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Abstract

A set of reals is universally Baire if all of its continuous preimages in topological spaces have the Baire property.
Sealing is a type of generic absoluteness condition introduced by Woodin that asserts in strong terms that the theory
of the universally Baire sets cannot be changed by forcing.

The Largest Suslin Axiom (LSA) is a determinacy axiom isolated by Woodin. It asserts that the largest Suslin
cardinal is inaccessible for ordinal definable bijections. Let LSA — over — uB be the statement that in all (set) generic
extensions there is a model of LSA whose Suslin, co-Suslin sets are the universally Baire sets.

We show that over some mild large cardinal theory, Sealing is equiconsistent with LSA — over — uB. In fact, we
isolate an exact large cardinal theory that is equiconsistent with both (see Definition 2.7). As a consequence, we
obtain that Sealing is weaker than the theory ‘ZFC+ there is a Woodin cardinal which is a limit of Woodin cardinals’.

A variation of Sealing, called Tower Sealing, is also shown to be equiconsistent with Sealing over the same large
cardinal theory.

The result is proven via Woodin’s Core Model Induction technique and is essentially the ultimate equiconsistency
that can be proven via the current interpretation of CMI as explained in the paper.

Contents

1 Introduction 2

2 An overview of the fine structure of the minimal LSA-hod mouse and excellent hybrid mice 11
2.1 Short-tree-strategy MiCe . . . . . . . . v v v vt b e e e e e e e e e 13
2.2 The authenticationmethod . . . . . . ... .. ... ... o oL, 15
2.3 Genericinterpretability . . . . . .. ... oL 17
24 Excellenthodpremice . . .. ... . ... ... e 18
2.5 Moreon self-iterability . . . . ... . ... L 19
2.6 Iterability of countable hulls. . . . . . .. ... ... ... Lo oL 22
2.7 Arevised authenticationmethod . . . . . ... ... Lo Lo 23
2.8 Genericinterpretability . . . . . .. ... L e 24
2.9 Fully backgrounded constructions inside excellent hybrid premice . . . ... ... .. 26
2.10 Constructing an iterate via fully backgrounded constructions . . . . ... ... .. .. 27

3 An upper bound for Sealing and LSA — over — uB 28
3.1 AnupperboundforSealing. . ... ... ... ... 29
32 AnupperboundforLSA—over—uB . . . .. ... ... 32
3.3 Anupper bound for Tower Sealing . . . . ... ... ... ... . ... .. 33

© Institute of Mathematics of Polish Academy of Sciences and The Author(s), 2024. Published by Cambridge University Press. This is an Open
Access article, distributed under the terms of the Creative Commons Attribution licence (https:/creativecommons.org/licenses/by/4.0/), which
permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://doi.org/10.1017/fms.2023.127 Published online by Cambridge University Press


doi:10.1017/fms.2023.127
https://orcid.org/0000-0002-6095-1997
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/fms.2023.127&domain=pdf
https://doi.org/10.1017/fms.2023.127

[\S}

G. Sargsyan and N. Trang

4 Basic core model induction 34
5 Lp“B and LpP"B operators 36
6 Condensing sets 41
7 Z-realizable iterations 43
8 Z-validated iterations 46
9 Realizability array 47
10 Z-validated sts constructions 51
10.1 The Z-validated sts construction . . . . . . . . . . . .. vttt 52
10.2 Break3 neverhappens . . . . . . . . . .. L e e e e e 53
10.3 Breakd never happens . . . . . . . .« o v i it e e e e e e e e e e e e 55
10.4 Aconclusion . . . . . . . . . e e e e e e e 57
11 Hybrid fully backgrounded constructions 57
11.1 Thelevels of HFBC() . . .« v v v v i e e e e e e e e e e e e e e e e e e e e 58
12 Putting it all together 61
12.1 The prototypical branch existence argument . . . . . . . . .. ... ... ... ... 62
12.2 One step CoONStruction . . . . . . . . . v v it e e e e e e e e e 62
12.3 Stacking suitable stsmice . . . . . . . ... L. oL e 64
12.4 The conclusion assuming =Hypo . . . . . . . . .. . . ... ... o 65
12.5 Excellent hybrid premouse fromHypo . . . . . . .. ... ... ... ... ... .. 66
13 Open problems and questions 67

1. Introduction

Soon after Cohen discovered forcing and established the consistency of the failure of the
Continuum Hypothesis (CH) with ZFC, thus establishing the independence of CH from ZFC,' many
natural and useful set theoretic principles have been discovered to remove independence from set the-
ory. Perhaps the two best known ones are Shoenfield’s Absoluteness Theorem and Martin’s Axiom.

As is well known, Shoenfield’s Absoluteness Theorem, proved in [45], asserts that there cannot be
any independence result expressible as a Zé fact. In the language of real analysis, Z; sets of reals
are projections of co-analytic sets.? Shoenfield’s theorem says that a co-analytic set is empty if and
only if its natural interpretations in all generic extensions are empty.®> What is so wonderful about
Shoenfield’s Absoluteness Theorem is that it is a theorem of ZFC. We will discuss Martin’s Axiom and
its generalization later on.

The goal of this paper is to establish an equiconsistency result between one Shoenfield-type
generic absoluteness principle known as Sealing and a determinacy axiom that we abbreviated as
LSA — over — uB. LSA stands for the Largest-Suslin-Axiom. To state the main theorem, we need a few
definitions.

A set of reals is universally Baire if all of its continuous preimages in topological spaces have the
property of Baire. Let '™ be the collection of universally Baire sets.* Given a generic g, we let I'y” =4 ¢

(r*)V1sland Ry =40 ¢ RV 8] o(X) is the powerset of X. AD stands for the Axiom of Determinacy, and
AD™ is a strengthening of AD due to Woodin. The reader can ignore the + or can consult [61, Definition
9.6].

Motivated by Woodin’s Sealing Theorem ([23, Theorem 3.4.17] and [60, Sealing Theorem]), we
define Sealing, a key notion in this paper. We say V[g], V[h] are two successive generic extensions
(of V) if g, h are V-generic and V[g] C V[h].

ICohen proved that ZFC + —~CH is consistent. Earlier, Godel showed that ZFC + CH is consistent by showing that CH holds in
the constructible universe L. Forcing can also be used to show that ZFC + CH is consistent.

2A set of reals is analytic if it is a projection of a closed set. A co-analytic set is the complement of an analytic set.

3As open sets are unions of open intervals, it must be clear that they can be easily interpreted in any extension of the reals.

4The superscript oo in this notation, which is due to Woodin, makes sense as one can define x-universally Baire sets as those
sets whose continuous preimages in all < « size topological spaces have the property of Baire. We then set I'“ to be the collection
of all of these sets. Clearly, ' = N, I'~.
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Definition 1.1. Sealing is the conjunction of the following statements.

1. For every set generic g, L(I'y’, Rg)=AD" and p(Rg) N L(I'y", Rg) =Ty’
2. For every two successive set generic extensions V[g] € V[4], there is an elementary embedding

j: L(F;,Rg) — L(I'}, Rp)

such that for every A € I'y’, j(A) = A

To introduce LSA — over — uB, we first need to introduce the Largest Suslin Axiom (LSA). A cardinal
k is OD-inaccessible if for every @ < «, there is no surjection f : (@) — « that is definable from
ordinal parameters. A set of reals A C R is x-Suslin if for some tree T on x, A = p[T].° A set A is Suslin
if it is k-Suslin for some «; A is co-Suslin if its complement R\A is Suslin. A set A is Suslin, co-Suslin
if both A and its complement are Suslin. A cardinal « is a Suslin cardinal if there is a set of reals A
such that A is «x-Suslin but A is not A-Suslin for any 4 < «. Suslin cardinals play an important role in
the study of models of determinacy as can be seen by just flipping through the Cabal Seminar Volumes
([151, (161, [171, [18], (191, [201, [21D).

The Largest Suslin Axiom was introduced by Woodin in [61, Remark 9.28]. The terminology is due
to the first author. Here is the definition.

Definition 1.2. The Largest Suslin Axiom, abbreviated as LSA, is the conjunction of the following
statements:

1. AD*.
2. There is a largest Suslin cardinal.
3. The largest Suslin cardinal is OD-inaccessible.

In the hierarchy of determinacy axioms, which one may appropriately call the Solovay Hierarchy,”
LSA is an anomaly as it belongs to the successor stage of the Solovay Hierarchy but does not conform to
the general norms of the successor stages of the Solovay Hierarchy. Prior to [38], LSA was not known to
be consistent. In [38], the first author showed that it is consistent relative to a Woodin cardinal that is a
limit of Woodin cardinals. Nowadays, the axiom plays a key role in many aspects of inner model theory
and features prominently in Woodin’s Ultimate L framework (see [62, Definition 7.14] and Axiom I and
Axiom II on page 97 of [62]).8

Definition 1.3. Let LSA — over — uB be the statement: For all V-generic g, in V[g], there is A C Ry
such that L(A,Rg)=LSA and F;" is the Suslin co-Suslin sets of L(A,R,).

The following is our main theorem. We say that ¢ and ¢ are equiconsistent over theory 7 if there is
amodel of T U {¢} if and only if there is a model of T U {y/}.

Theorem 1.4. Sealing and LSA — over — uB are equiconsistent over the theory ‘there exists a proper
class of Woodin cardinals and the class of measurable cardinals is stationary’.

In Theorem 1.4, ‘Ty and T, are equiconsistent’ is used in the following stronger sense: there is a
well-founded model of 7 if and only if there is a well-founded model of 75.

Remark 1.5. It is our intention to consider Sealing under large cardinals. The reason for doing this
is that universally Baire sets do not in general behave nicely when there are no large cardinals in the

5The meaning of Ay, is explained below. It is the canonical extension of A to V [h].

6Given a cardinal k, we say T C | J,, <., @™ X k" is a tree on « if T is closed under initial segments. Given a tree T on «, we
let [T'] be the set of its branches (i.e., b € [T ] if b € w® X k“ and letting b = (by, by)) foreachn € w, (boln,b;n) €T.
Wethenlet p[T]={x eR:3f ((x,f) €[T]}.

7Solovay defined what is now called the Solovay Sequence (see [61, Definition 9.23]). It is a closed sequence of ordinals with
the largest element ®, where © is the least ordinal that is not a surjective image of the reals. One then obtains a hierarchy of
axioms by requiring that the Solovay Sequence has complex patterns. LSA is an axiom in this hierarchy. The reader may consult
[32] or [61, Remark 9.28].

8The requirement in these axioms that there is a strong cardinal which is a limit of Woodin cardinals is only possible if
L(A,R)E=LSA.
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universe. One may choose to drop clause 1 from the definition of Sealing. Call the resulting principle
Weak Sealing. If there is an inaccessible cardinal ¥ which is a limit of Woodin cardinals and strong
cardinals, then Weak Sealing implies Sealing. This is because one may arrange so that I'™ is the derived
model after Levy collapsing « to be w; (see Theorem 1.10). We do not know the consistency strength of
Weak Sealing or Sealing in the absence of large cardinals. But one gets that Weak Sealing and Sealing
are equiconsistent over the large cardinal hypothesis in Theorem 1.4.

Based on the above theorems, it is very tempting to conjecture that Sealing and LSA — over — uB are
equivalent over ‘there exists a proper class of Woodin cardinals and the class of measurable cardinals is
stationary’. However, [41] shows that this conjecture is false. The following variation of Sealing, called
Tower Sealing, is also isolated by Woodin.

Definition 1.6. Tower Sealing is the conjunction of the following:

1. For any set generic g, L(Fg’)l:ADJr, and I’y = p(R) N L(I'g", Ry).
2. For any set generic g, in V[g], suppose § is Woodin. Whenever G is V[g]-generic for either the
P, s-stationary tower or the Q. s-stationary tower at d, then

where j : V[g] — M c V[g = G] is the generic elementary embedding given by G.

Theorem 1.7. Tower Sealing and Sealing are equiconsistent over ‘there exists a proper class of Woodin
cardinals and the class of measurable cardinals is stationary’.

Remark 1.8.

1. The proof of Theorems 1.4 and 1.7 shows that over the large cardinal assumption stated in Theorem
1.4, LSA — over — uB and Sealing are equiconsistent relative to the following consequence of Sealing
and of Tower Sealing (cf. Proposition 4.1):

Sealing™: “for any set generic g, I';” = p(R) N L(I'y’, Rg) and there is no w;-sequence of distinct
reals in L(I'y’, R)’.

2. As mentioned above, [41] shows that LSA — over — UB is not equivalent to Sealing (over some large
cardinal theory). However, the equivalence of Sealing, Tower Sealing, other weak forms of these
theories may still hold (over the large cardinal theory of Theorem 1.4). See Conjecture 13.4.

3. Woodin has observed that assuming a proper class of Woodin cardinals which are limits of strong
cardinals, Tower Sealing implies Sealing.

Before giving the proof, in the next few sections, we will explain the context of Theorem 1.4.

Generic Absoluteness

As was mentioned in the opening paragraph, the discovery of forcing almost immediately initiated the
study of removing independence phenomenon from set theory. Large cardinals were used to establish
a plethora of results that generalize Shoenfield’s Absoluteness Theorem to more complex formulas
than 25. In another direction, new axioms were discovered that imply what is forced is already true.
These axioms are called forcing axioms, and Martin’s Axiom is the first one.

Forcing axioms assert that analogues of the Baire Category Theorem hold for any collection of
Ni-dense sets. A consequence of this is that the N|-fragment of the generic object added by the relevant
forcing notion exists as a set in the ground model, implying that what is forced by the N;-fragment of
the generic is already true in the ground model. Martin’s Axiom and its generalizations do not follow
from ZFC. Many axioms of this type have been introduced and extensively studied. Perhaps the best
known ones are Martin’s Axiom ([24]), the Proper Forcing Axiom (PFA, see [3]) and Martin’s Maximum
(see [7]).

The general set theoretic theme described above is known as generic absoluteness. The interested
reader can consult [2], [7], [8], [9], [23], [54], [56], [58], [59], [61] and the references appearing in those
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papers. We will not be dealing with forcing axioms in this paper, but PFA will be used for illustrative
purposes.

The largest class of sets of reals for which a Shoenfield-type generic absoluteness can hold is the
collection of the universally Baire sets. We will explain this claim below. The story begins with the fact
that the universally Baire sets have canonical interpretations in all generic extensions, and in a sense,
they are the only ones that have this property. The next paragraph describes exactly how this happens.
The proofs appear in [6], [23] and [47].

In [6], it was shown by Feng, Magidor and Woodin that a set of reals A is universally Baire if and
only if for each uncountable cardinal «, there are trees 7 and S on « such that p[T] = A and in all set
generic extensions V[g] of V obtained by a poset of size < «, V[g]=p[T] = R — p[S]. The canonical
interpretation of A in V[g] is just Ag =405 (p[T] )V12l where T is chosen on a « that is bigger than the
size of the poset that adds g. It is not hard to show, using the absoluteness of well-foundedness, that A,
is independent of the choice of (7, S).

Woodin showed that if A is a universally Baire set of reals and the universe has a class of Woodin
cardinals, then the theory of L(A,R) cannot be changed. He achieved this by showing that if there is
a class of Woodin cardinals, then for any universally Baire set A and any two successive set generic
extensions V[g] C V[£], there is an elementary embedding j : L(A4,Ry) — L(Ap,Ry).°

Moreover, if sufficient generic absoluteness is true about a set of reals, then that set is universally
Baire. More precisely, suppose ¢ is a property of reals. Let Ay be the set of reals defined by ¢. If
sufficiently many statements about Ay are generically absolute, then it is because Ay is universally
Baire (see the Tree Production Lemma in [23] or in [47]).1° Thus, the next place to look for absoluteness
is the set of all universally Baire sets.

Is it possible that there is no independence result about the set of universally Baire sets? Sealing,
introduced in the preamble of this paper, is the formal version of the English sentence asserting that
much like individual universally Baire sets, much like integers, the theory of universally Baire sets
is immune to forcing. It is stated in the spirit of Woodin’s aforementioned theorem for the individual
universally Baire sets.

Although the definition of Sealing is very natural and its statement is seemingly benign, Sealing has
drastic consequences on the Inner Model Program, which is one of the oldest set theoretic projects and
is also the next set theoretical theme that we introduce.

The Inner Model Program and The Inner Model Problem

The goal of the Inner Model Program (IMP) is to build canonical L-like inner models with large
cardinals. The problem of building a canonical inner model for a large cardinal axiom ¢ is known as
the Inner Model Problem (IMPr) for ¢. There are several expository articles written about IMP and IMPr.
The reader who wants to learn more can consult [12], [32], [42].

In [31], Neeman, assuming the existence of a Woodin cardinal that is a limit of Woodin cardinals,
solved the IMPr for a Woodin cardinal that is a limit of Woodin cardinals and for large cardinals somewhat
beyond. Neeman’s result is the best current result on IMPr. However, this is only a tiny fragment of the
large cardinal paradise, and also, its solution is specific to the hypothesis (we will discuss this point
more).

Dramatically, Sealing implies that IMP, as is known today, cannot succeed as if M is a model that
conforms to the norms of modern inner model theory and has some very basic closure properties; then
M= ‘there is a well-ordering of reals in L(I"*°,R)’. As AD implies the reals cannot be well ordered, M
cannot satisfy Sealing. Thus, we must have the following. "

9Unfortunately, the authors do not know a reference for this theorem of Woodin. But it can be proven via the methods of [23]
and [47].

10The exact condition is that club of countable Skolem hulls are generically correct.

11Sealing Dichotomy is well known among inner model theorists; we do not mean that we were the first to notice it.
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Sealing Dichotomy
Either no large cardinal theory implies Sealing or the Inner Model Problem for some large cardinal
cannot have a solution conforming to the modern norms.

Intriguingly, Woodin, assuming the existence of a supercompact cardinal and a class of Woodin car-
dinals, has shown that Sealing holds after collapsing the powerset of the powerset of a supercompact
cardinal to be countable (for a proof, see [23, Theorem 3.4.17]). Because we are collapsing the super-
compact to be countable, it seems that Woodin’s result does not imply that Sealing has dramatic effect
on IMP, or at least this impact cannot be seen in the large cardinal region below supercompact cardinals,
which is known as the short extender region.

As part of proving Theorem 1.4 and Theorem 1.7, we will establish the following.

Theorem 1.9. Sealing is consistent relative to a Woodin cardinal that is a limit of Woodin cardinals. So
is Tower Sealing.

One consequence of Theorem 1.9 is that Sealing is within the short extender region. Although
Theorem 1.9 does not illustrate the impact of Sealing, its exact impact on IMP in the short extender
region can also be precisely stated. But to do this, we will need extenders.

Extender detour

Before we go on, let us take a minute to introduce extenders, which are natural generalization of
ultrafilters. In fact, extenders are just a coherent sequence of ultrafilters. As was mentioned above, the
goal of IMP is to build canonical L-like inner models for large cardinals. The current methodology
is that such models should be constructed in Godel’s sense from extenders, the very objects whose
existence large cardinal axioms assert. Perhaps the best way to introduce extenders is via the elementary
embeddings that they induce.

Suppose M and N are two transitive models of set theory and j : M — N is a nontrivial elementary
embedding. Let x = crit(j) and let A € [k, j(x)) be any ordinal. Set

E; ={(a,A) € [A]°° x o([«]"“h™ : a € j(A)}.

E; is called the («, 1)-extender derived from j. E; is really an M-extender as it measures the sets in M. As
with more familiar ultrafilters, one can define extenders abstractly without using the parent embedding
J and then show that each extender, via an ultrapower construction, gives rise to an embedding. Given
a (k, A)-extender E over M, we let ng : M — Ult(M, E) be the ultrapower embedding. A computation
that involves chasing the definitions shows that E is the extender derived from 7. Similar computations
also show that x = crit(ng) and 7g (k) > A. It is customary to write crit(E) for « and [h(E) = A.12
It is also not hard to see that for each a € [1]<®, E,, is an ultrafilter concentrating on [«]!%!, and that if
a C b, then Ej, naturally projects to E,.

The motivation behind extenders is the fact that extenders capture more of the universe in the
ultrapower than one can achieve via the usual ultrapower construction. In particular, under large cardinal
assumptions, one can have («, 1)-extender E such that V, C Ult(V, E). Because of this, all large cardinal
notions below superstrong cardinals can be captured by extenders.

The extenders as we defined them above are called short extenders, where shortness refers to the fact
that all of its ultrafilters concentrate on its critical point. Large cardinal notions such as supercompactness
and hugeness cannot be captured by such short extenders as embeddings witnessing supercompactness
give rise to measures that do not concentrate on the critical point of the embedding. However, one can
capture these large cardinal notions by using the so-called long extenders. We do not need them in this
paper, and so we will not dwell on them.

12°/h (E) is the length of E’. We note that when discussing Mitchell-Steel extender models, [k (E) is the cardinal successor of
the natural length of E. The natural length of E is the supremum of generators of E. For more details, see [53].
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The large cardinal region that can be captured by short extenders is the region of superstrong
cardinals. A cardinal « is called superstrong if there is an embedding j : V — M with crit(j) = x and
Vi) € M. Superstrong cardinals are close to the optimal cardinal notions that can be expressed via
short extenders.

Currently, to solve IMPr for a large cardinal, one attempts to build a model of the form L [E |, where
Eisa carefully chosen sequence of extenders. The reader interested in learning more about what L [E ]
should be can consult [53]. This ends our detour.

The Core Model Induction

What is a solution to the IMPr for a given large cardinal? In the short extender region, IMPr for a large
cardinal notion, such as superstrong cardinals, has a somewhat precise meaning. One is essentially asked
to build a model of the form L [E ] which has a superstrong cardinal and Eisa fine extender sequence as
defined in [53, Definition 2.4]. However, one may do this construction under many different hypotheses.

As was mentioned above, Neeman solved the IMPr for a Woodin cardinal that is a limit of Woodin
cardinals assuming the existence of such a cardinal. One very plausible precise interpretation of IMPr is
exactly in this sense. Namely, given a large cardinal axiom ¢, assuming large cardinals that are possibly
stronger than ¢, build an M = L[E ] such that M3k (k).

Our interpretation of IMPr is influenced by John Steel’s view on Gddel’s Program (see [54]). In a
nutshell, the idea is to develop a theory that connects various foundational frameworks, such as Forcing
Axioms, Large Cardinals and Determinacy Axioms, with one another.'® In this view, IMPr is the bridge
between all of these natural frameworks, and IMPr needs to be solved under a variety of hypotheses,
such as PFA or failure of Jensen’s O principles. Our primary tool for solving IMPr in large cardinal-free
contexts is the Core Model Induction (CMI), which is a technique invented by Woodin and developed by
many set theorists during the past 20-25 years. '

In the earlier days, CMI was perceived as an inductive method for proving determinacy in models
such as L(R). The goal was to prove that L, (R)=AD by induction on «. In those earlier days, which
is approximately the period 1995-2010, the method worked by establishing intricate connections be-
tween large cardinals, universally Baire sets and determinacy.'> The fundamental work done by Jensen,
Neeman, Martin, Mitchell, Steel and Woodin were, and still are, at the heart of current developments
of CMI. The following is a non-exhaustive list of influential papers: most papers in the Cabal Seminar
Volumes that discuss scales or playful universes ([15], [16], [17], [18], [19], [20], [21]), [11], [25],
[26], [28], [30], [49]. Several fundamental papers were written implicitly developing this view of CMI.
For example, the reader can consult [22], [46] and [48]. As CMI evolved, it became more of a tool for
deriving maximal determinacy models from non-large cardinal hypotheses.

In a seminal work, Woodin has developed a technique for deriving determinacy models from large car-
dinals. The theorem is known as the Derived Model Theorem. A typical situation works as follows. Sup-
pose A is a limit of Woodin cardinals and g € Coll(w, < 1) is generic. Let R* = U, ,RY [8nColl(w,a)]
Working in V(R*),® let ' = {A C R : L(A,R)=AD}. Then we have the following.

Theorem 1.10 (Woodin, [47]). L(T",R)=AD.

In Woodin’s theorem, I" is maximal as there are no more (strongly) determined sets in the universe
that are not in I'. If one assumes that A is a limit of strong cardinals, then I' above is just (') &),

13Qur goal here is to avoid philosophical discussions, but if we were to go in this direction, we would call this view approach
to IMPr Steel’s Program.

14In some contexts, K € theory can also be used. See [13]. But solving IMPr via a K€ theory will not, in general, provide such
bridges between frameworks. The K approach will not, in general, connect say PFA with the Solovay Hierarchy. See Conjecture
1.11.

5For example, the reader may try to understand the meaning of W in [46].

16This is the minimal transitive model W of ZF such that V. C W and R* € W It can be shown that RW = R*.
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The aim of CMI is to do the same for other natural set theoretic frameworks, such as forcing axioms
and combinatorial statements. Suppose 7 is a natural set theoretic framework and VI=T. Let k be an
uncountable cardinal. One way to perceive CMI is the following.

(CMI at «) Saying that one is doing Core Model Induction at x means that for some
g C Coll(w, k)", in V|[g], one is proving that L(I"°, R)=AD"*.

(CMI below «) Saying that one is doing Core Model Induction below « means that for some
g € Coll(w, < k)8, in V|[g], one is proving that L(I'*,R)=AD".

In both cases, the aim might be less ambitious. It might be that one’s goal is to just produce I' € I'*™
such that L(I", R) is a determinacy model with desired properties.

CMI can even help proving versions of the Derived Model Theorem. Here is an example. We use the
setup introduced for stating the Derived Model Theorem (Theorem 1.10). Suppose A € V(R*) is a set
of reals such that for some @ < 2, there is a < A-universally Baire set B € V[g N Coll(w, a)] such that
A = B,. The tools developed during the earlier period of CMI can be used to show that L(A, R*)=AD.
The point here is just that CMI is the most general method for proving derived model types of results. In
the Derived Model Theorem, the presence of large cardinals makes CMI unnecessary, but in other cases,
it is the only method we currently have. One can also attempt to prove the full Derived Model Theorem
via CMI, but this seems harder, and some of the main technical difficulties associated with other non-
large cardinal frameworks resurface.

The goal, however, is not to just derive a determinacy model from natural set theoretic frameworks
but to establish that the determinacy model has the same set theoretic complexity as V has.

Let M be the maximal model of determinacy derived from V. One natural® way of saying that M has
the same complexity as V is by saying that the large cardinal complexity of V is reflected into M, and
one particularly elegant way of saying this is to say that HOD™ | the universe of the hereditarily ordinal
definable sets of M, acquires these large cardinals. A typical conjecture that we can now state in this
language is as follows.

Conjecture 1.11. Assume the Proper Forcing Axiom and suppose k > w;. Let g C Coll(w, k). Then
HOD s Re) = “there is a superstrong cardinal’.

A less ambitious conjecture would be that PFA implies that whenever g C Coll(w, ) is V-generic,
there is a set of reals A € I'y’ such that HODX(ARe) = “there is a superstrong cardinal’. However, we
believe that the stronger conjecture is also true. One can change PFA to any other natural framework that
is expected to be stronger than superstrong cardinals.?? As we brought up HOD, it is perhaps important
to discuss its use in CMI.

HOD analysis and covering

Conjecture 1.11 is a product of many decades of work that goes back to the UCLA’s Cabal Seminar,
where the study of playful universes originates (see, for example, [4] and [29]). Our attempt is to avoid
a historical introduction to the subject, and so we will avoid the long history of studying HOD and its
playful inner models assuming determinacy.

Nowadays, we know that HOD of many models satisfying AD is an L-like model carrying many large
cardinals,? and the problem of showing that HOD of every model of AD is an L-like model is one of
the central open problems of descriptive inner model theory (see [32] and [55]).

7This is the poset that collapses « to be countable.

8This is the poset that collapses everything < « to be countable.

®That this way of stating the desired closeness is natural is a consequence of several decades of research carried out on HOD
of models of determinacy. See the fragment of the introduction titled HOD analysis.

20In some cases, we work in V' [g] for g € Coll(w, k) for some «. In other cases, we may work in V [g] for g € Coll(w, <
«). Whether one does CMI at « or below « is hypothesis-dependent.

21See for example [14],[34],[38].
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The current methodology for proving that HOD” (™R) has the desired large cardinals is via a failure
of a certain covering principle involving HOD* (I"R) 'Recall that under determinacy, ® is defined to be
the least ordinal that is not a surjective image of the reals. Set %~ = HODX(™-®)|@.

To define the aforementioned covering principle, we first need to extend H~ to a model H in which
O is the largest cardinal. This is a standard construction in inner model theory. We simply let H be the
union of all hod mice extending H whose countable submodels have iteration strategies in L(I"°,R).
This sentence perhaps means little to a general reader. It turns out, however, that in many situations, it
is possible to describe H without any reference to inner model theoretic objects.

Here is one such example. Suppose « is a measurable cardinal which is a limit of strong cardinals
and suppose we are doing CMI below «. Let g C Coll(w, < k) be our generic. We also make the
assumption that all sets of reals produced by the CMI below « are universally Baire.?>? Let j : V — M
be any embedding with crit(j) = k. We furthermore assume that we have succeeded in showing
that sup(j[®]) < j(©).2% Setting v = sup(j[O]), let C(H~) be the set of all A C @ such that
Jj(A) Nv € j(H™). Then H is the transitive model extending H~ that is coded by the elements of
C(H™).>

At any rate, one can simply regard H as a canonical one-cardinal extension of ™. In fact, that H is
a canonical extension of A~ is the central point. The next paragraph explains this.

