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ABSTRACT. We give general classification and structure theorems for ac-
tions of groups of homeomorphisms and diffeomorphisms on manifolds,
reminiscent of classical results for actions of (locally) compact groups.
This gives a negative answer to Ghys’ “extension problem” for diffeo-
morphisms of manifolds with boundary, as well as a classification of all
homomorphisms Homeog(M) — Homeog(N) when dim(M) = dim(N)
(and related results for diffeomorphisms), and a complete classification
of actions of Homeog(S*) on surfaces. This resolves many problems in a
program initiated by Ghys, and gives definitive answers to conjectures
of Militon and Hurtado and a question of Rubin.

1. INTRODUCTION

Let M be an oriented, closed manifold. It is a basic problem to under-
stand the actions of Homeoy(M) and Diffj(M) (the identity components of
the group of homeomorphisms or C” diffeomorphisms of M, respectively) on
manifolds and other spaces. This is the analog of representation theory for
these large transformation groups; and our work gives structure theorems
and rigidity results towards a classification of all possible actions.

Natural examples of continuous actions of Homeog (M) and Diffjj(M) on
other spaces are induced by modifications of M: taking products with other
manifolds, considering configuration spaces of points on M, taking lifts to
covers, and also passing to some fiber bundles. For example, Diff(l)(M ) acts
naturally on the tangent bundle of M. Understanding to what extent these
examples form an exhaustive list is a long-standing, basic question. This
article gives a complete (and positive) answer to several precise formulations
of this question, including those appearing in [10, 14} 22} 28]. For example,
among other results, we prove the following:

Theorem 1.1. If M is a connected manifold and Homeoo(M) acts transi-
tively on a finite-dimensional connected manifold or CW complex N, then
N is homeomorphic to a cover of the configuration space Conf, (M) of n
points in M, and the action on N is induced from the natural action of
Homeon (M) on Conf,,(M).

Theorem 1.2. Suppose M is a connected, closed, smooth manifold and N is
a connected manifold with dim(N) < 2dim(M). If there ezists a nontrivial
continuous homomorphism p : Diff((M) — Diff§(N), then the action p on
N is fized point free and N is a topological fiber bundle over M.
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Before stating our general results, we motivate this work by listing specific
instances of the “basic question” advertised above, all of which we eventually
answer.

1.1. History and motivating questions. Understanding actions of home-
omorphism groups and diffeomorphism groups on manifolds has a long his-
tory. Rubin [28], asked generally for topological spaces X and Y if there were
“any reasonable assumptions” under which “the embeddability of Homeo(X)
in Homeo(Y') will imply that X is some kind of continuous image of Y.”
Implicit in work of Whittaker [32] and Filipkiewicz [9] in the 60s and 80s
on automorphisms of Homeog (M) and Diffj(M ), and isomorphisms among
such groups, is the problem to classify the endomorphisms of these groups.

More recent and more specific instances of this question include Ghys’
work [I0], where he asks whether the existence of an injective homomor-
phism Diff§®(M) — Diffg°(N) implies that dim(M) < dim(N). (This was
answered positively by Hurtado in [I4], but those techniques do not apply
to the corresponding problem for groups of homeomorphisms, or of diffeo-
morphisms of class C”, r < 00.) Ghys also asked in which cases groups of
diffeomorphisms of a manifold with boundary admit extensions to the in-
terior: homomorphisms Diff§°(0M) — Diffg°(M) giving a group-theoretic
section to the natural “restrict to boundary” map Diff5° (M) — Diffg°(0M).
The main result of [I0] is the non-existence of such when M is a ball.

Hurtado [14, § 6.1] asked whether all homomorphisms Diffg°(M) —
Diff°(N) (for general M, N) might be “built from pieces” coming from
natural bundles over configuration spaces of unordered points on M. Both
his and Ghys’ questions are equally interesting for homeomorphism groups
as well. Specific to the homeomorphism case, Militon [22] classified the ac-
tions of Homeog(S!) on the torus and closed annulus, and asked whether
an analogous result would hold when the target is the open annulus, disc,
or 2-sphere. In the same work, he stated the conjecture that, for a compact
manifold M, every nontrivial group morphism Homeog(M) — Homeog (M)
is given by conjugating by a homeomorphism.

1.2. Results. We answer all of the questions stated in the subsection above,
including a precise formulation of Rubin’s question (where “reasonable as-
sumptions” in our case are that X and Y are manifolds, and either involve
bounds on the dimension Y in terms of that of X, or that the action on Y
is transitive). We answer Hurtado’s and Ghys’ questions in both the Homeo
and Diffeo case, and show that Militon’s conjecture is false in general (in
particular, it fails for all manifolds of negative curvature), but it fails for only
one reason, and we can describe all manifolds M for which it does hold. We
also complete Militon’s classification of actions of Homeog(S') on surfaces,
and separately classify all actions of Homeog(S™) on the (n + 1)-ball, which
is surprisingly different in the case n = 1 and n > 1. We also discuss actions
where M is noncompact, in which case the relevant groups to study are
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Homeo.(M) and Diff], (M), those homeomorphisms that are compactly sup-
ported and isotopic to identity through a compactly supported isotopy. Note
these groups agree with Homeog (M) and Diff(;(M), respectively, when M is
compact. All manifolds are assumed boundaryless, unless stated otherwise.

The first step in each of these answers is the following general structure
theorem for orbits.

Theorem 1.3 (Orbit Classification Theorem). Let M be a connected topo-
logical manifold. For any action of Homeo.(M) on a finite-dimensional CW
complex, every orbit is either a point or the continuous injective image of
a cover of a configuration space Conf,(M) for some n. If M has a C"
structure, then for any weakly continuous action of Diff(M) on a finite-
dimensional CW complex by homeomorphisms, every orbit is either a point,
or a continuous injective image of a cover of the r-jet bundle over Conf,, (M)
under a fiberwise quotient by a subgroup of the extended jet group.

See Section 2 for the definition of extended jet groups. Using the conti-
nuity result in [I4, Theorem 1.2], this theorem gives an immediate positive
answer to a precise formulation of Hurtado’s question [14] §6.1], namely,
all actions of Diff2°(M) on another manifold are always built from pieces
(orbits) that are natural bundles over covers of configuration spaces.

As mentioned above, Conf, (M) denotes the configuration space of n
distinct, unlabeled points in M, but if M = S' or M = R, we mean the
configuration space of unlabeled points together with a cyclic or linear order,
since Homeo. (M) does not act transitively on the space of unordered points.
Since Conf,, (M), and the k-jet bundles (for & < r) are manifolds on which
Homeo (M) and Dift” (M) act transitively, all these types examples of orbits
do indeed occur naturally. The next challenge is to

a) determine which covers of configuration spaces can appear (this is
discussed in Section 2 along with its relationship with “point push-
ing” problems) and

b) determine how orbits of various types can be glued together, i.e. how
they partition a fixed manifold or CW complex N on which Diff,(M)
acts.

While a general classification is difficult, we solve these problems in suffi-
ciently many cases to answer all the open questions mentioned above.

The remainder of the work is organized into three main applications of
the Orbit Classification Theorem, stated below. Although we have stated
these as “applications”, in many cases the Orbit Classification Theorem is
merely the starting point for the result, with the bulk of the proof requiring
many additional techniques.

Automatic continuity. Recent work of Hurtado and the second author
[14, (18] shows that any abstract homomorphism between groups of C'*
diffeomorphisms, or from Homeo.(M) to any separable topological group
(of which all homeomorphism and diffeomorphism groups of manifolds are
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examples), are necessarily continuous when M is compact, and “weakly
continuous” when M is noncompact. See Section 3 for the definition of weak
continuity and further discussion. For actions of C" diffeomorphism groups,
or actions of smooth diffeomorphism groups of by diffeomorphisms of lower
regularity, such automatic continuity remains open, so we add continuity as
an assumption.

Application I: Structure theorem in restricted dimension. As hap-
pens in the classical study of compact transformation groups, the lower the
dimension of a space on which a group G acts, the easier it is to classify
all actions of G on that space. This is evident, for instance, in the work of
Hsiang and Hsiang [5] classifying actions of compact groups on manifolds,
where a key assumption is that the manifold have dimension bounded by
half the dimension of the group.

The easiest consequence of Theorem 1.3 comes under very strong as-
sumptions on dimension; it gives a counterexample to (but near proof of)
[22, Conj. 1.1] as follows:

Theorem 1.4. Let M be a connected manifold and N a manifold with
dim(N) < dim(M). If there is a nontrivial homomorphism p : Homeo.(M) —
Homeo(N), then dim(N) = dim(M), there is a countable collection of cov-
ers M; of M, and disjoint embeddings ¢; : M; — N such that p(f) agrees
with gzﬁifcﬁi_l on the image of M; and is identity outside |J, ¢i(M;).

Examples of such lifts to covers abound. For example, let S, be a surface
of genus g > 2, then Homeoy(Sy) lifts to act on every cover of S;. One
way to see this is as follows: fix a hyperbolic metric on Sy, so the universal
cover can be identified with the Poincaré disc. Then each f € Homeog(Sy)
admits a unique lift to §g that extends to a continuous homeomorphism
of the closed disc, pointwise fixing the boundary. This gives a continuous
action of Homeog(Sy) on gg. Embedding the compactification of the disc in
another 2-manifold N (or into Sy itself) and extending the action to be trivial
outside the image of the embedded disc gives a nontrivial homomorphism
Homeog(Sy) — Homeog (V).

We also prove a similar result (see Theorem 1.7 below) for continuous
actions of diffeomorphism groups; in this case if M is compact then N is
necessarily a cover of M, and the action on N is transitive. This gives a
new proof of Hurtado’s classification of actions, given his prior results on
continuity.

Weaker restrictions on dimension. With a weaker restriction on the
dimension, we have the following version of a “slice theorem” for actions of
homeomorphism groups.

Theorem 1.5 (Structure theorem for group actions by homeomorphisms).
Let M and N be connected manifolds such that dim(N) < 2dim(M). If there
is an action of Homeo.(M) on N without global fixed points, then N has the
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structure of a generalized flat bundle over M. When dim(N)—dim(M) < 3,
the fiber F' is a manifold as well.

A generalized flat bundle is a foliated space of the form (M x F) /m (M) where
m1(M) acts diagonally by deck transformations on M and on F' by some
representation to Homeo(F'). See Section 5. There are many examples of

such actions on generalized flat bundles. For instance, we have the following;:

Example. Let S; be a surface of genus g > 2. There are infinitely many
non-conjugate actions of Homeog(S,) on Sy x S. One such family may be
constructed as follows: lift the action of Homeoy(Sy) to an action on the
universal cover S ¢ as described above, and extend this to an action on the
product S g xS ! that is trivial on the S factor. Now take a homomorphism
p : m(Sy) — Homeog(S') with a global fixed point (or any action of this
group on the circle with Euler number zero), and quotient S’g x S1 by the
diagonal action of m(S,) acting by deck transformations on the first factor
and via p on the second. The quotient space is topologically S, x S L (this is
ensured by the section provided by the global fixed point, or more generally
by an action with 0 Euler number), and the action of Homeog(S,) naturally
descends to this quotient. Non-conjugate actions on S! will produce non-
conjugate examples.

With more regularity, we obtain a stronger result and may remove the
assumption on fixed points.

Proposition 1.6 (No fixed points). Suppose M is a connected, closed
smooth manifold of dimension at least 3, and suppose that Diff" (M) (0 < r <
o0) acts continuously on a connected manifold N by C' diffeomorphisms. If
the action has a global fized point, then it is trivial.

Theorem 1.7 (Structure theorem for group actions by diffeomorphisms).
Suppose M 1is a connected, closed, smooth manifold and N is a connected
manifold with dim(N) < 2dim(M). Let 0 < r < oo and 1 < s < oco. If
there exists a nontrivial continuous action Diff((M) — Diff§(N), then the
action s fixed point free, and N is a topological fiber bundle over M where
the fibers are C®-submanifolds of N.

In the case where dim(M) = dim(N) and r = s = oo, this recovers [14,
Theorem 1.3], with an independent proof.

Application II: Extension problems. Let W be a manifold with bound-
ary M. If W has a C" structure, then there is a natural “restrict to the
boundary” map

Res" (W, M) : Diff}(W) — Diff?,(M)
which is surjective. The extension problem, introduced by Ghys in [10], asks

whether Res" (W, M) has a group theoretic section, i.e. a homomorphism p
such that Res" (W, M) o p is the identity map. In general, one expects that
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the answer may depend both on r and on the topology of W. For simplicity,
we will consider only the case where W and OW = M are both connected,
although these techniques can be adapted with some work to cover the case
where OW is not connected.

One case where the extension problem has a positive answer is for home-
omorphism groups of balls and spheres. Let D"*! be the n + 1 dimensional
ball and S™ the n-sphere. Then

D = {(.T,T)’x €S re [07 1]}/(5670) ~ (y,O)

and there is a standard “coning off” action C' : Homeog(S™) — Homeo(D" 1)
defined by C(f)(z,r) = (f(x),r). (Going forward, we refer to this as con-
ing.) We answer [19, Question 3.18] in the following theorem.

