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Abstract

This paper will study almost everywhere behaviors of functions on partition spaces of cardinals possessing suitable
partition properties. Almost everywhere continuity and monotonicity properties for functions on partition spaces
will be established. These results will be applied to distinguish the cardinality of certain subsets of the power set of
partition cardinals.

The following summarizes the main results proved under suitable partition hypotheses.

o If k is a cardinal, € < «, cof(€) = w, k =« (k); € and @ : [«] — ON, then P satisfies the almost everywhere
short length continuity property: There is a club C C kand a § < e so that for all f,g € [C]E,if f [6=¢g |
and sup(f) = sup(g), then ®(f) = d(g).

o If « is a cardinal, € is countable, xk — (k)5 € holds and @ : [«]F — ON, then @ satisfies the strong almost
everywhere short length continuity property: There is a club C C « and finitely many ordinals dg, ..., 0x < € so
that for all f,g € [C]E, ifforall 0 <i < k, sup(f I 6;) =sup(g I 6;), then ©(f) = D(g).

o If « satisfies k =+ (k);, € < k and @ : [«]€ — ON, then @ satisfies the almost everywhere monotonicity
property: There is a club C C « so that for all f,g € [C]f, ifforall @ < ¢, f(a) < g(a@), then ®(f) < D(g).

o Suppose dependent choice (DC), w; —x (wl)zw ! and the almost everywhere short length club uniformization

principle for w; hold. Then every function ® : [w1]{' — w satisfies a finite continuity property with respect
to closure points: Let € ¢ be the club of @ < w; so that sup(f ' @) = a. There is a club C C w; and finitely
many functions Y, ..., Y,—1 : [C]{”" — wj so that forall f € [C];”", forall g € [C]”!,if € = € ¢ and for all
i <n,sup(g I Y;(f) =sup(f [ Yi(f)), then @(g) = @(f).

o Suppose « satisfies k —« («); forall € < «. Forall y <, [k]<¥ does not inject into X ON, the class of y-length
sequences of ordinals, and therefore, |[«]¥| < |[«]<¥|. As a consequence, under the axiom of determinacy
(AD), these two cardinality results hold when « is one of the following weak or strong partition cardinals of

determinacy: wi, wy, 6,11 (forall 1 < n < w) and 6% (assuming in addition DCp).
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1. Introduction

Partition relations appear frequently in combinatorics. Ramsey showed that the set of natural numbers,
w, satisfies the finite partition relations w — (w)é‘ for each k < w. The infinite exponent partition
relation w — (w);” (also called the Ramsey property for all partitions) is a natural generalization
which is not compatible with the axiom of choice. However, simply definable partitions such as Borel or
analytic partitions always satisfy the Ramsey property by results of Galvin and Prikry [7] and Silver [17].
Mathias [15] produced many important results concerning the Ramsey property including the technique
of Mathias forcing which is used to verify w — (w);” in the Solovay model and Woodin’s extension
AD™ of the axiom of determinacy, AD. Mathias also studied the Ramsey almost everywhere behavior of
functions on the Ramsey space [w]“ such as when every function @ : [w]“ — R is Ramsey almost
everywhere continuous or every relation R C [w]“ XR has a Ramsey almost everywhere uniformization.
Recently, these two properties have been used by Schritteser and Tornquist [ 16] to show that w — (w),”
implies there are no maximal almost disjoint families on w. Finite exponent partition relations on
uncountable cardinals are important in set theory and motivate large cardinal axioms such as the weakly
compact and Ramsey cardinals. Martin, Kunen [18], Jackson [8], Kechris, Kleinberg, Moschovakis and
Woodin [12] showed that the axiom of determinacy is a natural theory in which w; and many other
cardinals « possess even the strong partition relation: x — («);. Kleinberg [14], Martin and Paris studied
functions on the finite partition spaces of w; and produced ultrapower representations for w,, showed
w; has weak partition property and established combinatorial properties such as Jénssonness for w,,,
for all n € w. Under the axiom of determinacy, the authors ([4], [2], [6] and [5]) studied variations of
almost everywhere continuity properties for functions on the partition spaces of w; and w; according to
suitable partition measures and applied these results to distinguish the cardinalities below % (w) and
P(wy). There, AD provided useful motivation and elegant arguments, but the techniques have severe
limitations. Here, the authors will prove stronger almost everywhere behaviors for functions on partition
spaces (such as continuity and monotonicity) from pure combinatorial principles, and these results will
be applied to distinguish important cardinalities below the power set of partition cardinals. This will
lead to new results about the most important weak and strong partition cardinals of determinacy.

A basic question of infinitary combinatorics is the computation of the size of infinite sets. Cantor
formalized the notion of size and the comparison of sizes. Let X and Y be two sets. One says X and
Y have the same cardinality (denoted |X| = |Y]) if and only if there is a bijection ® : X — Y. The
cardinality of X is the (proper) class of sets Y which are in bijection with X. The cardinality of X is less
than or equal the cardinality of ¥ (denoted | X| < |Y|) if and only if there is an injection @ : X — Y. The
cardinality of X is strictly smaller than the cardinality of Y (denoted |X| < |Y]) if and only if | X| < |Y]|
but = (Y| < |X]).

The axiom of choice, AC, implies every set is wellorderable. Thus, the class of cardinalities forms
a wellordered class under the injection relation. Each cardinality class has a canonical wellordered
member (an ordinal) called the cardinal of the class. Wellorderings of sets (even R) are incompatible
with certain definability perspectives. This is usually the consequence of definable sets possessing
combinatorial regularity properties.

Let w denote the set of natural numbers or the first infinite cardinal. Cantor showed that w does not
surject onto P(w). Thus, w < |P(w)|. Let w; denote the first uncountable cardinal. With the axiom of
choice, w; < |2 (w)| using a wellordering of 2 (w) or R. However, if the axiom of choice is omitted
and instead R is assumed to satisfy the perfect set property and the property of Baire, then a classical
argument involving the Kuratowski—Ulam theorem would show that there is no injection of w; into R
or P(w). Thus, w; and |P(w)| = |R| are incompatible cardinalities. Moreover, the perfect set property
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completely characterizes the structure of the cardinalities below |2 (w)| in a manner which satisfies a
choiceless continuum hypothesis: The only uncountable cardinality below |2 (w)] is | P (w)|.

With the perfect set property and the Baire property, the structure of the cardinalities below 2 (w)
is nonlinear since w; and |R| = |9 (w)| are two incompatible cardinalities below | % (w1)|. For each
€ < wy, let [wi]€ be the increasing sequence space consisting of increasing functions f : € —
wi. P(wr) and [w; ]! are in bijection. Therefore, sequence spaces represent natural combinatorial
cardinalities below |2 (w1)| = |[w1]*'|. Another important example is [w1]=“" = ey, [w1]5,
which is the set of countable length increasing sequences of countable ordinals. A natural question is to
distinguish |[w(]®], |[w1]=*"| and | P (w1)| = |[w1]*“"| under suitable regularity properties. A helpful
combinatorial property possessed by w; (in some natural theories) is the strong partition property,
W] ((1)])20) L

Partition properties will be discussed in detail in Section 2. Let « be a cardinal, € < x and A C «.
Let [A]£ be the collection of increasing functions f : € — A of the correct type (i.e., discontinuous
everywhere and has uniform cofinality w). The partition relation x —. (), is the assertion that for
all P : [k]§ — 2, there is a closed and unbounded (club) C C w; and i € 2 so that for all f € [C]F,
P(f) =i If for all € < k, kK —. (k), holds, then « is called a weak partition cardinal. If x —. («)J,
then « is called a strong partition cardinal. If € < k and k —. (k)5 holds, then the partition filter u§ on
[«]€ defined by X € uX if and only if there is a club C C « so that [C]¢ C X is an ultrafilter.

If « satisfies suitable partition relations, then the partition spaces [«]f for € < «, [«]* and [k]¥
represent important cardinalities below & (k). Distinguishing the cardinality of these partition spaces
involve understanding the possible injections that exist between these partition spaces. To answer such
questions, this paper will use partition properties to obtain very deep understandings of the behavior
of functions @ : [x]€ — ON on measure one sets according to the relevant partition measure, u¥.
The following will summarize and motivate the main results of the paper concerning these almost
everywhere behaviors of functions.

In [2], it is shown that if x —. ()], then every function A : [«] — ON, there is an ordinal @ so
that A~'[{a}]| = |[«]¥|. This asserts that |[«]%| = |2 (k)| satisfies a regularity property with respect to
wellordered decompositions. The set [«]=* does not satisfy such regularity. This is used in [2] to show
that |[«]=%| < |[«]¥] = |9 (k)|. This paper is motivated by the question of distinguishing the cardinality
of [k]€ for € < k and [k]¥. For these computations, it will be important to understand functions
D : [k] — « through continuity properties.

To motivate continuity, suppose @ : [k] — ON. Given f € [«]F, ® can be considered as an abstract
procedure which uses information about f to assign an ordinal value. Examples of such information
include specific values of f (@) for @ < e, initial segments f | « for @ < € or possibly the entirety of f or
the values of f on some unbounded subsets of €. An almost everywhere continuity property intuitively
asserts that for u% -almost all f, @ can assign an ordinal to f using only information from f which comes
from a well-defined bounded subset of €.

One appealing continuity property for a function ®@ : [«]f — « (with € < «) would be that for
p%-almost all £, there exists a ¢ < € so that @(f) only depends on f [ 6. However, such a property is
impossible by the following illustrative example. If « satisfies k —. (K)22, then « is a regular cardinal.
Thus, the function ¥ : [k]S — « defined by W(f) = sup(f) is well defined and it depends on more
than any initial segment. This suggests that perhaps a general function ® : [k]€ — k might have a fixed
0 < € so that for u%-almost all f, ®(f) depends only on the initial segment f ' ¢ and sup(f). Under
suitable partition properties, such a continuity will be true more generally for functions @ : [k]€ — ON
with cof(€) = w (and this cofinality assumption is generally necessary).

Fix € < « a limit ordinal with cof(¢) = w. Define an equivalence relation Eg on [«]€ by f Eg g
if and only if there exists an @ < € so that for all 8 with @ < 8 < €, f(B) = g(B8). A function
@ : [k]§ — ON is Ep-invariant if and only if whenever f Ey g, ®(f) = ®(g). The first step is the
following independently interesting result that functions which are Ey-invariant u%-almost everywhere
depend only on the supremum u% -almost everywhere under suitable partition relations.
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Theorem 3.6. Suppose « is a cardinal, € < « is a limit ordinal with cof(€) = w and x —. (k); "€
holds. Let @ : [k]f — ON be a function which is Eyp-invariant % -almost everywhere. Then there is a

%

club C C k so that for all f, g € [C]E, if sup(f) = sup(g), then D(f) = O(g).
Using this theorem, the desired almost everywhere short length continuity result is established.

Theorem 3.7. Suppose « is a cardinal, € < « is a limit ordinal with cof(€) = w and k —. (k); €
holds. For any function @ : [«]f — ON, thereis aclub C C xand a é < € so that for all f,g € [C]f,

if f 16 =g I 6andsup(f) = sup(g), then B(f) = B(g).

The almost everywhere short length continuity of Theorem 3.7 is used to show that if « is a weak
partition cardinal, then for any y < k, <*«x does not inject into Xk or even X§ for any ordinal § by
providing a sufficiently complete analysis of potential injections.

Theorem 4.4. Suppose « is a cardinal so that k —. (k);*. Then for all y < «, there is no injection
of <¥k into XON, the class of y-length sequences of ordinals. In particular, for all y < «, [¥k| < |<«]|.

A stronger continuity notion would assert that a function @ : [k]€ — ON (with € < «) has finitely
many locations in € depending solely on ® so that ®(f) depends only on the behavior of f at these
finitely many locations. (By the previous example, one of these locations must be allowed to be the
supremum of f.) The next result states that if € is countable and « satisfies a suitable partition relation,
then @ : [«]f — ON will satisfy a strong almost everywhere short length continuity.

Theorem 3.9. Suppose « is a cardinal, € < w and k —. (k); € holds. Let @ : [«]S — ON. Then
there is a club C C « and finitely many ordinals dy, ..., 0x < € so that for all f,g € [C]F, if for all
0 <i<k,sup(f [6;)=sup(g [ 9;), then ®(f) = D(g).

Suppose € < « and @ : [k]f — ON. A natural question is that, if one increases the information
stored in f by increasing the values of f, could the value of ® possibly decrease? An almost everywhere
monotonicity property for ® would assert that for u£ almostall f, g € [«]f,ifforalla < €, f(a) < g(a),
then ®(f) < ®(g). By Fact 5.1, for all functions of the form @ : [«]¢ — ON to satisfy this almost
everywhere monotonicity property, one must at least have the partition relation k —. (k)5. If €
is countable, then the strong almost everywhere short length continuity of Theorem 3.9 implies the

following almost everywhere monotonicity result.

Theorem 4.8. Suppose « is a cardinal, € < wy, kK —. (k); € holds and @ : [«]f — ON. Then there
isaclub C C k so that for all f,g € [C]¥,ifforall @ < €, f(a) < g(a), then D(f) < D(g).

When cof(e) = w, one only has the weaker almost everywhere short length continuity property of
Theorem 3.7. Moreover, there are functions on partition spaces of high dimension which do not satisfy a
recognizable continuity property. Regardless, almost everywhere monotonicity still holds for functions
on partition spaces assuming the appropriate partition relation.

Theorem 5.3. Suppose « is a cardinal satisfying x —. (k)5 For any function @ : [«]¥ — ON, there
isaclub C C « so that for all f, g € [C]¥, if forall @ < , f(a@) < g(a@), then ®(f) < P(g).

Adapting this argument, one can also show monotonicity for ® : [k]f — ON when € < «.

Theorem 5.7. Suppose « is a weak partition cardinal. For any € < « and function @ : [k]f — ON,
there is a club C C k so that for all f, g € [«]§, if forall @ < ¢, f(@) < g(a@), then ®(f) < D(g).

The last section will establish the strongest known continuity result for functions of the form ® :
[w1]" — w from the strong partition relation on w1 and a certain club selection principle. A certain
club uniformization principle will be an important tool. Let club,,, denote the set of club subset of
wi. The almost everywhere short length club uniformization principle at w; is the assertion that for
all R C [w];“" X club,, which is C-downward closed (in the sense that for all £ € [w;];“", for
all clubs C C D, if R(¢, D) holds, then R(o, C) holds), there is a club C C w; and a function
A : [C]7“ ndom(R) — cluby,, so that for all £ € [C]=“" N dom(R), R(¢, A({)).

Consider a function @ : [w]]“!" — w;. Asking that there exists a§ < w; so that @( f) only depending

w1

on f | 6 for ug!-almost f € [w;];”" is impossible in general. (For instance, consider @ (f) = f(f(0)).
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See Example 6.1.) Using the almost everywhere short length club uniformization at w1, [4] showed that
functions @ : [w]s”"" — w do satisfy ug!-almost everywhere continuity where [w]”" is endowed
with the topology generated by {N, : £ € [w1]:"'} as a basis, where Ny = {f € [w]! : € C f} for
each £ € [w]<“" and w; is given the discrete topology. Explicitly, there is a club C C w so that for all
f € [C]", there exists an @ < wq so that for all g € [C]&,if f [ @ = g | a, then ®(f) = D(g). [2]
showed that the almost everywhere short length club uniformization at w; can be used to get an even
finer continuity result which asserts that there is a club C C wy so thatforall f € [C]”' and all @ < wy,
if ®(f) < f(a@), then f | « is a continuity point for @ relative to C. (For these results, the condition
that @ maps into w; is generally necessary.)

A natural question is whether ® : [w1]“! — w; satisfies any form of continuity in which ®(f)
depends only on the behavior of f at finitely many locations on wi. By the function from Example 6.1,
it is impossible to have finitely many ordinals 6y, ..., 3,1 < w; which are independent of any input f so
that ®©( f) depends only on the behavior of f at these finitely many points. One can conjecture if there are
finitely many continuity locations for @ which do depend on f. That is, are there finitely many functions
Yo, ..., Y,,_1 so that there is a club C C w with the property that for all f € [C]“!, forall g € [C]{", if
foralli < n,sup(g [ Y;(f)) =sup(f I Y;(f)), then ®(f) = ©(g)? This is also not possible. For each
f € [w1]:”", call an ordinal a a closure point of f if and only if for all 8 < @, f(B8) < a or equivalently
sup(f I @) = . Let € denote the club set of closure points of f. Let ¥ : [w;]i”" — w; be defined by
Y (f) = min(€ ), that is, the smallest closure point of f. Example 6.3 shows that there is no collection of
finite functions Yy, ..., Y,,—; which satisfies the proposed continuity property with respect to . Closure
points necessarily contain infinite information concerning f. The next result shows that closure points
are the only obstruction to a g, -almost everywhere continuity property asserting finite dependence:

Theorem 6.18. Assume DC, w; —. (w;),”" and that the almost everywhere short length club
uniformization principle holds at w;. Let @ : [w]{"' — w;. There is a club C C w; and finitely many
functions Yo, ..., Y,,_; so that for all f € [C]y”', for all g € [CLy", if € = €f and for all i < n,
sup(g 1 Y;(f)) =sup(f [ Yi(f)), then ®(f) = D(g).