Continuing with the above scenario, let now & C Coll(w, k) be V[g]-generic.?> Because |V, | = «,
we have that |H~|V 8] = &) and ||V [#*"] < K|. Letting n = Ord N H,

L(F;h, Rg:n)E ‘there is an n-sequence of distinct reals’.
Assuming Sealing, we get that 7 < w; as under Sealing, L(F;h, Rg.n)=AD, and under AD, there is no
w1-sequence of reals. Therefore, in V, n < «* as we have that («*)V = w}/ lg=h], Letting now
UB — Covering : cfY (Ord N H) > «,

Sealing implies that UB — Covering fails at measurable cardinals that are limits of strong cardinals. A
similar argument can be carried out by only assuming that « is a singular strong limit cardinal.?®

All other sufficiently strong frameworks also imply that the UB — Covering fails but for different
reasons. One particular reason is that UB — Covering implies that Jensen’s O, holds at singular cardinal
k, while a celebrated theorem of Todorcevic says that under PFA, O, has to fail for all x > w;.

The argument that has been used to show that H has large cardinals proceeds as follows. Pick a target
large cardinal ¢, which for technical reasons we assume is a Xp-formula. Assume H=Vy—¢(y). Thus
far, in all applications of the CMI, the facts that

¢ — Minimality : HEYy—¢(y)
and
- UB — Covering: cf¥ (% N Ord) < «

hold have been used to prove that there is a universally Baire set not in I’y where g € Coll(w, k) or
g € Coll(w, < k) (depending where we do CMI), which is obviously a contradiction.

22This is why we assume that « is a limit of strong cardinals, as this hypothesis implies what we stated.

23This condition happens quite often.

24Fix a pairing function 7 : ©> — @. Given A C C(H~), we say A is a code if My = (O, E,) is a well-founded model where
Es C ©%is givenby (a,B) € EA = n(a,B) € A.If A € C(H") is a code, then let M 4 be the transitive collapse of
M 4. Then H is the union of models of the form M 4.

25Recall that above we were doing CMI below « and g € Coll(w, < k). Also, k = w

26]n this case, H is defined in V (R*), where R* = | , <, RVIhnCol(w.a)] and b € Coll(w, < ) is V-generic.

V[g].
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Because of the work done in the first 15 years of the 2000s, it seemed as though this is a general
pattern that will persist through the short extender region. That is, for any ¢ that is in the short extender
region, either ¢ — Minimality must fail or UB — Covering must hold. The main way Theorem 1.9 affects
IMPr in the short extender region is by implying that this prevalent view is false.?”

Almost all existing literature on CMI uses the argument outlined above in one way or another. The
interested reader can consult [1], [34], [38], [39], [46], [57], [63].

The future of CMI

In the authors’ view, CMI should be viewed as a technique for proving that a certain type of covering holds
rather than a technique for showing that HOD has large cardinals. The latter should be the corollary, not
the goal. The type of covering that we have in mind is the following. We state it in the short extender
region, and we use NLE?® of [55] to state that we are in the short extender region.

Conjecture 1.12. Assume NLE and suppose there are unboundedly many Woodin cardinals and strong
cardinals. Let « be a limit of Woodin cardinals and strong cardinals such that either k is a measurable
cardinal or has cofinality w. Then there is a transitive model M of ZFC — Powerset such that

1. Ord N M = «*,
2. M has a largest cardinal v,
3. for any V-generic g C Coll(w, < k), letting R* = | ,, RV [8nColllw.a)] iy y(R*),

L(M, U (M|a)®, T, R*)=AD.

a<vy

4. Ifin addition there is no inner model with a subcompact cardinal, then M=0,,.

In [36], the first author showed that Conjecture 1.12 holds in hod mice. Assuming V is a hod mouse
and keeping the notation of Conjecture 1.12, M is simply the direct limit of all iterates of V|«* that are
below « and have a countable length in V[g].

With more work, the conjecture can also be stated without assuming the large cardinals. We do
not believe that the conjecture is true in the long extender region because of the following general
argument. Assume « is an indestructible supercompact cardinal and suppose the conclusion of the
conjecture holds at x. Let g € Coll(k, k*) be V-generic. Then presumably if M satisfies the conclusion
of Conjecture 1.12, then MY = MV 2] The confidence that this is true comes from the fact that we
expect that any M satisfying clause 3 must have an absolute definition. Because « is still a supercompact
in V[g], clause 1 has to fail.

We believe that proving Conjecture 1.12 should become the goal of CMI. To prove it, one has to
develop techniques for building third- order canonical objects, objects that are canonical subsets of I'*.

One possible source of such objects is described in forthcoming [40]. There, the authors introduced
the notion of Z-hod pairs and developed their basic theory. We should also note that even in this paper,
to prove Theorem 1.4, we build objects that resemble objects that are of third order. We build our
third-order objects more or less according to the current conventions following [38]. What we meant
above is that we believe that to get to superstrongs entirely, new kinds of canonical objects need to be
constructed. The reader can read more about such speculations in [36].

The abstract claimed that Theorem 1.4 is the ultimate equiconsistency proved via CMI. This does not
mean that there are no other equiconsistencies in the region of LSA. All it means is that to go beyond,
one has to start thinking of CMI as a method of building third-order objects.

The authors view Theorem 1.4 as a natural accumulation point in the development of their under-
standing of CMI and the way it is used to translate set theoretic strength between natural set theoretic
frameworks — namely, between forcing axioms, large cardinals, determinacy and other frameworks.

27Example of ¢ (7y) is: “y is a Woodin cardinal which is a limit of Woodin cardinals’.
28‘No Long Extender’
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It has been proven by arriving at it via a 15-year-long-process of trying to understand CMI. Because of
this, we feel that it is a theorem proven by the entire community rather than by the authors. We espe-
cially thank Hugh Woodin and John Steel for their influential ideas throughout the first 25 years of the
Core Model Induction.

The history of Theorem 1.4 is as follows. The first author, in [33], stated a conjecture that in his view
captured the ideas of the first 15 years of the 2000s — namely, that ¢ — Minimality and = UB — Covering
cannot coexist in the short extender region. Unfortunately, very soon after finishing that paper, he realized
that the covering conjecture of that paper has to fail in the region of LSA.?° However, no easily quotable
theorem was proven by him. It was not until fall of 2018 when the second author was visiting the first
author, that they realized that Theorem 1.4 says exactly that ¢ — Minimality and — UB — Covering can
coexist in the short extender region.

2. An overview of the fine structure of the minimal LSA-hod mouse and excellent hybrid mice

As was mentioned above, the proof of Theorem 1.4 is an accumulation of many ideas developed in the
last 20 years. We will try to develop enough of the required background in general terms so that a reader
familiar with the terminology of descriptive inner model theory can follow the arguments. The main
technical machinery used in the proof is developed more carefully in [38]. In the next few sections,
we will write an introduction to this technical machinery intended for set theorists who are familiar
with [32].

We say that M is a minimal model of LSA if

1. ME=LSA,
2. M = L(A,R) for some A C R, and
3. for any B € p(R) N M such that w(B) < w(A), L(B,R)=-LSA.

It makes sense to talk about ‘the’ minimal model of LSA. When we say M is the minimal model of LSA,
we mean that M is a minimal model of LSA and Ord,R C M. Clearly from the prospective of a minimal
model of LSA, the universe is the minimal model of LSA. The proof of [38, Theorem 10.3.1] implies
that there is a unique minimal model of LSA such that Ord,R € M.3° This unique minimal model of
LSA is the minimal model of LSA.

One of the main contributions of [38] is the detailed description of assuming that the universe
is the minimal model of LSA. The early chapters of [38] deal with what is commonly referred to as
the HOD analysis. These early chapters introduce the notion of a short-tree-strategy mouse, which is
the most important technical notion studied by [38]. To motivate the need for this concept, we first recall
some of the other aspects of the HOD analysis.

Recall the Solovay Sequence (for example, see [34, Definition 0.9] or [61, Definition 9.23]). Recall
that O is the least ordinal that is not a surjective image of the reals. The Solovay Sequence is a way of
measuring the complexity of the surjections that can be used to map the reals onto the ordinals below
©. Assuming AD, let (6, : @ < Q) be a closed in ® sequence of ordinals such that

HOD
V@

1. 8y is the least ordinal 1 such that R cannot be mapped surjectively onto 1 via an ordinal definable
function,

2. fora +1 < Q, fixing a set of reals A such that A has Wadge rank 6, 6,4 is the least ordinal i such

that R cannot be mapped surjectively onto n via a function that is ordinal definable from A,

for limit ordinal 1 < €, 8 = sup, ., 04, and

4. Q is least such that g = ©O.

»

29The exact theorem was that if P is an Isa type hod premouse, ¢ is the largest Woodin cardinal of P, k < ¢ is the least < &-
strong cardinal that reflects the set of < §-strong cardinals and p is a < J-strong cardinal larger than «. Then in P, UB — Covering
must fail at . This theorem was presented at the Fourth European Set Theory Conference in Mon Sant Benet in 2013.

30This proof of [38, Theorem 10.3.1] shows that the common part of a divergent models of AD contains a minimal model of
LSA.
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It follows from the definition of LSA (Definition 1.2) that if « is the largest Suslin cardinal, then it
is a member of the Solovay Sequence. It is not hard to show that LSA is a much stronger axiom than
ADg + ‘O is regular’. Under LSA, letting « be the largest Suslin cardinal, there is an w-club C C « such
that for every 1 € C, L(I'j,R)=‘ADg + A = ® + O is regular’, where I'j = {A C R : w(A) < A}.%!

Assume now that V is the minimal model of LSA. It follows from the work done in [38] that for every
k that is a member of the Solovay Sequence but is not the largest Suslin cardinal there is a hod pair
(P, Z) such that

1. the Wadge rank of X (or rather the set of reals coding X) is > « and
2. for some n € P, letting Mo, (P, X) be the direct limit of all countable X-iterates Q of P such that
the iteration embedding 7T7Z)’Q is defined and letting n%’m 1P > Mu(P,X) be the iteration map,

then V{9 is the universe of Mo (P, )75  (7).%

A technical reformulation of the above fact appears as [38, Theorem 7.2.2].

The situation, however, is drastically different for the largest Suslin cardinal. Let x be the largest
Suslin cardinal. The inner model theoretic object that has Wadge rank « cannot be an iteration strategy.
This is because if X is an iteration strategy with nice properties like hull condensation,>* then assuming
AD holds in L(Z,R), L(Z,R)lz‘/\/l#;#‘Z exists and is wq-iterable’.?* This then easily implies that X is
both Suslin and co-Suslin. It then follows that no nice iteration strategy can have Wadge rank > «, as
any such strategy is both Suslin and co-Suslin.>*

The inner model theoretic object that has Wadge rank « is a short-tree strategy, which is a partial
iteration strategy. Suppose P is any iterable structure and X is its iteration strategy. Suppose ¢ is a
Woodin cardinal of P. Given 7 € dom(X) that is based on P|d, we say that T is Z-short if letting
>(T) = b, either the iteration map 7r17; is undefined or ﬂ[(&) > &(T).If T is not X-short, then we say
that it is Z-maximal. We then set 7€ be the fragment of X that acts on short trees.

Following [38, Definition 3.1.4], we make the following definition.

Definition 2.1. Suppose 7 is a normal iteration tree of limit length. We then let

m(T) = Ug<in(n MGIIA(E]) and m*(T) = (m(T))*.

In the language of the above definition, the convention used in [38] is the following: X% (7) = b if
and only if

1. T is Z-short and X(7") = b, or
2. T is X-maximal and b = m* (7).

Thus, 23%¢ tells us the branch of a X-short tree or the last model of a X-maximal tree.

The reader can perhaps imagine many ways of defining the notion of short-tree strategy without a
reference to an actual strategy. The convention that we adopt in this paper is the following. If A is a
short-tree strategy for P, then we will require that

1. for some P-cardinal §, P = (P|6)* and PE"6 is a Woodin cardinal’,
2. if ¢ is as above and v is the least < d-strong cardinal of P, then Pk="‘v is a limit of Woodin cardinals’,
3. given an iteration tree 7 € dom(A), A(T) is either a cofinal well-founded branch of T or is equal

tom*(7),

31'This theorem is probably due to Woodin. The outline of the proof is as follows. By an unpublished theorem of Woodin (but
see [35, Theorem 1.9]), k is a measurable cardinal, as it is a regular cardinal. It follows that there is an w-club C consisting of
members of the Solovay sequence such that for all 2 € C, HOD="A is regular’. Hence, L(I"3, R)=‘ADg + A = © + O is regular’.
For the proof of the last inference see [5, Theorem 2.3].

32Thus, ﬂ'%,w(n) =K.

33% must also satisfy some form of generic interpretability (i.e., there must be a way to interpret Z on the the generic extensions
of MP).

34This can be proved by a Z%—reﬂection argument.

351t follows from the theory of Suslin cardinals under AD that x cannot be the largest Suslin cardinal; see [10, Chapter 3].

https://doi.org/10.1017/fms.2023.127 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2023.127

Forum of Mathematics, Sigma 13

4. for all iteration trees T € dom(A), if A(T) is a branch b, then n[(é) >6(7),
5. for all iteration trees 7 € dom(A), if A(T) is a model, then m* (7)== 5(T) is a Woodin cardinal’.

If a hod mouse P has properties 1 and 2 above, then we say that P is of #-Isa type. [38, Definition 2.7.3]
introduces other types of LSA hod premice.

The set of reals that has Wadge rank « is some short-tree strategy A. The hod mouse P that A iterates
has a unique Woodin cardinal ¢ such that if v < ¢ is the least cardinal that is < ¢-strong in P, then
PE=‘v is a limit of Woodin cardinals’. The aforementioned Woodin cardinal ¢ is also the largest Woodin
cardinal of P. This fact is proven in [38] (for example, see [38, Theorem 7.2.2] and [38, Chapter 8]).
There is yet another way that the LSA stages of the Solovay Sequence are different from other points.

We continue assuming that V is the minimal model of LSA. If X is a strategy of a hod mouse with
nice properties, then ordinal definability with respect to X is captured by X-mice. More precisely, [38,
Theorem 10.2.1] implies that if x and y are reals, then x is ordinal definable from y using X as a parameter
if and only if there is a Z-mouse M over y>°¢ such that x € M.

[38, Theorem 10.2.1] also implies that the same conclusion is true for short-tree strategies. Namely,
if A is a short-tree strategy, then for x and y reals, x is ordinal definable from y using A as a parameter
if and only if there is a A-mouse M over y such that x € M. Theorems of this sort are known as
Mouse Capturing theorems. Such theorems are very important when analyzing models of determinacy
using inner model theoretic tools.

For a strategy X, the concept of a Z-mouse has appeared in many places. The reader can consult [34,
Definition 1.20], but the notion probably was first mentioned in [46] and was finally fully developed
in [43].

A X-mouse M, besides having an extender sequence, also has a predicate that indexes the strategy.
The idea, which is due to Woodin, is that the strategy predicate should index the branch of the least tree
that has not yet been indexed.

Unfortunately, this idea does not quite work for A-mice where A is a short-tree strategy. In the next
subsection, we will explain the solution presented in [38].

2.1. Short-tree-strategy mice

We are assuming that V is the minimal model of LSA. Suppose A is a short-tree strategy for a hod
mouse P. We let § be the largest Woodin cardinal of . Thus, P = (P|6)*. In this subsection, we
would like to convince the reader that the concept of A-mouse, while much more involved, behaves very
similarly to the concept of a Z-mouse where X is an iteration strategy.

In general, when introducing any notion of a mouse, one has to keep in mind the procedures that
allow us to build such mice. Formally speaking, many notions of A-mice might make perfect sense, but
when we factor into it the constructions that are supposed to produce such mice, we run into a key issue.

In any construction that produces some sort of mouse (e.g., K-constructions, fully backgrounded
constructions, etc.), there are stages where one has to consider certain kinds of Skolem hulls, or as
inner model theorists call them, fine structural cores. The reader can view these cores as some carefuly
defined Skolem hulls. To illustrate the aformentioned problem, imagine we do have some notion of
A-mice and let us try to run a construction that will produce such mice. Suppose 7T is a tree according
to A that appears in this construction. Having a notion of a A-mouse means that we have a prescription
for deciding whether A(7") should be indexed in the strategy predicate or not.

Suppose 7 is a A-maximal tree. It is hard to see exactly what one can index so that the strategy
predicate remembers that 7 is maximal. And this ‘remembering’ is the issue. Imagine that at a later
stage, we have a Skolem hull 7 : M — A of our current stage such that 7 € rng(n). It is possible that
U =qer 7' (T) is A-short. If we have indexed X in our strategy that proves A-maximality of 7, then
771 (X) now can no longer prove that I/ is A-maximal. Thus, the notion of A-mouse cannot be first order.

36The difference between a mouse and a mouse over y is the same as the difference between L and L[x].
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The solution is simply not to index anything for A-maximal trees. This does not quite solve the
problem as the above situation implies that nothing should be indexed for many A-short trees as well.
To solve this problem, we will only index the branches of some A-short trees, those that we can locally
prove are A-short. We explain this below in more details.

Fix an Isa type hod premouse P and let A be its short-tree strategy. Let 6 be the largest Woodin
cardinal of P and v be the least < §-strong of P. To explain the exact prescription that we use to index A,
we explain some properties of the models that have already been constructed according to this indexing
scheme. Suppose M is a A-premouse.

Call T € M universally short (uvs) if T is obviously short (see [38, Definition 3.3.2]). For instance,
it can be that the #-operator provides a Q-structure and determines a branch ¢ of 7 such that Q(c, T)>"
exists and Q(¢,7) < m*(7). Another way that a tree can be obviously short is that there could be a
model Q in T such that ng’ o: P — Q is defined and the portion of T that comes after Q is based on

QP . Here, Q% is defined as Ql(k*) Q where « is the supremum of the Woodin cardinals below the largest
Woodin of Q. The reader should keep in mind that there is a formula ¢ in the language of A-premice
such that for any A-premouse M and for any iteration tree 7 € M, T is uvs if and only if ME={[T].

Unfortunately, there can be trees that are not universally short (nuvs). Suppose then 7 is nuvs. In
this case, whether we index A(7) or not depends on whether we can find a Q-structure that can be
authenticated to be the correct one. There can be many ways to certify a Q-structure, and [38] provides
one such method. An interested reader can consult [38, Chapter 3.7]. Notice that because P has only
one Woodin cardinal, not being able to find a Q-structure is equivalent to the tree being maximal. Thus,
in a nutshell, the solution proposed by [38] is that we index only branches that are given by internally
authenticated Q-structures.

Suppose now that we have the above Skolem hull situation — namely, that we have 7 : M — N
and 7 in AV that is A-maximal but 7= (7) is short. There is no more indexing problem. The reason is
that in order to index A(z7~'(7)) in M, we need to find an authenticated Q-structure for 7~! (7). The
authentication process is first order, and so if A" does not have such an authenticated Q-structure for 7,
then M cannot have such an authenticated Q-structure for 7~! (7).

The reader of this paper does not need to know the exact way the authentication procedure works.
However, the reader should keep in mind that the authentication procedure is internal to the mouse.
More precisely, the following holds:

Internal Definability of Authentication: there is a formula ¢ in the appropriate language such that
whenever (P, A) is as above and M is a A-mouse over some set X such that P € X, for any iteration
tree 7 € M, ME=¢[T] if and only if 7 € dom(A), T is short and A(T) € M.

We again note that the Internal Definability of Authentication (IDA) is only shown to be true for the
minimal model of LSA. In general, IDA cannot be true as there can be short trees without Q-structures.
The authors have recently discovered another short-tree indexing scheme that can work in all cases but
has some weaknesses compared to the one introduced in [38].

Using the notation in [38], recall that P” is the ‘bottom part’ of P (i.e., P? = P|(v*)¥, where v is
the supremum of the Woodin cardinals below the top Woodin of P).

We now describe another key feature of the indexing scheme of [38] that is of importance here. We
say ¥ is a low-level component of A if there is a tree 7 on P according to A such that 77> exists®3
(7 may be 0) and for some R < n7-?(PP), = = Ag. Let LLC(A) be the set of X that are low-level
components of A. What is shown in [38] is that A is determined by LLC(A) in a strong sense.

Given a transitive model M of a fragment of ZFC such that P € M, we say M is closed under
LLC(A) if whenever T € M is a tree according to A such that 77 exists, Ay7.p(pry has a universally
Baire representation over M. More precisely, whenever g C Coll(w, 7 (P?)) is M-generic, for every

37MZ is a direct limit along the models of ¢. Q(c, T) is the largest initial segment of MT such that Q(c, T)E=6(T) isa
Woodin cardinal’. It is only defined provided that 6 (7") is not a Woodin cardinal for some function definable over MZ—

38777 ig the restriction of the iteration embedding to PP See [38], just after Definition 2.7.21, for a more detailed definition.
Note that in some cases, aT:b may exist, but aT may not.

https://doi.org/10.1017/fms.2023.127 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2023.127

Forum of Mathematics, Sigma 15

M-cardinal A, there are trees 7, S € M|[g] on A such that M[g]=*(T, S) are < A-complementing’ and
for all < A-generics h, (p[T])M&*h] = Code(A 7.6 (pvy) N M[g+h]. Here, Code(®) is the set of reals
coding ® (with respect to a fixed coding of elements of HC by reals).

It is shown in [38] that if, assuming AD*, (M, X) is such that

M is a countable model of a fragment of ZFC,

M has a class of Woodin cardinals,

Y is an w-iteration strategy for M and

whenever i : M — N is an iteration via X, N is closed under LLC(A),

Ll

then there is a formula ¢ such that whenever g is M-generic, for any 7 € M|[g],
T is according to A if and only if M [g]=y¢[T]. (%)

The interested reader can consult Chapters 5, 6 and 8 of [38].

The reason we explained the above is to give the reader some confidence that defining a short-tree
strategy A for a hod premose P is equivalent to describing the set LLC(A). This fact is the reason that
the indexing schema of [38] works in the following sense.

Being able to define short-tree-strategy mice is one thing; proving that they are useful is another.
Usually what needs to be shown are the following two key statements. We let ¢, be the formula that
is mentioned in the Internal Definability of Authentication.

The Eventual Authentication. Suppose (P, A) is as above and M is a sound A-mouse over some set X
such that P € X and M projects to X. Suppose 7 € M is according to A and is A-short. Suppose further
that ME=—¢g,s[T]. Then there is a sound A-mouse A over X such that M < A and N'=¢y,s[T].3°

Mouse Capturing for A: Suppose (P, A) is as above. Then for any x € R that codes P and any y € R,
y is ordinal definable from x and A if and only if there is a A-mouse M over x such that y € M.

Both The Eventual Authentication and Mouse Capturing for A are proven in [38] (see [38, Chapter 8,
Lemma 8.1.3, Lemma 8.1.5] and [38, Theorem 10.2.1]).
The next subsection discusses the Q-structure authentication process mentioned above.

2.2. The authentication method

Suppose P is a #-Isa type hod premouse. Recall from the previous subsections that this means that P
has a largest Woodin cardinal § such that P = (P|6)* and the least < d-strong cardinal of P is a limit
of Woodin cardinals. We let 67 be the largest Woodin cardinal of P and «” be the least < 6 -strong
cardinal of 7. We shall also require that P is tame, meaning that for any v < 67, if (P|v)* is of Isa type
and M <P is the largest such that M=‘y is a Woodin cardinal’, then v is not overlapped in M.4°

Our goal here is to explain the Q-structure authentication procedure employed by [38]. Recall our
discussion of uvs and nuvs trees. The Q-structure authentication procedure applies to only nuvs trees —
trees that are not obviously short.

[38, Chapters 3.6-3.9] develop the aforementioned authentication procedure. [38, Definition 3.8.9,
3.8.16, 3.8.17] introduce the sts indexing scheme. For illustrative purposes, it is better to think of the
indexing scheme introduced there as a hierarchy of indexing schemes indexed by ordinals. Naturally,
this hierarchy is defined by induction. For illustrative purposes we call yth level of the hierarchy sts., .
Thus, sts, (P) is the set of all sts premice that are based on P (i.e., their short-tree-strategy predicate
describes a short-tree strategy for ) and have rank < vy.

To begin the induction, we let szso(P) be the set of all sts premice that do not index a branch for any
nuvs tree. More precisely, if M € stso(P) and T € dom(S™), then if SM (T is defined, then 7T is uvs.

390ne can then prove that there is such an N that projects to X.
40This means that if E € EM, then v ¢ (crit(E), index (E)).
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Below and elsewhere, S™ is the strategy predicate of M. Given sts,(P), we let st54.41(P) be the
set of all sts premice that index branches of those nuvs trees that have a Q-structure in sts,(P). More
precisely, suppose M € sts441(P) and T € dom(S™) and SM(T) is defined. Then either

1. T is uvs or

2. 7T is nuvs and there is Q € M such that M=‘Q € sts,(P)’, m*(7)<Q, Q=‘6(T) is a Woodin
cardinal’ but §(7") is not a Woodin cardinal with respect to some function definable over Q* and
there is a cofinal branch b of T such that QSMZ.

When Q exhibits the properties listed in clause 2, we say that Q is a Q-structure for 7. It follows from
the zipper argument of [25, Theorem 2.2] that for each Q-structure Q, there is at most one branch b with
properties described in clause 2 above. However, there is nothing that we have said so far that guarantees
the uniqueness of the Q-structure itself. The uniqueness is usually a consequence of iterability and
comparison (see [53, Theorem 3.11]).#> Thus, to make the definition of sts,+; complete, we need to
impose an iterability condition on Q.

The exact iterability condition that one needs is stated as clause 5 of [38, Definition 3.8.9]. This
clause may seem technical, but there are good reasons for it. For the purposes of identifying a unique
branch b saying that Q in clause 2 is sufficiently iterable in M would have sufficed. However, recall the
statement of the Internal Definability of Authentication. The problem is that when we require that an M
as above is a A-premouse, we in addition must say that the branch b that the Q-structure Q defines is the
exact same branch that A picks. To guarantee this, we need to impose a condition on Q such that Q will
be iterable not just in M but in V. The easiest way of doing this is to say that Q has an iteration strategy
in some derived model as then, using genericity iterations (see [53, Chapter 7.2]), we can extend such a
strategy for Q to a strategy that acts on iterations in V.

For limit @, stso(P) is essentially g, stsp(P). What has been left unexplained is the kind of
strategy that the Q-structure Q must have in some derived model. Let X be this strategy. If M € sts,(P)
is a A-mouse, then Q must be a Apy+(7)-mouse over m* (7). Thus, our next challenge is to find a first-
order way of guaranteeing that X-iterates of Q are Ay+(7)-mice, even those iterates that we will obtain
after blowing up X via genericity iterations.

The solution that is employed in [38] is that if R is a X-iterate of Q and U € dom(S R), then U itself
is authenticated by the extenders of M. Below, we refer to this certification as tree certification. This is
again a rather technical notion, but the following essentially illustrates the situation.

Let us suppose R = Q and U € dom(S<). The indexing scheme of [38] does not index all trees
in P. In other words, S™ is never total. dom(S™) consists of trees that are built via a comparison
procedure that iterates P to a background construction of M. Set /' = m*({/). One requirement is that
N also iterates to one such background construction to which P also iterates. Let S be this common
background construction and suppose a + 1 < [h(Uf) is such that « is a limit ordinal. First, assume U [«
is uvs. What is shown in [38] is that knowing the branch of P-to-S tree, there is a first-order procedure
that identifies the branch of U [«@, and that procedure is the tree certification procedure applied to U [«.

Suppose next that U [« is nuvs. Then because @ + 1 < [h(U), U [a must be short and the branch
chosen for it in @ must have a Q-structure Q, which is itself an sts mouse. We have that Q; € Q and
Q) must have the same certification in Q that Q has in M. Again, the nuvs trees in Q; have a tree
certification in Q according to the above procedure. The uvs ones produce another Q, € Q). Because
we cannot have an infinite descent, the definition of tree certification is meaningful.

Remark 2.2. It is sometimes convenient to think of a short-tree strategy as one having two components:
the branch component and the model component. Given a short-tree strategy A, we let b(A) be the set
of those trees 7 € dom(A) such that A(7) is a branch of 7, and we let m(A) be the set of those trees
T € dom(A) such that A(T) is a model.

4 This can be written as J; (Q) =6 (T) is not a Woodin cardinal’.
42In general, the theory of Q-structures does not have much to do with sts mice. It will help if the reader develops some
understanding of [53, Chapter 6.2 and Definition 6.11].
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The convention adopted in this paper is that if 7 € m(A), then A(T) = m*(7)*3. Thus, if M is
an sts premouse, then S™ is a short-tree strategy in the above sense (i.e., for 7 ¢ b(S™M), SM(T) is
simply left undefined).

This ends our discussion of sts premice. Of course, a lot has been left out, and the mathematical
details are unfortunately excruciating, but we hope that the reader has gained some level of intuition to
proceed with the paper.

In the next subsection, we will deal with one of the most important aspects of hod mice — namely,
the generic interpretability of iteration strategies.

2.3. Generic interpretability

There are several situations when one has to be careful when discussing sts premice and A-premice in
general. First, for an iteration strategy X, M?’Z makes complete sense. It is the minimal active X-mouse
with a Woodin cardinal. For short-tree strategy A, the situation is somewhat different. The expression
‘M?’A is the minimal active A-mouse with a Woodin cardinal’ does not say much as we do not say

how closed MT’A must be. One must also add statements of the form ‘in which all A-short trees are
indexed’. This is because it could be that A-premouse M is active and has a Woodin cardinal but there
is a A-short tree 7 € M that has not yet been indexed in M (see The Eventual Certification above). In
particular, without extra assumptions, it may be the case that given a A-sts mouse MEZFC, AT M is
not definable over M. Clearly, such definability holds for many strategy mice.

The above issue becomes somewhat of a problem when dealing with generic interpretability, which
is the statement that the internal strategy predicate can be uniquely extended onto generic extensions.
For ordinary strategy mice, generic interpretability is, in general, easier to prove. For short-tree-strategy
mice, the situation is somewhat parallel to the above anomaly. Suppose M is a A-mouse where A is
a short-tree strategy and suppose g is M-generic. In general, we cannot hope to prove that AT M [g]
is definable over Mg]. In this subsection, we introduce some properties of short-tree strategies that
allow us to prove generic interpretability, albeit in a somewhat weaker sense.

