. The sequence alignment/map format and samtools. *Bioinformatics*
962 25:2078–2079.

963 Li, W. and A. Godzik, 2006. Cd-hit: a fast program for clustering and comparing large sets
964 of protein or nucleotide sequences. *Bioinformatics* 22:1658–1659.

965 Lucek, K., Z. Gompert, and P. Nosil, 2019. The role of structural genomic variants in popu-
966 lation differentiation and ecotype formation in *timema cristinae* walking sticks. *Molecular*
967 *ecology* 28:1224–1237.

968 Luna, L. W., L. N. Naka, G. Thom, L. L. Knowles, A. O. Sawakuchi, A. Aleixo, and C. C.
969 Ribas, 2023. Late pleistocene landscape changes and habitat specialization as promoters of
970 population genomic divergence in Amazonian floodplain birds. *Molecular Ecology* 32:214–
971 228.

972 Martin, S. H., M. Möst, W. J. Palmer, C. Salazar, W. O. McMillan, F. M. Jiggins, and
973 C. D. Jiggins, 2016. Natural selection and genetic diversity in the butterfly *heliconius*
974 *melpomene*. *Genetics* 203:525–541.

975 Mayr, E., 1942. *Systematics and the origin of species, from the viewpoint of a zoologist.*
976 Harvard University Press.

977 McArthur, E. D., A. C. Blauer, S. B. Monsen, and S. C. Sanderson, 1995. Plant inventory,
978 succession, and reclamation alternatives on disturbed lands in grand teton national park.
979 *in* *Proceedings: Wildland Shrub and Arid Land Restoration Symposium*, Pp. 343–358.
980 Intermountain Research Station.

981 McGhan, P. J. R., 2023. United states department of agriculture forest service, plant of the
982 week: Harebell (*campanula rotundifolia* l.). https://www.fs.usda.gov/wildflowers/plant-of-the-week/campanula_rotundifolia.shtml. Accessed on 2023-01-27.

984 McRae, B. H., 2006. Isolation by resistance. *Evolution* 60:1551–1561.

985 McRae, B. H., B. G. Dickson, T. H. Keitt, and V. B. Shah, 2008. Using circuit theory to
986 model connectivity in ecology, evolution, and conservation. *Ecology* 89:2712–2724.

987 Medrano, M. and C. M. Herrera, 2008. Geographical structuring of genetic diversity across
988 the whole distribution range of *narcissus longispathus*, a habitat-specialist, mediterranean
989 narrow endemic. *Annals of Botany* 102:183–194.

990 Metzler, E. H., 2014. The remarkable endemism of moths at white sands national monument
991 in new mexico, usa, with special emphasis on gelechioidea (lepidoptera). *Journal of Asia-
992 Pacific Biodiversity* 7:e1–e5.

993 Michell, C. T., N. Wagner, M. Mutanen, K. M. Lee, and T. Nyman, 2023. Genomic evidence
994 for contrasting patterns of host-associated genetic differentiation across shared host-plant
995 species in leaf-and bud-galling sawflies. *Molecular Ecology* .

996 Mikheyev, A. S., C. S. McBride, U. G. Mueller, C. Parmesan, M. R. Smee, C. Stefanescu,
997 B. Wee, and M. C. Singer, 2013. Host-associated genomic differentiation in congeneric
998 butterflies: Now you see it, now you do not. *Molecular ecology* 22:4753–4766.

999 Montgomery, M. E., L. M. Woodworth, R. K. Nurthen, D. M. Gilligan, D. A. Briscoe, and
1000 R. Frankham, 2000. Relationships between population size and loss of genetic diversity:
1001 comparisons of experimental results with theoretical predictions. *Conservation Genetics*
1002 1:33–43.

1003 Moreno-Contreras, I., A. Llanes-Quevedo, L. A. Sánchez-González, M. d. C. Arizmendi, and

1004 A. G. Navarro-Sigüenza, 2023. Isolation by resistance explains genetic diversity in the
1005 Arremon brushfinches of northern Mesoamerica. *Molecular Ecology* 32:3450–3470.

1006 Nei, M., 1973. Analysis of gene diversity in subdivided populations. *Proceedings of the
1007 national academy of sciences* 70:3321–3323.

1008 Nery, E. K., M. K. Caddah, M. F. Santos, and A. Nogueira, 2023. The evolution of ecolog-
1009 ical specialization underlies plant endemism in the atlantic forest. *Annals of Botany* P.
1010 mcad029.

1011 Nosil, P., S. P. Egan, and D. J. Funk, 2008. Heterogeneous genomic differentiation between
1012 walking-stick ecotypes: “isolation by adaptation” and multiple roles for divergent selection.
1013 *Evolution* 62:316–336.