To put these results in context and discuss examples, one needs to consider the natural theories which
possess combinatorially regular properties. Let A € “w. Consider a game G 4 where two players take
turns picking natural numbers to jointly produce an infinite sequence f. Player 1 is said to win G4 if
and only if f € A. The axiom of determinacy, denoted AD, asserts that, for all A € “w, one of the two
players has a winning strategy for G 4. Under AD, the perfect set property and the Baire property hold
for all sets of reals, and w; and many other cardinals possess partition properties. Many weak versions
of the continuity results mentioned here have been previously established for w; and w, under AD. This
paper evolved from attempts to establish continuity properties and cardinality computations at the most
important weak and strong partition cardinals of determinacy.

See Section 2 for a summary of partition properties under AD. Martin showed under AD that w is
a strong partition cardinal and w; is a weak partition cardinal which is not a strong partition cardinal.
Jackson [8] showed under AD that for all n € w, 6),,, is a strong partition cardinal and &), is a
weak partition cardinal which is not a strong partition cardinal. The next strong partition cardinal after
w is 6% = wy+1- Kechris, Kleinberg, Moschovakis and Woodin [12] showed that 6% and the X;-stable
ordinals 64 of L(A,R) for any A C R are strong partition cardinals under AD.

Previously known continuity results at w; and w, heavily used determinacy methods. For instance,
Kunen trees and Kunen functions ([9] and [3]) are very important for many combinatorial questions at
w1 and for the description analysis below w,, which leads to the strong partition property for 6; = W+l
[6] and [5] Fact 2.5 used these Kunen functions to provide a very simple argument that every function
D : [w1]€ — w; with € < w; satisfies the almost everywhere short length continuity expressed in
Theorem 3.7 and even the stronger version expressed in Theorem 3.9 (but only when the range of the
function goes into wy). [6] used this result to show that |[w]*| < |[w]<“!| under AD. Using Martin’s
ultrapower representation of w41 = [, 1/ ! foreach 1 < n < w, [5] showed that [w1]<“! does not
inject into “(w,,). Using a variety of determinacy specific techniques (the full wellordered additivity
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of the meager ideal, generic coding arguments, Banach—-Mazur games, Wadge theory and Steel’s Suslin
bounding), [5] showed that [w]~“! does not inject into “ ON under AD and DCp. (Note that Theorem
4.4 improved this result to just the hypothesis AD without DCg.) Extending these methods to studying the
next strong partition cardinal 6% = w41 seems difficult. Although w,+1 has analogs of Kunen functions
and generic coding functions ([13]) using supercompactness measures, there is no analog of the full
wellordered additivity of the meager ideal which can be a major obstacle to generalizing results to w ,+1
as observed by Becker at the end of [1]. Moreover, 6% and the X-stable ordinals 6 4 (A C R) are strong
partition cardinals which are limit cardinals and cannot possess analogs of the desired Kunen functions.
The methods for w; are much less applicable here. Although, 6}, 6% and 64 are important cardinals
of determinacy possessing numerous scales and reflection properties, unlike w;, these properties do
not seem to facilitate the analysis of cardinality. The pure combinatorial methods of Theorem 3.7, 4.4,
3.9, 5.3 and 5.7 are the only known method for establishing these properties for these important strong
partition cardinals of determinacy.

Corollary 3.10. Assume AD. Suppose « is wi, wo, 6:1 for 1 < n < w, 4 where A C R or 6%
(assuming DCg). If € < w; and @ : [k]f — ON, then there is a club C C « and finitely many
ordinals 8y < B1 < ... < Bp-1 < € (where p € w) so that for all f,g € [C]S, if foralli < p,
sup(f I Bi) =sup(g I Bi), then @(f) = D(g).

Assume AD. Suppose « is w1, wa, 6}1 forl <n < w, 65, where A C R or 6% (assuming DCp). If
€ < k with cof(e) = w and @ : [x]f — ON, then there is a club C C « and a § < € so that for all

f,8 € [C]s,if sup(f) =sup(g) and f [ 6 = g | 0, then D(f) = D(g).
Corollary 4.6. Assume AD. Suppose « is w1, w2, (5,11 forl <n<w,d4,where A C Ror 6% (assuming
DCp). Then for any y < k, ¥«| < |<¥«| and =¥k does not inject into ¥ ON.

opep forl <n < w, 84 where A C R or 6% (assuming
DCp). For any € < « and any function @ : [k]f — ON, there is a club C C « so that for all f, g € [C]£,
ifforall @ < e, f(@) < g(a), then ©(f) < D(g).

Corollary 5.8. Assume AD. Suppose « is w1, w2, 6; forl <n < w,6s where A C Ror 6% (assuming
DCp). For any € < x and @ : [k]f — ON, there is a club C C « so that for all f,g € [C]f, if for all
a<e, f(a) < gla),then d(f) < O(g).

Determinacy provides examples to show that the hypothesis in Theorem 3.7 and Theorem 3.9
are generally necessary. Let ¥ : [wy]“! — w3 be defined by ®(f) = [f] 41> that is, the ordinal
1

Corollary 5.5. Assume AD. Suppose k is wy, 6.

represented by f in the ultrapower [],, w2/ ,uf" of wy by the club measure on w;. ¥ will not satisfy the
weak or strong version of the almost everywhere short length continuity. (See Example 3.13.) Letting
Y : [wa] ¥ — ws defined by Y(f) = ¥Y(f | w;) is an example of a function satisfying the weak
short length continuity of Theorem 3.7 (note cof(w; + w) = w) and does not satisfy the strong short
length continuity of Theorem 3.9 (note that w; < w; + w). In the two examples above, the range goes
into wj3. Curiously, it is shown in [6] that every function @ : [w;]:”' — w, satisfies even the strong
almost everywhere short length continuity property (despite cof (w;) > w). This remarkable property
is unique only to w, and is made possible by Martin’s ultrapower representation of w, under AD.

[4] shows the almost everywhere short length club uniformization holds for w; under AD. (By a more
general argument, [2] shows that nearly all known strong partition cardinals of AD also satisfies this
club uniformization principle.) By absorbing functions @ : [w1]s"' — w; into the inner model L(R)
which satisfies AD and DC, Theorem 6.18 implies the following holds in AD.

Theorem 6.22. Assume AD. Let ® : [w;]”' — w;. There is a club C C w; and finitely many

function Iy, ...,[,_1 so that for all f € [C]", for all g € [C]", if €, = € and for all i < n,
sup(g [ I;(f)) = sup(f I [i(f)), then D(f) = D(g).

In this result, it is necessary that the range goes into w;. For example under AD, the function
D : [w1]" — w, defined by ¥(f) = [f] & (f is mapped to the ordinal below w; represented by f in
the ultrapower of w; by the club measure on w) does not satisfy any recognizable continuity property.
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2. Partition properties
ON will denote the class of ordinals.

Definition 2.1. Suppose ¢ € ON and f : € — ON is a function. The function f is discontinuous
everywhere if and only if for all @ < €, sup(f | @) =sup{f(B) : B < a} < f(«a).

The function f has uniform cofinality w if and only if there is a function F : € X w — ON with the
following properties:

1. Foralla < ¢, foralln € w, F(a,n) < F(a,n+1).
2. Forall @ < €, f(a) = sup{F(a,n) : n € w}.

The function f has the correct type if and only if f is both discontinuous everywhere and has uniform
cofinality w.

Definition 2.2. If A and B are two sets, then 4B denote the set of functions f:A—>B.
Let € € ON and X be a class of ordinals. Let [X]€ be the class of increasing functions f : € — X.
Let [X]¢ be the class of increasing functions f : € — X of the correct type.

Definition 2.3. (Ordinary partition relation) Suppose « is a cardinal and € < «, then let x — (k)5 state
that for all P : [k]€ — 2, there is an A C « with |A| = k and ani € 2 so that for all f € [A]€, P(f) =i.

Definition 2.4. (Correct type partition relations) Suppose « is a cardinal, € < kandy < ,letk —. («);
assert that for all @ : [k]f — vy, thereis aclub C C x and an 5 < 7y so that for all f € [C]f, ©(f) = 7.

k is a strong partition cardinal if and only if k —. (x);. « is a very strong partition cardinal if and
only if k —. (k)%,. « is a weak partition cardinal if and only if k — (k);~.

The correct type partition relations will be used in this paper. Under the axiom of determinacy, parti-
tion relations are often established by proving the correct type partition relation and many applications
directly involve the correct type partition relation. The ordinary and correct type partition relations are
nearly equivalent by the following result.

Fact 2.5. ([3] Fact 2.6) Suppose « is a cardinal and € < k. k —. (k); implies k — («);. k — (k);”€
implies k —. (x); -

It is not known if k —. (k) implies k — (k)%,, that is, whether a strong partition cardinal is a
very strong partition cardinal. (Although all known strong partition cardinals are very strong partition
cardinals.) However, one does have the following related results for weak partition cardinals. The first
follows from an induction argument.

Fact 2.6. Suppose « is a cardinal and € < k. k —, (k)5 implies k —. (x),; foralln € w.

Fact 2.7. ([3] Fact 2.13) Suppose « is a cardinal and € < «. Then k —. (k)5 "€ implies x — (x)<,.
Thus, k —. (k)5 implies k —. (k).

Definition 2.8. If « is a cardinal and € < «, then let uX be the filter on [«]$ defined by X € u¥ if and
only if there is a club C C « so that [C]f C X.

If x —. ()5 holds, then u¥ is an ultrafilter and is called the e-partition measure on . If x —. (k)
holds, then £ is called the strong partition measure on .

Note that uf is k-complete if and only if k —.. («)£, holds. Thus, if € < x and k —.. ()57 holds,
then u¥ is k-complete by Fact 2.7.

Definition 2.9. Suppose A is a set of ordinals. Let £ = ot(A). Let enumy, : £ — A denote the increasing
enumeration of A.

Suppose « be a regular cardinal. Let X C « be an unbounded subset of «. Let nextx : k — X be
defined by nexty (@) is the least element of X greater than «. Let nextg( : k — « be the identity function.
Foreach 0 <y < k, let next;y( : k — X be defined by next;y( (@) is the y™M-element of X strictly greater
than @. (Note that nexty () = nexty, (@).)
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Suppose « is a cardinal, € < k and f : € — «. Let Cy denote the closure of f[€] in «.
Ife € ON, f : € » ONand @ < €, thenletdrop(f, @) : (e—a) — ON be defined by drop(f, @) (B) =

fla+p).

Fact 2.10. Suppose « is a cardinal, ¢ < «x and k —. (x)&, holds. (By Fact 2.7, if € < «, then
k —. (k)5 7€ is enough to ensure this condition.) Let @ : [k]S — « have the property that for x -almost

all f, ®(f) < f(0). Then there is a club C C k and a { < k so that for all f € [C]f, D(f) =¢.

Proof. Let Cy C « be such that for all f € [Co]€, ®(f) < f(0). Define P : [«]1*¢ — 2 by P(g) =0
if and only if ®(drop(g, 1)) < g(0). By k —. (k)5 , there is a club C; € Cyp which is homogeneous
for P. Let C; C C be the club of limit points of C;. Take any f € [C,]f. By the stated property of
Co, ®(f) < £(0). Since f(0) € C,, there is ay € C; so that ®(f) <y < f(0). Let g € [C{]!*€ be
defined by g(0) =y and drop(g, 1) = f. Then ®(drop(g, 1)) = ®(f) < y = g(0) and hence P(g) = 0.
This shows that C; must be homogeneous for P taking value 0. Let f € [C;]E. Since f(0) € C»,
min(C;) < f(0). Let g € [C1]!*€ be defined so that drop(g,1) = f and g(0) = min(C;). Then
P(g) = 0 implies that ®(f) = ®(drop(g,1)) < g(0) = min(C}). Since f was arbitrary, it has been
shown that for all f € [C2]S, ®(f) < min(C)). Since k —, (k)< implies that u is k-complete, there
isaC3; CCranda ! < ksothatforall f € [C3]S, D(f) =<. O

Fact 2.11. Assume x —., (K)22. Then pf (i.e., the w-club filter on «) is a normal x-complete ultrafilter.

Proof. Let @ : k — k be a uf-almost everywhere regressive function. Then there is a club C C « so
that for all @ € [C]}, ®(a) < . By Fact 2.10, thereisaclub D C kand a / < « so that forall @ € [D]],
®(a) = {. So @ is uj-almost everywhere constant. O

An ordinal vy is additively indecomposable if and only if foralla < yand 8 < y,a + 8 < y. An
ordinal vy is multiplicatively indecomposable if and only if forall@ < yand 8 < y, -8 < y. An
ordinal is indecomposable if and only if it is additively and multiplicatively indecomposable. In all
discussions, 0 and 1 will be excluded and hence additively indecomposable ordinals will always be limit
ordinals. For every limit ordinal €, there exists €y < € and €] < € so that € = €y + €] and ¢ is additively
indecomposable. Because of this decomposition, it will be useful to establish results for sequences
whose lengths are additively indecomposable (but possibly not multiplicatively indecomposable) before
deducing the general result. One will frequently assume club subsets consists entirely of (additively and
multiplicatively) indecomposable ordinals.

Fact 2.12. Let Cy C « be a club subset of « consisting entirely of indecomposable ordinals. Let
C, = {a € Gy : enumg,(@) = a}. Then C; C Cy is a club subset of « consisting entirely of
indecomposable ordinals. For any y < k, @ < v and 8 < y with y € Cjy, next[éo(a) < v and in

particular, next‘go'(ﬁ D (@) <.

Proof. Fixy € Cy and @ < . Let { = sup{n < « : enumc,(n7) < a}. Note that next%o(a') = a and if
0<B<vy, next[éo(a) =enumc,({+B). Since o < yandy € Cy, { < enuma(y) = . Because y
is additively indecomposable, £ + 8 < y. Thus, next[éo(a) = enumc,({ + B) < enumc,(y) = y. The

last statement follows from the first statement and the fact that since 7y is additively and multiplicatively
indecomposable and forall 8 <y, w - (B+1) <. O

Fact 2.13. (Almost everywhere fixed length measure witness uniformization) Let « be a cardinal,
1 <6 <kand 1 < € < k. Suppose Kk — (K)26+E holds. Let R C [«]¢ X [k]€ be such that for all
f e [k]2, Ry = {g € [«]f : R(f,g)} € p¥. Then there is a club C C « so that for f € [C]e,
[C\'sup(f) + 115 S Ry.

Proof. 1f h € [«]8*€, then let h° € [«]¢ and h! € [«]¢ be defined by h° = A | 6 and h' = drop(h, §).
Define a partition P : [«]%*€ — 2 by P(h) = 0 if and only if R(h°, h'). By k —. (K)26+E, there is a
club C C w; which is homogeneous for P. Fix an f € [C]?. Since Ry € p¢, thereisaclubD C C
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so that for all g € [D]€, R(f,g) holds. Pick a g € [D]€ with sup(f) < g(0), and let & € [C]2*€ be
defined so that 2° = f and h' = g. Then P(h) = 0. Thus, C is homogeneous for P taking value 0. Now,
fixan f € [C]2. Take any g € [C \ sup(f) +1]€. Let h € [C]2*€ be defined so that h° = f and h! = g.
P(h) = 0 implies that R(f, g). Thus, [C \ sup(f) + 1] € Ry. O

If k is a cardinal, then let club, denote the collection of club subsets of «.

Fact 2.14. ([2]) Let « be a cardinal satisfying x —. (x); and 1 < € < k. Suppose R C [«] X club, is
a relation which is C-downward closed in the club coordinate in the sense that for all £ € [«]€ and all
clubs C C D, if R(¢, D), then R(¢, C). Then there is a club C C « so that for all £ € [C]f N dom(R),
R(¢,C\ (sup(£ +1)).