The most important concept that is behind most arguments of [38] is the concept of branch conden-
sation (see [38, Chapter 4.9]). It is very possible that the concept of full normalization introduced in
[55] can be used instead of branch condensation to obtain a greater generality. In fact, the authors have
recently discovered a new notion of a short-tree-strategy mouse utilizing full normalization.

Branch condensation implies generic interpretability. The following is our generic interpretability
theorem, which is essentially [38, Theorem 6.1.5]. The aforementioned theorem is stated for strategies
with branch condensation that are associated with a pointclass I". Here, we need strategies whose
association with pointclasses is a consequence of some abstract properties that it has, not something
explicitly assumed about them. Such strategies can be obtained working inside a model of determinacy.
The specific properties that we need are the following properties:

1. hull condensation,
2. strong branch condensation,
3. branch condensation for pull-backs.

The meaning of clause 3 above is as follows. Suppose (P, A) is an sts hod pair. A has branch condensation
for pullbacks if whenever ¢ € P is a limit of Woodin cardinals of P such that P=‘cf(£) = w’ and
1 Q@ — P|é is elementary, the r-pullback of Ap|s has branch condensation. For more on branch
condensation, the reader may consult [38, Chapter 4.9].

Definition 2.3. We say that a short-tree strategy is splendid if it satisfies the above 3 properties.

Clause 3 above implies that the pullback of splendid strategies are splendid.** It might help to consult
Remark 2.2 before reading the next theorem.

43t is not up to us to decide whether A(7) € m(A) or A(T) € b(A). The short-tree strategy itself decides this.
44Simply because ‘being a pullback’ is a transitive property.
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Theorem 2.4. Suppose P is an Isa type hod premouse and A is a splendid short-tree strategy for P.
Suppose N is a A-premouse satisfying ZFC and that N has unboundedly many Woodin cardinals. Then
for any N-generic g, ¥ =g, SN has a unique extension W8 C N'[g] that is definable from ¥ over
Nlgl and b(¥¥) € b(A)IN[g].

Our Theorem 2.4 is weaker than [38, Theorem 6.1.4]. The conclusion of the aforementioned theorem
is that ¥8 = AN [g]. However, in [38, Theorem 6.1.4], N satisfies a strong iterability hypothesis.
Without this iterability hypothesis, b(¥8) C b(A) I\ [g] is all the proof that [38, Theorem 6.1.4] gives.

In the next subsection, we will introduce a type of short-tree-strategy mouse that we will use to
establish Theorem 1.4.

2.4. Excellent hod premice

Our proof of Theorem 1.4 is an example of how one can translate set theoretic strength from one set of
principles to another set of principles by using inner model theoretic objects as intermediaries. Below,
we introduce the notion of an excellent hybrid premouse. We will then use this notion to show that both
Sealing and LSA — over — uB hold in a generic extension of an excellent hybrid premouse. Conversely,
we will show that in any model of either Sealing or LSA — over — uB, there is an excellent hybrid
premouse. We start by introducing some terminology and then introduce the excellent hybrid premice.

Remark 2.5. Below and elsewhere, when discussing iterability, we usually mean with respect to the
extender sequence of the structures in consideration. Sometimes our definitions will be stated with no
reference to such an extender sequence, but these definitions will always be applied in contexts where
there is a distinguished extender sequence.

To state our generic interpretability results, we need to introduce a form of self-iterability — namely,
window-based self-iterability. We say that [v, 8] is a window if there are no Woodin cardinals in the
interval (v, §). Given a window w, we let v*¥ and 6" be such that w = [v", §"]. We say that a window
w is above « if vV > k. We say that a window w is not overlapped if there is no v* -strong cardinal. We
say w is maximal if v* = sup{a + 1 : @ < v" is a Woodin cardinal} and 6" is a Woodin cardinal.

Window-Based Self-Iterability. Suppose « is a cardinal. We say WBSI holds at « if for any window w
that is above « and for any successor cardinal n € (v*,6"), setting Q@ = H,+, O has an Ord-iteration
strategy X which acts on iterations that only use extenders with critical points > v".

One usually says that Q is Ord-iterable above v" to mean exactly what is written above.

Definition 2.6. We let Tj be the conjunction of the following statements.

ZFC.

. There are unboundedly many Woodin cardinals.

. The class of measurable cardinals is stationary.

. No measurable cardinal that is a limit of Woodin cardinals carries a normal ultrafilter concentrating
on the set of measurable cardinals.

B W=

When we write M=Ty and M has a distinguished extender sequence, then we make the tacit as-
sumption that the large cardinals and specific ultrafilters mentioned in Definition 2.6 are witnessed by
extenders on the sequence of M.

Definition 2.7. Suppose P is hybrid premouse. We say that P is almost excellent if
1. PETy.

2. There is a Woodin cardinal ¢ of P such that P=*Py =g, ¢ (P|6)* is a hod premouse of #-Isa type’,
P is an sts premouse based on Py and Pk=*S”, which is a short-tree strategy for Py, is splendid’.
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3. Given any 7 < 670 such that (Py|7)* is of #-Isa type, there is M <P such that 7 is a cutpoint of M
and M=t is not a Woodin cardinal’.
We say that P is excellent if in addition to the above clauses, P satisfies the following:

4. Letting J be as in clause 2, P=‘WBSI holds at ¢°.

If P is excellent, then we let 67 be the ¢ of clause 2 above and Py = ((P|67)*)F.

Remark 2.8. In the previous subsection, we were mainly concerned with the structure of hod mice
associated with the minimal model of LSA. An excellent hybrid premouse is beyond the minimal model
of LSA. Indeed, the arguments used in the proofs of [38, Lemma 8.1.10 and Theorem 8.2.6] apply to
show that if P is excellent and 2 > 6% is a limit of Woodin cardinals of P, then the (new) derived model
at A is a model of LSA. It follows from a standard Skolem hull argument and the derived model theorem
that there is A € p(R”) NP such that L(A, R”)=LSA.

Nevertheless, everything that we have said in the previous subsection about short-tree strategies and
sts mice carries over to the level of excellent hybrid mice. The methods of [38] work through the fame*>
hod mice. The authors recently have discovered a new sts indexing scheme that works for arbitrary hod
mice. This work is not relevant to the current work as the indexing of [38] just carries over verbatim.

For the rest of this paper, we assume the following minimality hypothesis = (), where
(1) : In some generic extension, there is a (possibly class-sized) excellent hybrid premouse.

We will periodically remind the reader of this. One consequence of this assumption is the following
fact, which roughly says that all local non-Woodin cardinals of a hod premouse (or hybrid premouse)
are witnessed by Q-structures which are initial segments of the model and are tame. It also shows that
if P is a hod mouse such that there is an Isa initial segment Py of P and there is a Woodin cardinal
6 > 0(Po) inside P, then we can construct an excellent hybrid premouse in P by essentially performing
a fully backgrounded sts construction in P|é above Py (with respect to the short-tree component of Py).

Proposition 2.9 (= (7)). Suppose P is a hod premouse. Let k be a measurable limit of Woodin cardinals
of P and let ¢ < oF (k). Suppose (P|€)*= ¢ is a Woodin cardinal’ but either & is not the largest Woodin
cardinal of P or ¢ < o (k). Then there is M <P such that & is a cutpoint in M, p(M) < & and M= ¢
is not a Woodin cardinal’.

Proof. Towards a contradiction, assume that there is no such M. Suppose first that & is a Woodin cardinal
of P. It must then be a cutpoint cardinal as otherwise we easily get an excellent hybrid premouse by
performing a fully backgrounded construction inside P|« with respect to the short-tree component of
Py, where P, is an Isa hod initial segment of P|«. The existence of P follows from the fact that (P|&)*
is an Isa initial segment of P and & < o” (k).

It then follows that there is a Woodin cardinal { of P above £. Now we can use [38, Lemma 8.1.4]
to build an excellent hybrid premouse via a backgrounded construction of P|{ as above (with respect
to the short-tree component of (P|& ).

Suppose next that & is not a Woodin cardinal. Because no M as above exists, it follows that & < o ().
We can now repeat the above steps in Ult(P, E) where E is the least extender overlapping &. O

There are a few important facts that we will need about excellent hybrid premice that one can prove
by using more or less standard ideas, and that in one form or another have appeared in [38]. We will use
the next subsection recording some of these facts.

2.5. More on self-iterability

Here, we prove that window-based strategy acts on the entire model. The main theorem that we would
like to prove is the following.

45A non-tame hod premouse is one that has an extender overlapping a Woodin cardinal.
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Theorem 2.10. Suppose P is an excellent hybrid premouse, w is a maximal window of P above 6§ and
n € [v"¥,8") is a regular cardinal. Let ¥ be the Ord-strategy of Q = P|n that acts on iterations that
are above v". Let g be 'P-generic for some poset P € 'P. Then X has a unique extension X8 definable
over P|g] such that in P[g], 8 is an Ord-iteration strategy for P that acts on iterations that are based
on Q and are above v".

The proof will be presented as a sequence of lemmas. First we make a few observations. Suppose P
is excellent and for some P-cardinal & > 67 is a limit of Woodin cardinals of P, 7 : N' — P|¢ is an
elementary embedding in P such that AV is countable. It follows that =4 f sup(n[6V]) < 67, and
therefore, letting A = (x-pullback of § 7y,

(O1) P=*A*"¢ is a splendid Ord-strategy for N/,

(02) PE“N is a AS'“-premouse.*’

(03) in P, Theorem 2.4 applies to N and A.

(04) if i : N' — N is such that crit(i) > 6V, and for some o : V] — P|&, m =0 oi, then N} is a
AS'€-premouse.

(O4) will be key in many arguments in this paper, but often we will ignore stating it for the sake of
succinctness. In each case, however, the reader can easily find the realizable embeddings. The reason
(O4) is important is that without, it we cannot really prove any self-iterability results, as if iterating N
above destroyed the fact that the resulting premouse is a AS’°-premouse. Then we could not find the
relevant Q-structures using A or comparison techniques.

Lemma 2.11. Suppose P is an excellent hybrid premouse, w is a maximal window of P above 6* and
n € [v",8") is a regular cardinal. Let ¥ be the Ord-strategy of Q = P|n that acts on iterations that
are above v . Then X is an Ord-iteration strategy for ‘P that acts on iterations that are based on Q and
are above v".

Proof. We setV =P. Suppose 7 is an iteration tree on Q according to X. We can then naturally regard
T as a tree on P. We claim that all the models of this tree are well founded. Towards a contradiction,
assume not. Fix an inaccessible & > ¢" such that when regarding 7 as a tree on P|&, some model of it
is ill founded. Let 7 be the result of applying 7 to P|£, and let 7 : M — P|£ be such that

1. w,T* e rng(m),
2. (M| =n,and
3. crit(m) > 7.

LetU = 2~ (T) and U* = 7~ (7). We thus have that some model of ¢/* is ill founded.

Let R = P|n* and let U™ be the result of applying U to R. Notice that M € R. Because P has
no Woodin cardinals in the interval (v, 7"), we have that U is according to any Ord-strategy of R.
Thus, U™ only has well-founded models. It is not hard to show, however, that for each @ < [h(U),
if [0, alyy N DY = 0, then there is an elementary embedding o, : MY" — nﬁfz (M). In the case

+ R
[O,cy]z,,nD“;t(Z),M% =M%=MZ{Y’ . O
In fact, more is true.

Lemma 2.12. Suppose P is an excellent hybrid premouse, w is a maximal window of P above 6%
and n € [vV,8") is a regular cardinal. Let ¥ be the Ord-strategy of Q = P|n that acts on iterations
that are above v. Let P € ‘P be a poset and g C P be ‘P-generic. Then ¥ has a unique extension X8
definable over P|g]| such that in P[g], £8 is an Ord-iteration strategy for Q acting on iterations that
are above v".

46The definition of A appears in Definition 2.7. The fact that A has branch condensation follows from generic interpretability.
Because P| & ‘the generic interpretation of S7 has branch condensation’, we have the same holds over /.

41138, Definition 3.1.8] introduces the short-tree component of an iteration strategy. Roughly speaking, A€ (7T) = b if and
only if letting A(T) = c, either (i) b = ¢, ﬂ'(T is undefined or nZ(éN) > 6(T) or (ii) b = m*(T) and 7rCT is defined and
nl (6N) = 8(T).

https://doi.org/10.1017/fms.2023.127 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2023.127

Forum of Mathematics, Sigma 21

Moreover, in P(g], X8 can be regarded as an Ord-iteration strategy for P that acts on iterations
that are based on Q and are above v" .#3

Proof. The proof is by now a standard argument in descriptive inner model theory. It has appeared in
several publications. For example, the reader can consult the proof of [34, Lemma 3.9 and Theorem
3.10] or [37, Proposition 1.4-1.7]. We will only give an outline of the proof.

Fix ¢ such that P € P|{. Fix now a maximal window v such that v” > max (¢, v"). Let (Mg, Ng :
£ < Q) be the output of the fully background S”-construction done over P|v* with critical point > v”.
Because X is an Ord-strategy, we must have a & < Q such that Ng is a normal iterate of Q via an
iteration 7~ that is according to ¥ and is such that the iteration embedding 77 : Q — N, ¢ is defined.*”

Assume now that we have determined that an iteration i € P|v"[g] of Q is according to £8 and has
limit length. For simplicity, let us assume &/ has no drops. We want to describe X8 (Uf). Set Z8(U) = b
if and only if there is o : MZI;’ — N, ¢ such that al =coo ﬂZI;{. To show that this works, we need to show
that there is a unique branch b with the desired property. Such a branch b is called 77 -realizable.

Towards a contradiction, assume that either there is no such branch or there are two. Let 1 =
((6")**)P. Let now 7 : N' — P|A be a pointwise definable countable hull of P|A. It follows that we
can find a maximal window u of N, an N-regular cardinal £ € (v, 6*), a partial ordering Q € N and
a maximal window z of N such that

1. Q e N3,

2. for some W that is a model appearing in the fully backgrounded construction of A|§% done over
N |v* with respect to SV using extenders with critical points > vZ, there is an iteration X € A on
R =def N|Z with last model W such that 7K is defined,

3. some condition g € Q forces that whenever & C Q is NV -generic, there is an iteration X’ € (N|v?)[A]
of R with no drops such that either there is no 7’°-realizable branch or there are at least two 7/-

realizable branches.

Let h € P be N-generic for Q. Let X € (N|v%)[h] be as in clause 3 above. Because n(R) is fully
iterable in P above m(v*), we have that R is fully iterable in P above v*. Let b be the branch of X’
according to the strategy of R that is obtained as the z-pullback of the strategy of 7 (R) (recall that 7(R)
is iterable as a Sp-mouse). Because R has no Woodin cardinals above v*, we have a largest S SMZ(
such that S=*6(X) is a Woodin cardinal’ but 7ud(S)=*6% is not a Woodin cardinal’.

We claim that

Claim. S € N'[h].

Proof. To see this, as NV is closed under #, we can assume that m*(X)E=‘6(X) is a Woodin cardinal’.
Let V = m*(X). We now compare )V with the construction producing W. As W has no Woodin
cardinals above v¥, we get that there are models V*<V** appearing on the construction producing W,
a tree ) on V and a branch ¢ of ) such that V* = MY and V** is the least model appearing on the
construction producing W such that V**&=‘7Y (§(X)) is a Woodin cardinal’ but rud (V**)E= ‘Y (6(X))
is not a Woodin cardinal’. It follows that S = Hull) “({pru rng(rmY)), where n is the fine structural
level at which a counterexample to Woodiness of §(X’) can be defined over S and p is the n-th standard
parameter of V**. Because V**, ), ¢ € N'[h], we have that S € N [h]. O

It now follows that b € A/[h], and as NV is pointwise definable, we must have that b is 7K -realizable
in A'[h] (notice that the argument from the above paragraph implies that ./\/lz;Y iterates to W). If d is
another 7*°-realizable branch in A'[A] (or in P), then as both ./\/lf and Mf are iterable as SV -mice,
we have that M;¥ = M. This is a contradiction as §(X) is not Woodin in either M;¥ or M.

48The proof of this clause is very similar to the proof of Lemma 2.11.
49That is, [0,1h(T) =117 N DT = 0 the final model iteration does not drop.

https://doi.org/10.1017/fms.2023.127 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2023.127

22 G. Sargsyan and N. Trang

In the case U/ has drops, the argument is very similar to the proof of the claim above. In this case, we
cannot hope to find a realizable branch, but we can find the appropriate Q-structure using the proof of
the claim. m]

Putting the proofs of Lemma 2.11 and Lemma 2.12 together, we obtain the proof of Theorem 2.10.

The proof of Theorem 2.10.

We outline the proof. We use the notation introduced in Theorem 2.10. Let & be a P-inaccessible
limit of P-Woodin cardinals and such that P € P|&, and let 7 : N — PI€ be such that [N = 7,
crit(m) > n and P € rng(n). Let Q = n~!(P). Let h be P-generic for Q. Notice now that Lemma 2.12
applies both in A'[/] and P[h]. Moreover, the proof of Lemma 2.12 shows that

(1) (=PI NN [R]) = (£N AL

To see (1), notice that as Q has no Woodin cardinals, both (27)P "] and (£")V"] are guided by Q-
structures. To see that (1) holds, we need to show that both ()P and ()11 pick the same
Q-structures, and this would follow if we show that the Q-structures picked by (X")V "] are iterable
in P[h]. To see this, we have to recall our definition of (£7)V'["] The iterability of any Q-structure
picked by (N1 s reduced to iterabilty of N in some non-maximal window u™N . The iterability of
this window is reduced to the iterability of P in some non-maximal window 7 («*), and according to
Lemma 2.12, this last iterability holds.

Finally, notice that if we let Q* = P|(n*)” and A" be the strategy of Q* given by Lemma 2.12,
A’é = ¥/ (again this is simply because they both are Q-structure guided strategies). It now just remains
to repeat the argument from Lemma 2.11. Given any tree 7 € N[h] according to X" such that 77
exists, 77 can be applied to Q* and hence to . This finishes the proof of Theorem 2.10. O

2.6. Iterability of countable hulls.

Here, we would like to prove that countable hulls of an excellent hybrid premouse have iteration
strategies. The reason for doing this is to show that if /P is an excellent hybrid premouse and g is
‘P-generic, then any universally Baire set A in P[g] is reducible to some iteration strategy which is
Wadge below S”. We will use this to show that Sealing holds in a generic extension of an excellent
hybrid premouse (see Theorem 3.1).

Proposition 2.13. Suppose P is an excellent hybrid premouse and (w; : i < w) are infinitely many
consecutive windows of P. Set & = sup;_,, 6. Suppose P € P|v"™ is a poset and g C P is P-generic.
Working in Plg], let 1 : N — P|(é")F[g] be a countable transitive hull. Then in P[g], N has a
v"Wo_strategy ¥ that acts on nondropping trees that are based on the interval [~ (v*0), n71(£)].

Proof. Setu; = n~'(w;) and ¢ = n~!(£). Our intention is to lift trees from N to P and use P’s strategy.
However, as P-moves, we lose Theorem 2.10; it is now only applicable inside the iterate of P. To deal
with this issue, we will use Neeman’s ‘realizable maps are generic’ theorem (see [3 1, Theorem 4.9.1]).
That it applies is a consequence of the fact that the strategy of P we have described in Theorem 2.10
is unique; thus, the lifted-up trees from N to P pick unique branches (this is a consequence of Steel’s
result that UBH holds in mice — see [51, Theorem 3.3] — but can also be proved using methods of
Theorem 2.10). One last wrinkle is to notice that when lifting trees from N to P, Theorem 2.10 applies.
This is because for each i, sup(rr[6"i]) < §™i.

We now describe our intended strategy for V. We call this strategy A. Notice that if 7 is a normal
iteration of A/ based on the interval [v*, /], then T can be reorganized as a stack of w-iterations
(Ti, N; 1 i < w), where Ny = N, Ny is the last model of 7; and 7., is the largest initial segment of
T>n; that is based on the window 7T=Ni (uip1).
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Suppose then 7 = (7;,N; : i < w) is a normal nondropping iteration of N based on [v0, ]. We
say 7T is according to A if and only if there is an iteration Y = (U;, P; : i < w) of P and embeddings
7; : N; — P; such that

Po="P,

. U; = ;T foreachi < w,

Pi+1 is the last model of U; for each i < w,

fori < w, letting s; = "/7\—[,/\4- (ui), A; = sup(m;[6%])and Q; = Pil(/l;r)P", Pilg][mi]=U; is according
to the strategy (as described in Lemma 2.12) of Q;’.%°

B

The reader can now use Theorem 2.10 and Neeman’s aforementioned result to show that A" has a v*°-
iteration strategy. The main point is that for any P[g]-generic G C Coll(w,T), in P[g][G], T is
countable, so we can find generics g; for each i such that 7; € P;[g][g;]. Furthermore, Q;’s strategy is
unique and uniquely extends to all generic extensions of P;, so the procedure described above can be
carried out in P[g] using the forcing relation of Coll(w,T). O

2.7. A revised authentication method

Suppose P is an excellent hybrid premouse. Let g be P-generic. We would like to know if S has a
canonical interpretation in P[g]. That this is possible follows from Theorem 2.4. Perhaps consulting
Remark 2.2 will be helpful. However, to make these notions more precise, we will need to dig deeper
into the proof of Theorem 2.4 and understand how the definition of W& works. For this, we will
need to understand expressions such as ‘Q is an authenticated sts premouse’. The intended meaning of
‘authenticated’ is the one used in the proof of [38, Theorem 6.1.5]. More specifically, the interested reader
should consult [38, Definition 3.7.3, 3.7.4, 6.2.1 and 6.2.2]. Here, we will briefly explain the meaning
of the expression and state a useful consequence of it that equates this notion to the standard notion of
being constructed by fully backgrounded constructions (see Remark 2.16). The new key concepts are
(P, %, X)-authenticated hybrid premouse and (P, Z, X)-authenticated iteration. The essence of these
two notions are as follows.

Definition 2.14 (Authenticated hod premouse). Suppose (P, ) is an sts pair, X C P” and R is a hod
premouse. We say R is (P, Z, X)-authenticated if there are

(el) a X-iterate S of P such that the iteration embedding 7 : P — S exists and

(€2) an iteration I/ of R with last model some S”||£.
The iteration I/ is constructed using information given by n[X]. More precisely, for each maximal
window w of S?, consider

s(m, X, w) = Hulls" (r[X]JUVY)ne™r.

Itis required that for each limit @ < [h(U), if ¢ = [0, @]y, then one of the following two conditions holds:

(C1) SE6(U ) is not a Woodin cardinal’, Q(c, U [a@) exists and Q(c,U [a)<S.

(C2) S=0(UTa) is a Woodin cardinal’ and letting w be the maximal window of S such that
oW =6Ula), s(m,X,w) C rng(ngm).

Usually, X is chosen in a way that for each window w of S, sup(s(w, X,w)) = 6". For such X,
conditions (C1) and (C2) completely determine /.

Given a hod premouse P of Isa type, a set X C P and a set I consisting of iterations of P we can
similarly define (P, I", X)-authenticated hod premice.

Definition 2.15 (Authenticated iteration). Suppose R is a (P, X, X) authenticated hybrid premouse and
W is an iteration of R. We say W is (P, Z, X)-authenticated if there is a triple (S,U,¢) (P, Z, X)-
authenticating R such that 7*-exists and W is according to 7*/-pullback of Zg)|¢.

S0According to [31, Theorem 4.9.1], the size of the poset that adds 7i; to P; is less than the generators of U<p,, which is
contained in 7r; (v5i).
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Suppose now that M is an sts premouse based on P and g is M-generic for a poset in M|{.
Suppose R € M|{[g] is an Isa type hod premouse such that R? is (P, S™M, PP)-authenticated and
R = (R|6™)*.In M|g], we can build an sts premouse W based on R using (P, S™, PP)-authenticated
iterations. This means that whenever I/ is an iteration indexed in W, @ < [h(U{) is a limit ordinal such
that 71%:? exists and X is the longest initial segment of Us , that is based on V =45 (MY)?; then
both V and X are (P, SM, Pb)-authenticated. In addition to the above, we also require that if Q is a
Q-structure for some nuvs tree in VV that has been authenticated by }V via the authentication procedure
used in sts premice, then any iteration indexed in Q is (P, 2 SM)-authenticated. Moreover, the same
holds for all iterates of Q via the strategy witnessing that Q is authenticated in W.

It is important to keep in mind that the above construction may fail simply because some non-
(P, SM, PP)-authenticated object has been constructed. Also, the same construction can be done using
(P, SM, X)-authenticated objects where X C PP,

Remark 2.16. Suppose now that M is an sts premouse based on P and g is M-generic for a poset in
M]|¢. Suppose R € M| [g] is an lsa type hod premouse such that R? is (P, P?, $M)-authenticated
and R = (R|67)*. Suppose M has a Woodin cardinal § above ¢. To say that an sts premouse Q
over R is (P, PP, $™M)-authenticated is equivalent to saying that Q<)V, where W is a model in the
(M, pb )-authenticated fully backgrounded construction described in [38, Definition 6.2.2].

The reader may be wondering why it is enough to only authenticate the lower-level iterations. The
reason is that in many situations, the lower-level strategies define the entire short-tree strategy. This
point was explained in Section 2.1.

The construction mentioned in Remark 2.16 is called the (P, X, S™*!)-authenticated hod pair con-
struction over R. The details of everything that we have said above appears in [38, Chapter 6.2]. The
reader may choose to consult [38, Definition 6.2.2].

2.8. Generic interpretability

In this portion of the current section, we would like to outline the proof of generic interpretability. As was
mentioned before, generic interpretability is somewhat tricky for short-tree strategies. This is because
given a A-sts premouse N and a tree 7 € N'[h], T may be short, but N[ 1] may not be able to find the
branch of 7T that is according to A, as this branch might have a Q-structure that is more complex than V.

Suppose P is an excellent hybrid premouse. For the purposes of this paper, we say that P satisfies
weak generic interpretability if for every poset P € P and for every P-generic g C P, there is an sts
strategy A for Py that is definable (with parameters) over P[g] such that for every tree 7 € dom(A),

1. if 7 is uvs, then letting A(7T) = c, either
(a) for some node R of 7 such that 77<®”-? is defined, 7= is a tree on R and 7 {c} is
(Po, PY., ST)-authenticated, or
(b) for some node R of T such that 77=®=-? is defined, T>r is a tree on RY that is above Ord N RY,
Q(c,T) exists and Q(c, T)<m* (7)),
2. if T is nuvs, then letting ¢ = A(7), c is a cofinal branch if and only if Q(c, 7)) exists and T {c} is
(Po. Py, S)-authenticated.

Proposition 2.17. Suppose P is an excellent hybrid premouse. Then P satisfies weak generic inter-
pretability.

Proof. We outline the proof, as the proof is very much like the proof of [38, Theorem 6.1.5]. Let g be
‘P-generic. The definition of A essentially repeats the above clauses. We first consider trees that are uvs.

Suppose 7T is an uvs tree according to A, and suppose that for some node R on T, n7=®”-Y exists
and T>r is a tree based on R?. Because 7T is according to A, we may assume that R is (Po, Py, S7)-
authenticated. Thus, we can fix a window w of P such that g is < v*-generic over P, and letting W be

51Py was introduced in Definition 2.7.
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the iterate of Py constructed by the fully backgrounded hod pair construction of P|6" using extenders
with critical point > v, we can find an embedding o : R? — WP such that

(@) P = o o n7=R=:b where U is the Py-to-WV tree according to ¥ and

(b) T>r is according to the o--pullback of SZ/’V,,.

Letting ¢ be the branch according to the strategy as in (b), we have that 7 {c} is (P, Pé’ ,SP)-
authenticated. Moreover, there is only one such branch c. To see this, we need to reflect.

Let & be large and let 7 : A/ — P|& be a countable hull. Fix an N-generic h € P. LetU € N'[h] be
an uvs tree on Ay such that for some node S on I with the property that 7-? exists, Uss is a normal
tree on S?, and moreover, U is (No,./\fob R SN )-authenticated in A/[/]. Suppose now that there are two
distinct branches ¢ and d obtained in the above manner. We can then fix A'-windows u, u, that play
the role of w above and build K and K,, the equivalents of ¥V above, inside A/|6%! and A/|6“2. For
i <2, we have maps m; : S? — ICf7 and S/ -iteration maps T; : J\/(;’ - IC;’ such that 7; = m; o 7t=s-b.
Let 7; : ICf’ — ) be the comparison map using strategies (SN )zcﬁ’- Then, for i € {c,d}, there is an
embedding 4; : /\/lt“ — Y that factors into the iteration map from Né’ to V. It is then easy to see, using
branch condensation of S¥ and its m-pullback, that ¢ = d.

The rest of the argument is very similar. For example, we outline the proof of clause 2 in the definition
of weak generic interpretability. Suppose 7 € P[g] is nuvs and Q is a (P, P(I)’, S¥)-authenticated
Q-structure for 7. We want to see that there is a cofinal well-founded branch ¢ € P[g] such that
Q(c,T) = Q. As above, instead of working with PP, we can work with a reflection. Thus, we assume that
m: N — P|€ is a countable elementary embedding, i € P is N-generic and T, Q € N'[h]. Moreover,
we can assume that NV is pointwise definable. Let W be the x-pullback of SP.As Qis (NO,J\/é’ s SN )-
authenticated, it follows from Theorem 2.13 that Q has an iteration strategy as a Wi+ (7-Sts premouse.
Let ¢ be the branch of T according to ¥. As N is pointwise definable, we have that Q(c, T)-exists, and
hence, Q(c,T) = Q. O

Next, we show that the low-level strategies are, in fact, universally Baire. However, Proposition 2.2 1
shows that S” itself does not have a universally Baire representation.