Theorem 1.8. Let M be a connected manifold with dim(M) > 1, and sup-
pose w1 (M) has no nontrivial action on the interval (e.g. a group generated
by torsion). Then Res®(W, M) has a section if and only if M = S™ and
W =Dt

Theorem 1.9. For n > 1, any section of Res’(D"!, S™) is conjugate to
the standard coning. In fact, any nontrivial action of Homeog(S™) on D"+!
is conjugate to the standard coning.

We actually prove a more general result than Theorem 1.8, see Section 6.

Ghys [10] posed the extension problem for the genus g handlebody in
the smooth category (see also [19, Question 3.15, Question 3.19]). As a
consequence of Theorem 1.7, we not only answer Ghys’ question, but also
answer the section problem for manifolds with boundary, and any regularity
of at least C.

Corollary 1.10 (No differentiable extensions). Let W be a compact, smooth
manifold with boundary M, and let r > 1. Then Res" (W, M) : Diffg(W) —
Diffy(M) does not have a continuous section. If r = oo, any section is
automatically continuous by [14], and this hypothesis may be removed.

Application ITI: Homeog(S!') actions on surfaces. In contrast with
Theorem 1.8, there are infinitely many non-conjugate extension actions of
Homeog(S!) on D2, For example, in addition to the standard coning, one
may take the action on the open annulus (the configuration space of two
marked points, or PConfy(S')), with one end naturally compactified to a
circle and the other to a point. Section 8 is devoted to the general classifi-
cation problem posed by Militon in [22]. We prove the following.

Theorem 1.11. For each closed, proper set K C [0,1] containing 0, and
a continuous function A : [0,1] — K — {0,1} there is an action pg x :
Homeog(S') — Homeog(ID?); this collection of actions has the property that
any nontrivial homomorphism p : Homeog(S') — Homeog(D?) is conjugate
to p \ for some K, \.
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The construction of these actions is given in Section 8, following Militon.
Militon’s work also tells us exactly which of the actions pg ) are conju-
gate (see Section 8), so this gives a complete classification of actions of
Homeog(S!) on the disc. A similar classification may be obtained by the
same methods for actions of Homeog(S') on other orientable surfaces. This
proves [22, Conjecture 2.2].

Structure of the paper.

e In Section 2, we establish a “small quotient subgroup theorem” that
is the main ingredient in our Orbit Classification Theorem.

e In Section 3, we briefly discuss automatic continuity, then prove the
Orbit Classification Theorem, give Theorem 1.1 as an easy conse-
quence, and classify homomorphisms between homeomorphism groups
when dim(M) = dim(N).

e In Section 4, we discuss admissible covers.

e In Section 5, we discuss how orbits fit together and prove a structure
theorem in the C? category.

e In Section 6, we study the extension problem in the homeomoprhism
case.

e In Section 7, we prove the structure theorem for actions in the C” cat-
egory, r > 1 and study the extension problem for diffeomorphisms.

e In Section 8, we classify actions of Homeog(S') on D? and other
surfaces.
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2. SMALL QUOTIENT SUBGROUPS

2.1. Topological preliminaries. We begin by recalling some basic facts
about the topology of homeomorphism and diffeomorphism groups and con-
figuration spaces. For simplicity, we assume all manifolds are connected, al-
though analogous results hold in the disconnected case, provided one takes
into account the surjections from Homeo.(M) or Diff[ (M) to the home-
omorphism or diffeomorphism groups of any union of connected compo-
nents of M obtained by restriction to those components. When we speak of
Diff7 (M), we tacitly assume that M has a smooth structure. We equip the
groups Homeo.(M) and Diff’,(M) with the standard C° and C" compact-
open topologies, respectively.
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It follows from deep work of Edwards—Kirby [6] and Cernavskii [31] that
Homeo. (M) is locally connected (the main result of [6] is that the homeo-
morphism groups of a compact manifold is locally contractible, and the proof
easily gives local connectedness for Homeo,. (M) for general M). The follow-
ing is a rephrasing of a simplified version of their major technical theorem
[6, Theorem 5.1] and a key consequence.

Proposition 2.1 ([6]). Let K C M be compact, U any neighborhood of K,
and D C K a closed (possibly empty) set. Then any embedding of K into U
that is sufficiently close to the identity (i.e. the inclusion) and restricts to
the identity on D can be deformed to the identity through embeddings that
are identity on D, and these embeddings can be taken to have image in U.

Corollary 2.2 ([6], Corollary 7.3). The pointwise stabilizer Stab(X) of a
finite set of points X in M is also a locally connected subset of Homeo.(M ).
In particular the quotient of Stab(X) by its identity component is a discrete
subgroup.

Local contractibility and hence local connectedness of Diff (M) (and the
relative version fixing a finite set) is classical, a discussion and references
can be found in [2, Chapter 1].

Another important and well-known consequence of the work of Edwards
and Kirby is that Homeo.(M) has the fragmentation property.

Definition 2.3. A subgroup G C Homeo(M) has the fragmentation prop-
erty if, for any open cover of M, the group G can be generated by homeo-
morphisms supported on elements of the cover.

Note that such a group necessarily lies in Homeo.(M). For Dift] (M),
fragmentation is less difficult, and may be proved by splitting up a time-
dependent vector field whose time-one flow is the diffeomorphism in ques-
tion, using a partition of unity. See [2 Chapter 2].

Since configuration spaces will play an important role in this work, we
record the following basic tools. Recall that PConf, (M) is defined to be
the complement of the fat diagonal in M™, and Conf,, (M) is its quotient by
permutations of the factors.

Proposition 2.4. Let M be a connected manifold and X C M be a finite set.
Then Homeo.(M)/Stab(X) is homeomorphic to Conf x| (M). The same
holds with Homeo replaced by Diff".

Proof. The map Homeo.(M)/ Stab(X) — Conf|x|(M) given by [f] — f(X)
is bijective and continuous. We need to show that the inverse of this is
continuous. Suppose we are given a configuration X; € Conf) X‘(M ), and
given € > 0 for some € less than 1/4 the minimum distance between points
in X1, we wish to show that any configuration e-close (pointwise) to X; can
be taken to X via a homeomorphism close to the identity. For each such
point z, we may find a homeomorphism supported on the 2e-neighborhood
of z and taking x to its nearby point y € Xy without moving any of the
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other points in the configuration. The composition of all such is supported
on a compact set and moves each point distance at most 2¢, which suffices to
prove the claim. To prove this for diffeomorphisms instead, one may perform
a similar proof using the flow of a smooth vector field instead, working in
local chart to ensure the flow is close to the identity. O

Proposition 2.5. Let M be a connected manifold and let X C M be a
finite set. Then Homeo.(M) is a topological fiber bundle over Conf|x (M) =
Homeo.(M)/ Stab(X), and the same holds with Homeo replaced by Dift".

Proof. Since Stab(X) is a closed subgroup, it suffices to produce a locally
defined continuous sections s : Conf|x (M) — Homeo.(M), then the local
product structure over an open set U where s is defined is given by assigning
to ¢ € U the coset s(c)Stab(X). Without loss of generality, we may do
this at the identity, i.e. over the configuration X. Since we are working
locally, we may label points as in PConf|x(M). Choose a disk D; about
each x; € X, small enough so that the D; are pairwise disjoint. Let A; ;
for 1 < j < n = dim(M) be smooth vector fields supported on D; that
agree with the coordinate vector fields in a small local chart about z;, and
¢(t)i; the time ¢ map of the flow of A; ;. For each i = 1,2,...]|X], there is
a continuous, injective map s; from a neighborhood of 0 in R™ to Diff2° (M)
given by si(t1,...tn) = @¢(t1)i10...00(tn)in. This map is a homeomorphism
onto its image in Diffo°(M). Thus, any configuration sufficiently close to X
can be written uniquely as s1(71) o ... o s;x|(¥)x|)(X), (for v; close to 0 in
R™) which gives the desired local section. ]

2.2. Small quotient subgroups.

Definition 2.6. Let G be a topological group, and A C G a subgroup.
We say that A has small quotient in G or A is a small quotient subgroup if
there exists n € N such that, for any continuous, injective map of an n-disc
D™ — @G, the projection D" — G — G/A is non-injective. If A has small
quotient, the codimension of A is the maximum n such that there exists a
continuous injective map D™ — G that descends to an injective map to G/A.

Before stating our main theorem, we give two basic properties.

Observation 2.7. (Properties of small quotient subgroups)

(1) If AC E C G are subgroups and A has small quotient, then E also
has small quotient, with codimension bounded above by codim(A).

(2) If H C G is a subgroup and A has small quotient in G, then AN H
has small quotient in H, and the codimension of A in G is bounded
below by the codimension of ANH in H.

Proof. The first item is just the observation that the projection map G —
G/E factors through G — G/A — G/E. The second follows from the fact
that H/(AN H) embeds in G/A. O
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Convention. Going forward, in this section M always denotes a connected
manifold.

Definition 2.8. A subgroup G C Homeo(M) has local simplicity if, for
any relatively compact open ball B C M, the subgroup of G consisting of
elements with compact support contained in B is nontrivial, path connected
and (algebraically) simple.

Local simplicity of Homeo.(M) is a result of Anderson [I] who shows
Homeo.(B) is algebraically simple. The combined work of Epstein [7],
Mather [20], 21] and Thurston [30] establishes local simplicity for Diff’ (M)
when 1 < 7 < oo and r # dim(M) + 1. Whether Dif i™ P+ By ig al-
gebraically simple is a famous open question in the field. The first step
towards our orbit classification theorem is the following result on closed,

small quotient subgroups of locally simple groups.

Lemma 2.9. Let G C Homeo(M) be a locally simple group, and A C G a
closed subgroup with small quotient in G. Then there exists a ball B C M
such that A contains all homeomorphisms in G supported on B.

Proof. Let n = codim(A) + 1 and fix n disjoint closed balls in M. Let
G; C G denote the subgroup of homeomorphisms with support in the ith
ball. Since G; and Gj commute whenever ¢ # j, we may identify the product
G' := Gy x ... x G, with a subgroup of G. Let A’ = AN G, this is also
a closed subgroup. Let p; : A’ — G; be the natural projection, and let
A; = pi(A’). Our goal is to show that some G; is contained in A.

Observation 2.7 (1) implies that A; x ... x A, D A’ has codimension less
than n in G’. Let A; denote the closure of A; in G;. Then A; x ... x A, has
codimension less than n also, and

G'/(AL x ... x Ay) = G1/A1 x ... x Gp/Ap.

Suppose that A; # G; for some i. Then G;/A; contains at least two points,
and is Hausdorff (since 4; is closed) and path connected; since it is Hausdorff
there is an injective path [0,1] — G;/A;. Thus, if G; # A; for alli, we would
have an embedded D™ in G1 /Ay X ... x Gy /A,, contradicting the bound on
codimension. We conclude that G; = A; for some i. Reindexing if needed,
we assume ¢ = 1.

Let p: A — Go x ... x G,, denote the product map ps X ... X p,, and
let K = Ker(p). Note that K = AN Gy, which is a closed subgroup of Gj.
Since A has small quotient in G, this means that K = A N G has small
quotient in G, so is nontrivial. (Recall that Gy is nontrivial by definition
of local simplicity.) We have that pi(K) = K and p1(4’) = A;. Since
the image of a normal subgroup under a surjective group homomorphism
is normal, K = p;(K) is a nontrivial normal subgroup of p;(A4’) = A;. In
other words, A; is contained in the normalizer N¢g, (K) of K in G;. It is a
basic fact that the normalizer of a closed subgroup of a topological group
is closed (if H C G is closed, then Ng(H) = (,eyig € G | ghg™ € H} is
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an intersection of closed sets because g — ghg~! is continuous), so Ng, (K)

is a closed subgroup containing Ai, i.e. equal to G;. By local simplicity,
G1 = K = AN Gy, which is what we needed to show. O

Borrowing terminology from [I1], we make the following definition.

Definition 2.10. A subgroup G C Homeo(M) is locally continuously tran-
sitive if for all z,y € M and ball B containing x and y, there exists a
1-parameter subgroup f; of G supported on B such that fi(y) = x.

Lemma 2.11. Suppose G C Homeo(M) is a locally continuously transitive
group and A C G a closed subgroup with small quotient in G. Then there
exists a finite set X such that A setwise preserves X and acts transitively
on M — X; or in the case dim(M) = 1, acts transitively on connected
components of M — X.

Proof. If the action of A is transitive, the statement is immediate with X =
(). Thus we may assume the action of A is nontransitive, so there are points
x,y € M such that y ¢ A-z. Let {f;}+er C G be a 1-parameter subgroup of
G consisting of homeomorphisms supported on a precomact neighborhood
of x such that fi(y) = z. In particular, this flow f; is not a subgroup of A.
Since A is closed, {t : f; € A} is a closed, proper subgroup of R, so either
trivial or isomorphic to Z. In the first case {f:}/({f:} N A) is R, and in the
second case it is S'; either contains an embedded 1-dimensional disc.