1014 Nosil, P., D. J. Funk, and D. Ortiz-Barrientos, 2009. Divergent selection and heterogeneous
1015 genomic divergence. *Molecular ecology* 18:375–402.

1016 Oksanen, J., G. Simpson, F. Blanchet, R. Kindt, P. Legendre, P. Minchin, R. O’hara, P. Soly-
1017 mos, M. Stevens, E. Szoecs, et al., 2022. Vegan: Community ecology package, r package
1018 version 2.6-4.

1019 Orsini, L., J. Vanoverbeke, I. Swillen, J. Mergeay, and L. De Meester, 2013. Drivers of
1020 population genetic differentiation in the wild: isolation by dispersal limitation, isolation
1021 by adaptation and isolation by colonization. *Molecular ecology* 22:5983–5999.

1022 Parmenter, A. W., A. Hansen, R. E. Kennedy, W. Cohen, U. Langner, R. Lawrence,
1023 B. Maxwell, A. Gallant, and R. Aspinall, 2003. Land use and land cover change in the
1024 greater yellowstone ecosystem: 1975–1995. *Ecological Applications* 13:687–703.

1025 Pertoldi, C., A. Ruiz-Gonzalez, S. Bahrndorff, N. Renee Lauridsen, T. Nisbeth Henriksen,
1026 A. Eskildsen, and T. T. Høye, 2021. Strong isolation by distance among local populations

1027 of an endangered butterfly species (*euphydryas aurinia*). *Ecology and Evolution* 11:12790–
1028 12800.

1029 Petkova, D., J. Novembre, and M. Stephens, 2016. Visualizing spatial population structure
1030 with estimated effective migration surfaces. *Nature genetics* 48:94–100.

1031 Pitman, N. C. and P. M. Jørgensen, 2002. Estimating the size of the world's threatened
1032 flora. *Science* 298:989–989.

1033 Plummer, M., 2003. JAGS: A program for analysis of Bayesian graphical models using Gibbs
1034 sampling. *in* *Proceedings of the 3rd International Workshop on Distributed Statistical*
1035 *Computing*, vol. 124, P. 10. Vienna, Austria.

1036 ———, 2013. *rjags: Bayesian graphical models using MCMC*. R package version 3.

1037 Prüfer, K., F. Racimo, N. Patterson, F. Jay, S. Sankararaman, S. Sawyer, A. Heinze, G. Re-
1038 naud, P. H. Sudmant, C. De Filippo, et al., 2014. The complete genome sequence of a
1039 Neanderthal from the Altai Mountains. *Nature* 505:43–49.

1040 Pyle, R. M., 1981. *The Audubon society field guide to North American butterflies*. Knopf;
1041 distributed by Random House.

1042 R Core Team, 2022. *R: A Language and Environment for Statistical Computing*. R Foun-
1043 dation for Statistical Computing, Vienna, Austria. URL <https://www.R-project.org>.

1044 Ripperger, S. P., M. Tschapka, E. K. Kalko, B. Rodriguez-Herrera, and F. Mayer, 2013. Life
1045 in a mosaic landscape: anthropogenic habitat fragmentation affects genetic population
1046 structure in a frugivorous bat species. *Conservation Genetics* 14:925–934.

1047 Rivera-Ortíz, F., R. Aguilar, M. Arizmendi, M. Quesada, and K. Oyama, 2015. Habi-
1048 tation fragmentation and genetic variability of tetrapod populations. *Animal Conservation*
1049 18:249–258.

1050 Robitzch, V., P. Saenz-Agudelo, T. J. Alpermann, B. Frédéric, and M. L. Berumen, 2023.
1051 Contrasting genetic diversity and structure between endemic and widespread damselfishes
1052 are related to differing adaptive strategies. *Journal of Biogeography* 50:380–392.

1053 Rothermel, R. C., 1994. Fire growth maps for the 1988 Greater Yellowstone Area fires, vol.
1054 304. US Department of Agriculture, Forest Service, Intermountain Research Station.

1055 Sanderson, M. A., H. Johnson, M. A. Liebig, J. R. Hendrickson, and S. E. Duke, 2017.
1056 Kentucky bluegrass invasion alters soil carbon and vegetation structure on northern mixed-
1057 grass prairie of the united states. *Invasive Plant Science and Management* 10:9–16.

1058 Schneider, C. A., W. S. Rasband, and K. W. Eliceiri, 2012. Nih image to imagej: 25 years
1059 of image analysis. *Nature methods* 9:671–675.

1060 Scott, J. A., 1992. The butterflies of North America: a natural history and field guide.
1061 Stanford University Press.

1062 Sexton, J. P., S. B. Hangartner, and A. A. Hoffmann, 2014. Genetic isolation by environment
1063 or distance: which pattern of gene flow is most common? *Evolution* 68:1–15.