Proposition 2.18. Suppose P is excellent, g is P-generic and % is the generic interpretation of ST
onto P[g]. Let T € Plg] be an iteration tree on P of length < a)r 8] such that TP -exists. Set
R =naT-b(PP). Then (Er THCFI8l) € I'g’. Moreover, for any P-cardinal n, there are n-complementing
trees T,S € P[g] such that for all posets Q € P[g] such that |Q|F18! < 5 and for all P|g]-generic
hcQ

(pTDPe) = 5 pHCP L8,

Proof. We again outline the proof as the proof uses standard ideas. Let w be a maximal window of P
such that g is generic for a poset in P|v". We now outline the construction producing v* -complementing
trees (7', S) as in the statement of the proposition.

Let S be the model appearing on the hod pair construction of P|§" in which extenders used have
critical points > v* and to which R normally iterates via £ . Leti : R — S be the iteration embedding.
What we need to show is that club many hulls of P[g] are correct about X, where we take X to be
defined as i-pullback of the strategy of S that S inherits from P (see Theorem 2.12). That this works
follows from the fact that the strategy of S has hull condensation. Let ¥ be the strategy of S.

More precisely, let ¢(x,R,S,i) be the formula that says ‘x € R codes an iteration of R that is
according to the i-pullback of ¥’. Clearly, ¢ defines Z THCP18]. Let now ¢ be large and 7 : N —
P|£[g] be countable such that R, (i,S) € rng(n). Let ® = 77! (¥) and j = 77! (i). Let h € P[g] be a
< =1 (v")-generic over A and let I/ € N'[g] be a tree on R.

Suppose first that N'[2]=*jU is according to the strategy of ®"’. Because ®” is the 7-pullback of
¥, we have that il{ = n(jU) is according to ¥. Hence, U is according to Xx.

https://doi.org/10.1017/fms.2023.127 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2023.127

26 G. Sargsyan and N. Trang

Next, suppose that Uf is according to Xx. It then follows by the above reasoning that N'[h]=<jU is
according to the strategy of ®"°. This finishes the proof that X has a uB representation. The rest of the
proposition follows from the fact that the formula ¢ above defines Zx in all < v"-generic extensions
of P[g]. Such calculations were carried out more carefully in [34] and also in [37]. In particular, the
reader may wish to consult [37, Proposition 1.4]. O

2.9. Fully backgrounded constructions inside excellent hybrid premice

Given an excellent hybrid premouse P, we would eventually like to show that collapsing ((6%)*)” to
be countable forces both Sealing and LSA — over — uB. Such an analysis of generic extensions of fine
structural models usually requires some kind of reconstructibility property, which guarantees that the
model can somehow see versions of itself inside it. In this subsection, we would like to establish some
such facts about excellent hybrid premice. Proposition 2.19 is a key proposition that we will need in this
paper. Recall the definition of Py from Definition 2.7.

Proposition 2.19. Suppose P is excellent and g is P-generic. Let ¥ be the generic interpretation of ST
onto P|g] and suppose R is a X-maximal iterate of Py. Let w be a maximal window of P such that w
is above 67, g is generic for a poset in P|v" and R € P|v¥[g]. Let & < 6R" be a Woodin cardinal
of R. Suppose Ny is the output of the fully backgrounded hod pair construction of P|6" [g] done
relative t0 X | ¢ and over RIE and using extenders with critical points > v*. Then Ord N Ny = 6%.

Proof. Towards a contradiction, suppose that n =4.5 Ord NNy < §". We will now work towards
showing that  is a Woodin cardinal of P. As n € (v",8"), this is clearly a contradiction. Suppose
then 7 is not a Woodin cardinal of P. As P has no Woodin cardinals in the interval (v*,§"), we must
have that there is a X-mouse P|n<Q<P such that 5 is a cutpoint of Q, OQk‘n is a Woodin cardinal’
but 17 is not Woodin relative to functions definable over Q. Unfortunately, Q cannot be translated into a
X\, -mouse, but we can rebuild it in a sufficiently rich model extending Nj.

Let NV be the output of a fully backgrounded construction of P|§" [g] done with respect to X and
over Ny using extenders with critical point > 77. As A is a Z-maximal iterate of Py,5 we have that
NE‘n is a Woodin cardinal’. We now want to rebuild Q inside A/[P|n]. The idea here goes back to
[38, Theorem 8.1.13] (for instance, the construction of A/, in the proof of the aforementioned theorem).
Notice that if p is the Py-to-Np-iteration,>* then 77-? exists and 77* € N[P|n]. Let X = nP-P [79(’)’].
Working inside N'[P|n], we can build a Z-premouse over P|; via a fully backgrounded (Ao, X, SV)-
authenticated construction. In this construction, we only use extenders with critical point > 5. Let W
be the output of this construction. As W is universal, we have that Q<W. Thus, N [P|n]=‘7 is not a
Woodin cardinal’.

However, standard arguments show that N'[P|n]E‘y is a Woodin cardinal’. Indeed, let f : 7 —
be a function in N'[P|n]. Because P|n is added by an 5-cc poset, we can find g € A such that for
every @ < 7, f(a) < g(a). Let E € ENO be any extender witnessing Woodiness for g and such that
NE=‘vg is a measurable cardinal’. Thus, ngfo(g)(K) < vg, where « is the critical point of E. Let F be

the resurrection of E. We must have that nﬁ (f)(k) < vg.Thus, Flvg € Plnis an extender witnessing
Woodinness for f in P|n and hence in N [P|n]. O

Using Proposition 2.19, we can now prove that S” itself is not a universally Baire set. Its proof
requires a few more facts from [38], which we now review. Given an Isa type pair (P, X), following [38,
Definition 3.3.9], we let ['® (P, Z) be the set of all A C R such that for some countable iteration 7 such
that 777 exists, A is Wadge reducible to % 7.6 (pby. The following comparison theorem is essentially
[38, Theorem 4.13.1].

52Suppose N is not X-maximal and let I/ be the Py-to-N tree. Let b = T(U). We then have that Q (b, U) exists and so Ny
could not be the final model of the fully backgrounded hod pair construction of P |5 [g]. It follows from the universality of the
fully backgrounded constructions that continuing the construction further we will construct Q(b, ). The reader may wish to
consult [38, Chapter 4].

53p is a stack of two normal trees.
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Theorem 2.20. Assume AD" and suppose (P,2) and (Q, A) are two lsa type hod pairs such that
I'?(P,%) =T?(Q, A) and both £ and A are splendid. Then there is an lsa type hod pair (R, ¥) such
that R is a Z-iterate of P and a A-iterate of Q and T =¥ = Ag.

Proposition 2.21. Suppose P is excellent and g is P-generic. Let ¥ be the generic interpretation of S
onto Pg]. Then P[g]=X ¢ T™.

Proof. Towards a contradiction, suppose that P[g]E=X8 € I'°. Let (w; : i < w) be a sequence of
successive windows of P such that g is generic over a poset in P|v"°. Set §; = §":.

For each i, let P; be the S -iterate>* built via the fully backgrounded hod pair construction of P|5;
using extenders with critical points > v;"*. It follows from Proposition 2.19 that

(1) 6% = 6;, i.e., 6; is the largest Woodin cardinal of P;.

Fix now k € Coll(w, < ¢,,) generic over P[g], where 6, = sup;_,, d;. Recall next that Steel showed
that if there are unboundedly many Woodin cardinals, then every universally Baire set has a universally
Baire scale (see [47, Theorem 4.3]).>> Let now W be the derived model of P as computed in P[m]
where m = g * k. It follows that

(2) the canonical set of reals coding £ [HC W6 has a scale in W.

This paragraph will be using Theorem 2.20 and the notation introduced there. Working inside W, let
I' =T?(Py, ™). Thus, I is the set of reals that are generated by the low-level-components of X. More
precisely, A € I if there is an iteration 7 on Py according to £ such that 77 ” exists and A is Wadge
below X .As X" THCW is Suslin, co-Suslin in W, we must have a hod pair (S, A) € W such that

aTb(Ph)
I'?(S, A) =T (this follows from the Generation of Mouse Full Pointclasses; see [38, Theorem 10.1.2]).
We can further assume that S is a X" -iterate of Py and AS¢ = XS TH CW (this extra possibility follows
from Theorem 2.20).
Fix now i < w such that letting n = k N Coll(w, 6;), P|[g * n] has a uB representation of A. It now
follows that since

(3) P41 is a A-iterate of S and
(4) letting [ : S — P4 be the iteration embedding, [ [6°] is cofinal in 67+,
we have

5P < 54y

This directly contradicts (1). o

2.10. Constructing an iterate via fully backgrounded constructions

Suppose M is strategy-hybrid 7-iterable mouse such that M € V,, n is an inaccessible cardinal and M

has an n-strategy with hull condensation. Thus, M has an extender sequence Eanda strategy predicate
SM which can be a strategy of M itself (as in hod mice) or a strategy of some N' € M. We want to
build an iterate X’ of M such that the extenders of X are all fully backgrounded. Here, we describe this
construction.

We say (Vg, We, Te, Xe 0 € < 1) are the models and iterations of the fully backgrounded (M, X)-
iterate-construction of V,, if the following conditions are satisfied with oz = Ord N Vg¢.

54SP is the internal strategy predicate of P, which by itself is not a total iteration strategy but can be uniquely extended to a
total iteration strategy. By ‘S -iterate’, we mean an iterate according to the total extension of S¥. The reader may consult [38,
Chapter 5].

S5Recall that by a result of Martin, Steel and Woodin for a A a limit of Woodins, H om, coincides with the < A-universally
Baire sets. See [47, Theorem 2.1] and [47, Chapter 2].

56We will identify Code(X) with X itself in this paper.
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Vo=Wy = JéM.

. Forevery & <, Vg = Welag.

3. For & <1, T¢ is an iteration of M according to X with last model X¢ such that Vs = X¢|a ¢ and the
generators of 7Tz are contained in @ ¢.%

4. Foré <, ifag € dom(ﬁxf) U dom(S%¥¢), then We = Xellag.

. Foré <, if ag ¢ (dom(E¥¢) U dom(S%¢)) and Vg # X, then Wg = J; (Ve).

6. For & <, if there is a total extender F' € V;; such that

N =

|91

nE (Ve We, Teo Xe 0 & <ENNE = Ve, Wi, Trs Xy 2 £ <€),
then F N Vg = Efff It follows that We = (Ve Eff .
7. Foré+1 <, Ve =C(We).
8. If & < ¢ is limit, then Wg = liminf; W, and Vg = C(Wg). More precisely, given We|«,
Wel(k*)YVe is the eventual value of W |(k*)"Ve.

We then let FBIC(M, Z, 17) be the models and iterations of the above construction. We can vary this
construction in two ways. The first way is that fixing some A < 7, we can require that the extender F
in clause 6 has critical point > A. This amounts to backgrounding extenders via total extenders that
have critical points > A. The second way is that we may choose to start the construction with any initial
segment of M. More precisely, given a cardinal cutpoint v of M, we can start by setting Vo = M|v.

Thus, by saying that (Vg, We, Te, Xg @ € < 1) are the models and iterations of the
FBIC(M,X,n,4,v), we mean that the sequence is built as above but starting with M|v and using
backgrounded extenders that have critical points > A.

FBIC(M, X, 7, A, v) can break without reaching its eventual goal. We say

FBIC(M,Z,n,4,v)

is successful if one of the following conditions holds.

l.t=&+1, n7¢ exists and either Ve =Xeor We = Xy,
2. vis alimit ordinal and liminfz_,, V¢ is the last model of a normal -iteration 7~ of M such that 77
exists.

If FBIC(M, X, 7, A, v) is successful, then we say N is its output if it is the iterate of M described above.

The following is the main theorem that we will need from this section. We say E is a strictly short
extender if its generators are bounded below mg (crit(E)). We say M is strictly short if all of its
extenders are strictly short.

Theorem 2.22. Suppose (M, X) and n are as above and in addition to the above data, 1 is a Woodin car-
dinal and M is strictly short. Suppose A < nand v is a cutpoint cardinal of M. Then FBIC(M, 2,7, A, v)
is successful.

The proof is a standard combination of universality (see [52, Lemma 11.1]) and stationarity (see [44,
Lemma 3.23]) of fully backgrounded constructions.

3. An upper bound for Sealing and LSA — over — uB

The goal of this section is to prove Theorem 3.1. It reduces Sealing, Tower Sealing and LSA — over — uB
to a large cardinal theory. This essentially constitutes one half of Theorem 1.4 and Theorem 1.7.

Theorem 3.1. Suppose P is excellent and g C Coll(w, ") is P-generic. Then both Sealing and
LSA — over — uB hold in P|g].

S"There is only one such iteration 7.
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We start the proof of Theorem 3.1. Let P be excellent (see Definition 2.7). Set 69 = 6% and let
g € Coll(w, 6p) be P-generic. We first show that Sealing holds in P[g]. Let Py =4ecr (P|d0)*. We
write P = (|P|, €, E¥, S7), where E” is the extender sequence of P and S is the predicate coding the
short-tree strategy of Py in P. Thus, P above 9 is a short-tree-strategy premouse over Py.

Let X~ be this short-tree strategy. It follows from Proposition 2.17 that for any P[g]-generic h, X~
has a canonical extension £” in P[g * h]%. Let then £ be the extension of X~ in P[g].

3.1. An upper bound for Sealing

Let h be P[g]-generic. Working in P[g][h], let A" = T’ (Py, X). Equivalently, A" is the set of reals
A C RPls*h] gych that for some countable tree 7 on Py with last model Q such that 77> exists,

A€ L(Zgb, RP [g*h]). It follows from Proposition 2.18 that if Q is as above, then Zgb € F;h.

o _ Ah
Lemma 3.2. Fg*h = A",

Proof. Tt follows from Proposition 2.18 that A" C F; p- FiXA C RPl&*h] that is a universally Baire set
in P[g*h]. Work in P[g * h] and suppose A ¢ A". Because there is a proper class of Woodin cardinals,
any two universally Baire sets are Wadge comparable. Since A" U {A} C F;"* ,and A ¢ A", we have
that A" C L(A,Rg*h). Recall that by a result of Steel ([47, Theorem 4.3]), A is Suslin, co-Suslin in
F;‘;h. Hence, we can assume, without losing generality, that in L(A, Rg.), there are Suslin, co-Suslin
sets beyond A"

It follows from [38, Theorem 10.1.1] that there is a lsa-type hod pair (S,A) € T' ;h such that

re (S,A) = A" Just like in the proof of Proposition 2.21, we can assume that S is a >h_jterate of Po

and AS'¢ = X Tt then follows that 2 € T'® | contradicting Proposition 2.21. O
S g*h g p

By the results of [38, Section 8.1] (specifically, [38, Theorem 8.1.1 clause 4]), we get that in P[g =],
Ah = W(Rg*h) N L(Ah, Rg*h)~ (1)

The lemma and (1) immediately give us clause (1) of Sealing. For clause (2), let & be P[g]-generic and
k be P[g = h]-generic. We want to show that there is an elementary embedding

J i LA" Reup) — LA™ Rgunik)

such that for every A € A", j(A) is the canonical extension of A in P[g * h = k|. This will be
accomplished in Lemma 3.4. The next lemma provides a key step in the construction of the desired
elementary embedding. It does so by realizing L(A", Rg.p) as a derived model of an iterate of Pp.

Recall from [38, Definition 2.7.2] that if S is a hod premouse of limit type (including lIsa type), then
55" is the supremum of the Woodin cardinals of S?. In general, the reader may wish to review some of
the notation concerning hod premice; the relevant notation can be found in [38, Chapter 2 and 3]. The
Key Phenomenon stated before [38, Definition 2.7.8] might also be useful.

Lemma 3.3. Suppose P € P[g] is a poset and m C P is P[g]-generic. Suppose further that in P[g+m],
S is a countable '™ -iterate of Py such that the Py-to-S iteration embedding exists. Suppose k < 58" is
a Woodin cardinal of S and A € I'g,,,, (in P[g +m]). Then in P[g * m], there is a countable X' -iterate
W of § such that the S-to-W iteration embedding exists, the S-to-VV iteration is above k and A is
Wadge below X7} .

Proof. The lemma follows from Proposition 2.19. Indeed, let w be a window of P such that g * m is
generic for a poset in P|v". Let A be the output of FBIC(S, =™, 6", v", k) (see Theorem 2.22). Thus,

58]t is not correct to say that X € P. The correct language is that X is a definable class of P and X8 is a definable class of P[g].
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Ny is a Z™-iterate of S above «, and all of its extenders with critical point > « have, in P[g * h], full
background certificates whose critical points are strictly greater than v*. We also have that

(A) Ord N Ny = 6" (see Proposition 2.19).

Working inside N, let A be the output of the hod pair construction of Ny done using extenders with
critical point > Pl

It follows from Lemma 3.2 that there is a countable iteration p of P according to ™ such that 77-?
exists and letting R = xP-? (P(l)’ ), A is Wadge below X% Fix such a (p, R). We now claim that

Claim. for some & < 6N, N|& is a X7 -iterate of R.

Proof. To see this, we compare R with the construction producing A/. We need to see that R can be
compared with A/. There are two ways such a comparison could go wrong.

1. N and R are not full with respect to the same L p-operator. More precisely, for some normal x7-
iteration 7" of limit length letting b = X7 (7), either
(a) /\/lz;lz ‘6(T) is a Woodin cardinal’ and N'=‘6(T) is not a Woodin cardinal’ or
(b) ./\/lelz ‘6(T) is not a Woodin cardinal’ and N'=¢6(T) is a Woodin cardinal.

2. A strategy disagreement is reached. More precisely, for some normal X7, -iteration 7~ with last model

R* and some ¢ which is a Woodin cardinal of R*, R*|& = N|¢ yet S%C e 2R &

It is easier to argue that case 2 cannot happen. This essentially follows from [38, Theorem 4.13.2].
Because A\ is backgrounded via extenders whose critical points are > N , the fragment of ZJ’(}O, we

need to compute the strategy of A/|£ as the fragment that acts on nondropping trees that are above SN
and are based on Np|Z. Then [38, Theorem 4.13.2] implies that this fragment of Zj\"fo is induced by the
unique strategy of P|{. The same strategy of P|{ also induces Zm*l e Therefore, clause 2 cannot happen.

We now show that clause 1 also cannot happen. Suppose & < 6N is a limit of Woodin cardinals or
is a Woodin cardinal. Let = oN (&), the Mitchell order of &, and let 7 be a normal tree on R with last
model W such that W|¢ = M| and the generators of 7 are contained in £. Furthermore, assume that
{ is a cutpoint in W. Let v be the least Woodin cardinal of WV above ¢ and let 7 be the least Woodin
cardinal of N above Z. It is enough to show that whenever (7, W, &, , v, 1) are as above, then W|v
normally iterates via X7}, to Nz

To see this, it is enough to show that if Z/ is a normal tree on W|v of limit length and m(U/) <Nz,
then setting b = X7}, (U), either

1. 5(U) < t and Q(b,U) exists and Q(b,U)<N |t or
2. 6(U) =1 and ﬂllf(v) =T.

To see the above, fix U and b as above. Suppose first that §(U/) < 7. Let Q<N |7 be largest such that
QF‘6(U) is a Woodin cardinal’. Then, as ™ is fullness preserving, Qﬂ./\/lzl;’ .

Suppose then 6 (U) = 7. If ﬂZ(V) > 1, then Q(b,U)-exists and is Ord-iterable inside P[g * m].
Working inside \V, let K be the output of the fully backgrounded construction of A/ done with respect
to S%IT over V|t and using extenders with critical point > sN" . Because K is universal, we must have
that Q(B,U)<K. Thus, Ki=‘t is not a Woodin cardinal’, which implies that A'=‘t is not a Woodin
cardinal’. O

Let now Y* be a normal tree on S according to X% whose last model is Np. Let 7 € (6N(§7 ,0") be

such that R iterates to the hod pair construction of Ny|n. Let E € ENo be such that crit(E) = oMo and
[h(E) > n (the existence of such an E follows from (A) above). Let a < [h()*) be the least such that
E € M%,’ and set Y** = Y*la + 1. Finally, set ) = Y** " {E}. Notice that if V is the last model of ),
then 7Y-exists.

To finish the proof of the lemma, we need to take a countable Skolem hull of P|A[g * m], where
A= (("))P. Letm : M — P|A[g * m] be a countable Skolem hull of P|A[g * m] such that
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R, N,Y € rng(n). Let X = 7' () and let W be the last model of X. By elementarity, ¥ = X*~{F}
and R normally iterates via X% to a hod pair construction of W|lh(F). It follows now that Z;”\ﬂ, is
Wadge above 7 and hence Wadge above A. Therefore, X’ is as desired. O

Lemma 3.4. There is an elementary embedding

IE L(Ah,RP[g*h]) — L(Ah*k,RP[g*h*k])

such that for each A € A", j(A) = A¥, the interpretation of A in P|g * h * k].

Proof. Let W) = L(A" RPl&*2]) and W, = L(A"* RPI&*h 1) Let C be the set of inaccessible
cardinals of P[g * h * k]. Because we have a class of Woodin cardinals, it follows that (A")* exists.
Moreover, for I' C p(R), assuming I'** exists, any set in L(I", R) is definable from a set in I, a real and
a finite sequence of indiscernibles. It is then enough to show that

(*)if s = (@g, ..., @) € C<°, A € A", x € Rg.y, and ¢ is a formula, then

L(A" Rgun)Ed[A, x, 5] if and only if L(A™*, Re.pa)Ed[AX, x, 5].

Indeed, we first show that (*) induces an elementary j : W; — W, as desired. Let Y be the set of a that
are definable over L(Ah*k, Rguh+k) from a member of C<¢, a set of the form AK for some A € A" and
areal x € Ry.j. Notice that (*) implies that

Claim 1. Y is elementary in L(A"*¥, Rgunk)-

Proof. We show that Y is Xi-elementary. The general case follows from Tarski-Vaught criteria. To see
this, fix a € Y and let ¢ be a 2 formula. Suppose that

Wakélal.

Fix aterm 7, s € C<%, a set of the form A¥, where A € A" and x € Rg.n, such that a = ™ [s, Ak,x]. It
then follows from (*) that if b = t"1[s, A, x], Wi=¢[b]. Let ¢ = Juy(u,v). Fix aterm t;, s; € C<¢,
B € A" and ¥ € Rg.p such that setting ¢ = t}V‘ [s1,B,y], WiE¥|[c, b]. Therefore, (*) implies that if
d=t"™ [s1,Bk,y], then Wol=y[d, a]. As d € Y, we have Y=¢[a]. m]

Let now N be the transitive collapse of Y. It is enough to show that N = W;. This easily follows
from (*) and the proof of the claim. For example, let us show that RN = RWi Fix x € RV, Lettbe a
term, s € C<®, A € A" and a € R such that x = 12 [s,Ak,a]. Letting y = "i[s, A, al, it is easy
to see that x = y. We now let j : W; — W, be the inverse of the transitive collapse of Y. Clearly, j is
elementary and j(A) = A* for A € A",

By a similar reduction, using the definition of A” and A”*K it is enough to show that (**) holds where

(%) if s = (o, ..., @y) € C<®, T is a countable iteration of Py according to " such that 77" exists,
R=nT-" (Pé’), X € Rg,p, and ¢ is a formula, then

WiEg[Zh, x, 5] if and only if Wal=g[ZhF x, s].

To show (%), let s € C<¢, T be a countable iteration of P, according to X" such that 77-? exists,
R =nTb (Pg), X € Rgsp, and ¢ be a formula such that W1|:¢[E;’2,x, s]. Notice that without losing
generality, we can assume that 77 exists, as otherwise we can work with a shorter initial segment of 7~
that produces the same bottom part R. Let S* be the last model of 7 and let S** be the ultrapower of
S* by the least extender on the sequence of S* with the critical point 5. Let ¢ be the least Woodin of
S** that is > 6. Let WV be the X' -iterate of S** that is obtained via an x-genericity iteration done in
the window (67, ¢).

‘We would now like to see that W2|=¢[Z;’€*k, x, s]. The idea is to realize W; and W,, respectively, as
a derived model of V. Given a transitive model of set theory M with A a limit of Woodin cardinals
of M, we let D(M, 2) be the derived model at A as computed by some symmetric collapse of 1. While
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D (M, 1) depends on this generic, its theory does not. Thus, expressions like D (M, 1)y have an uvs
meaning. If u C Coll(w, < A) is the generic, then D (M, 4, u) is the derived model computed using u.>°

To finish the proof, we will need a way of realizing W as a derived model of an iterate of W
that is obtained by iterating above &, where ¢ is the least Woodin cardinal of ) above 6™%. The same
construction will also realize W, as a derived model of a WW’s iterate. Let/ € Coll(w, T’ ; ) be Plgxh]-
generic. Working in P[g = h =[], let (A; : i < w) be a generic enumeration of F;h and let (x; : i < w)
be a generic enumeration of Rg.p,.

(1) There is sequence (W}, p;, p; 1 i < w) € P[g * h = 1] such that

. foreachn < w, W, pt, p;i i < n) € HCPl&*h],

2. Wo =W, R .

3. letting E; € E Wi be the Mitchell order 0 measure on 6*i and M; = Ult(W;, E;),° p; is aniteration
of M; according to 2?\4[ that is above 6"/’ , has a last model V; and is such that 7Pi exists and for

b
some v; < 6Ni a Woodin cardinal of N}, A; <,, Zﬁ[_‘v_,

4. fixing some v; as above and letting & be the least Woodin cardinal of NV; that is > v;, W,y is the Ef{/_ -
iterate of V; that is above v; and makes x; generic at the image of &; p; is the corresponding iteration.

—_

The proof of (1) is a straightforward application of Lemma 3.3. Let xr; ; : WW; — W; be the iteration
embedding and let W, be the direct limit of W;,7;; : i < j < w). It follows that for some
uC Coll(w, < 6W3)-generic,

(2) RWelul =Ry, and re = 9Rgun) N DWW, 6™é, u), and hence,

(3) W1 = DWe, 8o, u)

Letting S stand for the strategy predicate and ¢ be the sequence of the first n indiscernibles of W|§ Wb,
we thus get by our assumption Wi=¢ [Zélz’ x, s] and by elementarity that

@ DOW[x],65" )= [SY, x, 1].

The same construction that gives (3) also gives N/,, and v such that

(5) N, is a Z"*_jterate of W above &, v C Coll(w, < (5ij) is generic and D (N, N, v) = Wa.

Thus, W2|=¢[Z;’€‘ k x, t1], where t; is the image of r in N,. By indiscernability, we get that
Wzl=¢[§l§’§k,x, s]. m]

3.2. An upper bound for LSA — over — uB

Let (Py,X7),P, %, g be as before (see right after Theorem 3.1). Now we show LSA — over — uB is
satisfied in P[g]. Fix a poset P € P[g] and let &1 C P be P[g]-generic. We will show that

1. L(Z8*" Rgu,)=LSA and
2. I“;’;h is the Suslin co-Suslin sets of L(Z&*", Rgxn)-

Clause 2 above is an immediate consequence of clause 1 and the results of the previous section.

We now show clause 1. Let (y; : i < w) be the first w Woodin cardinals of P[gh] andy = sup;<7v;.
Let w; be the corresponding consecutive windows determined by the y;’s. Write A for X", the canonical
interpretation of X in P[g = h]. In P[g = h], let

m: M — (Plg=h]lyH)*

be elementary and such that M is countable and crit(r) > &j. For each i, let §; = n~!(y;), and
A = sup;.,, d;. Note that because crit(w) > 8o, M|A is closed under A, and A is the supremum of
the Woodin cardinals of M. It follows from Proposition 2.13 that M has a v"0-strategy acting on
nondropping trees based on the interval [7~!(v"?), 1) in P[g * h]; call this strategy .

59This is sometimes called the ‘old’ derived model. D (M, A, u) has the form L(R},, Hom;},), where R}, = <1 RMlutal
and Homj, is the collection of A C R}, in M (R;},) such that there are < A-complementing trees T, U € M [u[B] for some
B < Asuchthat p[T|M®) = A=R% - p[U].

60We take the ultrapower by E; to have more cutpoint Woodin cardinals.
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Let k € Coll(w, < 1) be M-generic. Let R} = sy RMIKIE] and recall the ‘new’ derived model
of M at A

D*(M, A, k) = L({A € p(Ry) N M(R}) : L(A,R})=AD*}).

By Woodin’s derived model theorem, cf. [47], D*(M, A, k)=AD*. Again, the theory of D*(M, A, k)
does not depend on k. When we reason about the theory of the new derived model without concerning
about any particular generic, we write D* (M, 1). Recall that we set A = =",

Proposition 3.5. AN M(R}) € D*(M, A). Furthermore, in D*(M, 2), L(A,R)ELSA.

Proof. First, note that there is a term 7 € M such that (M, ¥, 1) term captures X/*. More precisely,
letting i : M — N be an iteration map according to P, let [ be a < i(A)-generic over A/. Then
Code(Z") N N[1] = i(7); this follows from results in Section 2 (cf. Proposition 2.17). To see that in
M(R}), L(A, R)=AD; suppose not. Let x be a real and A be the least O D (A, x) counterexample to AD
in L(A,R). Also, by minimizing the ordinal parameters, we may assume A is definable from x and A
in L(A,R). Using the term 7 for A, we can easily define a term o~ over M [x] such that (M[x], ¥, o)
term captures A.°" Applying Neeman’s theorem (cf. [30]), we get that A is determined. Finally, let
i : M[x] — N be a RFl&*"]_genericity iteration according to ¥.°> By the argument just given, in
N (Rg.n), A is determined. So M(R})E=o7 is determined. Contradiction.

If LSA fails in L(A, R), then A is Suslin co-Suslin in D* (M, 1), and the argument in Proposition 2.2 |
gives a contradiction. The point is that in D* (M, 1), the Wadge ordinal of I'? (P, A) is a limit of Suslin
cardinals, and the failure of LSA means that there is a larger Suslin cardinal above the Wadge ordinal®
of I'?(Py, A). So A is Suslin co-Suslin in D* (M, 1). Now we can run the argument in Proposition 2.21
to obtain a contradiction. Hence, in D*(M, 1),

L(A,R)ELSA. 2

]

Now perform a R”[8*"]_genericity iteration according to ¥ at A. More precisely, there is an iteration
i : M — N according to ¥ such that letting | C Coll(w,< i(d)) be N-generic, letting R} =
Ueg<i(y RVUIS], we get

RPI& = Ry
and
L(Z", RPle*ly ¢ DY (N, i(1),1).
Hence, by (2),
L(E" RPIEH) L SA,

This completes the proof of clause 1 above and also the proof of LSA — over — uB in P|g].