More generally, suppose we can find distinct points z; and y;, 1 < i < m,
where y; ¢ A - z;. In the case where M is 1-dimensional, we further require
that y1 < z1 < ... < ym < T, with respect to the ordering induced by R in
some local coordinate chart. Then we can take a continuous homomorphism
R™ — G, where the ith factor is a flow whose time 1 map takes y; to x;, with
support disjoint from the other factors. This can be constructed iteratively,
as follows. Take a simple path from y; to x; disjoint from each of the
remaining points z;,y; and define a vector field tangent to the path and
supported in a small neighborhood U; of the path, again disjoint from the
other points. An appropriate time scaling of the flow of this vector field
will suffice. If Uy is chosen small enough, M — U; will be connected (or,
in the 1-dimensional case, have each remaining pair z; and y; in the same
connected component), and the process may be repeated.

Then R"N A is a closed subgroup of R™, and each element of R*=1 x {1} x
R"~* takes y; to x;, so is not an element of A. We know that every linear
subspace of R™ has to intersect one of RP~! x {1} x R"~* because at least
one coordinate should be nonzero. Therefore R” N A C R™ does not contain
any linear subspaces, which means that R"N A C R™ is a discrete subgroup.
Thus, R"/(R™ N A) is n-dimensional; and if D is a small topologically em-
bedded n-disc in R™, then the projection of D to the quotient G/A will be
injective.

Thus, if A has codimension at most n, then the maximal value of m for
which we may find such a set of points is m = n. Fix such a maximal
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collection of points x1,...,Zm, Y1, .., Ym. In the case where dim(M) > 2,
maximality implies that M — {x1,...,yn} is contained in a single orbit O.
Set X = M —0O, which is a subset of {x1, ..., yn}, hence finite. By definition
of orbit, A preserves O and the complement X, which is what we needed to
show.

In the case dim(M) = 1, maximality implies that each connected compo-
nent of M —{x1,...,yn} is contained in a single orbit, and we may replace
O with the union of these finitely many orbits and conclude as above. [

Definition 2.12. For a finite set X, let Stab(X) denote the setwise stabi-
lizer of X, and Stab(X)y the connected component of Stab(X) containing
the identity.

Proposition 2.13. The group Stab(X)g is path-connected, and Homeo.(M — X ) =
Stab(X)().

Proof. Path-connectedness of Stab(X)g is Corollary 2.2. The containment
Homeo.(M — X) C Stab(X)g is clear, since Homeo.(M — X) by defini-
tion contains homeomorphisms isotopic to the identity relative to X, and
Stab(X)g is closed. For the reverse containment, suppose one is given a
path f; with fo = id in Stab(X)p. We need to approximate f; arbitrarily
well by a homeomorphism }1 where j‘t is a path based at id of compactly
supported homeomorphisms of M — X. We can do this using techniques of
[6], via the following argument.

Given some € > 0, choose § small enough so that the image of a 24-
neighborhood of X under f; remains inside the ¢ neighborhood N, of X.
Thus, fi(M — N¢) N Nos = (. Break the path f; into time intervals 0 =
to,t1, ...t = 1 small enough so that f;o ft__l1 is close enough to the identity
(considered as an embedding of M — N, into M) so that Proposition 2.1
applies, taking U to be the complement of Ns in M. Using the proposition,
fro ft__ll can be isotoped to the identity via an isotopy supported outside of
Ns, which can be extended to a homeomorphism of M that pointwise fixes
N;. Composing these isotopies, one produces a path of homeomorphisms
whose time one map agrees with f; on M — N, and pointwise fixes Ng, hence
is compactly supported in M — X. O

Using the results above, we obtain the following.

Theorem 2.14. Let M be a manifold, and A C Homeo.(M) a closed
subgroup with small quotient. Then there is a finite set X C M such
that Stab(X )y C A C Stab(X), and Homeo.(M)/A is homeomorphic to
an intermediate cover of Cx = Homeo.(M)/Stab(X)o — Conf|x|(M) =
Homeo.(M)/ Stab(X).

Proof. Since Homeo, (M) satisfies the hypothesis of Lemma 2.11, we know
that A is contained in Stab(X) for some finite set X, and acts transitively on
the complement of X. Let A’ denote the intersection of A with Homeo.(M —
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X) C Homeo.(M). Then A’ is small quotient in Homeo.(M — X) by Ob-
servation 2.7. By Lemma 2.9, there exists a ball B C M — X such that A’
contains all homeomorphisms supported on B, hence A contains all homeo-
morphisms supported on B. Since Homeo.(M — X) has the fragmentation
property and the action of A on M — X is transitive, we conclude that
A" = Homeo.(M — X). Since A was assumed closed in Homeo.(M), it
therefore contains the closure of Homeo.(M — X)), therefore by Proposition
2.13, we know that A contains Stab(X)o.

The map Homeo.(M)/A — Homeo.(M )/ Stab(X) has a local section, ob-
tained by composing a local section for Homeo.(M ) — Homeo.(M )/ Stab(X)
with the projection to Homeo.(M)/A. Since Stab(X)/Stab(X ) is discrete,
A/ Stab(X)o is discrete, so Homeo.(M)/A is a cover of Homeo.(M)/ Stab(X),
as claimed. (]

Diffeomorphism case. Our next goal is to prove the counterpart to The-
orem 2.14 in the diffeomorphism case. Here there are more small quotient
subgroups — for example the group of diffeomorphisms fixing a point with
trivial first derivatives at that point also has finite codimension. In general,
we will see that one needs to consider r-jets at finite sets of points.

We start by recalling the notion of jet spaces. For a smooth manifold M,
an r-jet of a map M — M is an equivalence class of triples (z, f,U), where
f:U — M a C" map, U is an open neighborhood of z, and (z, f,U) is
equivalent to (x, g, U’) if all derivatives at = up to order r of f and g agree.
The space of r-jets of C" maps of M, denoted J" (M, M), is a fiber bundle
over M x M, via the natural projection map assigning (z, f,U) to (z, f(x)),
with linear structure group.

We will be interested in a related bundle where M is a configuration
space.

Definition 2.15. For a smooth manifold M, and finite set X C M, let
J"(Conf,(M)) denote the pullback of the bundle J"(Conf, (M), Conf, (M))
under the diagonal map Conf, (M) — Conf, (M) x Conf, (M). We call this
the configuration r-jet bundle.

Since Diff"(M) is naturally a subgroup of Diff"(Conf,, (M)), there is a
natural action of Diff"(M) on J"(Conf,(M)) by bundle automorphisms.
We set notation for a point stabilizer of this action.

Definition 2.16. Let Stab"(X) C Stab(X) C Diff"(M) denote the point
stabilizer of the equivalence class of the identity map at X in J"(Conf|x|(M))
under the natural action of Diff" (M) on J"(Conf|x|(M)). We let Stab”(X)g
denote the identity component of Stab”(X).

One should think of Stab(X)/Stab”(X) as the “r-jets of diffeomorphisms
at X7, we call the larger group Stab(X)/Stab”(X)o an extended jet group
at X. By definition, we have J"(Conf, (M)) = Diff"(M )/ Stab” (X).
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Note also that, if f € Stab”(X)g, then f pointwise fixes X, has all deriva-
tives up to order r agreeing with the identity map at each point of X, and is
isotopic to the identity through a path of such maps. Conversely, if a map
has identity r-jet at each point of X and is isotopic to the identity through
a path of such maps, then it clearly lies in Stab”(X)g. Using this, we prove
the following.

Lemma 2.17. Let r > 1. Then the closure of Diff.(M — X) in Diff.(M) is
Stab”(X)o.

Proof. By definition, we have Diff].(M — X) C Stab(X){. Since the latter
group is closed, this gives Diff (M — X) C Stab”(X)o. For the other di-
rection, as we did for homeomorphisms, here one needs to approximate the
endpoint a path of diffeomorphisms agreeing up to order r with the identity
at X using one consisting of diffeomorphisms supported away from X. This
can be done by the standard “blow up” construction, in which one replaces
each point of X with its sphere of tangent directions, giving a manifold with
sphere boundary components, then gluing in balls to recover a manifold dif-
feomorphic to M (via a diffeomorphism close to the identity and identifying
the center of each ball with a point of X). There is a natural, continuous ex-
tension of C" diffeomorphisms of M preserving X to C"~! diffeomorphisms
of the blow-up (see [29, Theorem 6.1.] for the statement before compactify-
ing by spheres, one simply extends the linear diffeomorphisms on the sphere
boundaries over the glued-in balls), the action being trivial on the tangent
space to X results in a diffeomorphism compactly supported away from X.
One may compensate for the loss of regularity using the fact that C7—!
diffeomorphisms can be approximated by C" diffeomorphism. O

Theorem 2.18. If A C Dift[(M) is a closed subgroup with small quotient
(for some 1 < r < oo) then Stab”(X)o C A C Stab(X) for a finite set
X C M, and Diff;(M)/A has the structure of a cover of Conf{y (M) under
a quotient by a subgroup of extended jet group.

Proof. To avoid the problem where Diff] (M) is not known to be simple
when r = dim(M) + 1, we pass immediately to working with subgroups
of smooth diffeomorphisms. Let A’ be the closure in the C* topology of
ANDiff2° (M) in Diff2°(M). Note that A" C A since the C*° topology is finer
than the C" topology. By Lemmas 2.9, Lemma 2.11 and the fragmentation
property for Diff>°(M — X)), there is a finite set X such that A’ C Stab(X)
and A’ contains Diff2°(M — X). The C" closure of Diff°(M — X) contains
Diff{ (M — X)), so using Lemma 2.17 we conclude that

Stab"(X)p C A C Stab(X)
Thus, Stab” (X )y = Stab”(X)p N A and
Diff[(M)/(Stab"(X)o N A) = Diff_.(M)/ Stab™ (X)o.

Since Stab” (X')/ Stab” (X))o is discrete, Diff..(M)/ Stab” (X )o is a cover of the
configuration jet bundle Diff] (A)/ Stab”(X). The map Diff].(M)/(Stab” (X )oN
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A) — Diff /A is a quotient by the action of A/ Stab” (X )y C Stab(X)/Stab"(X)g
(noting that Stab"(X)p is normal in A). O

3. ORBIT CLASSIFICATION THEOREM

Building on the work in the previous section, we now prove Theorems 1.3
and 1.4. We need the following version of the classical invariance of domain
theorem.

Lemma 3.1 (Invariance of domain for a finite-dimensional CW complex).
Let P be an n-dimensional CW complex. Then there is no injective contin-
uous map R — P.

Proof. Assume for contradiction that there is such an embedding f : R+ —
P. Let D be a closed disk in R**! and B be the interior of D. The image
f(D) C P is compact so it only intersects finitely many cells. Find x € f(B)
such that  lands on the maximal dimensional cell C'(z) among the cells that
intersect f(D). By assumption on the maximal dimension, we know that
f~HC(x)) is open in R™*1. This shows that there is an injective, continuous
image of R"*! inside C(z), which contradicts the well known invariance of
domain theorem for Euclidean spaces. O

The other ingredients we will need are a collection of automatic con-
tinuity results. Following [14], call a homomorphism ¢ from Diff (M) or
Homeo.(M) to a topolgoical group G weakly continuous if, for every com-
pact set K C M, the restriction of ¢ to the subgroup of homeomorphisms
supported on K is continuous.

Theorem 3.2 (Hurtado [I4]). Let M and N be smooth manifolds. Any
homomorphism ¢ : Diff>°(M) — Diff2°(N) is weakly continuous.

Theorem 3.3 (Mann [I§], Rosendal [26], Rosendal-Solecki [27]). Let M be
a topological manifold and G a separable topological group. Any homomor-
phism ¢ : Homeo.(M) — G is weakly continuous.

If M itself is compact, weak continuity is of course equivalent to con-
tinuity, but this is false in general. For instance (as remarked in [14]) if
h : R®™ — R" is an embedding with image the open unit ball B, then con-
jugation by h produces a homomorphism from Diff°(R™) to Diff.(B), and
extending diffeomorphisms in the image to act by the identity outside of B
gives a discontinuous homomorphism Diff°(R™) — Diff>°(R™). Neverthe-
less, weak continuity combined with our orbit theorem will suffice for our
intended applications.

Proof of Theorem 1.3. We begin with the homeomorphism group case, the
diffeomorphism case being analogous.

Homeo case. Recall as usual that M denotes a manifold without bound-
ary. Suppose that Homeo.(M) acts nontrivially on a finite-dimensional CW
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complex N. If M is compact, then Theorem 3.3 implies the action is con-
tinuous, so for any x € N, the stabilizer G, of z under the action is a closed
subgroup of Homeo.(M), and the orbit of x gives a continuous, injective
map from Homeo.(M)/G, into N. By Lemma 3.1, the stabilizer G, is a
small quotient subgroup (of codimension at most dim(N)) so by Theorem
2.14, Homeo.(M) /G, is homeomorphic to a cover of Conf, (M) for some n.