1064 Sharma, S., T. Dutta, J. E. Maldonado, T. C. Wood, H. S. Panwar, and J. Seiden-
1065 sticker, 2013. Forest corridors maintain historical gene flow in a tiger metapopulation
1066 in the highlands of central india. *Proceedings of the Royal Society B: Biological Sciences*
1067 280:20131506.

1068 Shastry, V., P. E. Adams, D. Lindtke, E. G. Mandeville, T. L. Parchman, Z. Gompert, and
1069 C. A. Buerkle, 2021. Model-based genotype and ancestry estimation for potential hybrids
1070 with mixed-ploidy. *Molecular ecology resources* 21:1434–1451.

1071 Slatkin, M., 1987. Gene flow and the geographic structure of natural populations. *Science*
1072 236:787–792.

1073 ———, 1993. Isolation by distance in equilibrium and non-equilibrium populations. *Evolution* 47:264–279.

1075 Soltis, P. S. and D. E. Soltis, 1991. Genetic variation in endemic and widespread plant
1076 species. *Aliso: A Journal of Systematic and Floristic Botany* 13:215–223.

1077 Soria-Carrasco, V., Z. Gompert, A. A. Comeault, T. E. Farkas, T. L. Parchman, J. S.
1078 Johnston, C. A. Buerkle, J. L. Feder, J. Bast, T. Schwander, et al., 2014. Stick insect
1079 genomes reveal natural selection’s role in parallel speciation. *Science* 344:738–742.

1080 Stan Development Team, 2022a. RStan: the R interface to Stan. URL <https://mc-stan.org/>. R package version 2.21.5.

1082 ———, 2022b. Stan modeling language users guide and reference manual. URL <https://mc-stan.org/>. Version 2.30.

1084 Stevens, C. J., J. Wilson, and H. A. McAllister, 2012. Biological flora of the british isles:
1085 *Campanula rotundifolia*. *Journal of Ecology* 100:821–839.

1086 Stout, T., 2017. Personal communication. <http://www.raisingbutterflies.org/>
1087 *raising_butterflies_301/*.

1088 Tahami, M. S., V. Dincă, K. M. Lee, R. Vila, M. Joshi, M. Heikkilä, L. Dapporto, S. Schmid,
1089 P. Huemer, and M. Mutanen, 2021. Genomics reveal admixture and unexpected patterns
1090 of diversity in a parapatric pair of butterflies. *Genes* 12:2009.

1091 Talla, V., A. Johansson, V. Dincă, R. Vila, M. Friberg, C. Wiklund, and N. Backström,
1092 2019. Lack of gene flow: narrow and dispersed differentiation islands in a triplet of leptidea
1093 butterfly species. *Molecular ecology* 28:3756–3770.

1094 Talla, V., V. Mrazek, J. Höglund, and N. Backström, 2023. Whole genome re-sequencing un-
1095 covers significant population structure and low genetic diversity in the endangered clouded
1096 apollo (*parnassius mnemosyne*) in sweden. *Conservation Genetics* Pp. 1–10.

1097 Talla, V., A. A. Pierce, K. L. Adams, T. J. de Man, S. Nallu, F. X. Villablanca, M. R.
1098 Kronforst, and J. C. de Roode, 2020. Genomic evidence for gene flow between monarchs
1099 with divergent migratory phenotypes and flight performance. *Molecular ecology* 29:2567–
1100 2582.

1101 Thomas, L., W. J. Kennington, M. Stat, S. P. Wilkinson, J. T. Kool, and G. A. Kendrick,
1102 2015. Isolation by resistance across a complex coral reef seascape. *Proceedings of the
1103 Royal Society B: Biological Sciences* 282:20151217.

1104 Turchetto, C., A. L. A. Segatto, G. Mäder, D. M. Rodrigues, S. L. Bonatto, and L. B.
1105 Freitas, 2016. High levels of genetic diversity and population structure in an endemic and
1106 rare species: implications for conservation. *AoB Plants* 8.

1107 Turner, M. G. and M. Simard, 2017. Using spatial statistics and landscape metrics to com-
1108 pare disturbance mosaics. *Learning Landscape Ecology: A Practical Guide to Concepts
1109 and Techniques* Pp. 175–190.

1110 Wang, I. J. and G. S. Bradburd, 2014. Isolation by environment. *Molecular ecology* 23:5649–
1111 5662.

1112 Wang, Y., Y. Ma, D.-S. Zhou, S.-X. Gao, X.-C. Zhao, Q.-B. Tang, C.-Z. Wang, and J. J.
1113 van Loon, 2017. Higher plasticity in feeding preference of a generalist than a specialist:
1114 experiments with two closely related helicoverpa species. *Scientific Reports* 7:1–12.