Fact 2.14 will not be used here. Fact 2.14 implies Fact 2.13; however, it requires k —. (K)f .Fact2.14
is generally not true for weak partition cardinals which are not strong partition cardinals. For instance,
under AD, Fact 2.14 fails at w,. Fact 2.14 gives slightly easier proof in the case of strong partition
cardinals, but the paper seeks to prove these results for weak partition cardinals so Fact 2.13 must be
used in a more indirect way.

Fact 2.15. (Everywhere wellordered measure witness uniformization) Let « be a cardinal, € < « and
assume k —., (k); €. If R C «x X []£ has the property that for all @ < «, R, € u¥, then there is a club
C C ksothatforall @ < «, [C \ nextZ(a) + 1] € Ra.

Proof. Define a new relation S C « X [«]f by S(«, f) if and only if for all 8 < @, R(B, f). Note that
So € pg since So = (g<q R, Rp € e for each § < @, and uf is k-complete by Fact 2.7. Applying
Theorem 2.13, there is a club C C « so that for all @ € [C]}, [C\ @+ 1]f C S,.

Let @ < k. Note that next® (a) is an element of C of cofinality w and thus nextZ (@) € [C]}. Thus,
[C \ next&(a) +1]F C Snextg((,). Since Snextg((,) C Ra, [C\ next@(a) +1]f € Ra. o

The axiom of determinacy AD provides a rich theory with an abundance of partition cardinals
possessing desirable structures. For each n € w, let 6 il be the supremum of the ranks of prewellorderings
on R which belong to the pointclass A}r Under AD, 6{ = wi, 65 = wy, 6; = Wepils 6}‘ = W +2. Similarly,
let 6% be the supremum of the ranks of prewellorderings on R which belong to the pointclass A%. It
A C R, then let §4 be the least X;-stable ordinals of L(A,R), which is the least ordinal ¢ so that
Ls(A,R) < L(A,R). It is the case that (67)L® = §.

Fact 2.16. Assume AD.

1. (Martin; [10] Theorem 12.2, [3] Corollary 4.27) w; —. ((ul)g’(‘uI

2. (Martin—Paris; [10] Corollary 13.5, [3] Theorem 5.19 and Corollary 6.17) wy —. (wz);wz. —(wy —»
(w2),™).

(Martin; [10] Theorem 11 2; Theorem [9] 2.36) For any n € w, 62n+1 -, (6 n+1)<‘”‘.

(18D 8,01 =+ (B30 0y

(Kunen; [10] Theorem 15 3) For all n € w, 62n+2 —>* © n+2)<“”.

(&) 62n+2 —. (8} n+2)2 ZM' _'(62n+2 —. (8} n+2)22"+2)
([12]) Forany A C R, 64 —. (6A)<6A

([12]) Assuming DCg, 6> —, (6%)«52

® N AW

Remark 2.17. Jackson [8] established the partition relations for the projective ordinals §. for 1 < n < w
by first analyzing the measures on the odd projective ordinals 6%,! +1 Which seem to require AD + DCg.
Kechris [11] showed that if AD holds, then L(R) | AD + DC. Thus, Jackson argument of [8] applied
in L(R) gives a good coding system for (6}, )™ which belongs to L(R). &} ., = (83, . )*® and
a good coding system in L(R) is still a good coding system in the original determinacy universe by
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the Moschovakis coding lemma. This shows that 6én +1 is a strong partition cardinal using only the
assumption of AD.

3. Almost everywhere short length continuity

Definition 3.1. Let « be a cardinal and € < «. Define an equivalence relation on €« by f Ey g if and
only if there is an @ < € so that for all 8 witha < 8 < €, f(B) = g(B).

Suppose @ : [k]§ — ON is a function. ® is Ey-invariant u% -almost everywhere if and only if there
isaclub C C k so that for all f,g € [C]E,if f Ey g, then D(f) = O(g).

Definition 3.2. Let « be a cardinal and € < «. Define C on [«] by g C fifand only if g € [Cr]y.
(This notion depends on « and €. Implicitly, g C f implies f and g are functions of the correct type.)

Lemma 3.3. Suppose « is a cardinal, € < « is an additively indecomposable ordinal with cof (€¢) = w
and k —. (k) € holds. Let ® : [«] — ON be a function which is Eo-invariant p'c -almost everywhere.
Then there is a club C C « so that for all f,g € [C]E, if sup(f) = sup(g), then ®(f) = D(g).

Proof. Since @ is Ep-invariant pX -almost everywhere, let Cop C « be a club so that for all f, g € [Co]f,
if f Eg g, then ®(f) = ®(g). Define Py : [Colf — 2 by P(f) = 0 if and only if for all g C f,
®(g) = ®(f). By k == (k)5 €, there is a club C; € Cp which is homogeneous for Py.

The claim is that C is homogeneous for Py taking value 0. For the sake of obtaining a contradiction,
suppose C| is homogeneous for Py taking value 1. Define Py : [C]f — 2 by P(f) = 0 if and only if
there exists a g C f so that ®(g) > ®(f). By k —. (k)5 , thereisaclub C; € C; which is homogeneous
for P;.

Case 1: Suppose C; is homogeneous for P; taking value 1. Let Z = {®(f) : f € [C2]€}. Zhas a
minimal element since Z is a nonempty set of ordinals. Pick f € [C;]f with ®(f) = min(Z). Note
that Po(f) = 1 and P;(f) = 1 imply that there exists a g C f so that ®(g) < ®(f). However, because
g € [C1]f since C; is aclub, ®(g) € Z and ®(g) < ®(f) = min(Z) which is a contradiction.

Case 2: Suppose C is homogeneous for P; taking value 0. For any function % : € - € — «, define
main(h) : € — k by main(h) (@) = sup{h(e-a+pB) : B < €}. Define P, : [C1]€€ — 2by P>(h) =0if
and only if thereis an f € [Cp]€ sothat main(k) C f and ®(f) < ®(main(h)). (Recall Cj, is the closure
fle-€)].) By k —. (k)5 €, there is a club C3 C C; which is homogeneous for P, and consists entirely
of indecomposable ordinals. Let C; ={a e Cs:enumg,(a) =a}.Let f € [C31]f with f(0) > €. Since
P1(f) = 0, there exists some g C f such that ®(f) < ®(g). As Cj isaclub, g € [C}]€. Because g has
the correct type, let G : € X w — ON witness that g has uniform cofinality w. Since g is discontinuous
everywhere, by modifying G if necessary, one may assume that for all @ < €, sup(g | @) < G(«,0).
Since cof(€) = w, let p : w — € be an increasing cofinal sequence through €. For each n < €, let @ (1)
be the least n so that n < p(n).

Fix @ < e. Let 1§ = G(a,0). Let (%, = max{nextg(p(")ﬂ) (t¥),G(a,n+ 1)}. Suppose inductively,
one has shown (¥ < g(a). Then since (¥ < g(a) and w - (p(n) + 1) < g(a), Fact 2.12 implies that
1% < g(a).Foreachn < €, let r%(n) = nextw ('7+1)(L" ;)- Note that 7 ) ('7+1)(L

< next.
n+l
w: (p(W(n))H)(L

@ (1) @) =
r(m) < nextg w(ﬂ)) < w(1])+1’ [C3]* and sup(r®) =sup{ty :ne w} g(a). Let
F, be the collectlon of v € f[e€] such that sup(g | @) < y < g(a@) and there is no ordinal < € so
that sup(r® | n7) = y. Note that ot(F,) < € since g C f. Thus, ot(r*[€] U F,) = € since € is additively
indecomposable, ot(F,) < € and sup(F,) < g(a) =sup(r®).Lets?® : € — (r?[e] UF,) be the unique
increasing function which enumerates r[€] U F,. Note that s has the correct type and sup(s?) = g(a).
Define h : € - € — C3 by h(e - a +n) = s¥(n) whenever a,n < €. Note that h € [C3]£°€, f € [Ch]f,
main(h) = g C f and ®(main(h)) = ®(g) > ®(f). So P(h) = 0 and thus C3 is homogeneous for P,
taking value 0.
Let CJ = C3. If C} has been defined, then let C{*! = {a € C} : enumcy (@) = a}. For a € Cs, let

s(a) = sup{n < w(a) +1:a € C}}. LetY be the collection off e[C l]* with the property that for
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all 1 < n < w, there exists an @ < € so that for all 8 > «, ¢(f(B)) = n. Let Z = {®(f) : f € Y}.
Since Z is a nonempty set of ordinals, Z has a minimal element. Let g € Y be such that ®(g) = min(Z).
Since g is of the correct type, let G : € X w — « witness that g has uniform cofinality w. Since g is
discontinuous, one may assume that for all @ < €, sup(g I @) < G(«,0).

Fix @ < e.Lety = G(,0). Let (2, = max{nextz"(p("Hl) (t¥),G(a,n+1)}}. Suppose inductively

s(g(a))-1
3
it has been shown that (7 < g(a). Then since (§ < g(@), w - (p(n) +1) < g(e) and g(a) €

Cg(g(a)) ={ye Cf(g(a))_l : enuM c(z(@-1(y) = v}, Fact 2.12 implies that ¢}, | < g(@). For each
3

C:"S‘(g((l))_l]*e

a _ w-(17+1) a ‘ a a a
n<eletr®(n) = nextc (Lw(n)). Note that ¢ <r%(n) <t and

(e @ (1) s+ T EL
sup(r®) = sup{t$ : n € w} = g(a). Let h : € - € — C5 be defined by h(e - @ +n) = r¥(n) whenever
a,n < €. Note that 1 € [C3]£ € and main(h) = g. Since Py(h) = 0, there is an f € [Cp]S so that
g = main(h) C f and ®(f) < ®(main(h)) = ®(g). For each n € w, let §, < € be least ordinal §
so that for all @ with § < @ < €, ¢(g(a)) — 1 > n. For each n € w, let i, < € be the least 1 so that
f(n) = g(6,) which exists since g = main(h) C f. For all > n,, since f € [Cy]f, there is a unique
a > 6, sothat f(n) € Cra C Cf(g(a))_l C C%. Thus, it has been shown that for all n € w, there is
an, < € so that for all p with 7, < < €, ¢(f(n)) > n. In particular, ¢(f(172)) € C%. (There is a
possibility that f ¢ Y since f ¢ [C31]f because an initial segment of f takes value in Cg \ C31. However,
an initial segment of f can be swapped to obtain an element k € Y. The details follow.) Let o € [C31],:72

be defined by o (v) = nextgl'(v+l)(0) for each v < 17,. Note that sup(o) < nextgl'('h”)(O) < f(m) by
3 3

Fact 2.12 since w - (n2+ 1) < f(12), f(112) € C3 and C3 = {@ € C} : enumci (@) = a}. Let k € [C3€
be defined as k = o"drop(f,12). Note that k also has the property that for all 1 < n < w, there is an
n < € so that for all @ withn < @ < €, ¢(k(a)) = n. Thus, k € Y and ®(k) € Z. Since k Ey f, one has
that ®(k) = @(f) < ®(g) = min(Z). Contradiction.

Since Case 1 and Case 2 both lead to contradictions, P; is a partition with no homogeneous club
which is impossible since x — («); holds. Thus, C must be homogeneous for Py taking value 0.

Now, suppose f, g € [C1]£ with sup(f) = sup(g). Since € is additively indecomposable, ot(f[e] U
glel) = €. Define h € [C{]f by recursion as follows: Let 4(0) = min(f[e] U g[e]). If 8 < € and
h | B has been defined, then let £(B) be the least element of f[e] U g[e] greater than sup(h T B8) + 1.
Note that £ is increasing, discontinuous and can be shown to have uniform cofinality w using the
witnesses to f and g having uniform cofinality w. Observe that P;(h) =0, f C h and g C h imply that
@(f) = ®(h) = D(g). The proof is complete. O

Definition 3.4. Let « be cardinal, € < «, kK —. (/<)26 holds, C C x be aclub and @ : [k]f — ON be a
function. Say that @ depends only on the supremum relative to C if and only if for all f,g € [C]g, if
sup(f) = sup(g), then ®(f) = O(g). Say that ®@ is C-constant on [C]£ if and only if for all f € [C]¢,

forallg C f, ®(f) = ®(g).

A property ¢(f) on [k]£ holds pX-almost everywhere if and only if there is a club C C « so that for
all f € [C]f, ¢(f) holds. To express ® is E-constant u% -almost everywhere involves a formula ¢o( f)
which only involves f. To express @ depends only on the supremum relative to C requires a formula ¢; ()
which has C itself as a parameter. This causes some technical difficulties which can easily be resolved
using the club uniformization principle, Fact 2.14, if k —. (k);. However, at weak partition cardinals
which are not strong partition cardinals, Fact 2.13 will need to be used together with the next result.

Fact 3.5. Suppose « is a cardinal, € < « is an additively indecomposable ordinal, k —.. («); and C C
is a club. @ depends on supremum relative to C if and only if @ is C-constant on [C]£.

Proof. Suppose @ depends only on the supremum relative to C. Suppose f € [C]€ and g T f. Then

sup(f) = sup(g) and thus @(f) = P(g).
Suppose @ is C-constant on [C]f. Let f,g € [C]S be such that sup(f) = sup(g). Since € < « is
an additively indecomposable ordinal and sup(f) = sup(g), ot(f[e] U gle]) = €. Let h : € — C be
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defined by induction as follows: Let £(0) = min(f[e] U g[e€]). If B8 < € and h | B has been defined,
then let /() be the least element of f[e] U g[€] greater than sup(s | 8). Then f C h and g C A. Since
@ is C-constant on [C] ¢, one has that ®(f) = ®(h) = D(g). O

Theorem 3.6. Suppose « is a cardinal and € < « is a limit ordinal with cof(€) = w. Let €y < € and
€1 < € be such that € = €y + € and €, is an additively indecomposable ordinal. Suppose k —. (k)5 and
K = (K);] U hold. Let ® : [k]€ — ON be a function which is Eg-invariant uX-almost everywhere.

*

Then there is a club C C « so that for all f,g € [C]E, if sup(f) = sup(g), then ®(f) = D(g).

Proof. Since @ : [k]f — ONis Ep-invariant u¥-almost everywhere, let Co C « be a club so that for all
f.g € [Cols,if f Ep g, then ®(f) = ®(g). Foreach o € [Cy]?, define ® : [Cy\sup(c)+1] — ON
by @ (£) = ®(c™). Note that @, is Eg-invariant on [Cp \ (sup(c) + 1)];". Since cof(€) = w implies
that cof (€1) = w, k —. (x);'"“ and Lemma 3.3 imply there is a club D € Co \ (sup(c) + 1) so that for
all £,¢ € [D];", if sup(€) = sup(r), then @, (£) = D, ().

Define R C [Cp]L x [«] <! by R(o, €) if and only if for all « C £, ® (1) = @ (£). By the observation
of the previous paragraph, for each o € [Cy],*, there is a club D so that @, depends only on supremum
relative to D. By Fact 3.5, @ is C-constant on [D]s!. Thus, [D]{' € R.. This shows that for all
o € [Col, Ry € p¥,. By k —. (k)5 and Fact 2.13, there is a club C; C Cj so that for all o € [C].*,
[C1\ (sup(o) + D] C Ry

Let 7 € [C1],° be defined by 7(a) = enumc, (w - @ + w) for each @ < €. Let C; = C; \ sup(7) + 1.
Now, suppose f, g € [C2]€ and sup(f) = sup(g). Let op, o1 € [C2]° and £y, €1 € [C2]" be such that
f =00 and g = 01°;. Let f' = "¢y and g’ = 7°¢;. Note that f Ey f’ and g Ey g’. Since @ is Ey-
invariant, ®(f) = ®(f’) and ®(g) = ®(g’). However, ®. is C-constant on [C,]! and so by Fact 3.5,
@, depends only on supremum relative to C;. Since sup(£p) = sup(£;), @ () = @, (£;). In summary,
D(f) =D(f') =D (fy) = D (6) = D(g’) = D(g). Thus, C; is the desired club which completes the
proof. O
Theorem 3.7. Suppose « is a cardinal and € < k with cof (€) = w. Let €y < € and €| < € be such that
€ = € + €1 and € is an additively indecomposable ordinal. Suppose k —. (k);*€ and Kk —. (/<)2E e
hold. For any function ®@ : [«]€ — ON, thereis a clubC C kand a § < € so that forall f,g € [C]¥, if

*

f 16 =g16andsup(f)=sup(g), then D(f) = D(g).