3.3. An upper bound for Tower Sealing

Let (Py,X7), P, Z, g be as before (see right after Theorem 3.1). We prove clause (2) of Tower Sealing
holds in P[g]. Clause (1) has already been established by the previous sections. Let P € P[g] be any

“'Note that there is a generic k" € Coll(w, < Q) for M[x] such that R} =Rj,.

62In P[g = h], let k € Coll(w,R) be generic and let (x; : i < w) be the generic enumeration of the reals. The iteration
i is the direct limit of the system (M, iy m+1 : M < W), where Mo = M [x], for each m, i ps1 : Mm — My is the
Xm-genericity iteration that makes x;,, generic at the image of ;.

63The supremum of Wadge ranks of the sets of reals in ['? (P, A).
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poset, i € P be a P[g]-generic and let 6 be Woodin in P[g * h] =4.y W.Let G € Qs be W-generic
(the argument for P.s is the same) and j : W — M c W|[G] be the generic elementary embedding
induced by G.%*

Let A be the canonical interpretation of £~ in W and A® be the canonical interpretation of A in
WG] (considered as the short-tree strategy of Py acting on countable trees). Now, by the fact that M is
closed under countable sequences in W[G] and the way A is defined (using generic interpretability),

A% = j(A). (3)

Here is the outline of the argument. Let 7~ be countable and according to both j(A) and A®. Note that
T € M. Suppose T is nuvs (the case 7T is uvs is similar). One gets that in W[G], Q(AC(T), T) exists
and is authenticated by 5, a fully backgrounded authenticated construction in W where extenders have
critical point > §; note that we can take C € W. This implies that Q(AC (7)), 7T) is authenticated by
j (5 ) e M; Q(j(A)(T),T) is also authenticated by j (6 ) in M. The details are very similar to the proof
of Proposition 2.17. So j(A)(T) = A®(T). Hence, A® € M.

By Lemma 3.2,

()W =T (Py, A9).

By elementarity, the fact that (=)W = re (Po,A), 3, and Lemma 3.2,
J(T=)Y) =TP(Po, A9).

So indeed, ()W IG] = j((I*)W) as desired.

Remark 3.6. Another proof of clause (2) of Tower Sealing is the following. We give a sketch: by
results of [38], AC € L(F%O’W[POJ,H, (r*°)WIGly, Here, working in W[G], let H~ be the direct
limit of hod pairs (R,A) € L(I"*) such that in L(I"*), A is fullness preserving and has hull and
branch condensation. |H~| = VEOP in L(I™). Let H = U{M : H~ < M, M be a sound, hybrid
countably iterable premouse such that p, (M) < o(H™)}. For each M < H as above, for every N
countably transitive such that N is embeddable into M, N has an w-strategy in L(I'™).

If (T)WIGT £ j((r°)V), then suppose the former is a strict Wadge initial segment of the latter
(the other case is handled similarly). So the model

L(7% o[ Pol. 1, (P)WI) e m

as M is closed under w-sequences in W[G]. In fact, we get that A¢ € j((I'*)"). By Generation of
Mouse Full Pointclasses (applied in L(j((I'°)"')) and a comparison argument as in Lemma 2.21, there
is a (maximal) AC -iterate S of P, such that S has an iteration strategy ¥ such that

o Pstc — (AG)S,
o I'’(8,¥) =T(Py, A9),
o ¥ e j((I)Y).

By elementarity, the existence of S, ¥ holds in L((I"*)"). This contradicts the fact that j(A) ¢ (I'°)W.
4. Basic core model induction
The notation introduced in the section will be used throughout this paper. It will be wise to refer back

to this section for clarifications. From this point on, the paper is devoted to proving that both Sealing
and LSA — over — uB imply the existence of a (possibly class size) excellent hybrid premouse. As we

64Q<s and P.s are the countable and full stationary tower forcings.
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have already shown that a forcing extension of an excellent hybrid premouse satisfies both Sealing and
LSA — over — uB, this will complete the proof of Theorem 1.4.

We will accomplish our goal by considering HOD of L(I"*,R) and showing that, in some sense, it
reaches an excellent hybrid premouse. Our first step towards this goal is to show that ® is a limit point
of the Solovay sequence of L(I",R).

Proposition 4.1. Assume there are unboundedly many Woodin cardinals. Furthermore, assume either
Sealing, or Tower Sealing, or LSA — over — uB. Then for all set generic g, the following holds in V[g]:

1. 9(R) N L(I'™,R) =T,
2. L(I'°,R)=ADg.

Proof. Towards a contradiction, assume that L(I"™, R)=—ADg. By a result of Steel ([47, Theorem 4.3]),
every set in ['™ has a scale in I'™. Notice then that clause 1 implies clause 2. This is because given
clause 1, L(I"™, R) satisfies that every set has a scale, and therefore, it satisfies ADg.%>

It is then enough to show that clause 1 holds. It trivially follows from Sealing or Tower Sealing. To
see that it also follows from LSA — over — uB, fix a set A C R such that I"® is the set of Suslin, co-Suslin
sets of L(A,R) and L(A,R)E=LSA. It now follows that if « is the largest Suslin cardinal of L(A,R),
then, in L(A, R), I'® is the set of reals whose Wadge rank is < «. Since « is on the Solovay sequence of
L(A,R), T’ = L(I'"™®) N p(R). Therefore, clause 1 follows. O

For the rest of this paper, we write ' =qADp to mean that clause 1 and 2 above hold in all generic
extensions. Q here is a reference to Woodin’s Q-logic. We develop the notations below under ' =g ADg.

Suppose u is a cardinal. Let g € Col(w, < p) be V-generic. Working in V, we say that a pair (M, X)
is a hod pair at u if

1. MeV,,

2. Yis a (u, p)-iteration strategy of M that is in ' in V(@M and is positional, commuting and
has branch condensation, and

3. X is fullness preserving with respect to mice with I"**-iteration strategy.

Let F be the set of hod pairs at . It is shown in [38] that hod mice at i can be compared (see [38,
Chapter 4.6 and 4.10].). More precisely, given any two hod pairs (M, X) and (N, A) in F, there is a
hod pair (S, ¥) € F such that for some M* <54 S and N* <04 S,

1. M* is a X-iterate of M such that the main branch of M-to-M* iteration does not drop,
2. N*is a A-iterate of A/ such that the main branch of A/-to-N* iteration does not drop,
3. 2y = Pagr and Ap+ = W+ and

4. either § = M* or S = ™.

Working in V[g], let F* be the set of all hod pairs (M,X) such that M is countable and X
is an (wi, w; + 1)-strategy of M that is I'"™-fullness preserving, positional, commuting, has branch
condensation,®® and X THC € I'*°.

Because any two hod pairs in F* can be compared, F covers F*. More precisely, for each hod pair
(M, X) € F*, there is Z-iterate N of M such that the M-to-N iteration does not drop on its main
branch, (X 'V) € V and X is the unique extension of (Xx/[V) to V[g].

Given any hod pair (M, X), let I (M, ) be the set of iterates A/ of M by X such that the main branch
of M-to-A does not drop. Let X € I(M, X) be a directed set (i.e., if N, P € X, then there is R € X
such that R is a X x/-iterate of A" and a Xp-iterate of R). We then let M, (M, X, X) be the direct limit
of all iterates of M by X that are in X. Usually, X will be clear from context and we will omit it.

65Recall that Martin and Woodin showed that under AD, ADp is equivalent to the statement that every set of reals has a scale.
See [27]. Also, by results of Martin, Steel and Woodin, assuming class of Woodin cardinals, every uB set is determined. See [47].

66In [38], P = Col(w, wy), but in our case, since u is measurable, all results in [38, Chapter 12] hold in our context. The
point is that we can work with stationaraily many hulls X < Hg for some & >> Q such that X N u = 7 is an inaccessible
cardinal, X <Y C X, and their corresponding uncollapse map nix : Mx — Hg. Or equivalently, we work with the ultrapower
embedding jiy : V — Ult(V,U), noting that ji; lifts to a generic elementary embedding on V [G]. By results in [38], X has
strong branch condensation and is strongly A-fullness preserving.
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Working in V[g], let R, = RY [¢], Let H~ be the direct limit of hod pairs in F*. Because F covers
F*, we also have that 7{~ is the direct limit of hod pairs in F.

Fix (M, X) € F* such that M (M, Z) =ger Q noa H™. We let Pg = Zé. W5 only depends on
@ and does not depend on any particular choice of (M, X) € F*. Let (K™ (@) : @ < ) be the layers of
‘H~ (in the sense of [38] and [34]) and let ¥, be the strategy of ™ («) for each @ < 1. ¥, is the tail
strategy o for Q@ = M (M, X) for any (M, Z) € F* such that M, (M, Z) = H™ (a). We now set

v =def lP/t =def Ba<ar™ Y.

Definition 4.2. Suppose x is a set in V(Rg) and @ is an iteration strategy with hull condensation.
Working in V(R*), let Lp<“B-®(x) be the union of all sound ®-mice M over x that project to x and
whenever  : N' — M is elementary, A is countable and transitive. Then A/ has a universally Baire
iteration strategy.

Continuing, we set

1. H = Lp“B-¥ (™) (note that H € V),

2. @=0(H),

3. (A : @ < 1) as the Solovay Sequence of I'™. Note that ® = sup .60, and 6, = 6" (@ for each
a < A.

We note that all objects defined in this section up to this point depend on . To stress this, we will
use u as subscript. Thus, we will write, if needed, ¥,, or H,, for ¥ and H, respectively. We will refer to
the objects introduced above (e.g., H, and ¥,,) as the CMI objects at p.

Given a hybrid strategy mouse Q and an iteration strategy A for Q, we say A is potentially-universally
Baire if whenever g C Coll(w, Q) is generic, there is a unique ® € V|[g] such that

1. IV = A,
2. in V[g], @ is a uB iteration strategy for Q.

Similarly, we can define potentially-n-uB iteration strategies.

Definition 4.3. Suppose y is a cardinal and (Q, A) is such that Q € H,+, Q is a hybrid strategy mouse
and A is a potentially-uB strategy for Q. Suppose X € H,+. We then let Lp”"“B-A(X) be the union of
all sound A-mice over X that project to X and have a potentially-uB iteration strategy.

Clearly, LpP“B-A(X)<Lpc“B-A(X). In many core model induction applications, it is important to
show that, in fact, LpP“B-A(X) = Lp“B-A(X). The reason this fact is important is that the first is
the stack that we can prove is computed by the maximal model of determinacy containing X after we
collapse X to be countable while if Q, X are already countable, the OD (A, Q, X) information inside
the maximal model is captured by Lp<“B-A(X). This is because for countable Q, X, Lp“B-A(X) =
Lp“B-A(X) where the mice appearing in the latter stack have universally Baire strategies. The equality
LpPuBA(X) = Lp“B-A(X) is important for covering type arguments that appear in the proof of
Proposition 5.9.

5. Lp°“B and LpP“B operators

The following is the main result of this section, and it is the primary way we will translate strength from
our hypothesis over to large cardinals. If y is such that Hom, = I'g’ for any g C Coll(w, < p), then we
say that u stabilizes uB.

Definition 5.1. For each inaccessible cardinal y, let A, C u be a set that codes V,,. We then say that
X < Hy+ captures Lp<4B-Pu (Ap)if Lp<4B-Pu (Au) € X and letting rx : Mx — H,+ be the uncollapse
map and letting A be the w-pullback of ¥,,,

ﬂ)—(l(chuB,‘I’,, (A/l)) — chuB,A(ﬂ,)—(l (A#))
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Theorem 5.2. Suppose there is a proper class of Woodin cardinals and a stationary class of measurable
cardinals. ®” Suppose further that T =qADg. There is then a stationary class S of measurable cardinals
that are limits of Woodin cardinals, a proper class So C S, and a regular cardinal v > w1 such that the
following holds:

1. foranyp e S, |H,| < u*, cf(OrdNH,) < pu, and cf(Ord N LpcuB-¥u (Ap) < 5

2. for any u € So, u stabilizes uB, cf(Ord NH,) < v, and cf(Ord N Lpc4B-¥u (Ap) <v;

3. forany p € So, there is Y, € ¢, (H,+) such that A, € Y,, and whenever X < H+ is of size < u, is
v-closed and Y, C X, X captures LpcuB:¥u (Ay).

We emphasize that the arguments in this section (and in this paper) are carried out entirely in ZFC,
though it may appear that we are working with proper classes. See Remark 5.10 for a more detailed
discussion and summary. First, we prove a useful lemma, pointed out to us by Ralf Schindler. Below,
by ‘class’, we of course mean ‘definable class’.

Lemma 5.3 (ZFC). Suppose S is a stationary class of ordinals. Suppose f : S — Ord is regressive
(ie., f(a) < aforall @ € S). There is an ordinal v and a proper class Sy C S such that f[Sy] = {v}.

Proof. Suppose not. Foreach v, let @, = sup{a : f(a) = v}ifv € rng(f) and v+1 otherwise. a,, exists
because we are assuming that f~'({v}) is a set. Let g : Ord — Ord be the function: v — «,; hence,
g(v) >vforallv.Let C = {u: g[u] € u}. So Cisaclubclass. Let @ € lim(C) N S. We may assume
for unboundedly many 3 < «, B € rng(f). Then we easily get that f () is not < @. Contradiction. O

Clause 1 of Theorem 5.2 follows easily from the above lemma.

Proposition 5.4. Suppose there is a proper class of Woodin cardinals and S is a stationary class of
inaccessible cardinals that are limit of Woodin cardinals. Then there is a proper class S* C S such that
whenever p € S* and g C Coll(w, < p) is V-generic, in V[g], Hom, =I'y’.

Proof. Clearly, 'y’ € Homy,. Suppose then the claim is false. We then have a club C such that whenever
peCnSandg € Coll(w, < p), I'y # Homy,. Foreach u € C N S, let, < p be least such that
whenever g C Coll(w,n,), there are u-complementing trees (7', U) € V[g] with the property that p[T]
is not uB in V|[g][A] for any V[g]-generic h C Coll(w, < u). By Lemma 5.3, we then have a proper
class So C S such that for every ug < ui € So, 74, = N4, - Let n be this common value of 5, for 1 € S
and g € Coll(w,n) be V-generic. For each u € Sy, we have a pair (7,,, U,) € V[g] that represents a
u-uB set that is not uB. A simple counting argument then shows that for a proper class S* C Sy, whenever
Ho, 1 € S*, VIglEp[Tyl = p[T,,]. Letting A = (p[T,,])V[g] for some u € S*, we get a contradiction
as A isuBin V[g]. O

What follows is a sequence of propositions that collectively imply the remaining clauses of Theorem
5.2. We start by establishing that the two stacks are almost the same.

Proposition 5.5. Suppose u, (Q, A), X are as in Definition 4.3 and suppose y is in addition a measurable
cardinal stabilizing uB. Let j : V. — M be an embedding witnessing the measurability of u. Then
LpBA(X) = (LprBA ()M,

Proof. Let j : V. — M be an embedding witnessing the measurability of u. Let M<Lp“B-A(X)
be such that p(M) = X. Let h C Coll(w, < j(u)) be generic. Consider j(M). In M[h], M, as it
embeds into j (M), has a uB strategy. It follows that M has a potentially-uB strategy in M, and hence,
ML(LpPHBA(X))M | Conversely, if M(LpP“B-A(X))M is such that p(M) = X, then in M, M
has a potentially-uB strategy, and hence, in V, any countable 7 : M* — M has a y-uB-strategy. As
u-stabilizes uB, we have MALp“B-A(X). o

The next two propositions are rather important. Similar propositions hide behind any successful core
model induction argument.

67And hence, a stationary class of measurable cardinals that are limits of Woodin cardinals.
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Proposition 5.6. Suppose there are unboundedly many Woodin cardinals, u is an inaccessible cardinal
and I'*=qADg. Suppose further that A is a potentially-uB iteration strategy for some Q € H,+ and
X € Hy+. Let M = LpP"B-N(X). Then |IM| < u*.

Proof. Suppose Ord N M = u*. Let g C Coll(w, u) be generic. Then
(LpP PR (X))Y = (Lpr BN (x)VIel,

Moreover, (LpP“B-A(X))VIgl ¢ L(I'Y,Rg). Hence, L(I';’,Rg )= ‘there is an wi-sequence of reals’.
This contradicts the fact that L(I'y’, Rg) =AD", O

Corollary 5.7. Suppose there are unboundedly many Woodin cardinals, u is a measurable limit of
Woodin cardinals that stabilizes uB and I"”=qADg. Suppose further that A is a potentially-uB it-
eration strategy for some Q € Hy,+ and X € Hy+. Let M = Lp“B-N(X). Then |M| < u* and
cf(OrdN M) < u.

Proof. Fix j : V — M witnessing the measurability of u. It follows from Proposition 5.5 that M =
(LpPu“B-A(X))M | Applying Proposition 5.6 in M, we get that | M| < u*.

Assume next that cf(Ord N M) = u. Let p = Ord N M and let C be the 0O(n)-sequence of
M. Because u is measurable, we hqye that C is threadable. To see there is a threag D, note that
sup j(nl =aer v < j(m).Let E = j(C),and D = j~'[E]. Then D is a thread through C.

This implies that there is a A-mouse N extending M such that p(N') = n and every < p-submodel
of N embeds into some N* <M. It follows that N'SLp“B-A(X). O

Corollary 5.8. Assume there is a class of Woodin cardinals and let y be a measurable limit of Woodin
cardinals that stabilizes uB. Assume I'°l=qADg. Let 1™, H, etc. be defined relative to u as in Section 4.
Set

& =max(cf¥ (Ord nH),cf¥ (Ord n Lp“B-¥x (Aw)).

Then & < .

Proof. We show thatcfY (Ord NH) < p. The second inequality is very similar. Let g C Coll(w, < ).
Notice that |F§°|V[g] =Ny = p. Itfollows that [0] < u* (recall that p(Rg) N L(T'y, Rg) = T'y). The fact
that |#|¥ < u* follows from Corollary 5.7. The fact that ¢ f¥ (Ord N'H) < u follows from the fact that
O(u) fails while letting £ = Ord N'H; H has a O(¢)-sequence. Let C be the 0(¢)-sequence constructed
via the proof of O in H.%° If cf({) = u, then C has a thread D by measurability of u; the existence of
D follows by an argument similar to that of Corollary 5.7. Because of the way C is defined, D indexes a
sequence of models (M, : @ € D) such that

1. forevery @ € D, M,<H and p(M,) = 0O, and
2. fora < B, @, B € D, there is an embedding 7, g : My — Mg.

Let M be the direct limit along (M, e, : @ € D). Then every countable submodel of M embeds
into some M, implying that M <H. However, as D is a thread, H <M, contradiction. O

The next proposition shows that sufficiently closed Skolem hulls of Lp<“B-operator condense. The

proof of it is very much like the proof of [33, Theorem 10.3] and the proof of [38, Theorem 9.2.6]. The
proof of [38, Theorem 9.2.6] is done for H, not A,,. The proof of Proposition 5.9 can be obtained from
the proof of [38, Theorem 9.2.6] by simply changing P to A, everywhere.

68This is a consequence of the proof of O. AV is a direct limit of (Mg, ja : @ < B, @,B € D), where D C Ord N M is
cofinal in Ord N M and M o, <M.
%9Notice that this is the easy version of the proof of square; the construction of [11] is all we need.
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Proposition 5.9. Suppose there is a proper class of Woodin cardinals, u is a measurable limit of Woodin
cardinals stabilizing uB and I'°=qADg. There is then v < pand Yy € ¢, (H,+) such that A, € Yy and
forany X < H,+ of size < y that is closed under v-sequences and Yoy C X, letting nx : Mx — H+ be
the uncollapse map and letting A\ be the n-pullback of ¥, ﬂ;(] (ch“B’q’(A”)) = chuB’A(ﬂ;(l (A)).

Proof. Letj:V — M be an embedding witnessing that u is a measurable cardinal. Thus, crit(j) = u. It
follows from Corollary 5.8 that j[Ord N LpC“B"P(A,,)] is cofinal in Ord N j(LpC“B"P(AM)).70 Below,
we use the following information:

o P= chuB’lp(A/J)’ N = j(Hﬂ*')’ A= .](A[l)’

o Yy =j[P]andYy = Hull™ (Y}), and

o ifY € 9, (N) N M, then we let My be the transitive collapse of Y, 1y : My — j(H+) be the inverse
of the transitive collapse, Py = n;l (j(P)) and Zy be the my-pullback of P,

o ifY CY’, then we let 7y y» : My — My~ be the canonical embedding,

o H and H~ are defined relative to u as in Section 4.

We want to show that

(a)if Y € 9 () (N) N M is such that Yo C Y, then 7! (j(P)) = Lp“B-> (n,' (A)).

Towards a contradiction, assume that (a) is false. Fix one such Y that is a counterexample to (a)
and let M<Lp<“B-Xr (ﬂ;l (A)) be a sound Xy-mouse over ﬂ;l (A) such that M # ﬂ;l (j(P)) and
p(M) =0rdn ﬂ;] (A). We can then find some Xy,-hod pair (P*,IT) € M7 and a hod pair (S, D) € M

such that

1. Pt e H%H) and P* is a hod premouse over A, extending P,

2. II has strong branch condensation,

3. P* is meek and of limit type (see [38, Definition 2.7.1]),

4. cfP (67" = w,

5. Ynj(H)) C rge(ﬂfls”oc) and no proper complete layer of S has this property,”

6. 1 € Misa (j(u),j(u))-strategy for P* such that if » C Coll(w, < j(u)) is M-generic, then IT can

be uniquely extended to a strategy 1" € (I°)M ("] "and moreover, IT witnesses that P* is a Zy,-hod
mouse.”

Let T : My, — My be the canonical embedding and let E be the long extender of length Ord N
ﬂ{,l (Lp“B-Y(A)) derived from 7. Because P* might have cardinality > u, when we form Py =der
Ult(P*, E), we cannot conclude that P§ is iterable in M. This is because we do not know that j [P+ € M.
To resolve this issue, we take a hull of size u. Let uy = (u*)V.

We work in M. We can now find m : W — N such that

o W e M is transitiveand u+ 1 C W,
o (j(P),Yo,Y, (P I0),(S,®)) € rge(m).

LetZ=m'(Y),N=m ' (M),R=m"'(j(P))and k : P — R be m~'(j'P). Working in M, set

o Q= (P)%,

o 0 = (M1 (vy).z MPYW and 7 = (72 1Q)V,
o P*=m 1 (P*) and I = m~'(10),

o (S, @) =m~(S, D).

70Below, we often confuse strategies with their interpretations in relevant generic extensions or in relevant inner models.
However, in some cases, the distinction between the two strategies is important, and in those situations, we will either separate
the two strategies or point out that the distinction is important.

"'Notice that Xy, = .

72That is, if S’ﬂz 48> then (Y N j(PI6P)) ¢ rge(ng,oo). Complete layers are those layers S” of S for which 0% isa
Woodin cardinal of & or is a limit of Woodin cardinals of S

73For details, the reader may wish to check [38, Theorem 9.2.6].
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Thus, we have that

A k=71to0,0: P> Qand7t: Q> R,
(B)in W,

. N is a sound Xz-mouse over Q that projects to Ord N Q,

. in any derived model of (P*,TI) as computed by an R-genericity iteration, A" has an w-iteration
strategy witnessing that it is a £z-mouse,

3. N is not an initial segment of Q,

4. @ is in the derived model of (P*,TI) as computed by any R-genericity iteration,

5. letting & : o(H) — 5|65 be such that & = (ng’m)*‘ 07, % = (£-pullback of P 5.

N =

Let now F be the long extender of length 62 derived from o~ and set Q* = Ult(P*, F). Let o+ = ﬂ?.
Notice that because m o k = j [P, we have ¢* : Q* — j(P*) such that

(C)jIP* = ¢t oo™

Let T be the m I'P+-pullback of I17* and let @ be the m-pullback of ®@. Notice that

OHIW=M7>

(D2) l witnesses that P+ is a ¥-hod mouse™ ,

D3) D 'W=0.

Notice now that we have

(F)inM, j (ﬁ+£-12’11 Yisa (j(u), j(u))-iteration strategy witnessing that j(P*) is a j (¥)-hod mouse,
and moreover, j [Pt e M.”7

We let I' = (X2)". Notice that in W, I is the 7-pullback of m~!(j(¥)). Let I'* be the ¢* 1 Q =
m o 7 [ Q-pullback of j(W¥). It follows that

(G) T* is the m o &-pullback of @, and it is also &-pullback of o
We now claim that

(b) in M, in any derived model of (FT) as computed by an R-genericity iteration, N has an
w1 -iteration strategy witnessesing that A/ is a I'*-mouse.

The proof of (b) is like the proof of Claim 1 of [33, Lemma 10.4], and it is also very similar to the
proof of (b) that appears in the proof of [38, Theorem 9.2.6]. Because of this, we skip the proof of (b).

To finish the proof of Proposition 5.9, it remains to implement the last portion of the proof of [33,
Theorem 10.3]. Let Ag be ¢*-pullback of j"(ﬁF I'N). Notice that it follows from (F) that Ay witnesses
that Q" is a I'*-hod mouse. It then follows from (b) that

(H) in M, in any derived model of (Q, Ag) as computed by an R-genericity iteration, N has an
w1 -iteration strategy A witnessing that A is a I'*-mouse.

(H) gives contradiction, as it implies that

(I Q"=‘Ord N Q is not a cardinal’,’

while clearly P*+=‘0Ord NP is a cardinal’, contradicting the elementarity of ¢*. O

Proof of Theorem 5.2

We now prove Theorem 5.2. First, take S to be the stationary class of measurable cardinals which
are limits of Woodin cardinals; for any u € S, u satisfies clause (1) of Theorem 5.2 by Corollary 5.8.
To get clauses (2) and (3), we apply Lemma 5.3 to the function f on S that maps each u € S to the
maximum of the ordinals {v,7n,, &}, where v appears in Proposition 5.9, 1, appears in the proof of

7#We confuse IT with its extension to N [g]. Similarly, we think of M asa strategy in N as well as in N [g]. Same comment
applies below to IT and .

75See proof of Claim 2 in the proof of [33, Lemma 10.4].

76This follows from the fact that IT witnesses that P is a ¥-hod mouse and m [P = id.

71Because |P*| = u.

78This is because (K) implies that " is ordinal definable in Q*, and therefore, N € Q.
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Proposition 5.4, and ¢ appears in the statement of Corollary 5.8. Using Lemma 5.3, we obtain proper
class So C S such that for each u € Sy, v witnesses clauses (2) and (3) of Theorem 5.2. This finishes
the proof of Theorem 5.2. O

Remark 5.10.

1. By Lemma 5.3, the existence of S, Sy, v above can be proved within ZFC.

2. It may appear that we use second-order set theory to ‘pick’ for each measurable limit of Woodin
cardinals u a set A, that codes V,, but the theory ZFC+ ‘there is (global) well-order of V' is
conservative over ZFC. Over any Vi=ZFC, we can find a (class) generic extension V[g] of V such
that V[ g]k=ZFC+there is a global well order’.

3. The above two remarks simply say that we may assume as part of the hypothesis that V has a global
well-order. This then allows us to get S, So, v and the sequences (Y, : 4 € Sp), (A, : p € §) in
Theorem 5.2.

The rest of the argument does not need the hypothesis that I'*=qADg. It only needs the conclusion
of Theorem 5.2. To stress this point, we make the following definitions.

Definition 5.11. We let T stand for the following theory.

1. Ty
2. There is a stationary class S, a proper class So C S, an infinite regular cardinal v and two sequences
Y= (Yy - p € Sp) and A= (Ay : p € S) such that the following conditions hold for any u € S:
(a) u is a measurable limit of Woodin cardinals,
(b) u stabilizes uB,
© [Hul < ur*,
(d) A, € ucodesV, and max(cf(Ord NH,),cf(Ordn LpcuB-Pu (AL) < s
furthermore, if 1 € Sp, then the following hold:
(a) max(cf(Ord NH,),cf(Ord N Lp“B:-Yu(A,)) < v,
(®) Yy € 9y (Hy),
(¢) Ay €Yy, and
(d) whenever X < H,,+ is of size < y, is v-closed and ¥,, € X, X captures’ Lp““B-%u(A,,).

6. Condensing sets

Here, we review some facts about condensing sets that were introduced in [33] and developed further
in [38, Chapter 9.1]. We develop this notion assuming the theory 7 introduced in Definition 5.11. Let
(S, So, vo, )7, /_1)) witness that 7 is true.

Fix u € So and let g € Coll(w, < u) be generic. We let H, ¥, etc. stand for the CMI objects
associated with p. We summarize some basic notions and results concerning condensing sets which
will play a key role in our K“-constructions. [38, Chapter 9] gives more details and proofs of basic facts
about these objects.

The notion of fullness that we will use is full in L(I'y’, R ). Notice that if ® € L(I'y’,R,) is an w;-
strategy with hull condensation, then in L(I'y’, Rg), for any x € Ry, OD(®) is the stack of w;-iterable
®-mice over x.2° Because any such ®-mouse has an iteration strategy in 'y, it follows that ‘full in
L(I'Y,Rg)’ is equivalent to ‘full with respect to Lp“® in V[g]". Thus, given M € HCV 8], we say
M is @-full if for any M-cutpoint 5, Lp“B-®(M|n) € M. If M is a ®-mouse over M |n, then by
‘M is ®-full’, we in fact mean that M|(n*)M = Lp<“B-®(M|n). Here, we note again that ‘Lp<“B-®
is computed in V[g].

79See Definition 5.1.