1115 Whitlock, M. C. and N. H. Barton, 1997. The effective size of a subdivided population.
1116 *Genetics* 146:427–441.

1117 Wiernasz, D. C., 1983. Range expansion and rapid evolution in *Coenonympha tullia* (Lepi-
1118 doptera): Ecological and genetic change in a new environment. Princeton University.

1119 ———, 1989. Ecological and genetic correlates of range expansion in *coenonympha tullia*.
1120 *Biological Journal of the Linnean Society* 38:197–214.

₁₁₂₁ Wright, S., 1931. Evolution in Mendelian populations. *Genetics* 16:97.

₁₁₂₂ ———, 1943. Isolation by distance. *Genetics* 28:114.

₁₁₂₃ **Data Accessibility and Benefit-Sharing**

₁₁₂₄ Data Accessibility Statement

₁₁₂₅ Raw sequence reads have been deposited in NCBI's SRA (BioProject PRJNA1036281).

₁₁₂₆ Scripts, ecological data and downstream genetic data are available from Dryad (<https://doi.org/10.5061/dryad.zw3r228g3>)

₁₁₂₈ Benefit-Sharing Statement

₁₁₂₉ Benefits from this research accrue from the sharing of our data and results on public

₁₁₃₀ databases as described above.

₁₁₃₁ **Author Contributions**

₁₁₃₂ AS and ZG designed the research. AS performed the research. AS and ZG analyzed the

₁₁₃₃ data. AS wrote the paper, with guidance and editing from ZG.

¹¹³⁴ **Tables and Figures**

Table 1: Collection locations and sample sizes for the total number of adult butterflies collected from each site, the total number of specimens from which DNA was extracted and sequenced, the number of female butterflies for which oviposition preference assays were conducted, the number of female butterflies that produced offspring for the larval herbivory assays, and the total number of larvae for which herbivory assays were conducted.

	Latitude	Longitude	Butterflies collected	DNA sequenced	Oviposition pref.	Mothers of larvae	Larval pref.
BCR	43.3007	-110.5530	30	24	0	6	28
BNP	44.9337	-110.7212	30	24	0	0	0
BTB	43.6382	-110.6820	10	10	9	7	40
GNP	45.4323	-111.2245	35	24	2	2	5
HNV	44.6823	-110.4945	30	23	0	0	0
HRP	43.8957	-110.6427	26	25	9	5	21
JSM	43.5107	-110.9862	5	5	0	0	0
MRF	43.8547	-110.3918	36	24	0	7	40
PIN	43.7398	-109.9762	33	24	12	7	40
PSP	42.7483	-110.8398	26	23	0	0	0
SKI	43.5094	-110.9227	48	24	12	3	16
TRL	44.9019	-110.1291	30	24	13	7	40
USL	43.5829	-110.3328	9	9	2	1	11
WTC	44.7849	-111.3088	31	24	7	6	40