Proof. Since cof(€) = w, let p : w — € be a cofinal increasing sequence through e with p(0) = €. For
newletA” ={(0,0,a) :a < p(n)}andforeachl <m < w, B}, = {(m,i,a) :i € 2Ap(n+m—-1) <
a < pn+m)}.Let L" = A" U U << Bhy» and note that L" € w X 2 X €. Let L = (L", <) where
< is the lexicographic ordering on w X 2 X €. Since p(0) = € and ¢ is additively indecomposable,
ot(L") = € + €| = €. For any function & € [«]£" and i € 2, let i € [«]€ be defined by

h(m,0, @) m=0Aa< p(n)
h (@) = S h(m, i, @) m=1Apn) <a<pn+l)
h(m,1—1i,a) m>1Apn+m—-1)<a<p(n+m)

The following picture indicates the relation between 4, h"~? and h™!.

n n n
A" By B; B3
| | | | |
f 10 10 1 1
h -  &— &— oe— O—— o—— 6
L0 ~— [ S [
hl [ S — e [ S

In other words, #9 and h™! are extracted from % in a manner so that #-° and A™! share the same k™-
block for k < n (i.e., the functions agree before p(n)), the n'"-block of 2™° comes before the n"-block
of W', and for k > n, the k™-block of A comes before the k™-block of 40,
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If f,g € [«]E, then say that the pair (f, g) has type n if and only if the following holds.

o Forall @ < p(n), f(a) =g(a).

o sup(f I p(n+1)) <g(p(n)).
o Forallm >n+1,sup(g [ p(m+1)) < f(p(m)).

Observe that ( f, g) has type n if and only if there is an & € []~" so that A0 = f and b = g.
For each n € w, let P" : [k]~" — 3 be defined by

0 o) ="
P"(h) =41 DA™Y < d(WM.
2 O(h™0) > o (W)

By the fact that ot(£") = € and Fact 2.6, x —. (k)5 implies that for each n € w, there is a club C C «
and an i,, € 3 so that for all & € [C]£", P(h) = i,,. For each n € w, let K,, = {h € [k]€ : P"(h) = i,}
where L" is identified with €. For each n € w, K,, € u¥. Since k —. (k)5 *€ implies uf is k-complete
by Fact 2.7, there is a club C C « so that [C]f C K, for all n € w. Thus, for all n € w and all
h € [C]§, P"(h) = i,. By thinning C, one may assume C consists entirely of indecomposable ordinals
and w - € < min(C). Let C° = C. If C" has been defined, then let C"*! = {a € C" : enum¢n (@) = a}.
For each a with @ > € = p(0), let ¢(«) be the unique n so that p(n) < @ < p(n+1).

(Case 1) For all m € w, there exists an n > m so that i, = 1.

Let {n; : j € w) be an increasing enumeration of {n € w : i, = 1}. Let ¢, = enumc2(n), the nth-
element of C2. Let 7 € [C]° be defined by 7(a) = nexté"“”l) (0). Note that sup(7) < 1 since 19 € C2,
w - (e +1) < 1, and Fact 2.12. A sequence (f; : j € w) will be constructed so that all j € w, the
pair (fj+1, fj) has type n;. This will be accomplished by recursively constructing the sequence while
maintaining the following properties:

. Forall j € w, f; € [C]s.

Forallj e w, fj [ g = 7.

Forall j,n € w, 1, < fj(p(n)) <sup(f; [ p(n+1)) < ty41.
Forall j € wand a < p(n;), fi(a) = fis(@).

. Forall j € w,sup(fjs1 [ pn;+ 1) < f;(p(n)).

Forall j € wand n > nj,sup(f; | p(n+1)) < fi(p(n)).
Forall j € wand @ > p(n;), fi(a) € cl.

N U AW~

Define fy by fo(a) = t(a) if @ < € and fy(a) = nextgl'(mn(tg(a)) if ¢ < a < e. Since
w-(p(n+1)+1) < tyy1, tn < tyyg and C? = {a € C; : enumgi(@) = a}, Fact 2.12 implies that
sup(fo 1 p(n+1)) < next @ () < gy

Suppose f; has been defined. Define f;, as follows: If @ < p(n;), let fi11(a) = fi(a). If p(n;) <
@ < p(nj+1),let fia (@) = next% " (1,,). Observe that since f; (p(n;)) € C' by (7), w-(p(n;+1)) <
filp(n;), tu; < fi(p(n;)) by (3) and C' = {a € C° : enumco(a) = a}, Fact 2.12 implies that
sup(fi+1 I p(n; +1)) < fi(p(n;)). For a with p(n; + 1) < a < €, let fi(a) = nextg’l"’(sup(fj )
p(s(@) +1)). Foralln > nj, sup(f; | p(n+1)) < fra(p(m) < sup(fre1 1 p(n+ 1)) < it since
sup(f1 1 p(n+1)) < next&, PV (sup(f; 1 p(n+1))) < tner because w - (p(n+1) +1) < ta1,
sup(fj [ p(n+1)) <ip1 € C?,C? = {a € C; : enumci (@) = a} and Fact 2.12. This shows that fist
has been constructed with the desired relations between f; and fj4.

By (1), (2), (4), (5) and (6), f, fj+1 € [C]s and (fj41, f;) has type n;. Thus, for each j € w, there

. . nj 0 1 . . .
is a function h; € [C]£” so that h;’ = fj+1 and h;’ = f;. Since for all j € w, C is homogeneous

for P" taking value 1, P" (hj) = 1. This implies ®(fj.1) = (D(h?j’o) < CI)(h;.lj’]) = ®(f;). Thus,
(@(f;) : j € w) is an infinite descending sequence of ordinals. This shows Case 1 is impossible.
(Case 2) For all m € w, there exists an n > m so that i,, = 2.
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Let (n; : j € w) be an increasing enumeration of {n € w : i, = 2}. For each k € w, let

w(k)=|{n <k :i,=2}.Fora < ¢ = p(0), let to(a) = nextw 2@ (0). Let 19 = next, (sup(7o)). If

1, has been defined, then let ¢,,4; = nextgif)n(ﬁ;rl)ﬂ) (tn). A sequence (f; : j € w) will be constructed

so that for all j € w, the pair (fj, fj+1) has type n;. This will be accomplished by maintaining the
following properties throughout the construction:

. Forall j € w, f; € [C]£.

. Foralljew, fj eg=r1.

. Forall j,n € w, 1, < fi(p(n)) <sup(fj [ p(n+1)) < ty41.
. Forall j € wand a < p(n;), fi(a) = fi+1(a).

. Forall j € w, sup(f; [ p(n; +1)) < frs1(p(ny)).

. Forall j € w,n > nj,sup(fjs1 M p(n+1)) < f](p(n))
. Forall j e wand a > p(n; + 1), fj(a) e CT(s(@)=],

NN W=

(a+l)
gwg<a))(Lc(a))~

Note that for each n € w, sup(fy | p(n + 1)) < next® Py < npext® @)y <

For @ < ¢, let fy(a) = 7(a). For @ with g = p(0) < @ < ¢, let fy(a@) = next

Cc@(n) C@(n+l)
nethéfn(ﬁ;l)H)(Ln) = ln+1-
Suppose f; has been defined. Define f;, as follows: If @ < p(n;), let fi11(a) = fi(a). If p(n;) <

w-(a+l)

a<p(nj+1),let fi(a) = next (sup(fj I p(n;+1))). Observe that sup(fjs1 I p(n; +1)) <
tn;+1 SINCE 15,41 € c/+ sup(fj 1 p(nj +1)) < ty41 by 3), w - (p(nj +1) + 1) < 1,41 and by
Fact 2.12. For a with p(n; +1) < a < €, let fi () = nextcé(‘gg) _j-1(tg(a))- (Observe for all

a with p(nj+1) < o < €, w(s(a)) > j+ 1.) Note that for each n > nj, sup(fjs1 I p(n+1)) <
nexte 0" T (1) < £ (p(w) since - (p(n+1)+1) < fi(p(m). tw < f(p(m)). fi(p(n)) € €7
and by Fact 2.12. This completes the construction of f;,; with the desired relation between f; and fj.1.

By (1), (2), (4), (5) and (6), f;, fi+1 € [C]S and (f;, fj+1) has type n;. Thus, for each j € w, thereisa
function h; € [C]£™ so that h?”o = fjand h?j’l = fj+1. Since for all j € w, C is homogeneous for P"/
taking value 2, P™ (h;) = 2. This implies ®(f;) = DO(h0) > d(h-) = D(fj41) (P(fj) : ] € w)is
an infinite descending sequence of ordinals. This shows Case 2 is impossible.

The failure of both Case 1 and Case 2 implies that the following Case 3 must hold.

(Case 3) There exists an m* € w so that for all n > m*,i,, = 0.

Fix £ € [C]°"". Define @, : [C]© — ON by (I)((V) = ®(£v). It will be shown that @ is Eo-
invariant g -almost everywhere Suppose v, w € [C?]S and v Eg w. Let for = v and g, = C'w.
Slnce v Ey w, let n* > m* be such that for all a > pn"), fu(a) = gn(a). For j > m*, let

= fur(p())) andL = gm*(0(J)). Note that L] L? € C? for all j > m*. One will define two finite
sequences (fjim* < ] <n*)and (g; : m* < j < n*) with the following properties:

. Forallm* < j <n* fj,g; € [C].Forallm* < j <n*and p(j) < @ <, fj(a),g(a) € cl.

. Forallm* < j <n*andm* < k < w, sup(fj | p(k)) < L{ and sup(g; I p(k)) < (5.

. Forallm* < j<n fj | p(m*)=C=g; | p(m").

. Forallm* < j<n* f; I p(j)=g; I p(J).

. Forallm* < j < n* and a with p(n*) < a <€, fi(a) = gj(a).

- Forallm® < j <n*, sup(fjr1 T p(j +1) < fi(p(j)) and sup(g;s1 T p(j + 1)) < g;(p())).

. Forallm* < j<n*and j+1 <k <w,sup(f; | p(k+1)) < fis1(p(k)) andsup(g; I p(k+1)) <
gj+1(p(k)).

Note that f;,- and g, have already been defined above. Suppose m* < j < n* and f; and g;
have already been defined with the above properties. For @ < p(j), let fij1(@) and gj.1(a) be
fi(@) = g;(@) by (4) and therefore sup(fjs1 1 p(j)) = sup(gje1 T p())). For p(j) < a < p(j + 1),
define f;.1(e) and gj41(@) to be next& ™V (sup(fj1 1 p(/))) = nextes ™ (sup(gjur 1 p(1))).
Thus, fis1 [ p(j +1) = gjx1 T p(j + 1). Note that since f;(p(j)) € cl, gi(p(j)) € C! and

~N OB WD
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w-(p(j+1)+1) <min{f;(p(j)),&;(p(j))}, Fact 2.12 implies that sup(fjs1 I p(j+1)) = sup(gjs I
p(j+1)) <min{f;(p(j)),g;(p(j)} Fora > p(j+1),let fjr1(a) = nexté’{("”)(sup(fj I p(s(a@))))

w-(a+l)

and g1 (a) = next., (sup(g; I p(s(a)))). Since foy all k Z.j + 1, sup(f; I p(k)) < L‘;: and
sup(g; I p(k)) < ¢ by 2, w- (p(k)+1) < min{Lfc,Li} and Li,ti € C?, Fact 2.12 implies that
sup(fj1 1 p(K)) < ¢f and sup(gjei 1 p(K)) < ¢f . By (5), forany k > n*, sup(f; 1 p(k)) = sup(g, |

p(k)). This implies that for all @ > p(n*), fj+1(@) = g;+1(@). This completes the construction of fj4

and g;.1.
By (1), (3),(4),(5),(6) and (7), (fj+1, f;) and (g+1, g;) are of type j for each j such that m* < j < n™.

For each j so that m* < j < n*, let hj, p; € [C]Z be such that hj:’o = fis1, hj.’l = fj, pj:’o = g1

m* < j <n¥, Pj(hj) =0and P/(p;) = 0. Thus, @(fj+1) = P(f;) and ®(g;+1) = D(g;). Also, by (3),
(4) and (5), f+ = gn+. Putting these together, one has that

and p§’1 = g;. Since for all j > m*, C is homogeneous for P/ taking value 0, one has that for all

D¢ (v) = D(LV) = O(fir) = P(fines1) = oo = P(furr) = P(gn+) = .. = P(gme41) = P(g) = P(EW) = Dy (w).

It has been shown that for all v,w € [C]{, if v Eg w, then ®,(v) = ®,(w). This shows that ®; is
Ep-invariant u -almost everywhere.

Define a relation R € [C]°"") x [«]€ by R(£,v) if and only if for all w T v, @ (w) = ®(v).
Since it was shown above that for each £ € [C]P"), ®, is Ey-invariant e, -almost everywhere and
k —, (k)€€ holds, Theorem 3.7 implies that there is a club D C « so that for all v,w € [D]/, if
sup(v) = sup(w), then ®,(v) = ®,(w). In particular, forany v € [D]s' and any w C v, sup(v) = sup(w)
and thus @ (v) = ®;(w). This shows [D] C R,. Forall £ € [C]?"™), R, € u% . By Fact 2.13, there
isaclub E C C so that forall £ € [E]?") | [E \ (sup(€) + 1] C Ry.

Let 6 = p(m*). Suppose f,g € [E]f,sup(f) =sup(g)and f 6 =g [d.Let{=f[5=gI6.
There exists v, w € [E];" so that f = v and g = £'w. @, is C-constant on [E \ (sup(£) + 1)]" and so
by Fact 3.5, ®; depends on supremum relative to E \ (sup(¢) +1). Since v, w € [E \ (sup(¢) +1)]" and
sup(v) = sup(w), ©(f) = (V) = Dp(v) = Dp(w) = D({'w) = O(g). It has been shown that there is
a ¢ sothat forall f,g € [E]S, if sup(f) =sup(g)and f [ 6 =g | J, then ®(f) = D(g). O

Corollary 3.8. Suppose « is a cardinal, € < « is a limit ordinal with cof(e) = w and p € w. Let
€0 < € and €1 < € be such that € = €y + €1 and €, is an additively indecomposable ordinal. Assume
kK = (K)y P and k —. (k)y" ™. Let @ : [k]£™ — ON be a function. Then there is a club C C k
and a & < € so that for all f,g € [C]S™,if f 16 =g I 6, sup(f I €) =sup(g | €) and forall i < p,

fle+i) =g(e+i), then ®(f) = O(g).

Proof. The argument is similar to Theorem 3.7 where all partitions now include p elements at the
top. O

Theorem 3.9. Suppose « is a cardinal, € < wy and k — (k)5 "€ holds. Let ® : [«] — ON. Then there
is a club C C k and finitely many ordinals 6y, ..., 0 < € so thatforall f,g € [C]f, ifforall0 <i < k,
sup(f I 6;) = sup(g I 6;), then ®(f) = @(g).

Proof. The sequences of ordinals 0, ..., 5x will be defined by recursion. Let 69 = €. Suppose € = §p >
... > 0; have been defined so that there exists a club D C « with the property that for all f,g € [C]F,
if f 16 =gl dandforall0 < j < i, sup(f | 6;) = sup(g I d;), then ®(f) = ®(g). Fix
such a club D. If ¢; is a successor ordinal, then let §;4; be the predecessor of §;. If ¢; is a limit,
then cof(§;) = w since 6; < € < w;. Define ¥ : [D]%* — ON as follows: Suppose £ € [D]%
and yp > ... > ;-1 > sup(¢) in D. Let ¥(¢,y;-1,...,v0) = ®(f) where f is any element of [D]€
so that sup(f I ¢;) = €, sup(f I 6;) = y; for each j < i. ¥({,yi-1,...,¥0) is well defined and
independent of the choice of f with the above property by the induction hypothesis on dy, ..., d; and
D. By Corollary 3.8, there isa § < ¢; and a club C C D so that for all £,: € [C1%, Yi-1 < ... <%0

https://doi.org/10.1017/fms.2023.130 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2023.130

16 W. Chan, S. Jackson and N. Trang

in C, if sup(f) = sup(¢t) < yj—yand € [ 6§ = ¢ | 6, then ¥(¢, y;-1,...,v0) = ¥(¢,¥i-1, ..., Y0)- Let
0i+1 be the least ¢ with this property. By definition of P, it has been shown that there is a club C and
ordinals € = g > ... > ;4 so that for all f,g € [C]E,if f [ 641 =g | 641 and forall j < i+1,
sup(f [ 6;) =sup(g I &), then ®(f) = ®(g). By the wellfoundedness of the ordinals, there is some k
so that at stage k, 6 = 0. Then the finite sequence € = 69 > 61 > ... > 0 = 0 has the property that there
isaclub Csothatforall f,g € [C]¢,ifforall j < k,sup(f I §;) =sup(g I 6;),then®(f) =D(g). O

The rest of this section will put the earlier result in context and provide some additional examples
especially under AD.