If M is not compact, we need to employ an additional argument. To
simplify notation, let A = G, be the point stabilizer of the action on N.
The goal is again to show that there is a finite set X C M such that

Stab(X)o C A C Stab(X),

which implies that A is a closed subgroup (since it is a union of components
of Stab(X)) and that the orbit space is a cover of Conf|x|(M).

Let K € M be a connected, compact set that is the closure of a con-
nected, open subset K of M. Let Homeog (M) = Homeo.(K) be the
subset of Homeog(M) consisting of elements with support in K and iso-
topic to identity by an isotopy compactly supported in K. By weak con-
tinuity, the restriction of the action to Homeog (M) is continuous. The
group Ag = A N Homeog (M), is a closed, small quotient subgroup of
Homeog (M). For a finite set X C K, let Stabg(X) denote the stabilizer
of X in Homeog (M), and Stabg (X)o its identity component. By Theorem
2.14, there exists a finite set X (K) C K such that

StabK(X(K))o C AK C StabK(X(K)).

Also, the cardinality of X (K) multiplied by the dimension of M is the
dimension of the orbit of x in N under this subgroup, and this is bounded
above by the dimension of N. In particular, | X (K)| < dim(N).

We claim that whenever K C H are both the compact closures of con-
nected sets as above, we have X (K) C X(H). To show this, observe that
A NHomeog (M) = Ak, and we know that

Stabg (X (H))oNHomeog (M) C AgNHomeog (M) = Ag C Stabg (X (K)).

However Stabg (X (H)NK)o C Staby (X (H))oNHomeox (M) C Stabg (X (K)),
which implies that X (K) ¢ X(H)NK C X(H) because Stabg (X (H)N K)o
acts on Int(K) — X (H) N K transitively.

Let K, be an exhaustion of M by connected compact sets with K,, C
K41, each one the closure of a connected open set. Then X(K,) C
X (Kp+1), and the fact that the cardinality of X (K,,) is bounded by dim(N)
implies that this sequence is eventually constant, equal to some finite set X.
Without loss of generality, we may modify our compact exhaustion so that
X(K,) = X for all of the compact sets K. The above discussion shows
that for all K,

Stabg, (X)o C AN Homeog, (M) C Stabg, (X)

This implies that A C Stab(X) since A C Homeo.(M) = J,, Homeog,, (M).
On the other hand, we also have that Stab(X)o = |JStabg, (X)o because
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the union of supports of elements in a path in Stab(X)g is also compact, so
we have Stab(X )y C A, which is what we needed to show. O

Diffeo case. The same argument above applies for any continuous action of
Diff{ (M) on N by homeomorphisms, and we conclude that the orbit is the
continuous, injective image of a cover of one of the spaces given in Theorem
2.18. If M is compact, r = oo, and the action is by smooth diffeomor-
phisms, then continuity follows immediately from Hurtado’s theorem. In
the noncompact case for a weakly continuous action, one simply repeats the
argument above using an exhaustion by compact sets. U

We can now give Theorem 1.1 as an elementary consequence.

Proof of Theorem 1.1. Suppose Homeo.(M) acts transitively on a manifold
or finite dimensional CW complex N, thus there is only a single orbit, and
hence by the Orbit Classification Theorem, a continuous, bijective map from
some cover C' of some configuration space Conf, (M) to N. Thus dim(N) >
dim(M), and if equality holds the orbit map is a homeomorphism. To show
equality holds (ruling out pathological behavior like a space filling curve),
consider the restriction of the orbit map to some compact subset K of C.
This restriction is a homeomorphism onto its image, a compact subset of
N; since C can be exhausted by a countable collection of compact sets, by
Baire category the image of K must be somewhere dense, hence contain a
ball and thus dim(N) = dim(M). O

As another easy consequence, we can prove Theorem 1.4.

Proof. Suppose M and N are manifolds with dim(M) > dim(N), and we
have a nontrivial action of Homeo.(M) on N. Take any point z € N not
globally fixed by the action, and let G, denote its stabilizer. Then the
orbit of z gives a continuous, injective map of Homeo.(M)/G; into N. By
Theorem 2.14 and our assumption on dimension, the space Homeo.(M) /G
is a covering M, of Conf; (M) = M. In particular, we must have dim(M) <
dim(N), hence equality holds. Since N is second countable, and orbits are
disjoint, there can be at most countably many such disjoint embedded copies
of covers of M, which proves the theorem. O

The same proof applies to any weakly continuous action of Diff/(M) on
N by homeomorphisms. In Section 7 we will improve this result for the case
of actions Diff] (M) — Diff*(N) where s > 1, showing that in this case s < r
and N must itself necessarily be a cover of M.

4. ADMISSIBLE COVERS: CLASSIFYING ORBIT TYPES

We now describe which spaces occur as orbits for actions of Homeo.(M);
equivalently, we classify the covers of Conf,, (M) that admit transitive actions
of Homeo.(M). We keep the notation from the previous sections. If X C M
is a finite set, there is a fiber bundle Stab(X) — Homeo.(M) — Conf|x|(M).
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From the long exact sequence of homotopy groups, we have the following
exact sequence

(1) 1 (Homeoc(M)) <% 1 (Conf| x| (M)) & mo(Stab(X)) — 1

where the evaluation map ev takes a loop f; in Homeoy(M) based at the
identity to the path of configurations f;(X). The map p is analogous to the
familiar “point push” map from the Birman exact sequence in the study of
mapping class groups of surfaces, in this special case, X is a singleton, and
a loop based at X is sent to the isotopy class of a homeomorphism obtained
by pushing the point around the loop.

Let Ejx| denote the image of ev. From the long exact sequence of homo-
topy groups, we know that

71 (Conf | x| (M))/E|x| = Stab(X)/ Stab(X)o

and hence Homeo.(M)/ Stab(X)o — Homeo.(M )/ Stab(X) = Conf|x (M)
is a covering map with deck group 71 (Conf|x|(M))/E x| = Stab(X)/ Stab(X)o.

Definition 4.1. Let Cx = Homeo.(M)/Stab(X)o. We call the covering
space mx : Cx — Conf|x|(M) the mazimal admissible cover, and call a
cover Z admissible if it is an intermediate cover, i.e. it satisfies Cx — Z —
Conf x| (M).

Proposition 4.2. Every admissible cover admits a transitive, continuous
action of Homeo.(M). Conversely, every orbit of a continuous action of
Homeo.(M) on another manifold is the image of an admissible cover under
a continuous, injective map.

Proof. An admissible cover Cx — Z — Conf, (M) corresponds to a sub-
group A satisfying Stab(X )y C A C Stab(X). Therefore Homeo.(M ) natu-
rally acts transitively (by left-multiplication) on Z = Homeo.(M)/A.

To show the second half of the statement, if Y is some orbit of an ac-
tion of Homeo.(M) and Gy is the point stabilizer for some y € Y, then
Homeo.(M)/G, injects continuously onto Y, and by Theorem 2.14 we have
Stab(X)o C Gy, C Stab(X), so Homeo.(M)/G, is an admissible cover. [J

Classification of admissible covers. By Proposition 4.2, classifying ad-
missible covers reduces to the problem of understanding the image of ewv,
which of course depends on the topology of M. In general, the image E'x of
ev is contained in 71 (PConf|x|(M)) C 71(Conf|x|(M)). It is also a central
subgroup of 71 (Conf|x|(M)), since if v is a loop in 1 (Conf,(M)) based
at X = {x1,...2,}, and f; a loop in Homeoy(M), then fi(7y) gives an iso-
topy between ~y and ev( f;)yev(f;) ™!, so these two elements of 1 (Conf,, (M))
agree. (See also [14] Lemma 3.10].)

While it is not clear whether any general classification results hold beyond
this observation on the center, in low dimensions it is possible to give a
complete description of which admissible covers may occur:
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e Dimension 1. It is an easy exercise to see that 71 (Homeog(S1)) = Z
and also 71 (PConf,(S')) = Z. (Recall that by convention PConf,, (S')
denotes the configuration space of n cyclically ordered points on S*.).
Thus, all admissible covers are intermediate covers of the covering
PConf,(S!) — Conf,(S').

e Higher genus surfaces. For a surface S, of genus g > 1, Hamstrom
[13] showed that Homeog(Sy) is contractible. Therefore Ex =1 for
any X and all covers of Conf,(S,) are admissible.

e 2-sphere. By Kneser [15] we have 71 (Homeog(S5?)) = 71 (SO(3)) =
Z/2. For n > 3, the center of m(Conf, (5?)) is Z/2 (see [8, §9.1]),
which is exactly the image of ev.

e 2-torus. We have 7 (Homeog(T?)) = 71(T?) = Z? (see [12]). As
remarked above, the induced map m(T2?) — 71 (Homeog(T?)) =
71(PConf,(T?)) has image in the center of m(Conf,(T?)). It is
injective, since composition with the forgetful map (forgetting all but
one point of ) gives a map m (PConf,(T?)) — m (PConf,(T?)) =
71(T?) on which this is clearly an isomorphism. Moreover, since
kernel of this map 1 (PConf,(T2)) — 7 (T?) = Z? is center-free, we
can conclude that the image of ev is the center of 7 (Conf, (7?)).

The observation that the image of ev is the center of 7i(Conf,(7?))
discussed above gives a different proof of the following theorem of Birman.

Corollary 4.3 (Birman, see [25] Proposition 4.2 and [3]). The center of
71 (Conf,, (T?)) is Z2.

Higher dimensions. When dim (M) > 3, we know that 71 (PConf,,(M)) =
mi(M,x1) X ... x m (M, x,) where X = {x1,...x,}. Fixing a path between
x1 and z; gives an identification of 71 (M, z1) with m (M, z;), and under
this identification, the definition of ev as the evaluation map implies that
its image in m (PConf,,(M)) C m1(Conf, (M)) lies in the diagonal subgroup

{(9,9,...,9) € m (M) x...xm(M):g€ Er}.

In special cases, the geometry of M can give some additional insight into
the image of Fy. For instance, if M is a compact manifold admitting a
metric of negative curvature, then 71 (M) is center-free, so every cover is
admissible. By contrast, if M is a compact Lie group, the left multiplication
action gives M < Homeoy(M), so the image F; is everything. Thus, if
dim(M) > 3 and M is a compact Lie group, then F,, is the whole diagonal.

Remark (Quotients of Diff].(M)). While the work in this section focused
on homeomorphism groups, it is an equally interesting question to classify
the finite dimensional spaces which occur as quotients of Diff, (M) by small
quotient closed subgroups. Theorem 2.18 and our work in the Homeo case
reduces this to a problem (though a rather nontrivial one) about under-
standing quotients of jet groups. We hope to pursue this in future work.
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5. GENERALIZED FLAT BUNDLE STRUCTURE FOR ACTIONS BY
HOMEOMORPHISMS

This section gives the proof of Theorem 1.5. Recall that this is the state-
ment that for connected manifolds M and N with dim(N) < 2dim(M), if
there is an action of Homeo.(M) on N without global fixed points, then N
has the structure of a generalized flat bundle over M, and when dim(N) —
dim(M) < 3, the fiber F' is a manifold as well. Since Conf, (M) has dimen-
sion ndim(M), the assumption that dim(N) < 2dim(M) eliminates the
possibility that any orbit is a cover of a configuration space of two or more
points. This is what makes the orbit gluing problem tractable and leads to
the relatively simple statement of the theorem.

Definition 5.1. Let B, F' be topological spaces. A space F is a called a
(generalized) flat bundle with base space B and fiber F' if there exists a
homomorphism ¢ : m1(B) — Homeo(F') such that

E = (B x F)/m(B)

where the quotient is by the diagonal action of 71 (B) via deck transforma-
tions on the universal cover B and by ¢ on F.

Each generalized flat bundle is, in particular, a topological F-bundle over
B via the map p : E — B induced by projection to the first factor in B x F.
If B and F are topological manifolds, then this is just the usual definition of
a topological flat or foliated bundle. If B and F' are smooth manifolds and ¢
is an action by diffeomorphisms, this agrees with the differential geometric
notion of £ admitting a flat connection. We now prove the structure theorem
stated in the introduction.

Proof of Theorem 1.5. Let p : Homeo.(M) — Homeo(N) be an action with-
out global fixed points. Since an orbit is a subset of N which has dimension
strictly less than 2dim(M) (by the assumption in the Theorem statement),
no orbit can be a cover of Conf, (M) for n > 1. Therefore every orbit is the
image of a cover of Conf; (M) = M.

We first define the projection map p: N — M and fiber F. Let y € N
be any point, and let G, C Homeo.(M) denote the stabilizer of y under
the action of p. Then G, is a closed subgroup of Homeoy(M) with small
quotient, so there exists a unique point € M such that Stab(z)o C G, by
Theorem 2.14. We set p(y) = x.