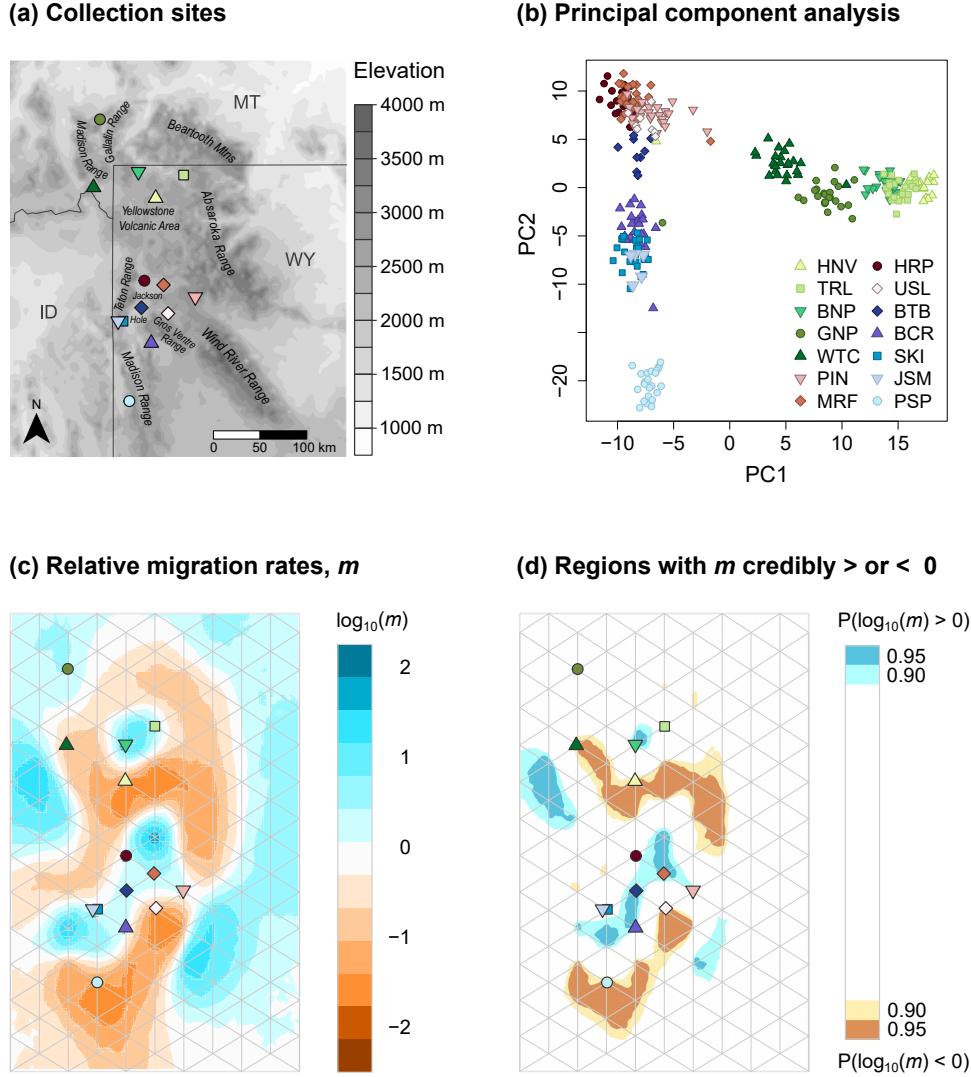


Figure 1: (a) Map of butterfly sampling locations. Each sampling site is depicted as a colored point, the corresponding key for which is shown in panel (b). Elevation contours (in meters) are shown in gray, and major mountain ranges and valley regions within *C. haydenii*'s range are labeled where they occur. (b) Principal component analysis of genotype estimates from ENTROPY for the 9313 SNPs. (c) Map of relative migration rates across *C. haydenii*'s range as estimated by EEMS from SNP data. Areas with estimated migration rates lower than expected under isolation by distance (IBD) alone are shown in orange, and those with migration rates higher than expected under IBD are shown in blue. Because EEMS assigns individuals to the nearest vertex on a triangular grid, the locations of populations in the EEMS model do not correspond perfectly to the sampling locations on the geographic map shown in panel (a). (d) Geographic regions with relative migration rates credibly greater or less than zero.