80This is an instance of the Mouse Set Conjecture, which is not known in full generality. However, we are working towards
establishing the equiconsistency in Theorem 1.4. But the target large cardinal is weak, and so Mouse Capturing holds in
L(l“;, Rg). See [38, Chapter 10.2].
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We start working in V[ g]. Following [38, Chapter 9], for each Z C H, we let

o Qz be the transitive collapse of HullT‘(Z),
o 17z : Qz — H be the uncollapse map, and
[¢] 52 = 592, where Tz(éz) =0 = 5H.

For X CY € 9., (H), let
X,y = T;l oTx.
Definition 6.1. Let Z € ¢, (H).Y € 9, (H") is a simple extension of Z if
Hulll'"(ZUY)NH CY.
Let Z,Y be as in Definition 6.1. Let
Y®Z=Hulll(ZUY). “)
Let
¥ =1zaey, (5)
and
n%: Qz — Qzey be Tz yez;
we also write Q% for Q7 4y and 65 for §9zev | We have that
Tz = Tg o ﬂ,Z,. (6)
Given two simple extensions of Z, Yy C Y, we let ﬂ)%o v Q%O — Q%l be the natural map. We also let
Y7 = 1{ -pullback of P.

Definition 6.2. Y is an extension of Z if Y is a simple extension of Z and 71'% M Qz|67) is the iteration
embedding according to ‘Pf Here, we allow Z to be an extension of itself.

Suppose Y is an extension of Z. Let o : QF — H be given by
\yZ
of (@) =12(f)(rg, (@), @

where a € (Q§|6€)<‘” and g = ﬂg(f)(a).
Definition 6.3. Y is an honest extension of Z if

1. Y is an extension of Z,

2. dom(o¥) = Q% and o is elementary,
7z

3. 1z=0y ong.z“
We say Y is an iteration extension of Z if Y is an honest extension of Z and ¥ = o7/ [ QF |67 ].
Definition 6.4. We say Z is a simply condensing set if
1. for any extension Y of Z, Q}Z, is ‘Pf -full,
2. all extensions Y of Z are honest.

81This condition follows from other conditions.
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We say Z is condensing if for every extension Y of Z, Z @ Y is a simply condensing set.

In V]g], let
Cnd(H) ={Z € 9, (H) : Z is condensing}.

Results in [38, Chapter 9] give the following:
Theorem 6.5. InV[g], Cnd(H) is a clubin ¢, (H) (i.e., it is unbounded and is closed under countable
unions).

Furthermore, for any cardinal k > voand k < yu, {X € V: X € Cnd(H) A |X|Y < «} isaclub in
g)}(ﬁ (H). The same holds if V is replaced by Vg N Coll(w, < k)].

Furthermore, for each Z € Cnd(H), if Y is an honest extension of Z, then Y is an iteration extension
of Z.

Also, the following uniqueness fact is very important for this paper. It follows from Proposition 2.9
and can be proved exactly the same way as [38, Lemma 9.1.14].

Proposition 6.6. Suppose Z is a condensing set. Suppose Y and W are extensions of Z such that
QZ QZ Then ‘I‘Z ‘PVZV

The following are easy corollaries of Proposition 6.6.

Corollary 6.7. Suppose Z is a condensing set and Q is such that for some extension Y of Z, Q = Q% .
There is then a unique honest extension W of Z such that Q = Q%V.

Corollary 6.8. Suppose Z is a condensing set. Suppose further that Y and W are two extensions of Z
such that there is an embedding i : Qg -y, Q%V such that T‘%, oi [Q}Z, | is an extension of Z. Then the
i-pullback of‘I‘Z is ‘PZ

Proof. LetY* = TW o l[QZ] We have that QZ QZ Moreover, ‘PZ ‘PZ and ‘I‘Z is the i-pullback
of ¥, . ]

7. Z-realizable iterations
In this section, we fix a condensing set Z.

Definition 7.1. Let Z be a condensing set. Q nicely extends Q if Q is non-meek®> and Qb =Q,. We
also say that Q is a nice extension of Q.

Suppose Y is an extension of Z and Q nicely extends Q% . We would like to analyze the stacks on Q,
following the terminology and conventions used in [38]. A stack®® T on Q has the form

,7‘ = ((Ma)a/<17’ (E(l)(l<7]—]7 D,R, (ﬂm ma)aeR, T)’

where the displayed objects are introduced in [38, Definition 2.4.1]. The above notation is quite standard.
D is the set of drops, R is the set of stages where player [ starts a new round of the iteration game,
(Ba>me) is the place player I drops at the beginning of the ath round, and T is the tree order. We adopt
an important convention introduced in [38]. Namely, we assume that all our stacks are proper (see [38,
Remark 2.7.27]). One of the key aspects of being proper is that if § < [ h(T) is such that T>,3 is a stack

on MT then 8 € R.%* We will also use the notation introduced in [38, Notation 2.4.4]. In particular,

for @ € R7, next’ (@) = mln(RT (oz + 1)) if this minimum exists and otherwise next” (@) = [A(T).
For @ € RT, we also set ncT T[ o.a’]» Where @’ = = next’ (a).

82See [38, Definition 2.7.1]. Q is meek if either it has successor type or Q = QP Otherwise, we say Q is non-meek.
83A stack of normal iteration trees.

84Thus, no normal component of 7 can be split into two normal components.
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Definition 7.2. Suppose Z € Cnd(7H) and Y is an extension of Z. Suppose further that Q nicely extends
QZ. Given E € E such that crit(E) = 627, we say E is (Z, Y)-realizable if there is W, an extension
of Z®Y such that E = Ef |, where E ,,, is the extender defined by

\{;Z
(a,A) € E%W = TVZV (a) = ”sz‘:’m(a) € T%(A), 8)
for any a € [[h(E)]<® and A € p(crit(E))14l n Q.

We are continuing with the notation of Definition 7.2. Suppose 7 is a stack on Q. We say 7T is a
(Z,Y)-realizable iteration if there is a sequence (W, : @ € R”) such that

1. Wo =Y,
2. ifa,B e R” and @ < B3, then Wy is an extension of Z & W,
3. ifa,B e R7,a< B and ﬂz;g is defined, then nzlg = ﬂ%/(,,Wﬁ’SS and

4. ifa € RT and i is the largest fragment of 712” that is based on ./\/ll(’,, then I/ is according to ‘I’%,y.

We say 7T is Z-realizable if Y is an honest extension of Z and 7 is (Z,Y)-realizable.
The following lemma is a consequence os Proposition 6.6, Corollary 6.7 and Corollary 6.8.

Lemma 7.3. Suppose Y is an extension of Z and Q nicely extends Q; . Suppose Tisa (Z,Y)-realizable
iteration as witnessed by (W}, : a € R7). For a € R7, let W, be the unique honest extension of Z with

the property that (Mj)b = Q%,n. Then (Wy : a € R%) witnesses that Q is Z-realizable.

Proof. Tt is enough to show that if @, € R7 and B = min(R71 — (@ + 1)), then ﬂzﬁ = ﬂémwﬁ.

First, we show that W, C Wg. We have that x € W, if for some a € 6zqw, and some f € Z,
: T.b T.b : :
X =1z (f)(TVZVa (a)). Since TVZVQ 16Z0Wa: Ty 5 1070w, and Tvzvﬁ o7, 16zew, are all iteration embed-

dings according to Wy, , we have that x = 77 (f)(TvaB (nZ’g (a)). Thus, W, C Wg. A similar argument

Tb_ _z

shows that Mol = TWa. Wy

O

Remark 7.4. It follows from Lemma 7.3 that (Z, Y)-realizability is equivalent to Z-realizability. Because
of this, in this paper, we will mostly use Z-realizability.

Suppose Q nicely extends Q% and T is a Z-realizable iteration of Q. We cannot in general prove that

T picks unique branches mainly because we say nothing about Q-structures that appear in 7 when we
A -

oM

iterate above for some @ € R7 . The next definition introduces a notion of a premouse that resolves

this issue.
Definition 7.5. We say R is weakly Z-suitable if R is a hod premouse of Isa type such that R = (R|67)*,
‘R has no Woodin cardinals in the interval (6Rb, 67) and for some extension Y of Z, R nicely extends
R = Q%.

The following lemma says that hulls of Z-realizable iterations are Z-realizable and easily follows
from Corollary 6.8.

Proposition 7.6. Suppose R and S are weakly Z-suitable hod premice. Suppose further that T isa
Z-realizable iteration of S and U is an iteration of R such that (R,U) is a hull5° of (S,T). Then U is
Z-realizable.

85The embedding nzﬁ is defined similarly to n%’b; it is essentially the embedding ”zp’ FM{’,. See [38, Chapter 2.8].
86]n the sense of [34, Definition 1.30].
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We now define the notion of Z-approved sts premouse of depth n by induction on n. The induction
ranges over all weakly Z-suitable hod premice.

Definition 7.7. Suppose R is weakly Z-suitable hod premouse and for some extension Y of Z, R nicely
extends R? = OF.

1. We say that M is a Z-approved sts premouse over R of depth 0 if M is an sts premouse over R’
such that if 7 € M is according to S™, then T is (Z,Y)-realizable.

2. Suppose R is weakly Z-suitable hod premouse. We say that M is a Z-approved sts premouse over
‘R of depth n + 1 if M is a Z-approved sts premouse over R of depth n such that if 7 € M is nuvs
and SM (7)) is defined, then letting b = SM(7T), Q(b, T) is a Z-approved sts premouse over m*(7)
of depth n.

Definition 7.8. We say M is a Z-approved sts premouse over R if for each n < w, M is a Z-approved
sts premouse over R of depth n. We say M as above is a Z-approved sts mouse (over R) if M has a
u-strategy ¥ such that whenever AV is a Z-iterate of M, N is a Z-approved sts premouse over R.

The following proposition is an immediate consequence of our definitions but perhaps is a bit tedious
to prove.

Proposition 7.9. Suppose R and S are weakly Z-suitable, N is an sts premouse over R and M is a
Z-approved premouse (mouse) over S. Suppose n : N —x, M. Then N is also a Z-approved premouse
(mouse).

Proof. We only show that if 7* € N is according to SV, then 7* is Z-realizable. Even less, we show
that if 7% = 71 is such that 77 -? exists and U/ is based on 77 -? (R?), then there is an extension Y of
Z such that 77-?(R?) = Q}Z, and U is according to ‘Pg . The rest of the proof is very similar.

Notice that by elementarity of 7, 7(7*) is according to S*. Therefore, there is some extension W
of Z such that 7(x7-?(R?)) = Qf, and (U) is according to W%,. Set Y = 7§, o n[x”-?(R?)]. Then
aTb(RP) = Q% and U is according to the m-pullback of ‘P%, As the m-pullback of ‘P%, is just WZ, we
are done. O

Definition 7.10. Suppose R is weakly Z-suitable. We let LpZ%5!S(R) be the union of all Z-approved
sound sts mice M over R such that p(M) < Ord NR.

Finally, we can define the correctly guided Z-realizable iterations.

Definition 7.11. Suppose R is a weakly Z-suitable hod premouse and 7T is a Z-realizable iteration of

R. We say 7 is correctly guided if whenever @ € R7, U =4, y nc] is above 6M%, @ < [h(U) is a limit
ordinal such that m* (U [@)=‘6(U [ @) is a Woodin cardinal’. Then, letting b = [0, @]y, Q(b,U ) is a
Z-approved sts mouse over m* (U [@).

Combining Proposition 7.6 and Proposition 7.9, we get the following.

Corollary 7.12. Suppose R and S are weakly Z-suitable hod premice. Suppose further that T isa
correctly guided Z-realizable iteration of S and U is an iteration of R such that (R,U) is a hull of
(S,7T) (in the sense of [34, Definition 1.30]). Then U is also correctly guided Z-realizable iteration.

Our uniqueness theorem applies to R that are not infinitely descending.

Definition 7.13. We say that a weakly Z-suitable hod premouse R is infinitely descending if there is a
sequence (p;, R;,Y; : i < w) such that

1. Ro =R,
2. forevery i < w, R; is weakly Z-suitable,
3. forevery i < w, p; is a correctly guided Z-realizable iteration of R;,

87This in particular means that the strategy indexed on the sequence of M is a strategy for R.
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4. foreveryi < w, p; has alast normal component 7; of successor length®® such that &;; =g. ¢ (h(7;) -1
is a limit ordinal and R;y; = m*(7; [a;),

5. forevery i < w, setting b; =qcr [0, @;)7;, b; is a cofinal branch of 7; such that Q(b;, 7;) exists and
is Z-approved.

Note that in the above definition, for each i, R, is a strict initial segment of Q(b;, 7T;). The following
is our uniqueness result.

Proposition 7.14. Suppose R is a weakly Z-suitable hod premouse that is not infinitely descending and
T is a correctly guided Z-realizable iteration of limit length on R. Then there is at most one branch b
of T such that T —{b} is correctly guided and Z-realizable.

Here, we outline the proof. First notice that

(a) if 7’ does not have a last component or
(b) if there is @ € R such that 7‘20 is based on M’;,
then there is nothing to prove, as letting Ws be as in Definition 7.2, ‘P%,S only depends on S? (e.g.,

see [38, Lemma 9.1.9]).8° Let now 7 = ncZ be the last normal component of 7’ If b, c are two
different branches of 7 such that 7_)'A{b} and 7_)'A{c} are correctly guided Z-realizable iterations, then
Q(b,T) # Q(c,T) and both are Z-approved sts mice over m* (7). It now follows from [38, Lemma
4.7.2] and the fact that R is not infinitely descending that we can reduce the disagreement of Q(b,7T)
and Q(c,T) to a disagreement between ‘P}Z( and ‘I‘lZ] for some extensions X, U of Z with Q§ = Q[Z].
However, this cannot happen by Proposition 6.6 (the proof is given by [38, Lemma 9.1.9]).

8. Z-validated iterations

We continue by assuming 7. Let (S, S, v, 17 f_\)) again witness that 7 is true and let yu, g, H, etc. be
defined as in Section 4. The goal of this section is to introduce some concepts to be used in the K¢
construction of the next section. The main new concept here is the concept of Z-validated iterations,
which are the kind of iterations that will appear in the K¢ construction of the next section.

The following definition is important for this paper. It introduces the hulls that we will use to
Z-validate mice, iterations, etc. It goes back to Steel’s [46].

Definition 8.1. Suppose A € So—pand U <; Hy+. Wesay Uis (i, 4, Z)-good if u € U, (Y, UY,UZ) C
U, |U| < u, UNH™ is an honest extension of Z and U™ C U. When y and A are clear from the context or
are not important, we simply say U is a good hull. We say a good hull U is transitive below uif Unu € u

If U is a good hull, then we let 7y : My = M — H)+ be the inverse of the transitive collapse of
U. If, in addition, U is transitive below u, we let 71}, : My[g,] — Halg], where v = crit(ny) and
gy =gnNColl(w,< V).

Definition 8.2. Suppose

Ro nicely extends H,

p is an iteration of Ry,

if p is nuvs, then setting R = m*(p), M is an sts mouse over R, and
A € S is the least such that (R, M, p) € H,.

We say R is not infinitely descending if whenever U is a (u, 4, Z)-good hull such that R € U,
71'[_]1 (R) is not infinitely descending.

2. We say p is Z-validated if whenever U is a (u, 4, Z)-good hull such that {R, p} C U, n&l (p)isa
correctly guided®® Z-realizable iteration of n{,l (R).

O O O O

—

88That is, RPi has a maximum element @ and 7; = (pi)sa-

$9Notice that in this case, there is a branch b such that 7~ {b} is correctly guided and Z-realizable.
90See Definition 7.11.
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3. Suppose R is a weakly Z-suitable hod premouse above y. We say M is a Z-validated sts premouse
over R if for every (u, 4, Z)-good hull U such that {R, M} C U, letting N' = 7} (M), Nis a
Z-approved®! sts premouse over n{,l (R).

4. Suppose M is a Z-validated sts mouse over R and ¢ is an ordinal. We say M has a Z-validated
£-iteration strategy if there is X such that X is a £-iteration strategy and whenever N is an iterate of
M via T, N is a Z-validated sts mouse over R.

5. Suppose ¢ is an iteration of R. We say ¢ is Z-validated if p™ ¢ is Z-validated.

The following proposition is very useful and is an immediate consequence of Proposition 7.9. When
X is a good hull, we will use it as a subscript to denote the mx-preimages of objects that are in X.

Proposition 8.3. Suppose (R, p, R, M, ) are as in Definition 8.2. Suppose U is a (Z, u, )-good hull
such that {R, M} C U and My is not Z-approved. Then whenever U* is a (Z, u, 1)-good hull such
that U U {U} € U*, My~ is not Z-approved. *>

Similarly for iterations.

Proposition 8.4. Suppose (R, p, A) are as in Definition 8.2. Suppose U is a (u, A, Z)-good hull such
that {Ro, p} € U and py is not Z-realizable. Then whenever U* is a (u, A, Z)-good hull such that
U U {U} C U* py- is not Z-realizable. %>

Definition 8.5. Suppose (R, p, R, i) are as in Definition 8.2. We let LpZ”>'S(R) be the union of all
Z-validated sound sts mice over R that project to Ord N R.

The following proposition is a consequence of Proposition 7.14.

Proposmon 8.6. Suppose (Ro, p, R, 1) are as in Definition 8.2 and R is not infinitely descendmg
Suppose T is a Z-validated iteration of R of limit length. Then there is at most one branch b of T such
that T“{b} is Z-validated.

9. Realizability array

We continue with (S, So, vo, f’, X), u € Sp, etc. We define the notion of an array at u by induction. We
say V =) is an array of length 0 if Vy = H. Suppose we have already defined the meaning of array of
length < 1. We want to define the meaning of array of length 7.

Definition 9.1. We say V= (Vo : @ < 1) is an array of length 7 at u if the following conditions hold.

1. Forevery @ <n, (Vg : B < a) is an array of length « at p.

2. Vy nicely extends H and is a hod premouse.

3. Forall @ < n, if V, is weakly Z-suitable, then there is 8 < n such that Vg is a Z-validated sts mouse
over V,, and rud (V)= ‘there are no Woodin cardinals > 67",

4. Forall a < n,if rud(V,)E ‘there are no Woodin cardinals > 67¢°, then V,, has a Z-validated iteration
strategy.

We say V is small if rud(V;)k= ‘there are no Woodin cardinals > 67’. We letn = lh(l_)) and for @ < 7,
weletl}ra =(Vg:B<a).

Recall the notions of k-maximal iteration trees in [53, Definition 3.4] and weak k-embeddings [53,
Definition 4.1]. For an iteration tree 7 on M, letting M7 be the a-th model in the tree; for a+1 < [A(T),

recall the notion of degree deg” (a + 1) [53, Definition 3.7]. Recall the definition of D7 :if @ + 1 € D,
then the extender E ;1 is applied to a strict initial segment of M7, where 8 = T — pred(a + 1). For A

limit, deg” (1) is the eventual values of deg” (a + 1) for & + 1 € [0, A]7. For a cofinal branch b of T,

91See Definition 7.8.
92Hence, M is not Z-validated.
93Hence, p is not Z-validated.
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deg™ (b) is defined to be the eventual value of deg” (a + 1) for a + 1 € b. We write C; (M) for the k-th
core of M. Sometimes, we confuse Cy(M) with M itself.

Definition 9.2. Suppose V is an array at u. We say V has the Z-realizability property if for all
a < Lh(V), V]a has the Z-realizability property and whenever g C Coll(w, < p) is generic, in V[g],
whenever 7 : W — Cr (V) and T are such that

1. mis a weak k-embedding,

2. Z C rng(m),

3.W, T e HC,

4. 7T is a correctly guided Z-realizable®* k-maximal iteration of W that is above 6Wb,

one of the following holds (in V[g]).

1. 7T is of limit length and there is a cofinal well-founded branch ¢ such that ¢ has no drops in model
(.e., DT Nn'b = 0); letting [ = deg” (b), there is a weak l-embedding 7 : M] — Ci(Vy) such that
aW=ronl.

2. T is of limit length and there is a cofinal well-founded branch ¢ such that ¢ has a drop in model, and
there is 8 < 1 and a weak l-embedding 7 : M7 — C; (V) such that T [(M])? = 7 (MT)?, where
I =deg’ (c).

3. 7 has a last model and letting ¥ = Ih(7) — 1, [0,y]7 N D7 = 0 and there is a weak l-embedding
7: MI - C(V,) such that w1 W = 7 o x7, where [ = deg” ().

4. T has a last model and letting y = [h(T) — 1, [0,y]7 N D7 # 0 and for some 8 < 1, there is a weak
l-embedding 7 : M)T — C;(Vg) such that 7 F(Mz)b =7 r(/\/lz)b, where [ = deg” (y).

When the above 4 clauses hold, we say that T is (7, f))—realizable.

In the following, we will follow the convention in [55, Section 1.3]: a (hod, hybrid, or pure extender)
premouse has the form (M, k), where M is a k-sound, acceptable J-structure. k (M) = k is the degree
of soundness of M. We write the core C (M) for the (k(M) + 1-)core of M (if this makes sense — that
is, when M is k(M) + 1-solid). Similarly, we write p(M) for the k(M) + 1-projectum and p (M) for
the k(M) + 1-standard parameters of M. When C(M) exists, k(C(M)) = k(M) + 1. M is sound iff
M = C(M). We allow our iterations (e.g., Z-validated iterations) to consist of stacks of normal trees,
where we may drop gratuitously at the start of a tree.

Proposition 9.3. Suppose Vs an array with Z-realizability property. Assume further that p is a
Z-validated iteration of C,,(V,,) (for some n) with last model R such that nP exists and all the generators
of p are contained in §R”. Suppose U is a good hull such that (]7, R,p)eU. Let Ry = 7T£/l (R), pu =
Y p),W=n! (C(Vy)). There is then a weak n-embedding k : Ry — C,(Vy) such that ny |W =

k omPU,

Proof. As p is Z-realizable, letting X = U N ~, we can find a Y extending Z @ X such that Q% = RIL’,

and T)% = Tf omPU-P Let E be the (6le/, 6M)-extender derived from Tf andi: Ult(Ry,E) — C,(Vy)

be the factor map given by i(7? (f)(a)) = ny (f) (Tf (a)). It then follows that i o g is as desired. O
Next, we introduce a weak notion of realizability.

Definition 9.4. Suppose Vis an array of length n that has the Z-realizability property and p is a
Z-validated iteration of C,, (V,;) with last model R such that 7” exists and the generators of p are contained

in %" Suppose T is an nuvs iteration of R that is above 6R”. We say bis (Z, \7)—embeddable branch of
T if whenever A € S is such that (R,7T,V) € Vy and U is a (u, 4, Z)-good hull with (V, R, T, b) € U,
there is @ < [h(V), some [, and a weak [-embedding k : M;’j — Ci(Vq).

94See Definition 7.11 and Definition 7.2.
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Proposition 9.5. Suppose V is a small array with the Z-realizability property. Set n = lh(]_}) Suppose
further that p is a Z-validated iteration of C,(Vy) with last model R such that ©¥ exists and the

generators of p are contained in §R”. Additionally, suppose that T is an iteration of R above 6R” such
that p~T is Z-validated iteration of Vy,. Then for all limit @ < Lh(T), if T la is nuvs, then [0, a]r is

the unique branch ¢ of T [« such that Q(c,T @) exists and is (Z, )7)-embeddable.

Proof. We first show that ¢ =4, [0, a]7is (Z, 17)-embeddable. Towards contradiction, assume not and
suppose « is least such that 7 e is nuvs but [0, @] is not (Z, 9)—embeddable. Let Ube a (u,1,2)-
good hull such that (R, 17,17, T,a) e U.Let V' = n&l (Ca(Vy)) and k : Ry — Cn(V,) be such that
ay V' =konbPu,

We now have a cofinal branch d of 7y [ay such that for some 8 < 7, there is m : ./\/ldTU fev _, Vs
and O(d, Ty lay) exists.” Let M = Q(d, Ty lay) and N = Q(cy, Ty lay). Both M and N are
Z-approved. Let Sy = m*(Ty [ay). If we could conclude that M = A, then we would get that cy = d,
and that would finish the proof. To conclude that M = A/, we need to argue that Sy is not infinitely
descending.”® The reader may wish to review Definition 7.13 and the discussion after Proposition 7.14.°7

Claim. Suppose Sy is infinitely descending. Then there is a sequence (p;, S; : i < w) witnessing that
Sp is infinitely descending such that for some 8’ < 1 and for some iy < w for every i < j € (ip, w),
there are weak n;-embeddings m; : S; — Cp, (Vg) such that m; = m; o xPi.

Proof. Setmy =m, Sy =S and By = B. We build the sequence by induction. As the successive steps of
the induction are the same as the first step, we only do the first step. Let (p}, S/ : i < w) be any sequence
witnessing that Sy is infinitely descending. We now have two cases. Suppose first that there is 81 < So
and a weak k-embedding m; : S| — Cix(Vg,) such thatif B = By, then mg = m; o 7P In this case,
set po = p( and S| = §7. Notice that Sy is infinitely descending. Suppose next that there is no such pair
(B1,m1). In this case, we have dy, 81, m1, n; such that

L. B1 < Po,

2. dy is amaximal branch of p/ '€ for some € < [h(p7]),
3. mp: MO €y (V).
pile

4. if By = By, then mg = m O7leI

In this case, set p; = p{le”{d} and S| = MZ] re’ with 81 and m; as above. We now claim that &)
is still infinitely descending. To see this, let ¢ = [0, E)Pi' Notice that we must have that Q(c, p; re) #
Q(dy, p/ l€). As both are Z-approved, we must have that Sy is infinitely descending. Continuing in this
manner, we get the sequence we desire. m

The existence of a sequence as in the claim above gives us a contradiction, as the sequence must have
a well-founded branch. The uniqueness proof is similar to the proof of the claim above, and we leave it
to our reader. O

Remark 9.6. If the iteration p in Propositions 9.3 and 9.5 drops, we can still embed Ry by some map
k: Ry — Ci(V,) for some a < € and some [ < w. In this case, there is some model M € p such that

nﬁ’U’RU exists and there is a weak [-embedding o : My — C;(V,) such that o = k o H%U,Ru'

Remark 9.7. The fact that V' is small is key to the proof of Proposition 9.5. See Proposition 10.6, which
partially deals with the situation when V is not small.

Motivated by Proposition 9.5, we make the following definitions.

95This is a consequence of the fact that V is small.

96See Definition 7.13.

97This discussion shows that Z-approved Q-structures are the same provided they are based on a #-type Isa hod premouse
which is not infinitely descending.
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Definition 9.8. We say R is weakly Z-suitable above y if R is a hod premouse of Isa type such that
R = (R|6®)* and whenever 1 € S is such that R € V; and U is a (u, A, Z)-good hull, Ry is weakly
Z-suitable.”®

Definition 9.9. Suppose R is weakly Z-suitable above u. We say R is honest if there is an array
V = (Vo : @ < n) at p with the Z-realizability property such that letting A € S be the least such that
R,V € V,, the following conditions hold.

1. Either V,, = R or there is a Z-validated iteration p of V,, of limit length such that 77> exists and
R =m"(p).
2. Vis small if and only if V,, # R.

If R is honest and V is as above, then we say that Visan honesty certificate for R.

Suppose R is honest as witnessed by (17, p). Then we say T is a Z-validated iteration of R if p~ 7T
is a Z-validated iteration of V,, where 7 + 1 = [h(V).

Proposition 9.10. Suppose R is weakly Z-suitable above u and (f}, p) is an honesty witness, and
suppose T is a Z-validated nuvs iteration of R with last model S such that n7 exists and the generators
of T are contained in 5" Suppose U is a good hull such that (R, ]7,17,7—, S) € U. There is then
a <l h(]_}) a Z-approved sts mouse M over Ry, an embedding k : M — C(V,) and an embedding
o : Sy — C(Vy) such that

1. ME‘S6® is a Woodin cardinal’,

2. kIRy = onv, R

3. M £ Ry ifand only if R # C(Vy) (so V is small), and

4. if M # Ry, then rud(M)i= ‘6" is not a Woodin cardinal .

Proof. First, we claim that there is a < [ h(f}), an [ < w, and a weak l-embedding k : Ry — C; (V)
such that Z C rng(k). It R =V, thenset@ =nand k = ny Ry

Suppose then R # V,,. In this case, V is small. Let W be the largest node on p such that 7P<W exists
and the generators of p <)y are contained in 6™ . Then P> is above ™" 1t follows from Proposition
9.5 and the remark after that psyy is according to (Z, )7)-embeddable branches, and therefore, we
must have @ < [ h(f)) and a cofinal branch ¢ of py such that there is an appropriate weak /-embedding
k: MPY — C;(Vy)? suchthat Z C rng (k). Setthen M = MPY; note that Ry <M and rud (M) =*6"
is not Woodin’ by smallness of V.

We continue with one such pair («, k). Next, as 7 is Z-validated, we must have Y an extension of Z
such that X =4, k [Ri’]] cZeoy, S{’] = Q% and T)% = Tg onTu-b We can then lift Tf to S and obtain
some weak [-embedding o : Sy — C;(V,) such that k = o o 7V, & is essentially the ultrapower map
by the (650, 6™)-extender derived from 7 (see the proof of Proposition 9.3). O

Finally, we discuss iterations that are above S” where S is as in Proposition 9.10. The proof is just
like the proof of Proposition 9.5.

Proposition 9.11. Suppose R is honest weakly Z-suitable above u hod premouse and (]_}, p) is an
honesty witness for R. Suppose T is a normal Z-validated iteration of R. Let o’ € R” be the largest
such that setting S = M, n7<s exists and the generators of T<s are contained in S”. Suppose Tss
is above Ord N 8. Let U be a good hull such that {R, \7, T} € U and let (a, M, k, o) be as in
Proposition 9.10. Then Tss is (0,9[&)—realizable. Moreover, for each limit ordinal B < [h(Tss),
if Tos1B is nuvs, then d =405 [0, Bl1,s is the unqgiue cofinal branch d’ of T>sB which is (Z, 1_})-
embeddable and Q(d’, T>s B) exists.