If f € Homeo.(M), then Stab(f(z))o = f Stab(x)of ™" C Gypy(
map p satisfies the p-equivariance property

pe(f)(y) = f(p(y))

for all y € N and f € Homeog(M). We now show that p is continuous. To
see this, let B be a small open ball in M, and let H(B) denote the group of
homeomorphisms supported on B and isotopic to the identity through an
isotopy supported on B. Let Fix(p(H(B))) C N denote the set of points

y)» SO the
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fixed by every element of p(H (B)); this is an intersection of closed sets so
is closed. We claim that

p~(B) = N - Fix(p(H(B)))

which is an open set, so showing this claim proves continuity. To prove the
claim, let y € p~!(B), and take any f € H(B) such that fp(y) # p(y).
Then y ¢ Fix(p(f)). Conversely, if y ¢ p~1(B) and f € H(B), then f €
Stab(p(y))o so p(f) fixes y. This gives the desired equality of sets, and we
conclude p is continuous.

Now fix a base point b € M and let F' := p~1(b). Since p(Stab(b))
preserves F, the action p defines a representation Stab(b) — Homeo(F).
Also, for any y € F, by definition of F', we have p(Stab(b)y) C G, (recall,
this is the stabilizer of y under p), so this representation factors through
Stab(b)/ Stab(b)o, giving a homomorphism

¢ : Stab(b)/ Stab(b)g — Homeo(F).

Let Ey C m (M) be the image of the evaluation map for X = {b} as defined
in Section 4. We are abusing notation here slightly, writing Ej in place of
the more cumbersome Ey;y. Let I' := Stab(b)/ Stab(b)o = m1(M)/Ep. Let
C} be the associated maximal admissible cover of M, and let # : Cp, — M
be the natural projection. I' acts on ' by deck transformations, and on F'
by ¢.

We claim that N is naturally homeomorphic to (Cy x F)/T', with orbits
of the action of Homeo.(M) corresponding to the images of the “horizontal”
sets Cy, x {y} in the quotient. To see this, fix a basepoint b in 7~ 1(b). Let
L : Homeo.(M) — Homeo(C}) denote the lifted action of Homeo.(M) on
Cy as in Proposition 4.2. For y € F and m € Cy let f,, € Homeo.(M)
denote any homeomorphism satisfying L(f,,)(m) = b, and define a map
(Cp x F) = N by

(m,y) = p(fm) ' (y).
This is independent of the choice of homeomorphism f,, since if g,, is another

such choice, then g,, = hf,, for some h € Stab(b)y. We claim that this
descends to a well-defined map

I:(Cyx F))T — N

and that this map is a homeomorphism giving a flat bundle structure to N.

To show I is well defined, we need to show that if a € T', then I(a(m), ¢(a)(y)) =
I(m,y). Let a € Stab(b) be a coset representative of a € I' = Stab(b)/ Stab(b)o.
Set fa(m) = @0 fm (vecall that L(f,,) commutes with the deck group of Cy),
then we have

I(a(m), ¢(a)(y)) = p(fm) "' p(@)~" (d(a)(y)) = 1(m,y)

since by definition, ¢|gtane) agrees with plsgapp) on F.
To show injectivity of I, note that by construction, orbits of p are the im-
ages of level sets Cy x {y} in the quotient, and if p(fn) " (y) = p(fr) ('),
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for some m,m’ € Cy and v,y € F, then fT;,lfm € Stab(b). To simplify
notation, let g = f! fr. Then ¢(g)(y) = ¢’ and L(g)(m) = m’. This means
that (m,y) is equivalent to (m’,y’) in the quotient (Cp x F)/I", so I is in-
jective. Surjectivity follows from the fact that each orbit intersects F' in at
least one point, and the lifted action on Cj, is transitive. Continuity of I and
its inverse follows from the fact that, locally, the homeomorphisms f,, can
be chosen continuously with respect to m.

Now (Cp x F)/T is easily seen to be a flat bundle over M with fiber
F, as we may write it as (M x F)/m (M) where the action of m (M) is
by deck transformations on the first factor, and by the composite action
m (M) — m(M)/Ey, — Homeo(F) of w1 (M) on F. This gives the desired
flat bundle structure on N.

To conclude the proof, we need to assert that F' is a manifold in the
low codimension case. Note that in general, the fiber F = p~!(z) may not
be a manifold. For a concrete example, Bing’s “dog bone space” is a non-
manifold space F such that F' xR is homeomorphic to R?. Then we may take
M = R", for n > 3 and a product action of Homeo.(M) on F x M = R"+3,
for which the fiber will be F.

However, since the product of the fiber F' with a ball is a manifold,
we can conclude that F' is a generalized manifold or homology manifold in
the sense of [33, Chapter 8]. In the case where M has codimension 1 or
2, all homology manifolds are manifolds (see [4, Theorem 16.32]) so F' is
necessarily a manifold. See [33] Chapter 8]. O

Theorem 1.5 has an analog for diffeomorphism groups, and we will see
that such pathological fibers do not occur in the differentiable setting. How-
ever, before proving this, we use the homeomorphism group version to solve
the extension problem and derive some additional consequences. We return
to work with diffeomorphism groups in Section 7.

6. APPLICATION: EXTENSION PROBLEMS FOR HOMEOMORPHISM GROUPS

In this section we discuss the extension problem, as introduced in [10]
and further discussed in [19], in the case of homeomorphism groups. Recall
from the introduction that, if W is a compact, connected manifold with
OW = M, there is a natural “restrict to the boundary” map

Res(W, M) : Homeog(W') — Homeog (M),

which is surjective, and the extension problem asks whether Res(W, M) has
a group theoretic section. Here, and in the proof, we drop the superscript 0
from Res® (W, M) since the context of homeomorphism groups is understood.
We always assume that M is connected. We will prove the following stronger
version of Theorem 1.8. As before, we let F, denote the fundamental group
associated to a maximal admissible cover for a singleton {z}.

Theorem 6.1. Let M be a connected, closed manifold of dimension at least
2 and assume that m(M)/E; admits no nontrivial action on [0,1). Then
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for any compact W with OW = M, the map Res(W, M) has a section if
and only if M = S™, W = D', Furthermore, in the case M = S™ any
extension, and in fact any action of Homeog(M) on W, is conjugate to the
standard coning.

In fact, the proof applies also when W is noncompact, showing that W
is either equal to D"™! or to M x [0,1) with an action conjugate to the
obvious action preserving each leaf M x {z}. As an immediate consequence,
we have the following examples.

Corollary 6.2. The following manifolds have no section of Res(W, M), for
any manifold W with boundary M :

(1) Any manifold M # S™ such that the mazimal admissible cover of M
is a finite cover, such as when M is a compact Lie group (see the
discussion at the end of Section 4) .

(2) Any manifold M such that 71 (M) itself has no nontrivial action on
[0,1), for example when 71 (M) is
(a) an arithmetic lattice of higher Q-rank (Witte-Morris [34)), or
(b) a group generated by torsion elements, such as the mapping

class groups of a surface, a reflection group, etc.

Remark. In contrast with Theorem 6.1, when M = S' and W = D? there
are infinitely many different, non-conjugate extensions. These are discussed
and classified in Section 8 below.

Proof of Theorem 6.1. Assume that p is a section for Res(W, M). Define
W' = the connected component of W —Fix(p(Homeoy(M))) containing W .

By Theorem 1.5, there is a canonical flat bundle structure I — W' —
M, where W' is foliated by orbits of the action of p(Homeog(M)). Since
dim(W)—dim(M) = 1, we know that the fiber F'is a 1-dimensional manifold.
Since W’ is connected and the bundle has a section (given by OW), it follows
that F' is connected, with connected boundary, and therefore equal to (0, 1].
Thus, W’ is homeomorphic to (0, 1] x M. By hypothesis, the action of 7y (M)
on F'is trivial, so we have natural coordinates in which p is the product of
the trivial action on (0, 1] and the standard action of Homeog(M) on M.
Let em : (0,1) x M — W denote the embedding with image W’ used to give
this coordinate identification.

Fix x € M, and let r,, — 0 be a sequence in (0, 1]. Since W is compact,
after passing to a subsequence if needed we may assume that em(r,,x)
converges to some point a € W. Note that « is necessarily a fixed point of

p, since it lies on the boundary of a connected component of the open set
W — Fix(p).

Claim 6.3 (Shrinking property). For any closed ball U around o in W,
there exists ng such that em({r,} x M) C U for all n > ny.

Proof of claim. The proof uses the continuity of the action and that M is
compact. Let U be a closed ball about «. Suppose for contradiction that
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U does not contain em(r, x M) for all large n, so there exists a sequence
Tp, € M with em(ry, ,z,,) € W —U. Since M is compact, after passing to
a subsequence we may assume that z,, converges to a point y € M. Take
some f € Homeog(M) such that f(z) = y. Since x,, — y, we may find
a convergent sequence of homeomorphisms f; — id with the property that
fk(xnk) =y, and so f_lfk(xnk) =Z.
Then p(fk)em(rnkaxnk) = 6m(rnk,y), and p(fk)em(rnkvxnk) = p(f)em(rnmx)»

which converges to p(f)a = a. Since fj converges to identity as k — oo, and
the action is continuous, we have em(ry, , xy, ) also converges to p(f)a = a,
a contradiction. (]

Let B be any open ball around « and let S be the boundary of B. We call
a connected, codimension one closed submanifold X C W separating if W —
X has two components. If X is separating, we call the component of W — X
containing OW the exterior component Ext(X), and the other component
the interior, Int(X). In particular, B = Int(S) and W — B = Ext(B). We
also know that em(r,, x M) is separating and Ext(em(r, x M)) = em((ry, 1] x
M), since these lie in a tubular neighborhood of the boundary given by the
image of em([ry, 1] x M) while Int(em(r, x M)) = W — em([rp, 1] x M).
The following easy claim implies that whenever em(r, x M) C B, we have
that Int(em(r, x M)) C B.

Claim 6.4. If X, Y are disjoint, separating manifolds in a manifold W with
boundary, and Y C Int(X), then Int(Y) C Int(X).

Proof. First, (W —Y)NExt(X) = Ext(X) which is connected. Then Int(Y)N
Ext(X) and Ext(Y)NExt(X) partition (W —Y )NExt(X) = Ext(X) into two
connected components, so one of these sets must be empty. But Ext(X) N
Ext(Y") contains OW. Thus, Int(Y) N Ext(X) = 0, so Int(Y) C Int(X). O

Summarizing, from Claim 6.3, we obtain that for any ball B around «,
there exists ng such that em(r, x M) C B for n > ng. By Claim 6.4, we
know that Int(em(r, x M)) C B for n > N. Using this, we deduce the
following:

Claim 6.5. W = W' U {a} and W is the one point compactification of
(0,1] x M.

Proof. Each space em(r, x M) separates W into two components where
em(s x M) C Int(em(ry, x M)) for s < r, and em((t, 1] x M) = Ext(em/(t x
M)). Therefore Fix(p(Homeog(M)) N Ext(em(t x M)) = (). For any ball B
around «, there exists n such that Int(em(r,, x M)) C B by the shrinking
property. Therefore, Fix(p(Homeog(M)) N B = {«a}, which shows that W =
W'U{a}, and the topology of W’ agrees with the one-point compactification
topology or Alexandroff extension of W' by the shrinking property. O

The first statement of Theorem 6.1 now follows from the following propo-
sition.
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Proposition 6.6. The one point compactification of M x (0, 1] is a manifold
if and only if M is the sphere.

The proof of this Proposition is a standard consequence of the Poincaré
conjecture. We recall the outline of the argument for completeness. Suppose
that N is the one-point compactifiction M x (0, 1] U {occ} and is assumed to
be a manifold. Then the local homology groups Hy(N, N — oo;Z) are Z for
k =0 and k = dim(M)+1 and equal to 0 otherwise. This implies that M is
a homology sphere. Since N is homeomorphic to the cone on M, it is simply
connected; since M is homotopic to N — {oo} it is also simply connected
provided that dim(M) > 1 (in the one dimensional case, the Proposition is
trivial by the classification of 1-manifolds). The Poincaré conjecture then
implies that M is a sphere, giving the result of the proposition.

To conclude the proof of the theorem, we need to show that p is conjugate
to the standard coning when M = S". However, this conjugacy is already
given by em on M x [0,1) = W — {a}, and extends over to the one-point
compactifications of these spaces, which is a global fixed point for p and for
the coning action. O

Since the 2-dimensional torus has no nontrivial admissible cover, we ob-
tain the following corollary.

Corollary 6.7. Res(Hy, S,) does not have a section when g = 1.

When g > 1, the group m1(Sy)/E; = m1(Sy) has many nontrivial actions
on [0, 1], which makes it hard to analyze. While we do not know whether
Res(Hy, Sy) has a section for g > 1, in the next section we will prove that no
surface has a section in the differentiable category, answering Ghys’ original
question.

Theorem 6.1 has a generalization, as follows.

Theorem 6.8. Let M, W be closed, connected manifolds with dim(W) =
dim(M) + 1 > 3, and suppose that the deck group m(M)/E, of a mazimal
admissible cover for a singleton {x} has no nontrivial action on S'. There
exists a nontrivial action of Homeog(M) on W if and only if either

(1) W = M x S and the action is trivial on the S factor, or
(2) M = S W = S and the action is by doubling the standard
coning.