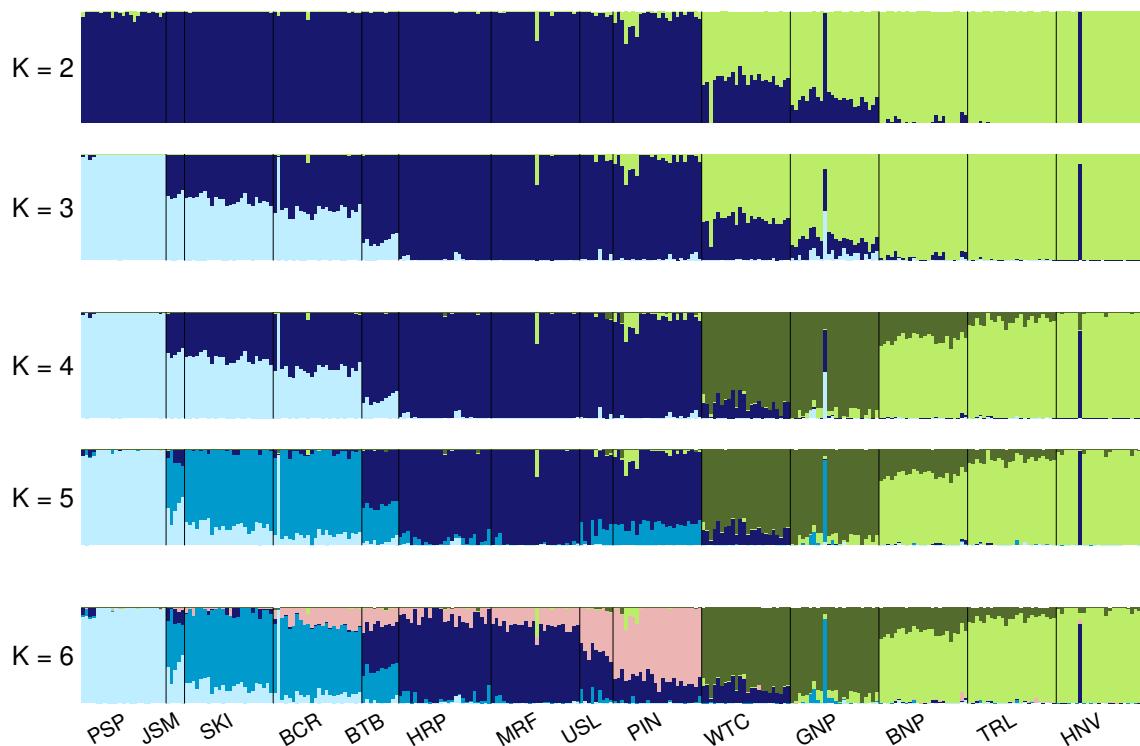


Figure 2: Estimated admixture proportions assuming individuals were sampled from $K = 2$ through $K = 6$ hypothetical source populations. Each vertical segment on the barplot represents the estimated ancestry of an individual butterfly, with the proportion of each color in the segment representing the proportion of that butterfly's genome estimated to have been inherited from each of the K putative source populations. Individuals are grouped along the x-axis by population, with populations demarcated by vertical black bars.

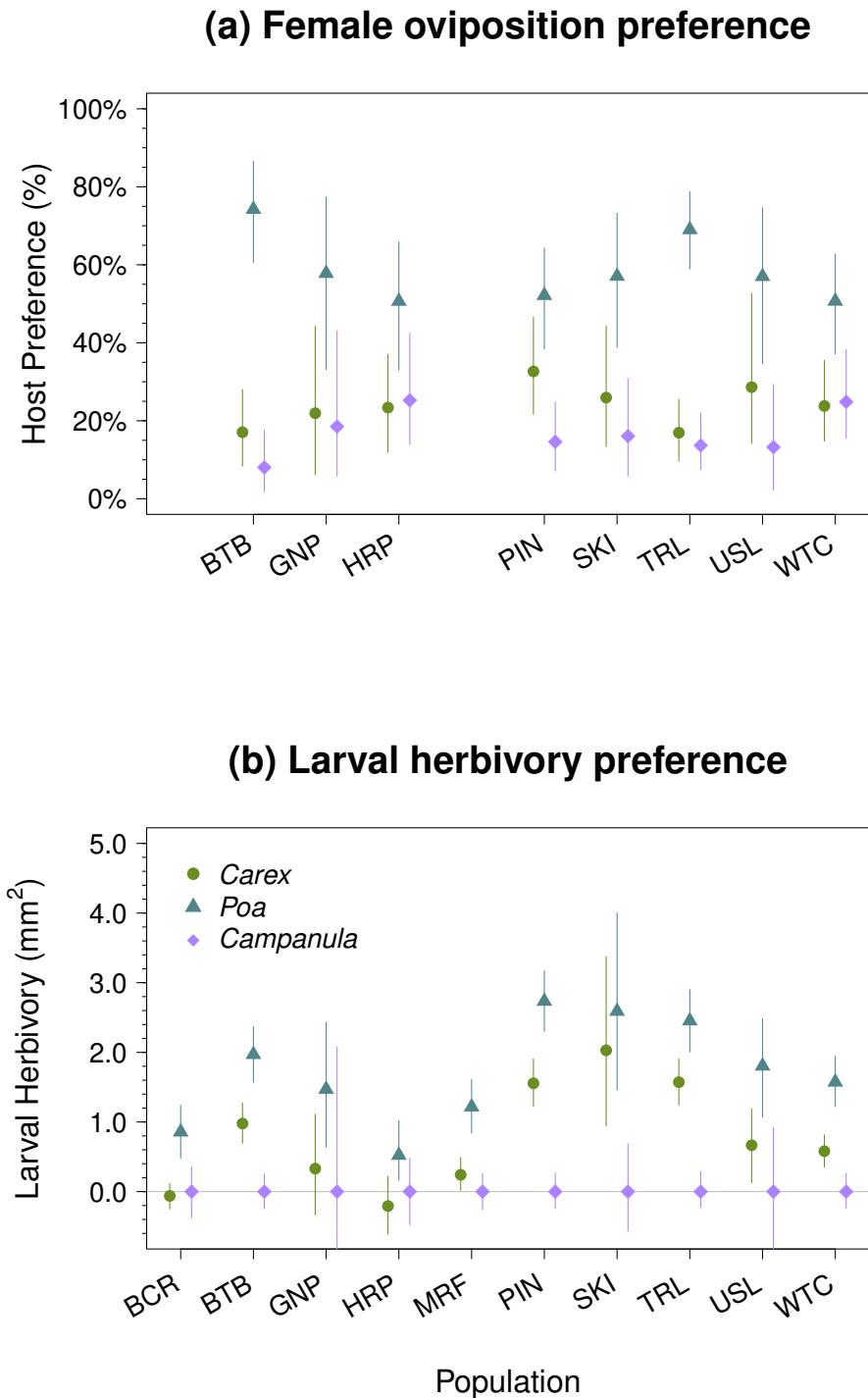


Figure 3: (a) Oviposition preference for female *C. haydenii* from 8 of our sampling sites. (b) Differences in larval herbivory across hosts for each population assayed. The expected total leaf tissue consumption for a caterpillar from a given population is shown on the y-axis. Leaves offered to larvae during the herbivory assays had a mean surface area of 15.7 mm².