98See Definition 7.5.
99] is specified as in Definition 9.2.
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Definition 9.12. We say R is Z-suitable above p if it is weakly Z-suitable above y and whenever M
is a Z-validated sts mouse over R, ME‘6™ is a Woodin cardinal’.

Our goal is to construct an R which is Z-suitable above 1. We do this in Proposition 10.7.

10. Z-validated sts constructions

We assume that the theory T holds (see Definition 5.11). We then fix (S, So, vo, % , /_f) that witness T and
let u € So. We will omit u when discussing CMI objects at .

The construction that we will perform in the next section will hand us a hod premouse R that is
weakly Z-suitable above u. The rest of the construction that we will perform will be a fully backgrounded
construction over R whose aim is to either find a Z-validated sts mouse destroying the Woodiness of
6™ or proving that no such structures exist. In the latter case, we will show that we must produce an
excellent hybrid premouse.

The construction that we describe in this section is a construction that is searching for the Z-validated
sts mouse over R destroying the Woodiness of ¢7%. In this construction, we add two kinds of objects.
The first type of objects are extenders, and they are handled exactly the same way that they are handled
in all fully backgrounded constructions. The second kind of objects are iterations. Here, the difference
with the ordinary is that there is no strategy that we follow as we index branches of iterations that appear
in the construction. Instead, when our sts scheme demands that a branch of some iteration p must be
indexed, we find an appropriate branch and index it. We will make sure that the iterations that we need to
consider in the construction are all Z-validated. It must then be proved that given a Z-validated iteration,
there is always a branch that is Z-validated.

The solution here has a somewhat magical component to it. As we said above, the fully backgrounded
Z-validated sts construction is not a construction relative to a strategy. This is an important point that
will be useful to keep in mind. Instead, the construction follows the sts scheme, and the Z-validation
method is used to find branches of iterations that come up in the construction. To see that we do not run
into trouble, we need to show that any such iteration 7 that needs to be indexed according to our sts
scheme has a branch b such that 7 {b} is Z-validated. Let M be the stage of the construction where
T is produced. Recall now that we have two types of such iterations. If 7 is uvs, then Z-validation
will produce a branch in a more or less straightforward fashion (see Proposition 10.5). If 7 is nuvs,
then the fact that we need to index a branch of it suggests that we have also reached an authenticated
Q-structure for 7. We will then show that there must be a branch with this Q-structure. This is the
magical component we speak of above. In general, given an iteration 7 of a weakly Z-suitable R that is
produced by HFBC(u) of the next section, there is no reason to believe that there is a Q-structure for it
of any kind. Even if there is a O-structure Q of some kind, there is no reason to believe that sufficiently
closed hulls of 7" will have branches determined by the pre-image of Q. In our case, what helps is that
Q € M, and this condition, in the authors’ opinion, is somewhat magical.'*®

One particularly unpleasant problem is that we cannot in general prove that the non-weakly
Z-suitable levels of the fully backgrounded construction produced in the next sections are iterable. This
unpleasantness causes us to work with weakly Z-suitable R that are iterates of a level of the fully back-
grounded construction of the next section. In order to have an abstract exposition of the Z-validated sts
construction, we introduce the concept of honest weakly Z-suitable R over which we will perform our
Z-validated sts constructions. The honest weakly Z-suitable hod premice will have honesty witnesses, and
that is the concept we introduce first. The honesty witnesses are essentially models of a K€-construction.

In this section and subsequent sections, we work with the fine structure in [53].

100The proof of this fact is in Section 12; it shows that if a level S of the construction has no Woodin cardinals, then if 7 is a
tree on S, then sufficently closed hulls of 7~ will have branches determined by the pre-image of Q(7).
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10.1. The Z-validated sts construction

Suppose R is honest and V is an honesty certificate for R. We assume that R is a #-Isa type hod
premouse. Let X be any transitive set such that R € X. Let 1 € Sy be such that R, X € H,. In what
follows, we introduce the fully backgrounded (Z, 1)-validated sts construction over X.

Definition 10.1. We say (Mg, N¢ : € < Q) are the models of the fully backgrounded (Z, A)-validated
sts construction over X if the following conditions hold:

1. Q* < A, forall ¢ < A, if Mg, N¢ are defined, then M and Nz € H,.

2. For every ¢ < Q*, M and N are Z-validated sts hod premice over X.

3. Suppose the sequence (Mg, Ng @ € < 1) and M, have been constructed. Suppose further that
there is a total («, v)-extender F' such that letting G = M, N F, (M,,, G) is a Z-validated sts hod
premouse over X. Let then NV, = (M, G) and M, = C(N;;)."

4. Suppose the sequence (Mg, Ng : ¢ < 1) and M, have been constructed and 7 € M,, is the < M~
least uvs tree'°? without an indexed branch. Suppose further that there is a branch b of 7 such that
(M,,, b) is a Z-validated sts hod premouse'* over R. Let then \V;, = (M,;, b) and M, 41 = C(N;,)).

5. Suppose the sequence (Mg, Ng : € < n) and M,, has been constructed, and for some nuvs tree
T € M,, there is a branch b € M,, such that (M,,, b) is a Z-validated sts hod premouse over
R. Let T be the <aq,-least such tree and b be such a branch for 7" Then N, = (M, b) and
M1 = C(NG). 10

6. Suppose the sequence (Mg, Ng : ¢ < 1) and M, has been constructed and all of the above cases
fail. In this case, we let NV;, = J1(M,,), provided ,, is a Z-validated sts hod premouse over R,
Mn+1 = C(Nn)-

7. Suppose the sequence (Mg, Ng : € < 1) has been constructed and 7 is a limit ordinal. Then
Mq = ll‘minffﬁn./\/l,f.

If A is clear from context, then we will omit it from our notation.

The fully backgrounded (f.b.) Z-validated sts construction can break down for several reasons. Let
p be the V;,-to-R iteration witnessing that R is honest. Below, we list all of these reasons. We say that
f.b. Z-validated sts construction breaks down at 7 if one of the following conditions holds.

Breakl. M, is not solid or universal.

Break2. M, is not Z-validated.'%>

Break3. There is an uvs tree 7 € M, such that the indexing scheme demands that a branch of 7
must be indexed, yet 7 has no (cofinal well-founded) branch b such that (M,,, b) is a Z-validated sts
premouse over k.

Breakd. There is an nuvs tree 7 € M,, such that the indexing scheme demands that a branch of
7T must be indexed, yet letting b € M,, be the branch given by the authentication process, b is not

(Z, ﬁ)—embeddable branch of 7~ p.10°

Break5. p(M,,) < ™.

The argument that the construction does not break down because of Breakl is standard, cf. [28]. It
is essentially enough to show that the countable substructures of M,, are iterable. We will show that
much more complicated forms of iterability hold, and so to save ink and to not repeat ourselves, we
will leave this portion to our kind reader. To see that the construction does not break down because of

1C(N;;) is the core of NVy;.

192< A4, is the canonical well-ordering of M.

103This, in particular, implies that b € M.

104Recall the Internal Definability of Authentication. In this case of the construction, the branch b is chosen by a procedure
internal to M, and does not depend on any external factors. Because of this, proving Z-validity is not obvious at all. Also see
the Anomaly in 3.b of [38, Definition 4.2.1].

105]¢ js not hard to see that if M, is Z-validated and Ny, = J; (M), then N, is Z-validated. It is possible that M, is
Z-validated but \V;; is not, but these possibilities are covered by Break3 and Break4. Also notice that if N, = (M, G), where
G is an extender and M, is Z-validated, then N, 1 is Z-validated.

106See Definition 9.4. Break4 is similar to the Anomaly in 3.b of [38, Definition 4.2.1].
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Break? is not too involved, and we will present that argument below. At this point, we cannot do much
about Break5. We will deal with it when X becomes a more meaningful object. The remaining cases
will be handled in the next subsections.

Proposition 10.2. Suppose R is an honest weakly Z-suitable hod premouse as witnessed by V, X is
a transitive set such that R € X and A € Sy is such that X,V € V,. Then the f.b. (Z, 1)-validated
construction over X does not break down because of Break?2.

Proof. Towards contradiction, assume that there is some « such that for all 8 < a, both Mg and Nﬁ
are Z-validated but M, is not Z-validated. Set W = M, be the least such model.

Suppose first @ is a limit ordinal. Let U be a (u, 4, Z)-good hull such that {R,W} C U and
(Mg :B<a)eU. Let (K : € <ay)=ny!(Mg: B <a)Fix T € K, according to Skay
We need to see that 7 is Z-approved. Fix & < ay such that 7 € K¢ and is according to S¥¢ . Then
7y (T) € My, (&) and is according to S*'=v (@) Therefore, 7 is Z-approved.

Suppose next that @ = 8+ 1. Because we are assuming the least model that is not Z-validated is M,
we must have that N3 is Z-validated. Let now U be a (u, A, Z)-good hull such that {R, W} C U. But
then 7r(‘]1 (Mg) =C (7r[‘J1 (Ng)). It then follows that nl}l (M) is Z-approved (see Proposition 7.9). O

10.2. Break3 never happens

In this subsection, R is an honest weakly Z-suitable, X is a transitive set containing R and A € Sy is
such that (R, X) € V,. Our main goal here is to prove that the (Z, 1)-validated sts construction over X
does not break down because of Break3. First, we prove the following general lemma.

Lemma 10.3. Suppose M is a hod premouse for which MP? is defined and p is an iteration of M such
that 7P-? exists. Let 5§ be a Woodin cardinal of nP-* (MP) and let & be least such that 7P-?(¢) > 6.

Then cf(6) = cf((£7)™M).

Proof. Let Q be the least model of p such that Q% = 7P-?(MP") and set ¢ = p<o. Let N be the least

model on g suchthaté € rng(ﬂqu, Q). Without losing generality, we can assume Q = A as rng(ﬂj’\,, Q)ﬂé

is cofinal in §. As the iteration embeddings are cofinal at Woodin cardinals, if 79(£) = ¢, then again

there is nothing to prove. Assume then 79(£) > 6. Without loss of generality, we can assume that

&= oM” 1f &< 6M" _ then we need to redefine M as M|, where ¢ is the M-successor of oM (£).
Because N is the least model that has ¢ in it, it must be case that ' = Ult(W, E), where W is anode

in ¢ and E is an extender used in g to obtain \/. Moreover, crit(E) = 6"V . Below, 7 is used for .
Suppose g (f)(a) = 6 and ng(g)(a) = vg, where

1. vg is the supremum of the generators of E,
2. f,g: W’ = 6" are functions in W,
3. a€[vg+1]°«.

Note that vg < 6.
We first show that
(D) sup({me(k)(a) : k: 6V = W ke W}n o) =6.

Tosee (1), fix i : 6™ — 6™ in W and let s in [vE + 1]< be such that 7z (h)(s) < 6. We want to
find k such that 7 (k) (a) is in [7g (k) (s), 8]. Set k(u) = the supremum of points of the form A(¢) such
that h(f) < f(u) and ¢ is a finite sequence from g(u). f(u) is a Woodin cardinal (in R), so k(u) < f(u)
for E,-almost all u, so

mg(k)(a) <6 =ne(f)(a).
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Also,

me(h)(s) < me(k)(a)

by the definition of k.
Let A = Ord N W". We have that cf(1) = cf(Ord n MP). Thus, it is enough to show that
cf(6) =cf(1).Letn=cf(6) and let (ko : @ < 1) C W be such that
1. fora <n, ke : SV 5 W
2. fora <n, ke €W,
3. fora < B <n,np(ke)(a) < me(kp)(a) < 6.

Let ¥ = (yq : @ < 1) be increasing and such that

1. ko € Wlya,
b
2. pWlya) =M.

We claim that ¥ is cofinal in A. Suppose it is not. In that case, we can fix { > supy such that
p1W|E) = . Let p be the first standard parameter of W|{. For each a < n, let a, € [6Wb]<‘“ be
such that k, is definable from p and a, in W)|{. It then follows that

sup(Hull[* ™19 (: (p), 6" 0 6) = 5,

as witnessed by (aq : @ < 7). As Hulle(ng) (m£(p),6™") € Ult(W, E) = N, the above equality
implies that ¢ is singular in A; a contradiction. Thus, ¥ must be cofinal in A. Therefore, cf(1) =n. O

Recall that we are working under theory T’; see Definition 5.11.

Corollary 10.4. Suppose T is a normal tree on R such that n7 " exists and & is a Woodin cardinal of
aTP(H). Then c£(8) < u and if § > sup(x” P [6M]), then cf(5) < vo.

Proof. First note that if ¢ is a Woodin cardinal of H, then cf () < p. This is because there is a hod
pair (P, X) € F, a §* such that Pi=6* is Woodin and 6 = 7p o (6*). Now, if § > sup(x7-?[6]), then
by Lemma 10.3, cf(6) = cf(Ord N H) < vy. O

We now state and prove our main proposition of this subsection.
Proposition 10.5. The (Z, 1)-validated sts construction over X does not break down because of Break3.

Proof. [38, Section 12] handles a similar situation, and the proof here is very much like the proofs in
[38, Section 12]. Because of this, we give an outline of the proof.

Suppose M is a model appearing in the (Z, 1)-validated sts construction over X and 7* € M is an
uvs iteration of R such that the indexing scheme requires that we index a branch of 7* at Ord N M.
We need to show that there is a branch b of 7* such that (M, b) is Z-validated. Because of Proposition
8.6 and Proposition 9.11, there can be at most one such branch.

Because 7 is uvs, we have a normal iteration 7~ € M with last model S such that 7”7 is defined and a
normal iteration I/ based on S such that 7~ = T*. Because the construction does not break because
of Break?2 (see Proposition 10.2), we have that M is Z-validated, and therefore, 7 is Z-validated. Also,
we can assume that I/ is not based on S|¢ where & = sup(x” [6%]), as otherwise the desired branch of
U is given by .

We now show that ¢f has a branch b such that (M, b) is Z-validated. Let 2 € S be least such that
R, M € Hy.Givena (u, A, Z)-good hull U such that {M,T,S, U} C U,letby = ‘P%, (77&1 (U)), where
W is any extension of Z such that n&l (Sh) = Q%V. First, we claim that for all U as above,
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Claim 1. by € My.

Proof. Given a U as above, we will use it as a subscript to denote the my/-preimages of the relevant
objects. Fix then a U as above. Suppose first that Q(by, Uy ) does not exist. As we are assuming I is
not based on S|&, Corollary 10.4 implies that ¢ f (6 (U)) < vy. Because My is vo-closed, it follows that
by € My.

Suppose next that Q(by,Uy ) exists. Let Ay be the preimage of A,. Notice now that letting @ be
the 7y -pullback of ¥;, we have that Lp<“B-®(Ay) € My .

LetY = U N H. Clearly, Y is an extension of Z and because M is Z-validated, we must have W* an
extension of Z U Y such that S{’] = Q%V*' Notice that because ‘P%, is computable from @ and because
Lp“B-®(Ay) € My, we must have that Q(by,Uy) € My . Hence, by € My. m]

Suppose first that ¢ f ({2 (1)) > w. In this case, let U be as above and set ¢ = 7y (by ). Then c is the
unique well-founded branch of I/, and hence, for any (u, A, Z)-good hull X’ such that UU{(M, c),U} €
X', cx» = bxs. Hence, (M, c) is Z-validated (see Proposition 8.3).

Suppose then [ (U) = w. We now claim that

Claim. there is a (u, A, Z)-good hull'%7 X such that for all (u, A, Z)-good hulls Y such that X, U
{M,Xo} €Y, nx, v (bx') = by.

Proof. Assuming not, we get a continuous chain (X, : @ < y) such that

1. M,L[ (S Xo,
2. forall @ < u, Xq+1 is a (i, 4, Z)-good hull,
3. forall @ < u, Xo U{Xy} € Xat1,

4. forall @ < y, mx,,, x,..(bx,.,) # bx

a+l”’
Let v € (v, 1) be an inaccessible cardinal such that X,, N u = v. Fix now a < v such that
sup(bx, Nrng(nx,.x,)) = h(Ux,).

Ascf(Ih(Ux,)) = w, this is easy to achieve. For 8 € [, v), let ¢ be the nx,, x,-pullback of by, . Let
for B € [a@,v], Wg be such that S)’zﬁ = Q‘Zvﬁ. It follows that cg is according to the mx, x,-pullback of
¥{, . Because ‘vaﬁ depends only on Sl’ﬁ, we have that cg = by, (this is because the x;.x, -pullback
of ‘I’%,V is a strategy of the form YZ  where Q% = S)lgﬁ). It follows that for all 8 < vy € [a,V),
nxg.x,(bxg) = bx, . ]

Fix now an X as in the Claim. Set ¢ = 7x, (bx,). The above property of X, guarantees that (M, c) is
Z-validated. Indeed, fix a (u, A, Z)-good hull U such that M, ¢ € U. Let Y be a (u, 4, Z)-good hull such

that Xo UU U {Xo, U} € Y. Then ny y (cu) = nx,,y (bx,) = by. It follows that cy is the g,y -pullback
of ‘P‘%V where W is such that S}IZ = Q%V. Hence, cy = by. O

10.3. Break4 never happens

The following is the main proposition of this subsection. We continue with (R, X, ]7, A) of the previous
section.

Proposition 10.6. Suppose the (Z, A)-validated sts construction over X breaks because of Break4 and
that X is a transitive set such that H?R is the universe of R|6™ and §® is a Woodin cardinal in X. Then

1. Vis not small (implying Vy, = R) and
2. letting n’ be such that Break4 occurs at n’ and letting (T, b) € M, witness Break4 at n’, either 6™
is not a Woodin cardinal of M,y or Hg;lz"' is not the universe of R|6™.

107See Definition 8.1.
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Proof. Let p be the V), -to-R iteration. Setting YW = M/, we have that

1. Wis Z-validated and
2. bisnot (Z,V)-embeddable (see Definition 9.4).

Let B be such that V|3 authenticates b. Thus, Y| is a model of ZFC in which there is a limit of Woodin
cardinals v and the derived model of W|g at v has a strategy for Q(b, 7)) that is VV|B-authenticated.

Claim 1. p™7T ~{b} is a Z-validated iteration (see Definition 8.2).

Proof. Towards a contradiction, suppose p~ T —{b} is not Z-validated. Fix now a (u, 4, Z)-good hull
U such that (R, W, p,T,b) € U and p;; T, {bu} is not a correctly guided Z-realizable iteration of
Ry . Because W is Z-validated, we can assume that p; Ty is a correctly guided Z-realizable iteration.
It must then be that Q(by, Ty ) is not Z-approved.

To save ink, let us prove that, in fact, N =4.r Q(by, Tu) is Z-approved of depth 1. As the proof
of depth n is the same, we will leave the rest to the reader. To start with, notice that since Ty itself
is correctly guided Z-realizable, we have that S = m* (7)) is weakly Z-suitable. To prove that N is
Z-approved of depth 1, we need to show that if i/ € A is according to SN, then U is Z-realizable.

Fix then @ € RY and set X = /\/l% First, let us show that there is Z’ an extension of Z such that
Q%, = X", Because T {by} is authenticated inside Wy |By, we must have an iteration ) of Ry
according to S¥YV with last model R; such that there is an embedding k : X? — Rll’ with the property
that 7% = kont=x-> Because ) is Z-realizable, we must have Y an extension of Z such that R? = OF.
Composing k with Tg , we have that X? = QZ%, for some Z’.

The rest is similar. If //* is the longest initial segment of /5 » that is based on X b then there are ) and
k as above such that /" is according to the k-pullback of S;:LU . But because W, is Z-approved, S ;/:lf’ isa

1 1

fragment of ‘Pg , where Y is as above. Hence, U* is according to ‘P)Z( for some X (see Corollary 6.8). 0O

Let now U be a (u, A, Z)-good hull such that (R, W, T, b, Q) € U. Because T is Z-validated, we
have that the 7y -realizable branch d of Ty is cofinal. Suppose then Q(d, Ty/) exists. Then because it
is Z-approved, we must have that Q(d, Tyy) = Q(by, Ty) (for example, see Proposition 9.5). It follows
that d = by, and so b is (Z, ﬁ)-embeddable.

Assume now that clause 1 fails. Because V is not small, we must have that Q(d, T;;) exists (as d is
the realizable branch of p™~7y). Assume now that V is not small. This means that R = V,,. Assume
now that clause 2 fails. Since 6% is a regular cardinal of W, H g‘fz is the universe of R|6R and R = V),.
If 9(d, Ty;) does not exist, then the d realizes back into V. We now argue that Q(d, Ty) exists.

Claim 2. Q(d, Ty) exists.

Proof. Towards a contradiction, assume Q(d, Ty/) does not exist. Thus, d N D7V = @ and 77V (6Rv) =
6(Tu). Set N = MZI—U and j = nZU 108, Because Q(d, Ti7) does not exist, we have that N =6(Ty) is a
Woodin cardinal’.

We have that j(Q(by, Tiy)) € N and is authenticated in . Let ¥ = j(By). Then Ny has Woodin
cardinals that are bigger than 6 (j (7 )). Let ¢ be the least one that is bigger than Ord N j(Q(by, Tu)).
We can now iterate N below & but above Ord N j(Q(by,Ty)) to make Q(by, Tyy) generic for the
extender algebra at the image of ¢. This iteration produces i : N — N such that crit(i) > 6(j(Ty)).
Letting & € Coll(w, i(5)) be N1-generic such that Q(by, Ty) € Ni[h], we can find

1:Q(by,Tu) — j(Q(bu,Ty))'”

such that

o 1€ Ni[h],
o INm*(Ty)? = Wi T,

108Here, Ty is a tree on Wy, but it is based on Ry, .
199As crit(i) > 6 (j(Tu)), i(j(L(bu, Tu))) = j(L(bu, Tu))-
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As N [h]E=j(Q(by, Ty)) is authenticated and has an authenticated strategy’, N [h]E=Q(by, Ty ) has
an authenticated iteration strategy’, and hence, Q(by, Ty ) is definable in NV [A] from objects in Nj. It
follows that Q(by, Tiy) € N, implying that Ny =5(Ty) is not a Woodin cardinal’. Hence, N'=6(Ty/)
is not a Woodin cardinal’. Therefore, Q(d, Ty) exists. O

]

10.4. A conclusion
Proposition 10.7. Suppose V is a small array with the Z-realizability property. Then either

1. V,, has a Z-validated iteration strategy
or
2. there is a Z-validated nuvs iteration p of V,, such that m*(p) is Z-suitable. '

Proof. The proof has already been given in the previous subsections. Suppose that V,, does not have a
Z-validated iteration strategy. The proof of Proposition 10.5 shows that if p is a Z-validated uvs iteration
of V,, of limit length, then there is a unique branch b of p such that p™{b} is Z-validated. Therefore,
since picking Z-validated branches is not defining an iteration strategy for V,,, we must have a nuvs
Z-validated iteration p of V;; which does not have a Z-validated branch.!!

We now claim that m*(p) is a Z-suitable hod premouse. Indeed, suppose there is some Z-validated
sts premouse Q extending R =4,y m*(p) such that Q is a Q-structure for p. Let then U be a good hull
such that{l_}, p, Q} € U. Appealing to Proposition 9.10, we now have g8 < [ h(f)), a branch b of py such
that Q(b, py) exists and a weak /-embedding k : MZU — C;(Vp) for an appropriate /. It follows that
Q(b, py) is Z-approved, and hence, Q(b, py) = Qu. Because Qy € My, we have that b € My . Then
¢ =gey my(b) is a (cofinal) branch of p such that p™{c} is Z-validated. O

11. Hybrid fully backgrounded constructions

The goal of this section is to adopt the K¢-construction used in [38] to our current situation. As we
have the large cardinals in V, it is easier to perform fully backgrounded constructions than using partial
background certificates. For instance, proofs of iterability will be easier.

The construction that we intend to perform will produce an almost excellent (see Definition 2.7) hod
premouse P extending H. The construction will be done in V.

The fully backgrounded construction that we have in mind has two different backgrounding conditions
for extenders. The extenders with critical point > © =4.¢ 6™ will have total extenders as their
background certificates. The extenders with critical point ® will be authenticated by good hulls. We call
this construction the the hybrid fully backgrounded construction over H and denote it by HFBC(u).

We fix a condensing set Z € Cnd(H) N V. While Z will appear in our authentication definitions,
it can be shown that HFBC(u) does not depend on Z. HFBC(u) proceeds more or less according to
the usual procedure for building hod pairs until we reach a weakly Z-suitable stage R. At this stage,
we must continue with a fully backgrounded Z-validated sts construction over R. If this construction
produces a Q-structure for R, then we attempt to construct a Z-validated strategy for it. Failing to do so
will produce our honest Z-suitable R as in Proposition 10.7.

HFBC can fail in the usual ways by producing a level whose countable substructures are not iterable.
However, our constructions are aimed at producing models with strictly weaker large cardinal structure
than those for which we know how to prove iterability. In particular, the main theorem of [31] implies
that HFBC does not fail because of issues having to do with iterability.

110See Definition 9.12.

M Note that there may not be any Q-structure for p.

112The real reason for a failure of such constructions is failure of universality or solidity both of which are consequences of
iterability.
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We should say that the construction that follows is an adaptation of a similar construction introduced in
[38, Section 10.2.9 and 12.2]. Because of this we will not dwell too much on how extenders with critical
point 6% are chosen. The reader may consult [38, Lemma 12.3.15]. The first of these constructions used
fully backgrounded certificates like we will do in the next subsection. It was used to prove the Mouse Set
Conjecture in the minimal model of LSA. The second was used to construct a model of LSA from PFA.

11.1. The levels of HFBC(u)

We assume that 7" holds and let (S, Sy, vo, )7, A ) witness it. Let u € So. When discussing the CMI objects
at u, we will omit u from our notation.

Below, we will define the sequence (Mg, Zs : § < Q'), where Q" < Ord, of levels of the hybrid
fully backgrounded construction at u. Here, we develop the terminology that we will use to describe the
passage from Mg to Mg,.

HFBC resembles the K“-construction of [38, Section 12.2] except that we require that the extenders
with critical point > 6™ used in the construction have total certificates in the sense of [28, Chapter 12].
Because our construction does not reach a Woodin cardinal that is a limit of Woodin cardinals, the results
of [31] apply. For instance, [31, Theorem 1.1] will be used to conclude that the countable submodels of
each M, are w; + l-iterable. Other theorems that we will use from [31] are [31, Theorem 2.1, 2.10,
3.11 and Corollary 3.14].

Say that M nicely extends H if there is a (u, u, Z)-good hull U such that My, nicely extends Qg N
Suppose now that M is a Z-validated hod premouse nicely extending H. Set mo(M) = o™ (§7).113

Definition 11.1. Given a Z-validated hod premouse nicely extending #, we say M is appropriate if
Ord N M = mo(M) and M= ‘there are no Woodin cardinals in the interval [§7, mo(M))’.

Given an appropriate M, we would like to describe the next appropriate Z-validated hod premouse.
We do this by preparing M, which involves building over M some mild structures in order to reach the
next stage that is either a stage where we can add an extender or is a weakly Z-suitable stage. In the latter
case, we will put HFBC () on hold and continue with the Z-validated sts construction. The preparation
of M has two stages. We first add a sharp to M and then close the resulting hod premouse under its
strategy. Each of these constructions can change M as they can reach levels that project across M. The
functions that we referred to above are nexts, nexts, nextpe and nextg_ey.

nextpex (M)
This function simply adds a backgrounded extender to M. Suppose that M is appropriate. We say
nextpex (M) is almost successful if there is a triple («, A, F) such that

1. k < A are inaccessible cardinals > 6%,
2. Fisa (k, d)-extender such that V; C Ult(V, F),
3. letting G = F N M, (M, G) is hod premouse.

We say nextpey (M) is successful if it is almost successful and there is a unique triple (x, A, F') as above
such that if G = F N M, (M, G) is a solid and universal Z-validated hod premouse with a Z-validated
strategy and such that p(M, G) > 6.

Suppose now that M is appropriate. We say M has badness type 0if nextp. (M) is almost successful
but is not successful. We write bad (M) = 0. If nextp. (M) is successful or not almost successful, then

1. if nextpex (M) is successful, then letting (k, A, F) be the unique triple witnessing the success of
nextpex (M), we let nextpex (M) = (M, G), where G = F N M.
2. If nextpex (M) is not almost successful, then we let nextpex (M) = M.

13‘mo’ stands for the ‘Mitchell Order’.
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nexts(M)
Suppose M is appropriate and bad (M) # 0. We let nexty (M) be built as follows. Let (M; : i < k)
be a sequence of Z-validated hod premice defined as follows:

1. Mg =nextpex(M).

2. Ifi+1 < k, then there is M* that is an initial segment of J[M;] such that p(M™*) < mo(M;), and
letting M* be the least such initial segment of J[M;], M* is solid and universal, p(M*) > § and
M =C(M).

3. kis least such that either (i) no level of J[M ] projects across mo(My) or (ii) some level of J[M]
projects to or below 67t

We say nexty(M) is successful if

(a) clause 3(ii) does not happen,
(b) M? is solid and universal,

(©) p(ME) > 6.

If nexts (M) is successful, then let nexty (M) = C(./\/li).

Suppose now that M is appropriate. We say M has badness type is 1 if nexty(M) is not successful.
We write bad(M) = 1.

Suppose now that M is appropriate and bad (M) # 0, 1. We say M has badness type 2 if nexty (M)
is not weakly Z-suitable and does not have a Z-validated strategy. We write bad (M) = 2.

nexts(M)

Suppose now that M is appropriate, bad(M) # 0, 1,2 and nexty(M) is not weakly Z-suitable. Let
> be the unique Z-validated strategy of nexty(M). We now define next; (M), which, in a sense, adds
Lp*(nextg(M)) to M.