Proof of Theorem 6.8. Assume there exists a nontrivial homomorphism p :
Homeog (M) — Homeo(W). Let W’ be a connected component of W —
Fix(p(Homeog(M))). By Theorem 1.5, W/ = (C, x F)/(m1(M)/E,), where
F' is a one-manifold. Since the action of m1(M)/E, on F is trivial, this
bundle has a section, since W' is connected the fiber F' is connected as well.
If p has no fixed points, then W = W', F = S' and W = M x S'.
Otherwise, as in the previous proof, W’ = (0,1) x M and we let em
denote its embedding. Consider a point a € Fix(p(Homeog(M))) that can
be approached by a sequence of points em(r,,z,) with r, — 1 and z,
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converging in M. The proof of Claim 6.3 shows for any ball B around «,
there exists ng such that em(r,, x M) C B for all n sufficiently large.

We modify the argument from the previous proof, as follows. Delete the
subset em([1/3,2/3) x M) from W, leaving a single boundary component
homeomorphic to M. If this manifold is disconnected, we consider only
the connected component containing «. Call this connected manifold with
boundary W”. For p > 2/3, each slice em({p} x M) separates o from OW".
Modifying the previous definition, we say that for a connected, separating,
codimension 1 submanifold X of W” such that o ¢ X, the component of
W' — X containing « is the interior and the other component is the exterior.
In parallel to Claim 6.4 we have

Claim 6.9. If X,Y are disjoint, separating manifolds in W" and Y C
Int(X), then Int(Y) C Int(X).

Proof. Y C Int(X) implies that X C Ext(Y), so (W' — X) nInt(Y) =
Int(Y) which is connected. Then Int(Y) N Int(X) and Int(Y) N Ext(X)
partition (W — X) NInt(Y) = Int(Y) into two connected components, so
one of these sets must be empty. But Int(X) N Int(Y) contains o. Thus,
Int(Y) N Ext(X) =0, so Int(Y") C Int(X). O

We conclude as before that W’ is the one point compactification of
em([2/3,1) x M, that M is a sphere, and that W’ was one of two con-
nected components of W —em([1/3,2/3) x M). The same argument applies
to the other connected component, and we conclude that the action on W
is the double of the standard coning.

O

7. APPLICATION: BUNDLE STRUCTURE AND THE EXTENSION PROBLEM IN
THE DIFFERENTIABLE CASE

In this section, we prove the structure theorem and then discuss the
extension problem for diffeomorphism groups. We recall the statement here.

Theorem 1.7. Suppose M is a connected, closed, smooth manifold and N is
a connected manifold with dim(N) < 2dim(M). If there exists a nontrivial
continuous action Diff(M) — Diff§(N), 0 < r < oo, 1 < s < oo, then the
action is fixed point free, and N is a topological fiber bundle over M where
the fibers are C*-submanifolds of N.

The proof in the case where dim(M) = 1 is short: in this case, we
have M = S' and our assumption on dimension means that dim(N) = 1.
Simplicity of Diffg°(S') and the fact that Diffg°(S*) is C"-dense in Difff(St)
means that finite-order rigid rotations act nontrivially on N, hence as finite
order diffeomorphisms, and so N = S' and the orbit classification theorem
means there is a single orbit for the action, which is conjugate to the standard
action. This can also be derived from the main theorem of [I7], which also
gives a description of actions when M is a noncompact 1-manifold, and does
not assume continuity.
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The proof of Theorem 1.7 in the general case is somewhat involved, how-
ever it easily gives the negative solution to the extension problem, so we
give this consequence first.

Proof of Corollary 1.10. Suppose W is a compact smooth manifold with
OW = M. If Res” has a continuous section, then from Theorem 1.7, we
know that there is a fiber bundle map p : W — M such that p|y; = id. This
contradicts the fact that a boundary W is never a retract of W, which
can be shown by the fact that the fundamental class pins € Hgimar)(M;Z)
has trivial image under the induced map of the embedding M — W into
Hgim(ary (W3 Z).

For Res™, we do not have any section, since [14, Theorem 1.2] implies
that any extension Diffg°(M) — Diffg° (W) is automatically continuous. O

Now we establish the non-existence of fixed points. For this, we do not
need any restriction on the dimension of N, however we do use a hypothesis
on the dimension of M.

Proposition 7.1. Let M be a closed manifold with dim(M) > 3. If Diffg(M)
acts continuously on a manifold N by C* diffeomorphisms with a global fized
point, then the action is trivial.

The proof uses the following easy observation about periodic points.

Observation 7.2. Let f be a local C' diffeomorphism of R™ fizing 0 with
Dfg = I. For any k € N, there exists a neighborhood Uy, of 0 where Fix(f*)N
Uk C Fix(f).

Proof of Observation 7.2. Let k be given. If f* has no fixed points in a
neighborhood of 0, then we are done. Otherwise, using continuity of D f
and the fact that it is identity at 0, let U be a neighborhood of 0 small
enough so that, for any unit vector v tangent to any point y € U, and any
J < k, we have that ||Df;(v)|| and |Df;(v) - v| both have value in [1/2,3/2].
This choice is somewhat arbitrary, what is important here is that it is a
small interval containing 1.

Take a neighborhood Uy C U small enough so that the convex hull of
Up U f(Uyg) lies in U. Let x € Fix(f*) N U, and suppose for contradiction
that f(z) # z. Let L be a straight line segment from x to f(z) parametrized
by unit speed, by construction this is contained in U. Furthermore, for
any j = 1,2,..k — 1 the image f/(L) is a C'! embedded curve from f/(x)
to fit1(x), with tangent vector at every point satisfying having norm in
[1/2,3/2], and dot product with the vector in the tangent direction to L
also in [1/2,3/2]. It follows that the projection of this path to the line
containing L has positive derivative everywhere, so the union of the segments
f7(L) cannot form a closed loop, contradicting the fact that f¥(z) = 2. O

Proof of Proposition 7.1. Suppose p : Diffy(M) — Diff!(N) is a nontrivial,
continuous action as given in the statement. By the orbit classification
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theorem, we know that every orbit of p is a cover of a bundle over Confy (M)
for some k (depending on the orbit, but bounded in terms of the dimension
of N). We say such an orbit has type k.

Suppose for contradiction that p has at least one global fixed point and
let F' denote the fixed set. For each y € F', taking the derivative at y gives
a homomorphism Diffj(M) — GL(n,R) where n = dim(N). Consider the
restriction of this map to Diffg°(M); this is a simple group with no nontrivial
finite dimensional linear representations, so the derivative homomorphism
at any fixed point is trivial. Take some y € N that lies on the boundary
of F and let y; be a sequence of points in N — F' converging to y. After
passing to a subsequence, we can assume that each y; lies in a type of orbit
of the same type, say type k. Thus, to each point y; we can associate a set
m(yi;) = X; C M of cardinality k, such that p(Stab”(X;)o) C Stab(y;).

After passing to a further subsequence, we may assume that the sets X;
Hausdorff converge to a closed set X; this will be a set of k or fewer points on
M. By modifying the sequence y;, we may also assume that X; # X holds for
all i, as follows. For each i such that X; = X, choose some f; € Diffg°(M)
that is C" close to the identity, but with f;(X) # X, and replace y; by
p(fi)(yi). Then 7p(fi)(y:) = fi(X) # X, and since the action is continuous,
we may choose f; close enough to identity so that p(f;)(y;) still converges
to y. Thus, we now assume no point in our sequence y; projects under the
map 7 to X.

We now proceed to construct an element g € Diff” (M) such that ¢g* €
Stab”(X;)o but g(X;) # X;. This will produce a contradiction with Ob-
servation 7.2 because y; is a periodic, but not fixed, point for g for every ¢
and the limit y is a global fixed point. Take disjoint neighborhoods U, of
each point z € X. Define a diffeomorphism ¢ € Diffg°(M) supported on
the union of the sets U, as follows. Fix an order two element R € SO(m),
where m = dim(M), and fix a path 7 of rotations from R to the identity
parametrized by ¢ € [0, 1], that is constant on a neighborhood of 0 and of
1. Take local charts identifying each x € X with the origin 0 € R%, and
identifying a small neighborhood of x contained in U, with the unit ball in
R™. Define g to agree with the rotation «(t) on the sphere of radius ¢, and
extend to the identity outside the ball, and use the chart to identify this
with a diffeomorphism of M supported on the union of the sets U,. For an
appropriate choice of charts we can ensure that g(X;) # X; for all large 3.

By construction, ¢? is the identity on a neighborhood of X, so for all
large i, it acts trivially on the jet space over X;. Since g? is described by a
loop of rotations defined on concentric spheres (and based at identity) and
m1(SO(m)) = Z/2, we can contract the loop of rotations corresponding to
the element g* in SO(m), and this gives an isotopy of ¢g* to the identity
supported on a compact set. This shows that g* actually lies in Stab”(X;)o
for all r, so acts trivially on the fibers over X; coming from the fiber-bundle
structure of each orbit. In particular, p(¢9)*(y;) = ;. However, since g(X;) #
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X, we know that p(g)(y;) # ys for all large i. Since y; — y, and Dp(g)y = 1,
this gives the desired contradiction with Observation 7.2. O

We suspect that a similar result holds for dim(M) = 2, but the situation is
more complicated because m1(SO(2)) = Z. To avoid this, we instead simply
treat the dimension 2 case separately for the purposes of Theorem 1.7.

Proof of Theorem 1.7. We have already treated the easy case where dim(M) =
1. We first give the proof in the higher dimensional setting, then show how
to adapt the arguments to the surface case.

Case: dim(M) = m > 2. By Proposition 7.1, the action is fixed point free.
As in the proof of Theorem 1.5, we first define a projection map p: N — M
by setting p(y) = « if  is the unique point in N such that G, C Stab(z),
where G, C Diff((M) denotes the stabilizer of y under the action of p. This
is well defined, since our restriction on dimension means that no orbits can
be built from jet bundles over Conf;(M) for any j > 1. By Theorem 2.18,
we also know that Stab”(z)o C Gy. Also, the same argument as in the proof
of Theorem 1.5 shows that for any open ball B C M we have

p~'(B) = N — Fix(p(H(B)))

where H(B) denotes the diffeomorphisms supported on B and isotopic to
the identity through diffeomorphisms supported on B, so p is a continuous
map.

Fix a basepoint b € M and let F' = p~!(b). First, we define a local prod-
uct structure as we did in the proof of the generalized flat bundle theorem
for actions by homeomorphisms. Let T" be an embedding of a neighborhood
of the identity in R™ into Diffg°(M) with T'(0) = id, such that b has a free
orbit under T', we again do this using a collection of m smooth vector fields
on M which are linearly independent inside of a small coordinate box con-
taining b, as we did in the proof of Proposition 2.5. The orbit map of b under
T gives a smooth local chart for M around b. Let U be a small neighborhood
of the identity in 7' C Diff®(M). Then the map ¢ : U x F — p~*(U - b)
defined by v¥(t,y) = p(t)(y) is a continuous, injective map onto the open
subset p~1(U - b) of N.

The inverse of this map sends a point = p(t;)(y) to (tz,y) = (tz, p(tz) " (z)).
The map = — t; is continuous, since ¢, is the unique point in U such that
tzb = p(x). Thus, this map is a homeomorphism onto its image, an open
subset of V. From this it follows that F' is a homology manifold of dimension
dim(N) — dim(M).

Note that F' may be disconnected, and may possibly even have infinitely
many connected components, for instance in the case of lifting actions to a
cover of a negatively curved manifold, or to the projectivized tangent bundle
of such a cover.

Claim 7.3. All connected components of F' are homeomorphic.
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Proof. To do this, fix a connected component C' of F'. Let

D)= |J en©)

FEDIfF5 (M)

this is a p-invariant open subset of N since C' is an open set in F'. Now if
p(F)(C)NF # for some f € Diffg°(M), then f € Stab(b), which acts by
homeomorphisms of F', permuting its connected components. Thus, p(f)(C)
is either equal to C or disjoint from it. It follows that the invariant sets
D(C"), as C' ranges over the connected components of F' in distinct orbits of
the permutation action, form a partition of N into countably many disjoint
open sets. Since N is connected, this partition must be trivial, and we
conclude that all connected components are homeomorphic. U

Our next goal is to show that F' is a C'¥ submanifold. For this we use a
different subgroup of Diff(M ) supported in a neighborhood of b.

Fix a local coordinate chart around b € M, identifying b with the origin
in R™. Construct a subgroup S C Stab(b) C Diff**(M) C Diff"(M) of
“local rotations” as follows: choose a small neighborhood U of the identity
in SO(m), and let ¢; be a smooth retraction of U to {id}. Let B; denote the
ball of radius ¢ about the origin in R™. For u € U, take a diffeomorphism
gy supported on By agreeing with u on B; and rotating the sphere of radius
1+t by ¢¢(u). Identify this with a diffeomorphism of M by extending to
the identity outside the image of Bs in our coordinate chart. Let S be the
group generated by {g, : u € U}. Since S fixes b and preserves the image of
Bj in our chart, p(S) acts on p~!(B1) and preserves the fiber F.

Claim 7.4. The action of S on p~'(By) factors through the universal cover
SO(m) = Spin(m) of SO(m).