Corollary 3.10. Assume AD. Suppose k is wi, w», 6,11 for 1 < n < w, 64 where A C R or 6%
(assuming DCg). If € < wy and ® : [k]§ — ON, then there is a club C C « and finitely many
ordinals Bo < B1 < ... < Bp_1 < € (Where p € w) so that for all f,g € [C]$, if for all i < p,
sup(f I Bi) = sup(g I Bi), then @(f) = D(g).

Assume AD. Suppose « is w1, wa, 6:, for1 < n < w, 64 where A C R or 6% (assuming DCg). If
€ < k with cof(€) = w and ® : [k]E — ON, then there is a club C C k and a § < € so that for all

f.8 € [CIS, if sup(f) = sup(g) and f [ 6 = g I 6, then D(f) = D(g).
Proof. This follows from Fact 2.16, Theorem 3.7 and Theorem 3.9. m]

The next result shows that the assumption that cof (€) = w is necessary in Theorem 3.7.

Fact 3.11. Suppose ¢ < k are two cardinals such that ¢ —. (()22, K = (K)§ and DC |, hold. Then the
ultrapower [ «/ ,uf is a wellordering (and hence an ordinal) and there is a function @ : [K]f — [ «/

yf so that for all clubs C C « and all § < Z, there are functions f,g € [C]f with sup(f) = sup(g),
f16=g16and @(f) # D(g).

Proof. The partition relation { —,. (£ )22 implies that yf is a {-complete ultrafilter on  and thus

cof({) = ¢ > w. DCy, ¢z implies that the ultrapower [], «/ uf is a wellordering which can be identified
as an ordinal. If f : { — «, then let [ f]yg denote the element of the ultrapower represented by
1

the function f. Define © : [K]f - [l K/,uf by ©(f) = [f]ﬂ:. Let 6 < { and C C « be a club. Let
N 1

£ € [C)8.Lety, 1y € [C]¢ be defined by to(a) = nexté)'(aﬂ)(sup({’)) and ¢ (a) = nextg'((”z)(sup(f)).
Let f = £y and g = £y Then f, g € [C]¢, sup(f) = sup(g), f 1 6 =€ =g I § and D(f) < D(g)
since{a<§:f(a)<g(a)}1_>{a<§:az§}€,uf. O

Fact 3.12. Assume AD. There is a function @ : [w>]”' — wj3 so that for all clubs C C k and § < wy,
there are functions f, g € [C]" so that sup(f) = sup(g), f [ 6 =g | 6 and ®(f) # ®(g).

Proof. Under AD, wi —. (w1),”" and [],, w2/p}”" = w3. As in Fact 3.11, the map @ : [wy]“" — w3
defined by ®(f) = [f] u has the desired property. O
1

The restriction that € < w is also necessary in Theorem 3.9 according to the following example.

Example 3.13. Suppose { < « are two cardinals such that { —, (£ )22, K — (/<)2‘r and DC, ¢ hold.

Then there is a function ¥ : [K]f ST ck/ ,uf so that for all clubs C C « and all finite set of ordinals

Bo < ... < Bp-1 £ {+w (where p € w), there are functions f,g € [C]f+w so that for all i < p,

sup(f I Bi) =sup(g I Bi) and ¥(f) # ¥(g).
Assume AD. There is a function ¥ : [w,] &'

of ordinals Sy < 81 < ... < Bp-1 £ w1 +w (Where p € w), there are functions f, g € [C]
foralli < p,sup(f I Bi) =sup(g I Bi) and ¥(f) # ¥(g).

Proof. For the first statement, let ¥ : [K]f”’ - [l K/uf be defined by W(f) = ©(f | ¢) where @ is
the function from the proof of Fact 3.11.

— w3 so that for all clubs C C w, and all finite sets
L1+ g0 that
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For the second statement, let ¥ : [w1]'* — w3 be defined by ¥(f) = ®(f | w;) where ®
is the function from the proof of Fact 3.12. For a slightly more interesting example, one can also use
Y(f) = Y(f) +sup(f) = ®(f I wi)+sup(f). Note that since cof(w; + w) = w, Theorem 3.7 does

wiltw

apply to Y and indeed, for all f,g € [w2]. , if sup(f) = sup(g) and f [ w; = g | wy, then
Y(f) =Y(g). o

Consider a function @ : [w;]€ — ON where w; < € < w; but cof(e) > w. Neither Theorem 3.7
nor Theorem 3.9 is applicable since € > w; and cof(e) # w. Moreover, Fact 3.12 gives an example
of a function ®@ : [wy]”' — w3 which fails to satisfy the short length continuity property under AD.
Remarkably under AD, if one demands the function ® takes image in w, rather than ws, then the short
length continuity properties do hold even if cof(€) = w;. This result is possible under AD because w;

has an ultrapower representation as [, w1/ ,u;”' which can be studied using the Kunen tree analysis.

Fact 3.14. ([6]) Assume AD. Suppose € < w, (including the possibility cof(€) = wi) and @ : [w;]f —
w>. Then there is a club C C w» and finitely many ordinals Sy < 81 < ... < 81 < € (Where p € w) so
that for all f, g € [C]¥, ifforalli < p, sup(f | B;) = sup(g I Bi), then D(f) = ©(g).

4. Applications of short length continuity
Fact 4.1. If « is a cardinal and € < k with cof (k) > €, then |“k| = |[k]€| = |[x]£].

Proof. For f € €k, define by recursion ®@( f) as follows: ®(f)(0) = f£(0). If 8 < € and ®(f) [ B has
been defined, then sup(®(f) | B) < « since cof (k) > € and so let D(f)(B) = sup(®(f) I B) + f(B).
D(f) € [k]€. D : €k — [«]€ is an injection and thus |€«| < |[«]€] < |€«].

Let A ={w:-(a¢+1): a < «}. Suppose f € [A]€. For each @ < €, let yo, < « be such that
f(@) = w-(yqa+1).Define F : exw — kby F(a,n) = w-yq+n. F witnesses that f has uniform cofinality
w. Fix g < e.Let { =sup{yo+1:a < B}. Note that { < yg. Thensup(f | B) Sw-{ <w-yp <
w- (yg+1) = f(B). This shows that f is discontinuous everywhere. Hence, f has the correct type. Thus,
it has been shown that [A]€ = [A]f. Since |A| = «, |[«]£]| < |[«]€]| = [[A]€] = [[A]E] < |[k]E). O

The following application of the almost everywhere short length continuity shows that infinite
exponent partition spaces are not wellorderable assuming suitable partition properties. (More optimal
results are known. For instance, the correct type partition relation x —. (/<)22 implies [«]“ is not
wellorderable. The ordinary partition relation k — (k);” also implies [«]“ is not wellorderable. It is
not clear if k —. (k); implies k — (k){* or k — (k)§* implies k —. (k)3.)

Theorem 4.2. Suppose « is a cardinal so that k —. (k);”"®. [«]“ is not wellorderable and thus for all
€,0 € ONwithw < € and k < 6, €6 and P () are not wellorderable.

Proof. Suppose [«]“ was wellorderable. Then there is an injection @ : [x]* — ON. By Theorem 3.7,
there is aclub C C xk and an n < w so that for all f,g € [C]®,if f [ n =g | n and sup(f) = sup(g),
then ®(f) = ®(g). Pick any f,g € [C]¥ sothat f | n =g | n,sup(f) = sup(g) and f(n) # g(n).
Then f # g and ®(f) = D(g). © is not an injection. Contradiction.

Ifw < eand k < §,then [k]“ injectsto €5 and P(8). Thus, € and P () cannot be wellorderable. O

The following cardinality computation was proved in [5] for w using AD and DCr.

Fact 4.3. ([5] Theorem 2.9) Assuming AD, =(|<“'w| < |“(ww)|).
([5] Theorem 4.4) Assuming AD and DCg, there is no injection of <“!'w; into “ON, the class of
w-sequences of ordinals.

The arguments in [5] used many techniques of determinacy (often specific to w;). The techniques
seem difficult to generalize to the higher projective ordinals 6,11 and have no analog at strong partition
cardinals which are limit cardinals like 6?. The following result generalizes Fact 4.3 purely from the
weak partition relation.
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Theorem 4.4. Suppose « is a cardinal so that k —. (k);*. Then for all x < «, there is no injection of
<Kk into ¥ON, the class of y-length sequences of ordinals. In particular, for all y < k, |[¥k| < |*«k]|.

Proof. Suppose there is an injection @’ : <“x — XON. By Fact 4.1, |**k| = |[x]¥| and thus one
has an injection @ : [«]7* — YON. For each € < k and y < y, let ®f : [«]F — ON be defined by
@7 (f) =®(f)(y). By Theorem 3.7, foreachy < y and € € []! (equivalently, € < k and cof (€) = w),
there is a club C and a § < € so that for all f,g € [C]f, if sup(f) =sup(g) and f | 6 = g | &, then
@7 (f) = @5 (g). Let 65 be the least such § < €. For each y < y, define A, : [«]] = kby Ay(e) = 05
Note that for all € € [«]!, A, (€) < € and so by Fact 2.10 or Fact 2.11, there is a unique §,, < « so that
A;,l [{0y}] € uf. Since x —. (/<)22 implies « is regular and y < «, let " = sup{d, +1 : ¥ < x} and
observe 6" < k.

Note that for all y < y, A:/l [6*] € pf since 6, € 6. By Fact 2.11, uf is x-complete and thus
MNy<y A;l [6"] € uf. There is a club E C « with E consisting entirely of indecomposable ordinals
so that [E]} € (,<, A;'[6°]. Fix an €* > 6* with €* € [E]} and observe that €* is an additively
indecomposable ordinal with cof(e*) = w.

(See Remark 4.5 for some context for the argument of this next paragraph.) For any y < y and
t €[]S, let CD;’*L : []€ — « be defined by d);;(ﬁ) = (D;*(LY). For each y < y, let A, be the set
of f € []€ so that for all £ € drop(f,5*), @S (f) = @;ffw(f). Fixay < y. Ay(€*) = 6, < 6*
implies that there is a club F C « so that for all f,g € [F]€ , if sup(f) = sup(g) and f | 6" =g | 67,
then @5 (f) = @S (g). In particular, if f € [F]¢, then for any £ C drop(f, 6%), d>;:‘ 160 (0) = @y (f).
This shows that [F]€ C A, and hence A, € pX.. Since k —, (k)f *¢ implies u¥, is k-complete,
(Ny<y Ay € p¥.. Thus, there is a club G C « so that [G]€" € Ny<, A, (Such a club G could also be
obtain by an application of Fact 2.15.)

Fix a y < y. Suppose f,g € [G]€ with sup(f) = sup(g) and f | 6" = g | 6*. Let( =
f 16 =g I 6. Note that <I>;jt is C-constant on [G]€ . Fact 3.5 implies that <I>;Z depends only
on supremum relative to G. Thus, CD;* (f) = @;jl(drop(f, %)) = Q;jL(drop(g,é*)) = (D;*(g) since
sup(drop( f,8*)) = sup(drop(g, 6*)). So it has been shown that for all y < y, for all f,g € [G]¢, if
sup(f) = sup(g) and f | 6" =g | 6%, then @S (f) = DS (g).

Let f,g € [G]€ be such that sup(f) = sup(g), f | " = g | 6* and f # g. By the property of
G from above, for all y < y, CD;* (f) = @;* (g). This implies ®(f) = ®(g). This is impossible since
@ : [k]S¥ — X¥ON was assumed to be an injection. O

V<X

Remark 4.5. In the proof of Theorem 4.4, an indirect argument was used to obtain the club G and
establish its properties by appealing to the k-completeness of u¥.. This argument could be circumvented
if one had the ability to make a y-length choice of clubs given by each instance of Theorem 3.7 applied
to d);* with y < y.

The short length continuity result is also used in [6] to show |[w]]“| < [[w(]=*!| under AD.
There, this indirect argument was not necessary since w-many clubs could be chosen by AC]lf) and the
Moschovakis coding lemma, which follows from AD. [2] investigated the everywhere wellordered club
uniformization principle at x, which is the assertion that for every relation R C « X club, which is
C-downward closed in the club,-coordinate, there is a function A : dom(R) — club, so that for all
a € dom(R), R(a,®(«)). This selection principle would also suffice. [2] showed that this principle
holds at « under AD if « is the prewellordering ordinal of a pointclass possessing suitable definable
boundedness properties. [2] also showed that if « is a strong partition cardinal, then the everywhere
wellordered club uniformization principle at « is equivalent to k —, (k)%,.. However, Theorem 4.4 does
not presuppose that « is a strong partition cardinal, AD or any other conditions beyond « being a weak
partition cardinal.

Corollary 4.6. Assume AD. Suppose K is w1, w>, 631 for1 <n < w, 65 where A C R or 6% (assuming
DCg). Then for any x < k, ¥k| < |<¥k| and ~*«k does not inject into ¥ ON.
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Section 5 will investigate almost everywhere monotonicity. The remainder of this section will es-
tablish almost everywhere monotonicity for functions ® : [«]§ — ON when € < w; and satisfies
suitable partition relations. This will use Theorem 3.9 to reduce to the almost everywhere monotonicity
of functions @ : [«]¥ — ON when p is finite which will be established next.

Fact 4.7. Suppose « is a cardinal, p € w, k —. (K)f *and @ : [«]? — ON is a function. Then there is
aclub C C ksothatfor f,g € [C]?,ifforalln < p, f(n) < g(n), then ®(f) < d(g).

Proof. Letk < p.For h € [«]P*", let h%:0, h**! € [k]? be defined by

() = h(n) n<k Rl () = h(n) n<k
h(n+1) k<n<p

Define P* : [x]”*' — 2 by PK(h) = 0 if and only if ®(h¥0) < d(h*-1). By k —, (K)2P+1, let C C « be
homogeneous for P¥. Suppose C is homogeneous for P taking value 1. Fix £ € [C]“*(P~%=1 Define
fi € [C]? as follows.

£(n) n<k
fi(n) = 1 L(k +1) n=k
l(w+n—k-1) k<n<p.

Note that for all i € w, there is an h; € [C]i7+1 so that %0 = f; and h*! = fi,1. P(h;) = 1 implies
that ®( fi41) = CID(hf."l) < CD(hf’O) = ®( f;). Thus, (®(f;) : i € w) is an infinite descending sequence
of ordinals. Thus, C must be homogeneous for P* taking value 0.

Foreach k < p,let C; C « be a club which is homogeneous for P* taking value 0. Let C = Mi<p Ck-
Suppose f, g € [C]? issuchthatforalln < p, f(n) < g(n).If f = g, then it is clear that ®(f) < ®(g).
Suppose f # g. Let ko < ... < k, with ¢ < p enumerate {k < p : f(k) < g(k)}. For0 <i < g, let

Observe the following hold.

1. Foralli < ¢, c; € [C].

2.¢cqg=8.

3. There is an g € [C]”*! so that hg"’o = f and hg"’l = ¢o.

4. Foreach0 <i < g, thereis an h; € [C],‘f’Jrl so that hf"""o =c¢;_1 and hf"""l =c;.

These properties and the fact that PXai (h;) = 0 for each i < ¢ imply that ®(f) < ®(cg) < P(cy) <
e S D(cg) = D(g). O

The next result will be improved in Section 5.

Theorem 4.8. Suppose « is a cardinal, € < wy, Kk = (k); € holds and ®@ : [k]f — ON. Then there is
aclub C C k so that for all f,g € [C]E, ifforall @ < €, f(a) < g(a), then D(f) < O(g).

Proof. By Theorem 3.9, there is a club Cp and finitely many ordinals By < 81 < ... < Bp-1 < € so that
forall f,g € [Colf, if foralli < p, sup(f | Bi) =sup(g I Bi), then ®(f) = D(g). Let C; be the club
of limit points of Cy. Define ¥ : [C1]7 — ON by ¥(¢) = ®(f) for any f € [Co]£ so that for alli < p,
sup(f | Bi) = €(i). Note W(¢) is well defined and independent of the choice of f. By Fact 4.7, there is a
club C, € C so that for all £,¢ € [C,]?, if forall i < p, £(i) < u(i), then ¥(£) < P(1).