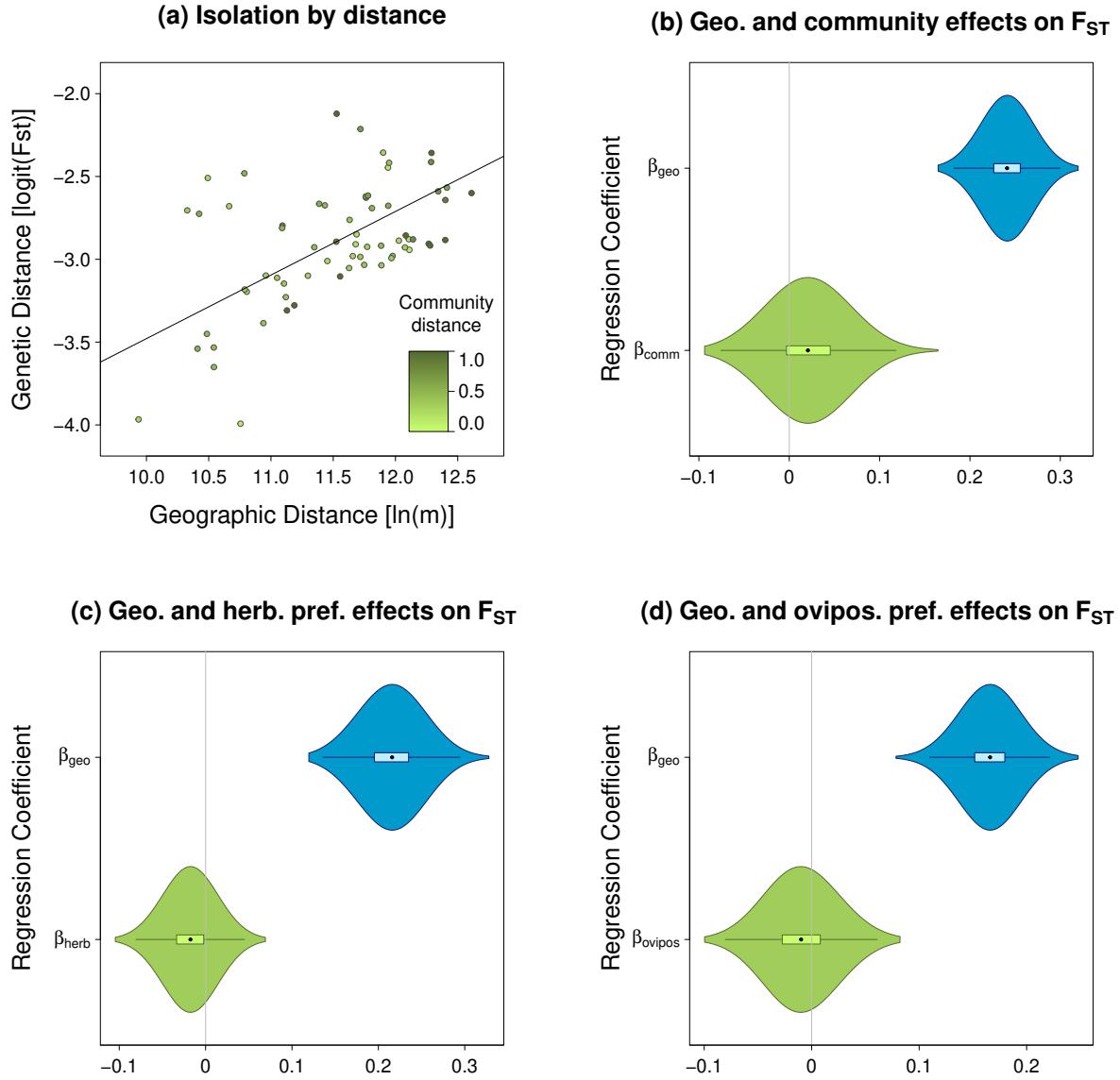


Figure 4: (a) shows the linear relationship between genetic distance (as logit F_{ST}) vs. geographic distance (ln[meters]) modeled from each pairwise combination of source populations except BTB and JSM. The color of each point on the scatter plot corresponds to the potential host community distance between each pair of sites, with lighter points corresponding to more similar host communities between sites, and darker points corresponding to more disparate host communities among sites. (b-d) show the posterior distributions for the regression coefficients in our Bayesian models estimating the degree to which geographic distance and either potential host community distance, larval herbivory preference, or oviposition preference for Kentucky bluegrass predict genetic distance (logit F_{ST}). Posterior distributions are presented in centered and standardized units for ease of comparison across regression coefficients.