Proof. Let g € S. For each t € [1,2], the restriction of g to By is a rotation,
thus we can view g as a path in SO(m) based at id (the restriction to By) and
ending at the restriction of g to By. Any g1, g2 € S satisfying ¢1|p, = g2|B,
are two paths to the same endpoint, so (g1g5 1) defines a loop of rotations.
As in the proof of Proposition 7.1, since m1(SO(m)) = Z/2, we know that
(9195 1)? € Stab"(2)o for any z € By, so acts trivially on p~'(z). Thus the

P

action of S on p~!(By) factors through SO(m) by Theorem 2.18 . O

Consider now the restriction of the action p(S) to F = p~1(b). Suppose
that O C F' is an orbit of the action of p(S) on F'. Then O is the continuous,

injective image of a quotient of SO(m) by some closed subgroup H. Since
S is connected, O is connected, and our restriction on dimension implies
that O has dimension at most m — 1. This dimension restriction means the

—_—~—

closed subgroup is either SO(m) itself (hence O is a point), or has identity

component isomorphic to SO(m — 1) or SO(m — 1). See [23] sec.11] for the
classification of small codimension closed subgroups of O(m). In the second
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case, SO(m)/H is a manifold of dimension m — 1 and if equipped with a
metric induced from a bi-invariant metric on SO(m) has an isometry group
of dimension m(m — 1)/2 (the codimension of h) and thus by [16, Theorem
I1.3.1] is a symmetric space, either S™~1 or RP™1L.

If some orbit is S™~! (respectively, RP™~1!), then our restriction on di-
mension implies that this orbit is necessarily a connected component of F'.
Since all connected components are homeomorphic by Claim 7.3, we con-
clude that N is a S™~1 (respectively, RP™~1) bundle over a cover of M;
since the action is C®* and the fiber an orbit of a compact group action, it is
a C*® submanifold.

Otherwise, F is pointwise fixed by S, and equal to Fix(S)Np~1(Bj). The
local linearization theorem for actions of compact groups (see Theorem 1,
§5.2 in [24]) then says that this fixed set is a C'* submanifold. In all cases, we
now know that F' is a C'* submanifold and %) gives a local product structure.

Case: dim(M) = 2. Since Proposition 7.1 does not apply, we work first
with the action of p on N — Fix(p) and then show that Fix(p) = 0.

Let N’ be a connected component of N — Fix(p). We apply the first
part of the previous proof verbatim, taking a point b € N’ and a smooth
embedding T of a neighborhood U of the identity in R? into Diffg°(M) such
that b has a free orbit under T. As before, the map U x F — p~1(U-b) defined
by (u,y) — p(u)(y) is continuous, injective, and a homeomorphism onto its
image p~1(U - b), an open subset of N’. Thus, F is a homology manifold,
and our restriction on dimension implies that it is either a discrete set (in
which case N’ is a cover of M with the lifted action) or a one dimensional
topological submanifold. Claim 7.3 still applies and shows that all connected
components of F' are homeomorphic.

Also, since T' is a smooth embedding and p is an action by C* diffeomor-
phisms, for any yo € F', the orbit map U — N’ given by u — p(u)(yo) is C*,
see [24], Section 5.1].

Following the proof from the previous case, we may define a group ¢ of local

rotations S such that the action of S on p~1(B) factors through SO(2). Here
it will be convenient to also require some compatibility between S and T
Working in the coordinates we used to define T', if S is taken to agree with
rigid rotations on the ball By of radius 1 about 0 in R?, then for any u
sufficiently close to 0 in U, and any s € S, the conjugate sus~! will also
agree with a small rigid translation in some neighborhood of 0. In other
words, the germ of sus™! at 0 agrees with the germ of some element ¢t € T.
Moreover, it follows from the construction of S and T' that t~' o sus™! is
isotopic to the identity relative to a fixed neighborhood of 0 in R2, and
hence the diffeomorphism of M which it defines is supported away from b
and isotopic to the identity relative to some neighborhood B C B of b. The
orbit classification theorem then says that it acts trivially on p~!(B).

This choice of S means that, if yo € F is fixed by some s € S, then the
germ of ¢ and sus™! agree at yo. Thus, restricting to some U’ C U centered
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at 0 on which p is an embedding, the tangent space to the embedded disc
p(U")(yo) at yo is invariant under the action of Dp(s),,, for each s € S, and
the action of S on the tangent space is by rotations. This observation will
be useful to us as we study the structure of F.

Consider now the orbits of the action of S on F. These may be single-
tons, embedded circles on which S acts by rotation, or copies of R on which
S acts by translation. The difficulty in this case is that, unlike in the higher
dimensional case, S is not compact, and orbits may not be compact. It is
also not immediately evident that connected components of F' are either
pointwise fixed or equal to orbits of S; one could in theory have a connected
component of F homeomorphic to S*, but containing an orbit of S homeo-
morphic to R together with a fixed point for S. To deal with this, we enlarge
S to contain local elements of SL(2,R).

Take a neighborhood A of the identity in the diagonal subgroup of SL(2, R)
and let N be a neighborhood of the identity in the nilpotent upper triangular
subgroup, chosen small enough so that v(B1) C Bs/, for all v € AUN (recall
B, denotes the ball of radius 7 in R?). Identifying B, with its image in M
via our chart, each v € A gives a partially defined diffeomorphism of M that
can be extended to a diffeomorphism of M that is identity outside of By, in a
way that continuously embeds A into Diff2° (M), similarly for N. The group
these diffeomorphisms generate consists of diffeomorphisms supported in By
and isotopic to the identity relative to b. Let V' C Diff.(M) be the group
generated by all such elements. The KAN decomposition implies that every
germ of a linear map at b is represented by some sv where s € S, and v € V.
The group generated by S and V fixes b in M so acts on F' = p~1(b) in N.

—~—

This action factors through an action of the group SL(2,R), since SL(2,R)

e

is topologically SO(2) x N.

The classification of closed subgroups of SL(2,R) implies that if O is a
one-dimensional orbit for the action of S on F, then it is also an orbit for

—_—~—

the action of SL(2,R) and the action of SL(2,R) on O is either the standard
action of a finite cyclic cover of PSL(2,R) on S* or of its universal covering

—_—

group SL(2,R) on R. In particular, the standard action means that, for any

—_—~—

point z, there is a conjugate of a lift of the matrix ((2) 1%) in SL(2,R) which

fixes  and all of its translates under the deck group for the cover R — S,
with derivative equal to 2 at these points, and also has a bi-infinite set of
fixed points with derivative equal to 1/2 at each.

Claim 7.5. The closure N’ of N' in N contains no global fized point, hence
Fix(p) = 0.

Proof. Suppose for contradiction that {z/, € N'} is a sequence with z], —
y € Fix(p). Since ] corresponds to a point p(z!) € M, we can assume
that p(z],) — b for some b by passing to a subsequence. Then we can
find elements f,, € Diffg°(M), such that f, — id and f,(p(z])) = b. By
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continuity of the action, p(fy,)(z],) — y. This shows that we can take a new
sequence x, = p(f,)(x),) such that z,, € p~1(b) and z,, — y € Fix(p).

Each z,, lies in an orbit of S that is either an injective copy of R, of ST,
or an isolated point. After passing to a subsequence, we can assume all are
the same type. We treat these three cases separately, each will give us a
contradiction.

First suppose each =z, is contained in an R-orbit. By compactness of
R/Z, we may pass to a subsequence such that z,, converges to some Z mod
Z. Then there exists s, € S converging to identity such that s,(x,) = T
mod Z, and p(s,)(x,) converges to y. Take g € V such that T is a fixed
point of g with derivative 2. Then p(g) also has derivative equal to 2 in
the direction of the tangent space of the R-orbit at the point p(s,)(zy),
contradicting the fact that these converge to a global fixed point, and at
global fixed points all derivatives are trivial, as we remarked in the proof of
Proposition 7.1.

The same argument shows that no sequence of S orbits for S can accu-
mulate to a global fixed point.

Finally we deal with singleton orbits. Our observation that for any fixed
point yo in F', the tangent space to the embedded disc p(U)(yo) at yo is
invariant and rotated by .S, means that S acts with derivatives uniformly
bounded away from identity at fixed points in F', so cannot accumulate to
a global fixed point either. Thus, no sequence of points in F' can converge
to a point in Fix(p). We conclude that Fix(p) = 0 and N = N’. O

To finish the proof of the theorem, we want to show that R-orbits for
S are connected components of F', i.e. no R-orbit for S accumulates at a
fixed point for S. The strategy of the argument is similar to that above.
Suppose for contradiction that x, € F belong to a single R-orbit O and
xn, — y where y is fixed by S. Choose s,, € [0,1] C S = R so that the points
Yn = Sp(xy) € F all lie in the same orbit of the deck transformation 7 of
the cover R — R/Z. Since y is fixed by S, we have y, — y. Recall that
the tangent space to y decomposes as a direct sum with a S-invariant plane,
tangent to the image of U(y), on which S acts by rotations. Let v denote
the axis of rotation in T}, (/). Since O is an S-invariant set, the tangent line
to O at y, approaches v as n — oo. Recall the description of the standard
action of V on R that we gave above. Since y, all differ by a multiple of 7,
we may take an element g € V' (the lift of a hyperbolic element of SL(2,R),
as before) such that p(g) fixes each point y,, and has derivative equal to
1/2 in the direction tangent to O there, and also fixes the points s(y,,) with
derivative equal to 2 there, where s € .S is some nontrivial element not equal
to a multiple of 7. Since y is fixed by s, the sequence s(y,,) also accumulates
at y and has tangent direction in F' tending to v. This contradicts continuity
of the derivative of p(g) at y.

Thus, each R-orbit contained in F' is a connected component of F'. The
same is true for the S'-orbits. It follows that the union the singleton orbits
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also forms a clopen set consisting of a union of connected components. In
the case of S' or R orbits, these are C* embedded submanifolds, and we
have a local product structure using the group 71" and chart 1 as before. In
the neighborhood of a singleton orbit, the action of S on p~!(By) factors
through an action of a compact group, since the deck transformation 7 of
S — SO(2) has support disjoint from Bj, so acts trivially on the fibers over
all points of B;. We may now apply local linearization to conclude these
components of F' are C¥ embedded submanifolds as well. (Il

8. APPLICATION: ACTIONS OF Homeog(S!') ON COMPACT SURFACES

In this section, we will classify actions of Homeog(S') on compact sur-
faces. We will give the proof for the disc D? which proves [22, Conjecture
2.2]. A complete classification of actions on other surfaces can be obtained
by essentially the same argument, giving in particular a new proof of the
main theorem of [22].

8.1. The statement. We first give a general procedure to construct actions
of Homeog(S') on D?. (Similar to [22, §2].) Let L = [0, 1] be the orbit space
of the standard SO(2) action on D?, where r € [0, 1] represents the circle of
radius r. Let K C L be a closed subset including 0. We use the convention
St = R/Z in the following. Let ag : Homeon(S1) — Homeo(R/Z x [0,1]) be
defined by
ao(f)(0,7) = (f(0), f(r +0) = f(0))

where f € Homeog(R) is any lift of f € Homeog(S') to Homeog(R) and
0 € R represents a lift of § € R/Z. Note that this is well defined and
independent of the choice of lifts.

Let T%(0,7) = (0 + kr,7), this is the kth power of a standard Dehn twist
in the closed annulus R/Z x [0, 1]. Let ay(f) = T*ao(f)(T*)~!. For example,

a1(f)(8,7) = Tt ao(f)(6—r,r) = T'(f(6—r), () —F (6-r)) = (£(8), J(B)—F(6—r)).

The fact that both ag(f) and a1(f) have the same first coordinate is a pure
coincidence. This is not true for a; when k # 0,1, and so ag and aq will
play a special role.

Let A : L—K — {0, 1} be a function which is constant on each component.
For a < b € [0,1], let n,p be the affine normalization ngy : ST x [0,1] —
St x [a,b] given by ngp(0,7) = (0,a + r(b—a)). We denote by pk. the
action such that, for each component (a,b) of L — K, the restriction of px x
to its closure is given by

PE A1 505 (F) = Tap © ax((a0)) (F) © gy
It is easy to check that pg ) is indeed a continuous group action, since the
first coordinate of ag and aj is just the standard action on S', and the
second coordinate is also continuous.

We prove the following.
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Theorem 8.1 (Classification of Homeog(S') actions on the disc). Any non-
trivial homomorphism p : Homeog(S*) — Homeoo(D?) is conjugate to pr »
for some K, X as above. Two homomorphisms px x and pg: y are conjugate
to each other if and only if there is a homeomorphism h : [0,1] — [0, 1] with
h(K) = K', and such that X\ and h™' o N'h agree on all but finitely many
components of [0,1] — K on each closed interval in the interior of [0, 1].

The reader may wonder why A only takes values in {0,1}. This is because
that {ax} are all conjugate to one another, which means we can perform
a conjugation supported on finitely many annuli to convert them all to ag.
However, as we will show later, we cannot simultaneously conjugate infinitely
many such maps over a compact set S x [r,1] C S* x (0, 1], and only finitely
many of them can take values outside of {0, 1}.