Now, suppose f,g € [C2]s so that for all @ < €, f(a) < g(a). Let {7 (i) = sup(f | B;) and
Lo (i) = sup(g I B:). Note that £f,{, are discontinuous since p is finite and Sy < ... < B,_. Since
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€ <w; and f,g € [Cy]¢, it follows that €5 (i) and £, (i) have cofinality w, and thus {5, £, € [C>]7. By
definition of ¥, ®(f) = ¥({;) and ®(g) = ¥ ({,). Note that for all i < p, {5 (i) < £, (i). By the choice
of club Gy, ¥(£r) < W({g). Thus, D(f) = P({r) < W(Lg) = D(g). m]

Corollary 4.9. Assume AD. If k is w1, w2, 6; forany 1 < n < w, 64 for some A C R or 6% (assuming
DCr), then for any € < w; and function ® : [k]f — ON, there exists a club C C « so that for all
f,g € [ClE, ifforalla <€, f(a) < g(a), then ®(f) < O(g).

Proof. This follows from Theorem 4.8. O

5. Almost everywhere monotonicity

The next result shows that if a partition relation fails at «, then there is a corresponding failure of
almost everywhere monotonicity at x. Thus, partition relations are necessary for the almost everywhere
monotonicity property.

@ : [k]f — ON so that for all club C C «, there exist f,g € [C]¢ so that forall @ < ¢, f(@) < g(a)
and ®(g) < O(f).

Fact 5.1. Suppose « is a cardinal and € < « is such that x —. («); fails. Then there is a function

Proof. Let P : [k]f — 2 be such that for all club C C «, there exists functions hg, h; € [C]£ so that
P(hy) =0and P(h;) = 1. P fails the monotonicity property.

Suppose C C « is a club. As noted above, there is some f € [C]f with P(f) = 1.Let D € C
be a club with the property that for all 2 € [D]¥, f(a) < h(a) for all @ < €. As noted above,
there is some g € [D]f so that ®(g) = 0. Then f,g € [C]S, for all @ < €, f(a) < g(a) and

®(g)=0<1=d(f). O

The following lemma considers pairs (f, g) possessing property (2) and (3) stated below in order
to simplify the construction of the relevant functions of the correct type. Theorem 5.3 will reduce the
general case to this lemma.

Lemma 5.2. Suppose « is a cardinal satisfying k —. (k)y. For any function @ : [«]{ — ON, there is
a club C C k so that for all f, g € [C]¥, if f and g have the property that for all a < k,

L. f(a) < g(a),
2. there is no limit ordinal B < « so that sup(f | B) = g(a),
3. and there is no limit ordinal B < « so that sup(g | B) = f(a),

then ®(f) < ®(g).

Proof. LetZ : k — « be an increasing and discontinuous function whose image consists of indecom-
posable ordinals. For any & € [«]¥, let main(h) € [k]¥ be defined by main(k) (@) = h(Z(a)). (Observe
that main(%) is an increasing function of the correct type since 4 is an increasing function of the correct
type.) Define P : [«]¥ — 2 by P(h) = 0 if and only if for all p € [A[«]]¥, ®(main(h)) < ®(main(p)).
By k —. (x)5, let Co S « be a club homogeneous for P. Let Z = {®(main(h)) : h € [Coli}
which has a minimal element since it is a nonempty set of ordinals. Let A" € [Cp]¥ be such
that ®(main(4*)) = min(Z). If p € [h*[«]]%, then p € [Cpl¥ and thus @ (main(p)) € Z and
®(main(h*)) = min(Z) < ®(main(p)). This shows P(h*) = 0. Since h* € [Cyl¥, Cy must be ho-
mogeneous for P taking value 0. By choosing a subclub of Cj if necessary, one may assume that Cy
consists entirely of indecomposable ordinals and for all f € [Cy¥, for all @ < «, Z(a@) < f(a@) (which
is possible since Z and f are discontinuous). Let C| = {@ € Cy : enum¢,(a) = a}. Since C is a subclub
of Cy, C; also consists entirely of indecomposable ordinals.

Now, fix f, g € [C1]¥ with properties (1), (2) and (3). One will construct simultaneously by recursion
two functions & € [Cy]X and p € [h[«]]¥ so that main(h) = f and main(p) = g. The construction will
recursively define at each stage longer initial segments of the final two objects, /& and p.

https://doi.org/10.1017/fms.2023.130 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2023.130

Forum of Mathematics, Sigma 21

Suppose @ < k and the following holds:

(a) Foreach 8 < a,h | Z(B)+1 has been defined, is a function of the correct type and 2(Z(8)) = f(B).

(b) Foreach 8 < @, og < §+ 1 has been defined. If 5y < B < a, then o, < 0p,.

(c) Forall B < a,forallnp <op,p 'L () + 1 has been defined, is a function of the correct type and
p(Z(m) =g(m).

(d) Forall B < a, forallp < og, g(n) < f(B) < g(op).

Let iy =sup{op : B < a}. Let 69 = sup{Z(B) + 1 : B < e} and 19 = sup{Z(B) + 1 : B < 1, }. Since
te < @, one has 79 < dp. Note that, since Z is discontinuous and takes value among indecomposable
ordinals, 79 < §¢ < sup(Z | @) + 1 < Z(a). Properties (a) and (c) imply that 4 | §p and p | 79 have
been defined. Note sup(hk | dp) = sup(f I @) < f(«a) since f is discontinuous. Also, sup(p | 79) =
sup(g T ta)-

If @ is a successor ordinal with @ = a* + 1, then ¢, = 0. By property (d), sup(g | to) = sup(g |
Oar) < f(a*) = sup(f | @) < g(oa) = g(te). Suppose « is a limit ordinal and (o : 8 < @)
is not eventually constant. Property (d) implies that sup(g [ to) < sup(f I @) < sup{g(op) : B8 <
a} =sup(g I te) < g(te) by the discontinuity of g. Suppose « is a limit ordinal and (o : 8 < a) is
eventually constant. Then sup{g(op) : 8 < a} = g(to). Then by property (d) and property (2) for the
strict inequality, sup(g | te) < sup(f I @) < g(tq). The following property (*) has been established
in all cases: sup(g | to) < sup(f [ @) < g(ta).

Let A ={B <a:sup(f a)<g(P) < fla)}

(Case A)If A = 0.

Then let 7 = 19 and 6 = dy.

(Case B) A # 0.

Note ¢, < a since if ¢, = @, then by (%) and the discontinuity of f, sup(g ' @) = sup(g | to) <
sup(f | @) < f(a). However, sup(g | @) < f(a) implies A = @ which is a contradiction. Note that
by (%), 1o = min(A). Let & = ot(A) < a, and observe that A = {t, + 77 : n < &}. Recall &y and 1 have
already been defined above. Note that sup(% [ dg) = sup(f | @) < g(tq). For 0 < v < &, suppose that
for all < v, the following holds:

o €5 =00+Z(to +1) and u, = 79+ Z(t, + ) have been defined.
o hley+1andp [ uy+1 have been defined.
o h(ey) =g(ta +1) = p(uy)-
Let§, =sup{e,+1:n <v}andt, =sup{u,+1:n < v} Notethats, =sup{do+Z(to+n)+1:7 <
v} <80+Z(tq+v)and 1, =sup{to+Z(to+n)+1:n < v} <19+ ZL(Lq + V) since Z is discontinuous.
The above assumptions imply that 4 [ 6, and p [ 7, are defined, and sup(% | 6,) =sup(g | (to+Vv)) =
sup(p [ 7v).

Fix vwithO < v < &. Lete, =6, +Z(tq +v) and u, =7, + Z(1q +v). Since §,, < 69 + Z(tq +v),
T, < 70+ Z(ty +v) and Z(1, + v) is indecomposable, €, = 8, + Z(tqo +v) = 89 + L(te +v) and p,, =
T +L(ta+v) = 0+ L(ta+). For B < (ta+v),let h(6,+p) = p(t,+P) = nexte, #*V (sup(h 1 6,)).

This defines i | €, and p | p, withsup(h | €,) =sup(p | uy) < nexté()“’w)(sup(h 16,)) < glie+v)
by Fact 2.12 since sup(h | §p) < g(tq) (in the case v = 0), sup(h ' §,) = sup(g [ 7,,) = sup(g |
(ta+V)) < g(tg+v) (inthecase 0 < v < &) and Z(1o+v) < g(tqe +v). Let h(e)) = p(uy) = g(tg+v).

Lett =sup{uy, +1:v < &randd =sup{e, +1 : v < &} Note p | 7 and 2 | § have been
defined so that sup(p ' 7) = sup(h | ) = sup{g(y) : vy € A} < f(a) by property (3). Since
T is discontinuous, t, + v < «a for all v < ¢, §9 < Z(@) and Z(«) is indecomposable, one has
d=sup{e, +1:v <&} =sup{dp+Z(tog+v)+1:v <&} <Sg+sup(Z @)+ 1 < p+Z(a) =Z(a).

In either Case A or Case B, ordinals 7 and 6 have been defined with 7 < § < Z(a) and sup(h | §) <
f(a@).Let { = min(x \ A).

(CaseI) g(€) > f(a).

Let 0y = i, if Case A held, and let o, = ¢ if Case B held. For 8 < Z(a), let h(6 + B) =
nextg)'(ﬁ”)(sup(h I 6)). Note that sup(h | Z(a@)) < nextg’“)(sup(h I 6)) < f(a) by Fact 2.12 since
f(a) € Cp,sup(h | 8) < f(a) and Z(@) < f(a@). Let h(Z(a)) = f(a).
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(CaseII) g(¢) = f(a).

For § < Z(£), let h(5 + ) = nexte **V (sup(h 1 6)).

(Case IL.1) € = a.

Then h | Z(a) and p | Z(a) have been defined with sup(s | Z(a)) = sup(p | Z(@)) <
nexté()a)(sup(h I'6)) < f(a) by Fact 2.12 since f(a) € Cy, sup(h ' 6) < f(a) and Z(@) < f(a). Let
h(Z(e)) =p(I(a)) = f(a) =g(a).Letoqg = + 1.

(Case 11.2) £ < a.

Then h | (6 + Z(£)) and p [ (6 + Z(£)) have been defined with sup(p | (6§ + Z(£))) = sup(h |
(6 +Z(0))) < next” (sup(h 1 8)) < f(a) by Fact 2.12 since f(a) € Ci, sup(h 1 Z(¢)) < f(a) and

Z(t) < Z(e) < f(a). For < Z(a), let h(6 + Z(£) + B) = nextes P*V (sup(h 1 (6 + Z(0)))).

This defines & | Z(a) with sup(h | Z(a)) < nextg(()”)(sup(h (6 +Z(0)))) < f(a) by Fact
2.12 since f(a) € Cy, sup(f I (6 +Z(£))) < f(a) and Z(a) < f(a@). Let h(Z(@)) = f(«@) and
p(Z(£)=g()=f(a).Letog =€+ 1.

This completes the construction of the desired objects satisfying properties (a), (b), (c) and (d).
Let h = U{h | Z(@) : @« < «k}and p € U{p | 04 : @ < «}. By construction, & and p are
increasing functions of the correct type. (To verify these functions have uniform cofinality w, note
that an ordinal of the form nextgo'(ﬁ +l)(y) with 8,y < « is a uniform limit of an w-sequence from
Co). Then h € [Col¥, p € [h[k]]¥, main(h) = f and main(p) = g. Since P(h) = 0, one has
O(f) = ®(main(h)) < ®(main(p)) = O(g). O

Theorem 5.3. Suppose « is a cardinal satisfying k —. (k). For any function ® : [k]¢ — ON, there
is a club C C «k so that for all f,g € [Cl%, if forall @ < «, f(@) < g(a), then ®(f) < D(g).

Proof. Let Cy C « be a club satisfying the property from Lemma 5.2. One may assume that Cy consists
entirely of indecomposable ordinals. Let C; = {@ € Cp : enumc, (@) = a}. Suppose f,g € [Ci]{ and
for all @ < k, f(a@) < g(a). Let conditions (1), (2) and (3) refer to the conditions from Lemma 5.2.

First, one will construct a k € [C]¥ so that the pair (f, k) satisfies condition (1) and (2) and the
pair (k, g) satisfies condition (1), (2) and (3). Let { < k and (5¢ : € < {) and (v : ¢ < () be two
increasing sequences so that the following holds.

(a) Forall ¢ <, vg is a limit ordinal.

(b) Forall £ < ¢, sup(f I ve) = g(n).

(c) Forall v < kand n < «, if v is a limit ordinal and sup(f | v) = g(n), then there is a ¢ < ¢ so that
v=vgandn =1n¢.

These objects refer to the areas in which the pair (f, g) fails to satisfy condition (2). (Note ¢ = 0 if
there are no failures.) Observe that for all £ < £, g(ng) < f(vg) implies that 7 < v, since for all
a < k, f(a) < g(a). For each ¢ < (, let ug be the least y so that sup(g ' ng) < f(y). Note that
Ne S pg <pg+1<vesinceforalle < «, f(a) < g(@),ns < ve and v is a limit ordinal.

Define k : k — Cj as follows: Let & < k. If @ # 5¢ forany £ < £, then let k(a) = g(a). If there is a
& < sothat @ = ng, thenlet k(a) = f(ug + 1). The following illustrates the construction.

sup(f I ug) flug)f(ug +1) =k(ng) sup(f [ ve) =g(ne) fve)
f - ° [ °
k(neg) = f(pe +1)
k °
sup(g [ neg) g(ng) =sup(f T veg)
8 °
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Since for all @, k(@) € f[x] U g[«], one can construct a witness K : x X w — « to k having uniform
cofinality w by using witnesses F : k X w — k and G : k X w — « to f and g, respectively, having
uniform cofinality w.

If for all &€ < ¢, @ # ng, then f(@) < gla) = k(a). If @ = ng for some & < ¢, then f(a) =
f(ne) < fue) < f(ue+1) = k(). Soforall@ < «, f(a) < k(). The pair (f, k) satisfies condition
(D).

If for all @ < {, @ # neg, then k(a) = g(a). If there is a & < ¢ so that @ = 7¢, then k(@) =
flug+1) <sup(f [ vg) = g(ng) = g(a). Thus, for all @ < «, k(a) < g(a) and hence condition (1)
holds for the pair (k, g).

Let property (*) for (k, g) assert that for all @ < «, sup(g ' @) < k(a). If forall £ < {, & # n¢,
then sup(g | @) < g(@) = k(a) since g is discontinuous. If there is a £ < { so that @ = 5, then
sup(g @) =sup(g I'ns) < f(ug) < f(ug+1) = k(a). It has been shown that property () for (k, g)
holds.

By property (x) for (k, g) and condition (1) for the pair (k, g), for any @ < 8 < k, k(@) < g(a) <
sup(g | B) < k(B). This shows that k is increasing. Also, by property (x) for (k, g) and condition
(1) for the pair (k,g), for all @ < «, sup(k | @) < sup(g [ @) < k(a). This shows that k is
discontinuous. It has been shown that k is an increasing function of the correct type into Cj, that is,
ke [Ci].

If for all ¢ < {, @ # ng, then there is no limit ordinal v so that sup(f I v) = g(@) = k().
If there is a £ < ( so that & = 7¢, then k(@) = f(ug + 1) and there is no limit ordinal v so that
sup(f [ v) = k(@) = f(ug + 1) since f is a strictly increasing function. The pair (f, k) satisfies
condition (2).

Let property (xx) for (k, g) assert that for all limit ordinals v, sup(k ' v) = sup(g [ v). Fix a limit
ordinal v. By condition (1) for the pair (k, g), sup(k [ v) < sup(g | v). By property (x) for (k, g), for
eachn < v,sup(g [ n) < k(n). Thus, since v is a limit ordinal, sup(g [ v) < sup(k [ v). Property (s)
for (k, g) has been established.

Suppose condition (2) for (k,g) fails. Then there is an @ < « and a limit ordinal v so that
sup(k | v) = g(a@). Then by property (xx) for (k,g), sup(g ' v) = sup(k [ v) = g(a@) which is im-
possible since g is an increasing and discontinuous function. Condition (2) for the pair (k, g) has been
shown.

Suppose condition (3) for the pair (k, g) fails. Then there is ordinal @ and a limit ordinal v so that
sup(g | v) = k(a). Then by property (xx) for (k,g), sup(k | v) = sup(g [ v) = k(«). This is
impossible since k is an increasing and discontinuous function. Condition (3) for the pair (k, g) has
been shown.

Since Cy has the property stated in Lemma 5.2, (k,g) satisfies condition (1), (2) and (3) and
k,g € [C1]¥, one has that ®(k) < ®(g).

Next, one will construct an & € [Cp]¥ so that the pair (f, &) satisfies condition (1), (2) and (3) and
the pair (4, k) satisfies condition (1), (2) and (3). Let { < k and (¢ : € < {) and (v¢ : & < () be two
increasing sequences so that the following holds.

(a) Forall ¢ <, ng is alimit ordinal.