We let next, (M) be build as follows. Let (M;, %; : i < k) be a sequence of Z-validated hod premice
along with their Z-validated strategies defined as follows:

1. My=Nand Xy = X.

2. If i + 1 < k, then there is M* that is an initial segment of J[E, 2;1(M;)"# such that p(M*) <
mo(M;), and letting M* be the least such initial segment of JIE, 2 1(M;), M* is solid and
universal, p(M*) > 6™, M, = C(M*) and %, is the unique Z-validated strategy of M.

3. kis least such that either (i) no level of J[E, ;] (M) projects across mo(My) or (ii) My does not
have a Z-validated strategy, or (iii) some level of J [E, Sk ] (M) projects to or below §7.

We say nexts(/\/l) is successful if clause 3(ii)—(iii) do not happen. If next; (M) is successful, then let
nexts(M) = J[E, Zr ] (My)|a, where

a= (mO(Mk)“')J[EaZk](Mk).

Suppose now that M is appropriate. We say M has badness type 3 if bad(M) # 0, 1,2 and next; (M)
is not successful. We write bad (M) = 3. We say M has badness type is 4 if bad(M) # 0,1,2,3 and
nexts (M) does not have a Z-validated strategy.

nexte—ex

Suppose now that M is appropriate and bad(M) ¢ 5. Let Z be the unique Z-validated strategy of
nextys(M). We say that nextg_. (M) is successful if there is a unique M-extender F such that

4Here and below, by J [E, ¥; ], we mean the fully backgrounded construction relative to X;. J [E?, %;i](A) is the aforemen-
tioned construction done over A.
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1. crit(F) = 6™,
2. (M, F) is a Z-validated hod mouse,
3. p((M, F)) > .

If nextg-ex (M) is successful, then we let nextg_ox (M) = C((M, F)), where F is as above. We say
M has badness type 5 if nextg_.x (M) is not successful. In this case, we write bad(M) = 5.

Definition 11.2. Suppose M is appropriate. We say M is bad if bad(M) is defined.
Definition 11.3. Suppose M is appropriate. If M is not bad, then we let next(M) = nextg_ex(M).

Remark 11.4. In order for M € dom(next), it is necessary that nexts(M) is not a weakly Z-suitable
level.

The next function defined above gives us the next model in HFBC(u), but it does not tell us how to
start the construction. We will start HFBC (1) with H, which is an appropriate hod premouse. However, if
we encounter M such that nexts (M) is weakly Z-suitable, then we have to continue with the Z-validated
sts construction. We get back to HFBC (1) once we produce the canonical witness to non-Woodiness of
smext (M) What we do next is we define the start function whose domain will consist of objects that
the Z-validated sts construction produces on top of nexts(M).

start(R)
Suppose R is a Z-validated hod mouse such that

1. mo(R) is a Woodin cardinal of R,

2. (Rlmo(R))*<R,

3. R is sound,

4. R is an sts premouse over (R|mo(R))* such that rud(R)k= ‘mo(R) is not a Woodin cardinal’.

If R is as above, then we write R € dom(stop). Let X be the Z-validated strategy of R if it exists; in the
case it does not exist, we declare startg(R) is unsuccessful, and letting p on R as in Proposition 10.7,
we then switch to the f.b. (Z, 1)-validated sts construction over m*(p). In the case X exists, we define
starty(R) just like we defined nexts(M) above. If starty(R) is successful, then it will output a
Z-validated hod mouse )V that nicely extends H and has a Z-validated strategy A. Moreover, for some
oeW,

1. (W|6)*<W is of Isa type,
2. WE‘6 is not a Woodin cardinal’,
3. letting W* QW be largest such that W*E=yyé is a Woodin cardinal’, W* is a AS’ _ .-sts mouse over

wle)#
W6)* and W = J[E, Ay ]|(6%)7 [EAw-],

Next, let start;(R) be defined just like nextg_.x (M) starting with starty(R). For R € dom(start),
we say start(R) is successful if both starty(R) and start;(R) are successful, and we let start(R) be
the model that start; (R) outputs.

Definition 11.5. Suppose R € dom(start). We say R is ready for HFBC(u) if start(R) is successful.

Notice that if start(R) is successful, then mo(start(R)) = Ord N start('R). We end this subsection
with the definition of HFBC(u).

Levels of HFBC
Suppose M = H or M = start(R) for some R € dom(start) such that start(R) is successful. Let
> be the unique Z-validated strategy of M.

Definition 11.6. We say (Mg, X¢,: & < Q'), where Q" < Ord, are the levels of the hybrid fully
backgrounded construction at u (HFBC(u)) done with respect to (M, X) if the following conditions
hold.
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Mo=Mand Xy = X.

For each ¢ < Q', M is appropriate and X is the unique Z-validated strategy of M .

. Forall ¢ < Q',if £ +1 < Q’, then M is not bad and M g1 = next(Myg).

For all ¢ < Q’, if £ is a limit ordinal, then letting M7 =gey liminfo—sMa, M7 is appropriate
and not bad and M = next(/\/lz). ) ‘

5. Q' is the least ordinal @ such that one of the following conditions hold:

(a) a is alimit ordinal and M3, is bad.

(b) « is a limit ordinal and nexty(M?,) is weakly Z-suitable.

(c) @ =p+1and Mg is bad.

Ll

We say HFBC(u) converges if Q' is as in clause 5(b) (i.e., nextys(My3,,) is weakly Z-suitable). The
following proposition is essentially [28, Theorem 11.3].

Proposition 11.7. Suppose 6 > p is a Woodin cardinal. Then if for all ¢ < 6, Mg is defined, then
Q' = 6 and HFBC converges. Moreover, letting P~ = liminfs_,s Mg and P = (P™)*, then P is weakly
Z-suitable.

Letting 6§ > u be the least Woodin cardinal > y, we need to show that HFBC(u) either lasts & steps
or encounters a weakly Z-suitable stage. Recall that we defined HFBC(u) over some (M, X).

12. Putting it all together

We are assuming theory T and let (S, Sp, vo, )7, 2) witness it; let u € So. Combining HFBC(u) with the
fully backgrounded Z-validated sts construction, as shown by Proposition 10.7, we see that we reach an
honest Z-suitable R. In this section, we would like to continue the Z-validated sts construction over R
and show that it must reach an excellent P. To do this, we will stack fully backgrounded Z-validated
sts constructions one on the top of another to reach an almost excellent hybrid premouse which we will
show has external iterability. We will then need some arguments that translate iterable almost excellent
hybrid premice into an excellent ones.

This stacking idea might be a little bit unnatural but it seems the most straightforward way of dealing
with the two main issues at hand. What we would really like to do is to perform the fully backgrounded
Z-validated sts construction over R and hope that it will reach an excellent hybrid premouse. There
are two key issues that arise. The final model of our construction has to inherit a stationary class of
measurable cardinals. Perhaps the most straightforward way of dealing with this issue is to attempt
to show that every measurable cardinal « such that no cardinal is «x-strong remains measurable in the
output of the backgrounded construction. We do not know how to show this without working with more
complex forms of backgrounded constructions. Our solution involves just adding the measure by ‘brute
force’. Once the construction reaches one such «, we will continue by adding the measure coarsely,
much like one does in the construction of L[ u].

The next issue is to guarantee window-based iterability. The most natural way of accomplishing this is
by showing that the models of our backgrounded construction are iterable. However, this may not work,
and if it fails, it fails as follows. Suppose A is a model appearing in the fully backgrounded Z-validated
sts construction over R and « is a cutpoint cardinal of /. Suppose N has no Woodin cardinals above
k. We now seek a Z-validated strategy for AV that acts on iterations above «. If such a strategy does not
exist, then we must have a tree 7 on A above « which does not have a Z-validated Q-structure. Let then
N  =m(T). It follows that if we perform a fully backgrounded Z-validated sts construction over N,
we will not reach a Q-structure for 7. Let then A} be the one cardinal extension of NV, | built by the fully
backgrounded Z-validated sts construction over \V;". We thus have that N'1=6(7) is a Woodin cardinal’.

We now want to see that N] has a window-based iterability. Let then 7y € (k,6(7T)) be a regular
cardinal of NV, and we want to argue that \/{|n is iterable. The strategy we seek is again a Z-validated
strategy. If it does not exist, then we get a tree 7; on N]|n; such that 77 does not have a Z-validated
Q-structure. The construction above produced N, extending m(77). The goal now is to show that A5
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has window-based iterability. Failure of such a strategy produced 1, € (x,5(71)), T2 based on A, that
is above k and a model A3 extending m(73). The process outlined above cannot last w many steps, for
if it did, we will have a sequence (N;, 7; : i < w) and a reflected version of this sequence cannot have a
well-founded direct limit along the realizable branches.

There is yet another issue that we need to deal with which is not connected with the stacking
construction but has to do with other aspects of the construction. We will need arguments that will show
window-based iterability in V can somehow be reflected inside the sts premice alluded above. To show
this, we will need to break into cases and examine exactly how we ended up with the model we seek.
For this reason, we isolate the following hypothesis.

Hypo : For some X containing R, there is a sound Z-validated almost excellent mouse M over X that is
based on R.

The following essentially follows from the main results of [31].

Proposition 12.1. Assume —Hypo. Then for any X containing R, letting 6 be the least Woodin cardinal
such that X € Vs, no model of the Z-validated sts construction of Vs that is based on 'R and is done
over X reaches an almost excellent hybrid premouse.

12.1. The prototypical branch existence argument

Here, we present an argument due to John Steel that we will use over and over again. The argument
is general and can be used in many settings. We will refer to this argument as the prototypical branch
existence argument. In the sequel, when we need to prove something via the same argument, we will
just say that ‘the prototypical branch existence argument shows. . . .

The prototypical branch existence argument
Suppose ¢ is a Woodin cardinal, X € Vs is a set such that R € X and (M4, N, : @ < §) are the models
of the fully backgrounded Z-validated sts construction done over X. Fix @ < & and suppose that A/, has
no Woodin cardinals (as an sts premouse over X). Let 7 be a normal Z-validated iteration of N, such
that for every limit 8 < [h(T), if cg = [0, Blr, then Q(cp, T IB) exists and is Z-validated. Suppose
that 7 has limit length and there is a Z-validated sts mouse Q such that m(7)<Q and rud(Q)=6(T)
is not a Woodin cardinal’. Then there is a branch b of 7 such that Q(b, T) exists and is equal to Q.
The argument proceeds as follows. Fix some A € So — ¢ and let 7y : My — Hy be a (u, A, Z)-good
hull such that 7, Q € rng(n). Letv = |My| and let g C Coll(w, v) be generic. Then there is a maximal
branch ¢ of Ty, B < @ and a (weak) embedding o : M7V — N such that if ¢ is nondropping, then
B =aand ry = o on7V. Arguing as in Proposition 9.5, we get that ¢ must be a cofinal branch and that
Q(c, Ty) must exist and be equal to Qy . It follows then that ¢ € My . Hence, 7y (¢) is as desired.

Remark 12.2. It is important to keep in mind that the argument does not work when N, has Woodin
cardinals, as then Q(c, Tyy) may not exist. Thus, this argument cannot in general be used to show that
levels of K¢ are short-tree iterable.

12.2. One step construction

Suppose X is a set such that R € X. The main goal of this section is to produce a short-tree-iterable
Z-suitable sts hod premouse over X. Here, short-tree iterability is in the sense of the HOD analysis
(cf. [14]).

Definition 12.3. Suppose P is a Z-validated sts premouse over X based on R. We say P is almost
Z-good if P, as an sts premouse over X, has a unique Woodin cardinal 67 such that

1. P=(P|6P)*,
2. if M is a sound Z-validated sts mouse over P, then M=‘67 is a Woodin cardinal’.
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We say P is Z-good if P has a unique Woodin cardinal 67 such that

1. (P|67)* is almost Z-good,
2. P = Lva,sts (73'673)’
3. for every regular cardinal 7 < 67, P|n has a Z-validated strategy.

We say that the Z-good P is fully backgrounded if for some maximal window w and for some & € w,
P|6% is a model appearing in the fully backgrounded Z-validated sts construction of Vi which uses
extenders with critical point > £.

Proposition 12.4. Assume —Hypo. There is a Z-good fully backgrounded sts premouse over X based
on'R.

We spend this entire subsection proving Proposition 12.4. We will do it in two steps. In the first step,
we will produce a fully backgrounded almost Z-good N. Then we will obtain a fully backgrounded
Z-good P. We start with the first step.

Lemma 12.5. Assume —Hypo. There is an almost Z-good fully backgrounded sts premouse over X based
on'R.

Proof. Let § be the least Woodin cardinal of V such that X € V. Let (Mg, Ng : € < Q) be the models
of the fully backgrounded Z-validated sts construction of Vs done over X (based on R). Because we are
assuming —Hypo, Q* = §. We claim the following.

Claim. There is £ < 6 such that N¢ is an almost Z-good sts premouse.

Proof. Suppose for every ¢ < 8, N is not almost Z-good. We show that N = (Ns)* is an almost
Z-good sts premouse. A standard reflection argument shows that p,(N) < 6. Suppose then N is not
almost Z-good and fix M such that

1. NaM,

2. M is sound above ¢,

3. pu(6) <4,

4. M is Z-validated and has a Z-validated Ord-strategy.

As we are are assuming —Hypo, ¢ is not a limit of Woodin cardinals in A/. Let then 7 : M* — M be
such that letting crit(x) = v, 7(v) = 6 and A has no Woodin cardinals in the interval [v, §).

Working inside AV, let N’ be the output of the (R, RP, sN )-authenticated construction done over
N|v + 1 using extenders with critical points > v. Let M’ be the result of translating M over to N/ via
the S-construction (see [38, Chapter 6.4]). Similarly, for each \/-cardinal & > v such that (NV|&)*=¢ is
a Woodin cardinal’, let M s witness that our proposition fails for (N |€)*. For each such &, let /\/l’ be
the result of translating M ¢ over to N'|£.

We now compare M* with the construction producing N. In this comparison, only M* is moving.
We claim that this comparison lasts & + 1-steps producing a tree 7 on M* with last model M. Indeed,
given T T, where @ < § is a limit ordinal, if m* (7 [a)E=‘6(T Ta) is a Woodin cardinal’, then M, is
defined. Because M is a Z-validated sts mouse, we must have a unique cofinal well-founded branch b,
of T T such that Q(b, T [@) is defined and is equal to M/,. We then pick this branch b, at stage «.

It must now be clear that the existence of 7 violates universality; this implies by standard results that
there must be a superstrong cardinal in . The reader may consult [34, Lemma 5.4]. O

The claim finishes the proof. O

We now start the proof of Proposition 12.4. Towards a contradiction, we assume that there is no fully
backgrounded Z-good sts premouse over X based on R. Let AV be a fully backgrounded almost Z-good
sts premouse over X based on R.

Below, given S, §° will always denote the largest Woodin of S and w® will denote the maximal
window w of S such that §* = §°.
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We now by induction produce an infinite sequence (N;, v, T; : i < w) such that

1. for every i < w, N; is a fully backgrounded almost Z-good sts premouse over X based on R,

2. for every i < w, v; is a successor cardinal of \;,

3. foreveryi < w, 7; is a normal Z-validated iteration of A;|v; such that 7; has no cofinal well-founded
branch b such that Q(b, 7T;) exists and is a Z-validated mouse,

4. foreveryi < w, Niy1 = m*(T;).

A simple reflection argument shows that such a sequence cannot exist. The fact that for i > 0, NV; is fully
backgrounded is irrelevant for the reflected argument alluded in the previous sentence. It is enough that
N is fully backgrounded.

Assume then we have built V;, and we now describe the procedure for getting (v;, 77, Ni+1). Because
N; is not Z-good, there is a v; € w™i which is a successor cardinal of N; and N;|v; does not have a
Z-validated strategy.

Let 17 be some Woodin cardinal such that \; € V,, and let &, < i be such that \; € H &, and there
are no Woodin cardinals in the interval (¢,,,7). Let (M2, 87 : @ < 1) be the models of the fully
backgrounded Z-validated sts construction of V;; done over X using extenders with critical points > &,,.

As N; € Hg, in the comparison of W =4, s N|v; with the construction (M, S/ : @ < ), only W
moves. We now analyze the tree on V. Suppose 77 is the tree on W built via the above comparison
and suppose 77 has a limit length. We now have two cases.

Casel. Suppose there is & such that S,/ =5 (T is not a Woodin cardinal’. It follows from the prototypical
argument that there must be a cofinal branch b of 7 such that Q(b, T) exists and is a Z-validated mouse.
We then extend 7 by adding b.

Case2. Suppose there is no a < 7 such that S;/=*6(7T) is not a Woodin cardinal’. In this case, we stop
the construction and set AV;y; =m*(7) and 7; = 7.

We stop the construction if either Case2 holds or for some «, ./\/IZ is the last model of 7 and 717 exists.

We now claim that for some 7, the construction of 77 stops because of Case2. Assume otherwise.
Then for each Woodin cardinal 77, we have «;, and an embedding 7 : W — MZ”. As W has no Woodin
cardinals, it follows that for every n, W is & -iterable via a Z-validated strategy. As Ord = U,, &5, we
have that W is Ord-iterable via a Z-validated strategy. Hence, for some r7, Case2 must be the cause for
stopping the construction of 7 7. Below, we drop n from subscripts.

To finish the proof of Proposition 12.4, we need to show that ;. is almost Z-good. This easily follows
from universality. Because 6(7) is Woodin in S,,, we must have that N, <S,,. If now M is a 6(7)-
sound Z-validated sts mouse, then because 7 has no Q-structure, we must have that p(M) > 6(7) and
ME‘S6(T) is a Woodin cardinal’ (as otherwise the prototypical argument would yield a branch of 7).

12.3. Stacking suitable sts mice

In this section, assuming —Hypo, we build an almost excellent hybrid premouse. We achieve this by
stacking fully backgrounded Z-good sts premice. As we said in the introduction to this section, we will
make sure that a stationary set of measurable cardinals will remain measurable in the model produced
by our construction. This will be achieved by adding each such measures by brute force.
By induction, we define a sequence I% = (Kq : @ € Q), called a Z-good stack,"> such that
. Ky is a fully backgrounded Z-good sts premouse over R,
. for every a, K441 is a fully backgrounded Z-good sts hod premouse over /C,,
. if @ is a limit ordinal and Ord N Ug., Kg ¢ S, then Ky = LpZV’S”(UBq, Kg),
. if a is a limit ordinal and A =4,y Ord N Ug., K € S, then letting U be a normal measure on
A and setting K}, = Ug<o Kp and Kf) = my (KL | (Ka) K = (K, E) where E is the
(A, (21+) ™ (Ka))_extender derived from 7ry; and K, is the core of K.

AW~

15There can be many such stacks.
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We call K the (f.b.Z)-validated stack. The construction of K is straightforward. However, we need to
verify the following three statements.

(S1) For a < B, if 6 is a Woodin cardinal of K, then no level of Kz projects across ¢ and Kgk=6 is
a Woodin cardinal’.

(S2) If Ord N Ug, Kp € S, then A is a measurable cardinal in Kj.1.

(S3) The class of A such that Ord N (Ug, Kp € S is stationary.

‘We now prove the above three clauses by proving a sequence of lemmas.

Lemma 12.6. For every a, K is a Z-validated mouse. If @ € S is such that Ord N Ug, Kpg € S, then
K\, K2, KL are also Z-validated mice.

Lemma 12.6 is a consequence of [31, Corollary 3.16]. This corollary shows that if U is a good hull,
then the pre-images of the relevant objects have iteration strategies that pick realizable branches, which
implies that they have Z-approved strategies.

Lemma 12.7. (S1) holds.

Proof. Fix @ < 8 and ¢ as in the statement of (S1). Suppose M <K is such that p(M) < &. It follows
from our construction that for some y + 1 < @, § = §*+!. Let p = p,41 (M) be the standard parameter
of M and n be least such that p, 1 (M) = p(M) < . Let W be the canonical decoding structure of
Hullf\/‘" (6 U {p}), where M" is the n-th reduct of M. As M is a Z-validated sts premouse and /C, .1
is Z-suitable, we must have that rud (W) is a Woodin cardinal’. Hence, p(W) = 4, a contradiction.
A similar argument shows that Xgl=‘6 is a Woodin cardinal’. |

Lemma 12.8. (S2) holds.

Proof. First, we claim that p(K,;) > A. Lemma 12.7 shows that p(X;) > A. Assume then that

p(Ky) =A.Let W = Core(K,) and U be the normal measure on A. Because of our definition of K, we
have that

Ult(V,U)EKY = Lp“ " (K)).

Let now F be the last extender of W. As |[W| = A, we have o : Ult(W,F) — ny (W) such that
o € Ult(V,U). 1t follows that

Ult(V,U)eUlt(W, F) is a Z-validated sts premouse over K.

Hence, Ult(W, F)<K/ implying that W € K. Thus, p(K,) > A.
The same argument shows that if M </C .1, then p(M) > A. Thus, A must be a measurable cardinal
in IC/H_] . m}

(S3) is trivial. It then follows that | J,c0,q Ko is an almost excellent hybrid premouse.

12.4. The conclusion assuming —Hypo

We remind our reader that we have gotten to this point by assuming that —=Hypo holds. The following
summarizes the results of the previous subsection.

Corollary 12.9. Assume —Hypo. Then there is an honest Z-suitable R and a Z-validated almost excellent
class size premouse K based on R satisfying the following conditions.

1. For each maximal window w of KC and for eachn € (v*¥,8") that is a regular cardinal in IC, K has a
Z-validated iteration strategy ¥ that acts on normal iterations that are based on K|n and are above
W,

2. For each maximal window w of IC, KC|6™ is a fully backgrounded Z-good sts premouse over IC|v".

3. For each Woodin cardinal § of KC and for each Z-validated sound sts mouse M such that IC|6 <M,

M6 is a Woodin cardinal’.

The next proposition completes the proof Theorem 1.4 and Theorem 1.7 assuming —Hypo.
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Proposition 12.10. Assume —Hypo. Then there is a class size excellent hybrid premouse.

We spend the rest of this subsection proving Proposition 12.10. Let R and /C be as in Corollary 12.9.
We claim that, in fact, K is excellent. To see this, let w be a maximal window of /IC and let 7 € (v, §")
be a regular cardinal of &C. We want to see that in /C, K|n has an iteration strategy that acts on normal
iterations that are above v". Let X be the Z-validated strategy of K|n that acts on normal iterations that
are above v". It is enough to show that X [ K is definable over K.

We work inside K. Given a normal iteration 7 of K|z that is above v*', we will say T has a correct
Q-structure if letting (u, {, (Mg, Ng : € < 6*)) be such that

1. u is the least maximal window of /C with the property that 7 € K|6",

2. e (v, 6%)issuchthat T € K|,

3. (Mg, Ng & < ") are the models of the fully backgrounded (R, RP, §%)-authenticated sts
construction of /|6 done over m(‘7") using extenders with critical points > ¢,

for some ¢ < 8%, M #=*6(T) is not a Woodin cardinal’. We then say that M ¢ is the correct Q-structure
for 7. We have that M ¢ has a Z-validated iteration strategy, and hence, if it exists, it is unique (i.e.,
does not depend on ).

Continuing our work in /C, given 7 as above, we say 7 is correctly guided if for every limit
a < Lh(T), letting b = [0, a]r, Q(b, T la) exists and is the correct Q-structure of 7. The following
lemma finishes the proof of Proposition 12.10.

Lemma 12.11. Suppose T € K is a normal iteration of KC|n of limit length that is according to X. Then
T is correctly guided, and if T is of limit length, then T has a correct Q-structure.

Proof. The second part of the conclusion of the lemma implies the first as we can apply it to the initial
segments of 7. Thus, assume that 7 is correctly guided and is of limit length. Let b = Z(7). Then
Q(b,T) exists and is Z-validated. Set Q = Q(b,T).

Let (u,l,(Mg,Ng @ € < 6")) be as in the definition of the correct Q-structure. Towards a
contradiction, assume that letting N =4 ¢ M su, N'=‘6(T) is a Woodin cardinal’. Notice that K|6" is
generic over A/, implying that we can translate K via S-constructions into an sts premouse over \; call
it IC’. We have that K'=°6(7") is a Woodin cardinal’ and K’ is almost excellent.

Next, we compare Q with K’. All of the extenders on the extender sequence of X’ have fully
backgrounded certificates, which implies that in the aforementioned comparison, only the O-side
moves. Let A be the unique Z-validated strategy of Q and let I/ be the tree on Q of limit length such
that m(U/) = K’|6%. Set ¢ = A(U) and M = Q(c,U).11®

Notice now that M is §*-sound, 6* is a cutpoint in M and M has no extenders with critical point
o". Moreover, M is a Z-validated sts mouse over K’|6%, and therefore, it can be translated into a Z-
validated sts mouse X’ over K|§*. We must then have that rud(X)=‘6" is a Woodin cardinal’. But then
rud(M)E=‘6" is a Woodin cardinal’, a contradiction. m|

Notice now that for 7 € KC, we have the following equivalences.

1. T € dom(X) if and only if JC=“T is correctly guided’,
2. Z(T) = b if and only if Q(b, T) exists and K=Q(b, T) is the correct Q-structure for 7.

12.5. Excellent hybrid premouse from Hypo

Finally, we show how to get an excellent hybrid premouse from Hypo. This will complete the proof of
Theorem 1.4 and Theorem 1.7. Suppose then R is an honest Z-suitable hod premouse, X is a set such
that R € X and M is an almost excellent Z-validated sts premouse over X. In particular, M is a model
of ZFC. It must be clear from our construction that we can assume that X has a well-ordering in L[X].
Let then « = (]X|*)™. Let & be the least Woodin cardinal of M that is > k and let V' be the output of

16Notice that Q(c, ) must exist as Q projects to (7).
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the fully backgrounded (R, R”, $*)-authenticated sts construction of M| done over R. Once again,
using S-constructions, we can translate M over to an sts mouse P over N such that P[M|s] = M.
Moreover, P is almost excellent and is a Z-validated sts mouse over R. Because good hulls of P are
iterable via a Z-approved strategy, we can assume, by minimizing if necessary, that P is minimal in the
sense that for each 17 € (6%, Ord N P), P|n is not an almost excellent sts premouse over R.

The rest of the proof follows the same argument as the one given in the previous subsection. We
show that P is, in fact, excellent. As before, this amounts to showing that for a window w of P such that
6" > 6%, and for any n € (v,8"), if i is a regular cardinal of P, then Pk ‘P|n has Ord-iteration
strategy’. Towards a contradiction, assume not.

Let U be a good hull such that P € U. Set S = Py, W = Ry and A = ny. Let A be the Z-approved
strategy of S and let £ be the fragment of A that acts on normal iterations of S|4 that are above v*V.
The following lemma can be proved via a proof almost identical to the proof of Lemma 12.11. We
define correct Q-structure and correctly guided exactly the same way as we defined them in the previous
subsection, except the definition now takes place in S.

Lemma 12.12. Suppose T € S is a normal iteration of S|n of limit length that is according to X. Then
T is correctly guided and if T is of limit length, then T has a correct Q-structure.

There is only one difference between the proofs of Lemma 12.11 and Lemma 12.12. In the proof
of Lemma 12.11, we concluded that rud(X)=*6" is a Woodin cardinal’ using the fact that (K|6")* is
Z-suitable sts premouse. Here, we no longer have such a fact, but here we can use minimality of P to
derive the same conclusion.

As in the previous subsection, Lemma 12.12 easily implies that X [P is definable over P. This
completes the proof of Theorem 1.4 and Theorem 1.7.

13. Open problems and questions

The rather mild assumption that the class of measurable cardinals is stationary is used in various
‘pressing down’ arguments in the proof of Theorem 1.4 and Theorem 1.7, and also in stabilization
arguments like those of Theorem 5.2. This assumption is probably not needed, though proving some
sort of stabilization lemma like the aforementioned one is probably necessary.

Question 13.1. Are the following theories equiconsistent?

1. Sealing + ‘There is a proper class of Woodin cardinals’.
2. LSA — over — uB + ‘There is a proper class of Woodin cardinals’.
3. Tower Sealing + ‘There is a proper class of Woodin cardinals’.

As mentioned above, CMI becomes very difficult past Sealing. A good test question for CMI
practitioners is the following.

Open Problem 13.2. Prove that Con(PFA) implies Con(WLW).

We know from the results above that WLW is stronger than Sealing and is roughly the strongest
natural theory at the limit of traditional methods for proving iterability. We believe it is plausible to
develop CMI methods for obtaining canonical models of WLW from just PFA.!”

Remark 13.3.

1. By the above discussion, we also getin V = P[g] that for every generic A, (1“;")# exists and by Lemma
3.2, L(T'}’)=ADg + © is regular. So we have the following strengthening of Sealing: Sealing™ for all
V-generic g, in V[g], L(I'*®°,R)=ADg + O is regular. We call this theory Sealing®.

1 The second author observes that assuming PFA and that there is a Woodin cardinal, there is a canonical model of WLW. The
proof is not via CMI methods but just an observation that the full-backgrounded construction as done in [31] reaches a model of
WLW. The Woodin cardinal assumption is important here. The argument would not work if one assumes just PFA and/or a large
cardinal milder than a Woodin cardinal (e.g., a measurable cardinal or a strong cardinal).
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2. The conclusion of LSA — over — uB can be weakened to the following: For all V-generic g, there is
A C RVI8] such that L(A,RY [8])=LSA and I’y is contained in L(A, RV 18]y, We call this theory
LSA —over —uB™.

3. The results of this paper show the following. Let T = ‘there exists a proper class of Woodin cardinals
and the class of measurable cardinals is stationary’. Then the following theories are equiconsistent:
(a) Sealing+T.

(b) Sealing* +T.

(c) Tower Sealing+T7.
(d) LSA—over—uB+T.
(e) LSA—over—uB™ +T.
(f) Weak Sealing+T.
(g) Sealing™ +T

We end the paper with the following conjecture; if true, it would be an ultimate analog of the main
result of [50].

Conjecture 13.4. Suppose there are unboundedly many Woodin cardinals and the class of measurable
cardinals is stationary. Then the following are equivalent.

Sealing.
Sealing™.
Weak Sealing.
Sealing™.
Tower Sealing.
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