The proof will also show that actions on the half-open annulus (up to
conjugacy) are the same as those on the disc under the identification of
[0,1) x St with D2 —0. Actions on the open and closed annulus, the sphere,
and the torus have an analogous classification which can be obtained by the
same proof.

We will use the following classical result on SO(2) actions.

Lemma 8.2 ([24] Ch 6.5). Any faithful, continuous action of SO(2) on D?
s conjugate to the standard action by rotations.

This is also true for the sphere and the (open, closed, or half-open) annulus,
while all actions of SO(2) on the torus S* x S* are conjugate to rotation of
one S factor.

Now suppose that p : Homeog(S!) — Homeog(ID?) is a representation.
Using the automatic continuity result of Rosendal and Solecki [27], we know
that p is continuous, and by simplicity of Homeog(S') we may assume p
is faithful. By Lemma 8.2, we can also assume that the restriction of p to
SO(2) agrees with the standard action by rotations. We will apply several
successive conjugations to put p in the form stated in Theorem 8.1.

8.2. First conjugation: coning on a closed, invariant set. Fix s € S'
and let Gy denote the stabilizer of s € Homeop(S!). Later, we will use
an identification of S* with R/Z and take s to be 0 in this identification.
Thinking of D? as the unit disc in R?, the first conjugacy will put Fix(p(Gs))
on the z-axis, so that the restriction of p to the set SO(2)(Fix(p(G,))) agrees
with coning.

Lemma 8.3. The fized point O of p(SO(2)) is a global fized point for
p(Homeog(S1)).

Proof. This lemma has a direct proof which is given in [22] Proposition
6.1]. An alternative quick argument can be obtained by quoting the general
classification [I1, Theorem 1.1], since the stabilizer Stab(O) of O under
p contains SO(2) (in particular, it contains a nonconstant path), and also
contains any element that commutes with a nontrivial element of SO(2). O
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Let L = [0,1] be the orbit space of the standard SO(2) action on D?,
where r € [0, 1] represents the circle of radius r, and let p denote the
projection p : D?> — L = [0,1]. With the exception of O, every other
p(Homeog(S1))-orbit is 1 or 2-dimensional, since nontrivial orbits under the
subgroup p(SO(2)) are 1-dimensional. Let Q C D? be the union of all the
1-dimensional orbits and O. Then K := p(Q) C [0,1] is a closed subset.
(Each 2-dimensional orbit is open by invariance of domain.) The action of
Homeog(S!) is standard on each 1-dimensional orbit, so the point stabilizer
G fixes a single point. Thus, we may define h} : K — {0} — D? by

hi(x) = Fix(p(Gs)) Np~ " (2).
Away from O, this function is uniquely determined by its projection to the
S' coordinate, which we denote by ¢} : K — {0} — S'.

Lemma 8.4. The functions b and g| are continuous on K — {0}.

Proof. Continuity of A/ implies continuity of gj. For h}, we need to show
that for a closed set C' C D?, the set b} (C) is closed. We have the following
computation:

() = p(Fix(p(Gs)) N C).
Since Fix(p(GY)) is a closed set and p is a proper map, we know that h} ' (C)
is a closed set as well. O

By the Tietze extension theorem, we can extend the function ¢j to a
continuous function g; : (0,1] — S!. Identify S = R/Z, so s is identified
with 0, and G5 = Gy C Homeoy(S1). Since p(Gyp) fixes g1(r) for r € K, the
action of p(f) on p~1(r) agrees with p(f)(0,7) = (f(6 — g1(r)) + g1(r), 7).
Define a homeomorphism ki of D? by

hi(0,7) = (0 + g1(r),7)

and h1(O) = O. Then hl_lopohllp—l(K) is “coning”, i.e. h{ op(f)ohi(8,r) =
(f(0),r) whenever r € K. From now on, we replace p with its conjugate
hfl opohi.

8.3. Building block: Indecomposable actions. Call an action of Homeog(S?)
on a surface indecomposible if there are no zero or 1 dimensional orbits. The
following is an easy consequence of Theorem 1.3.

Corollary 8.5. Up to conjugacy, there are only two indecomposible actions
of Homeog(S') on connected surfaces: the standard action on Confy(S1)
and the standard action on PConfo(St), which is the space of ordered pair
of points on S*.

Proof. Let S be a connected surface with an indecomposible Homeog(S*)
action. Since S is 2-dimensional, by invariance of domain every orbit is
an open subsurface of S, and by Proposition 4.2, each is homeomorphic to
either PConfy(S') or Confy(St). Since S is connected, it cannot be covered
by disjoint open subsurfaces, so is either PConfy(S!) or Confy(S1). O
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Since Confy(S!) is homeomorphic to the Mdbius band, this orbit type
does not occur when the surface is orientable. So we may focus on PConfa(S?),
which is homeomorphic to an open annulus. These are precisely the 2-
dimensional orbits that occur in Theorem 8.1.

Claim 8.6. The conjugation between the action ag and Homeog(S') on
PConfy(S) is given by the homeomorphism H : PConfy(S) — S x (0,1)
such that H(x,y) = (z,y — x) where y — x is the distance between x,y along
the anti-clockwise direction.

Proof. To verify the conjugation, for f € Homeog(S'), we need to show
that H o f = ao(f) o H. For (x,y) € PConfy(S'), we have H o f(z,y) =
(f(x), fy) — f(x)) € S* x (0,1). We also have

ao(f) o H(z,y) = ao(f)(z,y — ) = (f(x), f(Z + (y — 2)) = f(Z)),
Now Z + y — x is a lift of y. Denoting this by 7 we have

ao(f) o H(z,y) = (f(2), J(§ — (@) = (f(2), f(y) = f(x) € 5" x [0,1].

Thus, we know that these two actions are conjugate. O

8.4. Second conjugation: 2-dimensional orbits. Let S x (a,b) be a
p-invariant open annulus on which p is irreducible. By Corollary 8.5, there
exists h € Homeo(S"! x (a, b)) such that

hop(f)oh™ =ngpoan(f)o n;}]
We also have p(rg) = rg = ao(rg), and therefore
horg=ryoh.

Writing h in coordinates as h(a, r) := (g(«, ), k(c, 7)), the coordinate func-
tions satisfy
g(Oz—l—e,T) - g(a,?") + 0,
kE(a+0,r) =k(a,r)

for any 6. This shows that k(a,r) = k(r) and g(a, ) = a4 g(r) where g(r)
and k(r) are continuous functions of r € [a,b] such that g(a) = g(b) = 0
and k(a) = a and k(b) = b. Since for each 2-dimensional orbit of the
form S x (a,b), we have that k(a) = a,k(b) = b and k : [a,b] — [a, D]
is increasing, these k glue together to give a continuous function, which
extends to a continuous function that is the identity outside of the union of
the 2-dimensional orbits of p. Abusing notation, denote this function also
by k, and let ho(f,7) = (6,k(r)). This defines a homeomorphism of D?.
Going forward, we replace p with its conjugate ho o po hy ! This simplifies
the form of the associated function h conjugating p to the ag action given
by Corollary 8.5, and we now have

(2) h(a,r) = (g(r) + o, 7).
Say that a 2-dimensional orbit has degree d if this map g : [a,b] — S!
is isotopic relative to the boundary to a degree d map (Recall that g(a) =
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g(b) = 0, so the notion of degree makes sense here). Our next goal is to
prove the following.

Lemma 8.7. Let J C (0,1] be a closed interval bounded away from 0.
Among the 2-dimensional orbits that intersect J x S', only finitely many
have degree not in {0,1}.

We will use the notation Gy for the stabilizer of § € S' = R/Z. There
are two 1-dimensional orbits of G in PConfy(S'). For the ag action, as in
Claim 8.6, these orbits are {(—r,r) | r € (0,1)} and {(0,7) | r € (0,1)}.
Thus, the 1-dimensional orbits of p(Gg) on an irreducible annulus S* x (a, b)
are the sets {h(0,r) | r € (0,1)} and {h(ngp(—r,7)) | r € (0,1)}.

Proof of Lemma 8.7. Suppose for contradiction that there are infinitely many
2-dimensional orbits Uy = S! x (ay,by), indexed by k € N, of degree dif-
ferent from 0 or 1 inside a compact sub-annulus of D? —0. Without loss of
generality, we assume they all have degree > 1 (the case where the degree
is negative is similar) and assume that aj converges monotonically to some
r € (0,1).

For a fixed degree d orbit U = S! x (a,b), the 1-dimensional orbits of
p(Go) in U are the sets

{hongp(—r,r)|r € (0,1)} = {(g9(t),t)|t € (a,b)} and

{honap(—r,r)lr € (0,1)} = {(g(t) — =5, )|t € (a,)}
where ¢ is a degree d map, and hence the map t — g(t) — Z:—‘; has degree
d—12>1.

For convenience, we now switch to working on the universal cover. Since
p(Gp) acts on D? —O with fixed points, we may lift it to an action p with
fixed points on the universal cover of D? —O; then the 1-dimensional orbits
in Uy, are continuous curves from (m, ay) to (m + d,b) and from (m, ax) to
(m+d—1,bg), for m € Z. See Figure 1.

b
bk - s ai ./_/
o W
a
0 1 D 1 5

FIGURE 1. Orbits of Gg in a degree 1 orbit for p (left) and
in degree 2 orbits (right). Dots represent fixed points.

Each 1-dimensional orbit of Gy is canonically homeomorphic with (0, 1)
via a map ¢ : 0 — Fix(Go N Gy). (The map ¢ depends on the orbit, but
for the sake of readability we suppress that notation for the time being.)
Choose 6 € (0,1) and, let z; € {0} x (ax,bi) be a point contained in a
I-dimensional orbit of Go. Let 0, = ¢ !(x;). Pass to a subsequence so
that 6}, converges to some 0, € S'. If 65, # 6, then we may take h € Gy
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such that h(0) # 6, but h(0;) = 0y for all k large. But since Fix(p(h)) is a
closed set, it contains the point (0, 7), contradicting the fact that h ¢ Gjy.
Thus, we conclude that 6., = 0, i.e. every convergent “vertical” sequence
of points = = (0, 71) contained in 1-dimensional orbits of G corresponds,
via the identifications defined by ¢, to a sequence converging to the first
coordinate 6. But this contradicts the existence of a sequence of orbits of
degree > 1. O

8.5. Final conjugation: normal form for 2-dimensional orbits. We
now conjugate the map on each 2-dimensional orbit so that it agrees on
each orbit with ag or a;. First, by Lemma 8.7, there are only finitely may
orbits of degree neither 0 nor 1. Let h3 be a homeomorphism of D? that is
supported on the union of these orbits and agrees with a power of a Dehn
twist on each, conjugating the action on this orbit to the (normalized) action
of ag.

Let hy : D?> — D? be a function that is the identity map outside the
union of the degree 0 orbits and is the conjugation map that conjugates
each degree 0 orbit action to ag-action (this is the function h from equation
(2) in Section 8.4), and let hs : D* — D? be a similar function for degree 1
orbits like hy. We need to show that hs and hs are homeomorphisms; we
give the details for hy4, the case of hs is completely analogous.

By construction, hy is continuous on each individual 2-dimensional orbit,
and extends to a continuous function on the closure of each individual orbit.
What we need to show is continuity at accumulation points of such orbits.
Suppose that S x (ay,b,) is a sequence of 2-dimensional orbits of degree 0
with a, — r for some r # 0. Let g, denote the function from equation (2)
on S x (an,by), and ¢, the identification with (0, 1) defined in the proof of
Lemma 8.7 (where it was called ¢). We need to show that g,, converges to the
constant function 0. Recall that ¢, := {(gn(t) — btn__a;n )|t € (an,by)} is a l-
dimensional orbit. If g,, did not converge to 0, we could pass to a subsequence
and find a sequence of points ¢, = ¢,(0) such that |g,(t,)| > € > 0 where
¢n, denotes the corresponding identification ¢, : 6 — Fix(GoNGy)Ncy,. But
this contradicts the fact that ¢, (0) converges to (6, r) as shown in the proof
of Lemma 8.7. Thus, h3 o hy o hs is a homeomorphism conjugating p into
standard form.

8.6. Characterization of conjugacy classes. It remains only to show
that two homomorphisms pg ) and pg+ y are conjugate to each other if and
only if there is a homeomorphism A : [0, 1] — [0, 1] such that h(K) = K’ and
A and ho )\ agree on all but finitely many components of [0, 1] — K on each
closed interval in the interior of [0,1]. This is proved in [22] Proposition
2.3]. In brief, since K and K’ are the union of 1-dimensional orbits, they
are necessarily conjugate if the actions are. On any fixed two-dimensional
orbit, there is a unique conjugacy between the two actions by Corollary 8.5,
and if A and h o )\ differ on only finitely many components of [0, c] — K for
some ¢ < 1, then these conjugacies can glue together to form a continuous
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homeomorphism. Conversely, if there is a conjugacy between the actions,
one can identify the (necessarily finitely many) components on which they
differ by looking at the image of a radial line under the conjugacy. Full
details can be found in [22].
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