(b) Forall ¢ < ¢, sup(k I'ng) = f(ve).
(c) Foralln < «x and v < «, if 17 is a limit ordinal and sup(k ' ) = f(v), then there is a & < ¢ so that
n=ngand v =ve.

These objects refer to the areas in which the pair (f, k) fails to satisfy condition (3). Note that 7, < v
because if v¢ < ng, then there is a y with v < y < 5 since n¢ is a limit and thus f(vg) <
k(ve) < k(y) < sup(k [ ng) = f(ve) which is a contradiction. Let u¢ be the least y < 5¢ so that

sup(f I ve) < k(y).
Define h : k — Cy as follows: If @ < « and there isno & < { sothat s < & < n¢, then let h(a) =

k(a).Ifa < kandthereisaé < ' sothat ug < @ < ng,thenleth(a) = nextgo'((a_“f)Jrl)(sup(f Pve)).
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The following illustrates the construction.

sup(f T ve) f(ve) =sup(k [ ng)
f _ o
h(ug)  sup(h [ ng)
h L
sup(k | pg) k(ug) sup(k [ mg) = f(ve) k(ng)
Koo . .

Since k has the correct type, there is a function K : k X w — k witnessing k has uniform cofinality
w. If @ < «k and there is no ¢ < ¢ with ug < @ < ng, then h(a) = k(@) and K can be used to
produce an w-sequence whose limit is (). If @ < « and there is a & < { with s < @ < vg,

then h(a) = nextg(;((a_” )+ (sup(f I v¢) is a uniform limit of an w-sequence from Cy. From these
observations, a witness to 4 having uniform cofinality w can be constructed.

Note that for each & < {, ng < ve < sup(f | ve) < k(ug). Since k(ug) is indecom-
posable, w - ((ng — pug) + 1) < k(ug). By Fact 2.12, for all o such that ys < @ < 7g¢,

ha) = nextg(;((a_“fm)(sup(f P ve)) < nextgo'(("f_”f)ﬂ)(sup(f I ve)) < k(pg). In particular,

the following property (x * *) holds: sup(h [ 17¢) < next‘cu(;((ng_”f)+l)(sup(f Pve)) < k(ug).

If @ is such that there is no ¢ < ¢ with g < o < g, then h(a) = k(a). If @ < « and there is a
&< sothat ug < a <ng,then h(a) < k(ug) < k(a) by (* *+). It has been shown that for all @ < «,
h(a) < k(@) and thus condition (1) holds for the pair (%, k).

Suppose @ < B < k. If there are no §; < {and & < { with g < @ < g and ug, < B < ng,
then i(a) = k(a) < k(B) = h(B). Suppose there is a & < ¢ with ug, < @ < g and no & < ¢
with g, < B < ng. Then pg < ng < B. By (% %), h(e@) < k(ug) < k(ng) < k(B) = h(B).
Suppose there is no &1 < { with ug < a < ng and there is a & < { with pg < B < 1ng,. Note that
@ < {1 Then by the definition of ug,, h(a) = k(a) < sup(f I vg) < h(B). Now, suppose there exist
& <fand & < fsothat pg < @ < 7mg and pg < B < g If € = &, then let £ = &) = & and
observe h(a) = nextg)'(("f”’fﬂl)(sup(f P ve)) < nextg;((ﬁfyf)ﬂ)(sup(f I ve)) = h(B). Suppose
&1 # & and thus &1 < &. By (* * ) and the definitions of ug, 7 and ve, h(a) < k(pg) < sup(k |
ng) = f(vg) < sup(f | vg) < h(B). Thus, in all cases, it has been shown that if @ < 8 < «, then
h(a) < h(B) and thus £ is an increasing function.

Suppose @ < k is such that there is no ¢ < { with ug < @ < n¢. Then by property (1) for the pair
(h, k) and the discontinuity of k, sup(/ [ @) < sup(k | @) < k(@) = h(a). Supposethereisaé < ¢ with
e < @ < ng. First, suppose @ = u . Then by condition (1) for the pair (%, k) and the definition of u ¢,
sup(h | @) =sup(h | peg) <sup(k | pg) < sup(f I ve) < h(peg) = h(a). Suppose g < @ < 1¢.
Then sup(h | @) < nextg(a_”f)(sup(f ve)) < nextg;((a_#fhl)(sup(f ' ve)) = h(a). Thus, in all
cases, sup(h | @) < h(a). This shows # is discontinuous everywhere. It has been established that £ is
an increasing function of the correct type through Cy (that is, & € [Cp]L).

If @ < « and there is no &€ < ¢ with ug < @ < ng¢, then sup(h | @) < h(a) = k(@) since h is
discontinuous. Suppose @ < « and there is a ¢ < { with ug < @ < n¢. Suppose there is no E< (5o
that g < n¢ < ng. then sup(h | ng) < k(ug) < k(@) < sup(k 1 ng) = f(ve) < k(ne) = h(ne).
In particular, sup(h I ng) < k(@) < h(ng). Suppose there is a & < ¢ so that Mg < ng <mg. Then
sup(h 1 ng) < k(ug) < k(a) < sup(k | n¢) = f(ve) < sup(f 1 vg) < h(ug) < h(ye). (This
implies that gz = n¢.) One has sup(h [ ng) < k(a) < h(ng). This shows that for all @ < «, there is no
limit ordinal y so that sup(4 [ y) = k(). Therefore, condition (2) holds for the pair (4, k).

If @ < k and there isno ¢ < ¢ with ug < @ < 7n¢, thensup(k | @) < k(@) = h(a) < k(a+1). If
a < kandthereisaé < { with ug < @ <ng, thensup(k [ ug) < sup(f I ve) < h(ue) < h(a) <
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sup(h ' ng) < k(ug) using ( * *). It has been shown that for all @ < «, there is no limit ordinal y so
that sup(k | v) = h(a). Condition (3) has been shown for the pair (4, k).

Since Cy has the property of Lemma 5.2, (h, k) satisfies condition (1), (2) and (3) and &, k € [Cp]¥,
one has that ®(h) < ®©(k).

Suppose a < « and there is no ¢ < { such that us < a < ng. Then f(a) < k(a) = h(a) since the
pair (f, k) satisfies condition (1). Suppose & < « and there is a & < { such that us < a < 5¢. Since
@ <ng < vg,onehas that f(a) <sup(f ' ve) < h(ug) < h(a). It has been shown that for all @ < «,
f(a@) < h(a@) and so condition (1) holds for the pair (f, h).

Suppose « < k and there is no ¢ < { such that 4 < @ < 1, then there is no limit ordinal y so that
sup(f T v) = k(@) = h(a) since the pair (f, k) satisfies condition (2). Suppose @ < « and there is a
& < suchthat uge < a <ng, thensup(f ' ve) < h(ug) < h(a) <sup(h I ng) < k(pg) < sup(k |
ng) = f(vg). Sofor all @ < «, there is no limit ordinal y so that sup(f [ y) = h(«). Condition (2)
holds for the pair (f, h).

Suppose a < k. First, suppose there is no & < { so that @ = vg. There is a unique p so that
sup(k I p) < f(a) < k(p). Suppose there is no & < ¢ so that g < p < ng. Then sup(h |
p) < sup(k | p) < f(a) < k(p) = h(p). Suppose there is a & < £ so that pg < p < ng. Then
f(a) < sup(f I vg). Therefore, sup(h I p) < sup(k I p) < f(@) < sup(f [ vg) < h(pg) < h(p).
(This implies uz = p.) Hence, sup(h | p) < f(@) < h(p). Now, suppose there is a & < { so that
@ = v¢. Suppose that there is no € < ¢ so that ug < ng <ng. Thensup(h I ng) < k(pg) < sup(k |
ne) = fve) = fla) < k(ng) = h(ng) using (x = *) here. Thus, sup(h | ) < f(@) < h(ng).
Suppose there is a & so that pz < ng < ng. Then f(@) < sup(f [ vg). Therefore, sup(h [ n7¢) <
k(ng) < sup(k I'mg) = f(ve) = f(@) <sup(f [ vg) < h(ug) < h(ng). (This implies g = n¢.)
Hence, sup(h | n¢) < f(a) < h(ng). Inall cases, it has been shown that for all @ < «, there is no limit
ordinal y so that sup(% | v) = f(«). The pair (f, h) satisfies condition (3).

Since Cy has the property of Lemma 5.2, (f, h) satisfies condition (1), (2) and (3) and f, h € [Cp]¥,
one has that ®(f) < ©(h).

In conclusion ®(f) < ®(h) < P(k) < D(g). m|

Corollary 5.4. Suppose « is a cardinal satisfying k —. ()5, € < k and @ : [«]f — ON. Then there is
aclub C C k so that for all f,g € [ClE, if forall @ < €, f(a) < g(a), then ®(f) < P(g).

Proof. Define @ : [«]¥ — ON by ®’(f) = ®(f | €). The result follows by applying Theorem 5.3 to
P’ [

Corollary 5.5. Assume AD. Suppose « is wi, 6én+1 for1 <n < w, 64 where A C R or 6% (assuming
DCgr). Forany € < k and any function ® : [k]f — ON, there is a club C C k so that forall f,g € [C]f,
ifforall o <€, f(@) < g(a), then ®(f) < P(g).

A suitable modification can be used to investigate almost everywhere monotonicity for weak partition
cardinals which may not be strong partition cardinals.

Lemma 5.6. Suppose « is a cardinal satisfying k — . (k);*. Forany € < k and function® : k]S — ON,
there is a club C C « so that for all f,g € [C]E, iffand g have the following properties:

1. Foralla <€, f(a) < g(a).
2. Foralla < €, thereis no limit ordinal B < € so that sup(f | B) = g(a) (where sup(f | €) = sup(f)).
3. Forall a < €, there is no limit ordinal B < € so that sup(g | B) = f(a).

then ©(f) < ®(g).

Proof. Let T : € + € — «k be an increasing and discontinuous function whose image consists of
indecomposable ordinals. Let € = sup{Z(a) + 1 : @ < €} and €' = sup{Z(a) + 1 : @ < € + €}. Note
that €* + €! = €!. Suppose & € [x]€ . Let h° € [x]€ be defined by h% = & | €. If £ € [k]€', then let
main(€) € [«]€ be defined by main(€)(a) = ((Z(a)).
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Define P : [K]*El — 2by P(h) = 0if and only if for all p € [h[€e'] fo, ®(main(h°)) < ®(main(p)).
By k —. (/()2EI ,thereisaclub Cy C « which is homogeneous for P. Let Z = {®(main(¢))) : € € [Co]fo}
which has a minimal element since it is a nonempty set of ordinals. Let {* € [Co]f0 be such that
®(¢*) = min(Z). Leth € [Cy]€' be defined by

b(a) = {5*(&) a<ée

nexté'o'(("*e%”)(sup(f*)) e <a<e’

Note that h € [Col€ and §° = £ If p € [h[e']]€’, then p € [ColE". Thus, ®(main(p)) € Z and
®(h%) = d(main(£*)) = min(Z) < ®(main(p)). This shows P(h) = 0. Since b € [Co]f], Cp must be
homogeneous for P taking value 0. (Note only « —. (/<)2EI is needed rather than the full weak partition
relation.) By choosing a subclub of Cj, one may assume Cy consists of indecomposable ordinals and
€' <min(Cy). Let C; = {a € Cp : enumc,(a) = a}.

Fix f,g € [C1]€ with properties (1), (2) and (3). One will construct by recursion two functions
he [Co],f1 and p € [h[el]]fo so that main(4°) = f and main(p) = g. The construction and verification
are quite similar to Lemma 5.2, so some details of the verification will be omitted.

Suppose @ < € and the following holds:

(a) Foreach 8 < a, h | Z(B)+1 has been defined, is a function of the correct type and 2(Z(B)) = f(B).
(b) Foreach 8 < @, og < §+ 1 has been defined. If 5y < B < a, then o, < 0p,.
(c) Forall B < a, foralln < o, p I Z(n) + 1 has been defined, is a function of the correct type and
p(Z(m) =gm).

(d) Forall B < a, foralln < og, g(n) < f(B) < g(op).

Let tq =sup{op : B < a}, 6o =sup{Z(B) +1: 8 < a}and 79 = sup{Z(B) + 1 : B < t,}. Observe
sup(g T to) < sup(f I @) < g(ta).

LetA={B <a:sup(f I @) <g(B) < f(a)}.

(Case A)If A =0.

Then let 7 = 19 and 6 = y.

(Case B) A # 0.

One must have ¢, < @ and ¢, = min(A). Let £ = ot(A) < @, and observe that A = {1, + 1 : 7 < &}
& and ¢ have already been defined above with sup(h [ §g) = sup(f | @) < g(tq). For0 < v < &,
suppose that for all n < v, the following holds:

© €, =00+Z(to +1n) and u,; = 79+ Z(Le + 1) have been defined.
o hley+1andp | u,+1 have been defined.
© h(E,]) =glta+m) = p(ﬂl7)~
Let 6, = sup{e;, +1 : 7 < v}and 7, = sup{u,, +1 : 7 < v}. Note that 6,, < 69 +Z(to + v) and
T, <T9+Z(teg+Vv). h [ 6, and p | 7, are defined with sup(h [ §,) =sup(g I (te +v)) =sup(g | 7).
FixvwithO < v < &. Lete, =8,+Z(1qa+V) = 00+ZL(tq+v)and uy, = 7, +Z (1o +v) = 10+ Z(1e+V).
ForB < Z(tq+v),let h(6,+B) = p(1,+B) = nextzfo'(ﬁﬂ)(sup(h I 6,)).Leth(e,) = p(uy) = g(tq+v).
Let 7 =sup{ug+1:v <é}andd =sup{e, +1:v <&} Note p | Tand & | 7 have been defined so
thatsup(p [ 7) =sup(h | 6) =sup(g(y) : ¥ € A} < f(a) by property (3). Observe also that § < Z(«).
Now, in either Case A or Case B, ordinals 7 and ¢ have been defined with 7 < § < Z(«@) and
sup(h | 6) < f(a).Let £ = min(x \ A).
(CaseI) g(€) > f(a).
Let oy, = t, if Case A held, and let o, = ¢ if Case B held. For 8 < Z(a), let h(6 + B) =
next, Y (sup(h 1 6)). Let h(Z()) = f(a).
(Case II) g(¢) = f(a).
For 8 < Z(£), let h(6 + ) = nextgr P (sup(h 1 6)).
(CaseI.1) ¢ = a.
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Let h(Z(@)) = p(Z(@)) = f(a) = g(a). Let oy = a + 1.

(Case I1.2) ¢ < a.

For B < Z(a), let h(6 + Z({) + B) = next‘go'“”“’(sup(h (8 +Z(0)))). Let h(Z(a)) = f(a) and
p(Z)=g()=f(a).Leto, =+ 1.

Let @ < € be largest such that sup(g [ @) < sup(f).Let ¢ =sup{Z(a)+1 : @ < w}. After e-many
stages, i | € and p | ¢ have been defined. Note main(# | €”) = f.

(Case 1) sup(f) = sup(g).

Thenw =€,¢c=€’and p € [Co]f0 has been completely defined with main(p) = g.

Fora < €', let h(e®+a) = next‘c"o'(“”)(sup(h I €9)). This completes the construction of 4 € [Co] .

(Case 2) sup(f) < sup(g).
Then @ < € and ¢ < €. Suppose v < € and the following holds.

(i) Foralln < e+ v, h [ Z(n) + 1 has been defined and is a function of the correct type.
(ii)) Foralln < @w +v, p I Z(n) + 1 has been defined and is a function of the correct type.
(iii) Forn <€, h(Z(e+n)) =g(w@ +n) = p(Z(@ +1)).

Suppose v < €. Let A, =sup{Z(n)+1:n < e+v}and p, =sup{Z(n) + 1 : n < @w + v}. (Note that
Ao = € and po = ¢.) These assumptions imply that 2 [ A, and p | p, are defined. For @ < Z(w +v), let

h(dy+a) = p(py+a) = nexts ™V (sup(h | A,)). This defines h | (1, +Z(w+v)) and p 1 Z(w+v).

For all @ < Z(e +v), let h(A, + Z(w + ) + @) = nexte ™V (sup(h I (A, + Z(w + v)))). This
defines i [ Z(e +v) since A, + Z(w +v) + Z(e + v) = Z(e + v) since Z(e + v) is indecomposable. Let
h(Z(e+v))=p(Z(w+v)) =g(w+v). Thisdefines h [ Z(e+v)+landp [ Z(w+v) + 1.