Table 2: Watterson's θ (θ_W) and nucleotide diversity (π) with 95% bootstrap confidence intervals.

Population	θ_w	π
BCR	0.00348 (0.00347, 0.00349)	0.00333 (0.00331, 0.00334)
BNP	0.00360 (0.00359, 0.00362)	0.00332 (0.00329, 0.00334)
BTB	0.00311 (0.00310, 0.00313)	0.00312 (0.00309, 0.00314)
GNP	0.00347 (0.00345, 0.00348)	0.00327 (0.00325, 0.00329)
HNV	0.00301 (0.00299, 0.00302)	0.00298 (0.00296, 0.00300)
HRP	0.00335 (0.00334, 0.00337)	0.00323 (0.00321, 0.00325)
JSM	0.00280 (0.00277, 0.00283)	0.00284 (0.00281, 0.00288)
MRF	0.00353 (0.00351, 0.00354)	0.00338 (0.00336, 0.00340)
PIN	0.00330 (0.00329, 0.00331)	0.00327 (0.00325, 0.00329)
PSP	0.00327 (0.00326, 0.00329)	0.00319 (0.00317, 0.00321)
SKI	0.00339 (0.00338, 0.00341)	0.00313 (0.00311, 0.00315)
TRL	0.00349 (0.00348, 0.00350)	0.00321 (0.00319, 0.00322)
USL	0.00324 (0.00322, 0.00326)	0.00344 (0.00342, 0.00347)
WTC	0.00330 (0.00329, 0.00331)	0.00308 (0.00306, 0.00310)

Table 3: Pairwise F_{ST} values calculated from EEMS genotype estimates and geographic distances between sampling locations. Pairwise F_{ST} values are shown in the lower triangle, while geographic distances between sampling locations are shown in the upper triangle in units of km.

Population	BCR	BNP	BTB	GNP	HNV	HRP	JSM
BCR		181.9	38.9	242.8	153.6	66.5	42.1
BNP	0.0501		144.0	68.1	33.2	115.5	159.5
BTB	0.0453	0.0556		204.0	117.0	28.8	28.4
GNP	0.053	0.0353	0.0605		101.3	176.9	214.4
HNV	0.0644	0.0282	0.072	0.0525		88.2	136.0
HRP	0.0412	0.0483	0.0384	0.0544	0.0651		51.0
JSM	0.0705	0.0869	0.0849	0.0889	0.1047	0.0787	
MRF	0.0426	0.0481	0.0385	0.0532	0.0645	0.0186	0.0815
PIN	0.0381	0.0458	0.0433	0.0518	0.0594	0.0327	0.0829
PSP	0.0575	0.0665	0.0734	0.0691	0.0822	0.0674	0.0795
SKI	0.0253	0.0483	0.0421	0.0513	0.0635	0.0398	0.0609
TRL	0.0532	0.0181	0.0629	0.043	0.0284	0.0547	0.0926
USL	0.0752	0.0797	0.075	0.0864	0.0985	0.0642	0.1191
WTC	0.0508	0.0393	0.0565	0.0363	0.0567	0.0451	0.0865

Table 3: (continued)

Population	MRF	PIN	PSP	SKI	TRL	USL	WTC
BCR	62.9	67.5	65.7	37.9	181.1	36.1	175.7
BNP	122.7	145.4	243.0	159.1	46.9	153.3	49.3
BTB	33.5	58.0	99.7	24.1	147.2	28.9	136.9
GNP	187.3	212.6	299.8	215.0	104.4	217.4	72.3
HNV	92.3	112.6	216.7	134.8	37.8	122.8	65.5
HRP	20.7	56.3	128.5	48.5	119.1	42.8	112.2
JSM	61.3	85.4	85.5	5.1	169.1	53.4	143.9
MRF		35.8	128.2	57.5	118.2	30.6	126.6
PIN	0.0308		130.6	80.6	129.7	33.6	157.5
PSP	0.0678	0.0682		84.8	246.0	101.5	229.4
SKI	0.0432	0.0431	0.0508		167.2	48.4	145.1
TRL	0.0517	0.0509	0.0713	0.0528		147.5	94.2
USL	0.0627	0.0615	0.1071	0.0772	0.0866		154.7
WTC	0.0459	0.0477	0.0698	0.0513	0.047	0.0819	