The construction of & € [Co],f] and p € [h[el]]*60 has been completed so that main(4°) = f and
main(p) = g. Since h € [ColE', p € [h[€']]€ and P(h) = 0, one has ®(f) = ®(main(h®)) <
d(main(p)) = D(g). m]

Theorem 5.7. Suppose k is a cardinal satisfying k —. (k);*. For any € < k and function ® : [k]f —
ON, there is a club C C k so that for all f,g € [k]f, ifforall @ < €, f(a) < g(a@), then D(f) < O(g).

Proof. Let Cy C « be a club consisting of indecomposable ordinals with the properties from Lemma
5.6.Let Cy = {a@ € Cp : enumg, (@) = a}.
Letl < eand (¢ : € < {)and (v¢ : € < {) be two increasing sequences with the following property.

(a) Forall ¢ < ¢, vg is alimit ordinal.

(b) Forall ¢ < ¢, sup(f [ ve) =gne).

(c) Forall v < € and i < ¢, if v is a limit ordinal and sup(f | v) = g(n), then there is a & < ¢ so that
v=vgandn =1n¢.

(Note it is possible that v¢ = € when sup(f I €) = sup(f) = g(11¢).) These indicate the region in which
the pair (f, g) fails to satisty condition (2) of Lemma 5.6. For each ¢ < ¢, let u¢ be the least y so that
sup(g [ n7¢) < f().

Define k € [Ci]s as follows: If @ < € and there is no ¢ < ¢ so that @ = 5j¢, then let k(@) = g(a).
If @ < € and there is a ¢ < { so that @ = 1, then let k(a) = f(ug + 1). As in Theorem 5.3, the pair
(f, k) satisfies conditions (1) and (2) and the pair (k, g) satisfies conditions (1), (2) and (3) of Lemma
5.6. Therefore, ®(k) < O(g).

Let{ < eand (ng : € < ¢)and (vg : € < {) be two increasing sequences so that the following hold.

(i) Forall ¢ < £, n¢ is a limit ordinal.

(ii) Forall ¢ < ,sup(k [ ng) = f(ve).
(iii) Forall < € and v < ¢, if i is a limit ordinal and sup(k | ) = f(v), then there is a ¢ < ¢ so that
n=ngand v =vg.

Let y1¢ be the least y < n¢ so that sup(f [ ve) < k(y).
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Define h € [Cp]s as follows: If @ < € and there is no ¢ < ¢ so that ug < a < n¢, then let h(a) =

k(a).Ifa < eandthereisaé < {sothatus < @ < ng,thenleth(a) = nextw( ((a- ”f)+l>(sup(f Fve)).
As before, the pairs (f,h) and (h, k) both satisfy conditions (1), (2) and (3) of Lemma 5.6. Thus,
O(f) < D(h) < (k).

This concludes that ®(f) < ®(g). |

Corollary 5.8. Assume AD. Suppose k is w1, w2, 6:1 for1 <n < w, 65 where A C R or 6% (assuming
DCr). For any € < k and ® : [k]f — ON, there is a club C C « so that for all f,g € [C]f, if for all
a <e f(a) < g(a), then ©(f) < D(g).

6. A finite continuity property for long functions on w;

Expecting a function @ : [w1]:”! — w to satisfy an almost everywhere finite continuity in the sense that
there are finitely many ordinals d, ..., x < w; so that ®(f) only depends on sup(f | ;) is impossible.

Example 6.1. Let ¥ : [w1]{”' — w; be defined by ¥(f) = f(f(0)). For any finite set of ordinals
80, ..., 0k—1 < wy, for any club C, there are f, g € [C];"' so that foralli < k, sup(f I 6;) = sup(g | &;)
and W(f) # ¥(g).

Proof. Let 6 = sup{do,...,0r_1}. Pick f,g € [C];"* sothat f [ § = g | &, £(0) = g(0) > § and
F(f(0)) # g(g(0)). Then for all i < k, sup(f I 6;) =sup(g [ ¢;) but ¥(f) = f(f(0)) # g(g(0)) =
Y (g). O

Expecting a function ® : [w]{"' — w) to have finitely many functions I, ..., [x_; so that ®(f)
depends only on sup(f | I;(f)) is also impossible by the following example. The concept of a closure
point of a function will be very important in this section.

Definition 6.2. Let f € [w;]"'. An ordinal 8 € w is a closure point of f if and only if for all @ < S,

f(a) < B (or equivalently) if and only if sup(f [ §) = 8. Let € = {8 € w; : sup(f [ B) = B} be the
collection of closure points of f. € ¢ is a club subset of w;.

Example 6.3. Let ¥ : [w;].”' — w; be defined by W(f) = min(C€), that is, ¥(f) is the least closure
pointof £. Then for any club C C w; and for any finite collection of functions Ty, ..., Tx—1 : [w1]¢' — wy,
there is an f € [C]”! and a g € [C];”" so that for all i < k, sup(f | T:(f)) = sup(g | I:(f)) and

O(f) # ®(g).

Proof. Let Cy C C be a club consisting entirely of indecomposable ordinals. Let C; = {@ € Cy :
enumc, (@) = a}. Let C; be the club of limit points of C;. Let f € [C>]:”". Then ¥(f) = min(€y) € C».
Let y = sup{li(f) : i < k AT;(f) < W(f)}, and note that y = O if there are no i < k with
i (f) < W(f). Since ¥(f) € Cy and sup(f [ y) < sup(f I P(f)) = P(f), there exists a § € C| with
sup(f 1'y) <& < ¥(f). Define g € [Co]s”" by

(@ =) @ <yvaz ()
@)= .
’ exte " V(sup(f 17) vy <a<¥(f)

By Fact 2.12, g is indeed an increasing function. Moreover, since y < é and sup(f [ y) < &, Fact 2.12
also implies that sup(g ' 6) = 6. Thus, 6 € €,. Therefore, ¥(g) = min(€;) < § < ¥(f). However, for

alli < k, sup(g I T;(f)) =sup(f I T:(f)). o

Motivated by this example, Theorem 6.18 will show that if one demands that closure points remains
the same, then there will be finitely many functions T, ..., [x—; so that for ug!-almost all f, ®(f)
depends only on sup(f [ I';(f))-

The results of this section will be proved using the strong partition relation w; —, (w):”' and an
additional combinatorial principle called the almost everywhere short length club uniformization for
wi. More specifically, a fine form of y,! -almost everywhere continuity is needed.
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Let club,,, denote the collection of club subsets of w;. A relation R C [w1]5“" x club,,, is said to

c-downward closed in the club,,, -coordinate if and only if for all £ € [w1];“", if R(¢,D) and C C D,
then R(¢, C).

Definition 6.4. Almost everywhere short length club uniformization at w; is the asserting that for all
R C [w(]5* x club,,, which is C-downward closed in the club,,, -coordinate, there is a club C C w;
and a function A : (dom(R) N [C]7“") — club,,, so that for all £ € dom(R) N [C]S“", R(€, A(¢)).

Almost everywhere short length club uniformization is established in [4] Theorem 3.10 under AD
using techniques which are specific to w;. [2] gives a more general argument which holds for many
other known strong partition cardinals under AD.

Fact 6.5. ([4] Theorem 3.10, [2]) Assume AD. The almost everywhere short length club uniformization
at wj holds.

The almost everywhere short length club uniformization at w; combined with the strong partition
relation w; —. (wl)z‘” ! gives a simpler form of the almost everywhere club uniformization principle
stated below.

Fact 6.6. ([2]) (Strong almost everywhere short length club uniformization for w;) Assume w; —.
(wl)z‘“ ' and the almost everywhere short length club uniformization principle holds at w;. For all
R C [w]s“ xclub,,,, there exists aclub C C wy sothatforall £ € [C]S“'Ndom(R), R(€, C\sup(£)+1).

[4] used Fact 6.5 to show that every function ® : [w1]:”' — w; is continuous uz} -almost everywhere.

Fact 6.7. Assume w; —. (w) )2“) ! and the almost everywhere short length club uniformization principle
holds for w;. Let ® : [w(]”' — w;. There is a club C C w; so that for all f € [C]:', there is an
a < wp sothatforall g € [C]*,ifg | @ = f | @, then ®(f) = D(g).

Here, an even finer form of continuity established in [2] from Fact 6.6 will be needed.

Definition 6.8. Let ® : [w]{”' — w; and C C w; be a club. One says that £ € [C]S“" is a continuity
point for ® relative to C if and only if for all f,g € [C]” sothat f | [(]| =€=g | |{], D(f) = D(g).

Fact 6.9. ([2]) Assume w; —, (w 1)2“' ! and the almost everywhere short length club uniformization
principle holds for w;. Suppose @ : [w;]:”! — w;. Thenthereisaclub C C w; sothatforall f € [C]"
and @ < wy, if ®(f) < f(a), then f | a is a continuity point for ® relative to C.

Lemma 6.10. Assume w; —. (wl);' ' and that the almost everywhere short length club uniformization
principle holds at wi. Suppose ® : [w1]:”" — wy is a function so that for g, -almost all f, ®(f) is a
successor ordinal. Then there is a club C C wy and a function T® : [C]"" — w; so that the following

holds:

1. Forall f € [C]¥', T®(f) < ®(f).
2. Forall f € [C]¥, TP(f)+1=®(f).
3. Forall f € [C]¥", f | T®(f) is a continuity point for ® relative to C.

Proof. Let Cy C w) be a club consisting entirely of limit ordinals so that for all f € [Coli”!, ®(f)
is a successor ordinal. By Fact 6.9, there is a club C; C Cy so that for all f € [C;];”! and @ < wy,
if ®(f) < f(@), then f | « is a continuity point for ® relative to C;. Define I'® : [C{]' — w) by
letting T®(f) be the predecessor of ®(f). Note that T'®(f) < sup(f | T®(f)) < f(I'®(f)) since
sup(f | T®(f)) € C; is a limit ordinal and by the discontinuity of f. Since ®(f) = I'®(f) + 1, this
implies that ®(f) < f(I'®(f)). However, since f € [C]{”' and C consist entirely of limit ordinals,
®(f) < f(T'®(f)) since ®(f) is a successor ordinal. By Fact 6.9, f | T'®(f) is a continuity point for
@ relative to Cj. O

Lemma 6.11. Assume w| — (v )2‘” ' and that the almost everywhere short length club uniformization

principle holds at wy. Suppose ® : [w1].”" — wi is a function so that for pg,\-almost all f, ®(f) is
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a nonzero limit ordinal and ®(f) ¢ Cy (i.e., D(f) is not a closure point of f). Then there is a club
C C w and a function T® : [C]&" — wy so that the following holds:

1. Forall f € [C]¥', T®(f) < ®(f).

2. Forall f € [C]&, ot({a : T®(f) < @ < ®(f)}) is an additively indecomposable ordinal.

3. Forall f € [C]&", f | T®(f) is a continuity point for ® relative to C.

Proof. Let Cy C wp be a club so that for all f € [Cp]:”!, ®(f) is a limit ordinal which is not a
closure point of f. By Fact 6.9, let C; € Cp be a club so that for all @ < wy, if ©(f) < f(a),
then f | a is a continuity point of @ relative to Cj. Define I' : [C1]i”' — w; by '(f) is the

unique B such that sup(f | B) < ®(f) < f(B). For all f € [C1], f | T'(f) is a continuity
point for @ relative to C;. Note that I'(f) < ®(f). If I'(f) = ®(f), then since ®(f) is a limit

ordinal, ®(f) < sup(f [ ®(f)) = sup(f [ I'(f)) < @(f). Thus, ®(f) € €, which contradicts
the assumption. It has been shown that I'(f) < ®(f) for all f € [C1]". For each f € [C;]{", let
0 =ot({a: I'(f) < o < ®(f)}). Note that 6 7 is a limit ordinal since @ ( f) is alimit ordinal. Let €5 be
the least ordinal so that there exists an additively indecomposable ordinal vy with 6 = € +v . Note that
€f < 0f.Define I'® : [C1]&" — w) by T®(f) =T'(f) + €f. Then for all f € [C1]', T2(f) < ®(f),
f 1 T®(f) is a continuity point for ® relative to C; and ot({a : I'®(f) < @ < ®(f)}) = vy which is
an additively indecomposable ordinal. O

If ®(f) is a function so that for ug! -almost all f, ®(f) € € (such as the function from Example
6.3), then @( f) is the least B so that f r [ is a continuity point for ®. For such a function, condition (3)
must be weakened otherwise the crucial condition (1) will not hold.

Fact 6.12. Assume « is a cardinal, € < k and k —. (k); . Let @ : [«]f — ON. There is a club C C «
so that for all f € [C]f, forall g C f, d(f) < O(g).

Proof. This follows from Theorem 5.3; however, in this particular instance, the argument is much
simpler. Let P : [«]§ — 2 be defined by P(f) = 0 if and only if for all g C f, ®(f) < ®(g). By
k = (k)5 ,thereisaclub C C « which is homogeneous for P. Suppose C was homogeneous for P taking
value 1. Let Z = {®(f) : f € [C]£}. Let B = min(Z). Let £ € [C]" be such that ®(f) = . Since
P(f) =1,thereisag C f sothat ®(g) < ®(f). Since g € [C]E, D(g) € Z. Then D(g) < B =min(Z)
which is a contradiction. C must be homogeneous for P taking value 0. O

Definition 6.13. Suppose @ : [w(]' — w; and f € [w]@". Let A‘fbﬂ ={gefw]® :gC fAC, =
CrAgtB=f1p}Let 23?"8 ={D(g): g€ A?’B}. Note that if 8y < Bi, then A?’ﬁ' c Aqf)”g0 and
BLP B,

Lemma 6.14. Suppose w| —. (a)l)z‘”‘. Forall ® : [w1]" — wy, there is a club C C wy so that for
all f € [C]¥", sup(%?’o) < w.

Proof. Suppose h € [w1]¢" and for all @ < w1, k(@) is an indecomposable ordinal. Let (y" : o < w;)
denote the increasing enumeration of €, the club of closure pomts of i, which are also indecomposable
ordinals. Thus, for all @ < B, ot({ < w; : Yy < n < 7’/3}) = yh For a < wy, let B! = {(n,¢) :
yh<np< 7’0+1 AL =h(n)}. Fori €2, Uqycpw, Bé‘aﬂ is the graph of a partial function whose domain
is a subset of w;. Denote this partial function by &'. Let Mgom (i) : dom(h’) — w; be the Mostowski
collapse of dom(%?). Define h'(a) = A’ o m’l i)
restricted to the even and odd, respectlvely, blocks determined by the sequence (y! : @ < wy) of closure
points of 4. Note that ya 1 ym +14; and thus if « is a limit ordinal Y =yt

Also, observe that if f,g € [w;]s"" have the property that for all @ < w1, f(a@) and g(a) are
indecomposable ordinals, sup(B{l) < min(B%) and sup(B%) < mm(Bf |)» then there isan h € [w]&!
so that A% = f and h! = g. To see this: Let (¥, : @ < w;) be the increasing enumeration of

Intuitively, hO and k' are the concatenations of &

{ya ta < w}U{ys : @ < w}. Note that for all limit ordinals a, Yisw = Yo = y‘é = % . For each

https://doi.org/10.1017/fms.2023.130 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2023.130

Forum of Mathematics, Sigma 31

@ Y50 = y£ gandy; = 7(1 .1 by the assumptions on f and g. Define h by recursion as follows.

Suppose i [ 5, has been defined. For each ¢ < y; ., = a+l’ let h(y;, +&) = f(y(, + £). This
defines h ' y3 ., - Foreach & <vyj . = 7’5+1’ let h(y3,,. +&) = g(y5 + &). This defines & | Yiasa:
By recursion, this completes the definition of /. (The assumptions on f and g are needed to ensure # is
an increasing and discontinuous function.) Note that for all @ < wy, Y% = y* . Therefore, h° = f and
h'=g.

Define P : [w]" — 2 by P(h) = 0 if and only if ®(h°) < ®(h'). By w; —. (w1),”, there is a
club Cy € w; which is homogeneous for P and consists entirely of indecomposable ordinals. For the
sake of contradiction, suppose C is homogeneous for P taking value 1. Pick any & € [Cy]:"!. For each
n € w, let g, denote the partial function whose graph is Ua<w1 Bh ... Let Myom(g,) : dom(g,) — w1
be the Mostowsk1 collapse of dom(g,). Let g, = g, o m do m(2)" Note that BS" = BZ) «4n- Therefore,
sup(BE) =y" < h(w-a+n+1)=min(B" ) =min(B") < ¥4.q40 = min(B¥, ) <
mln(Bi’;l). By the previous observation, for each n € w, there is an &, € [Cp]y"' so that hn gn and
hl = g,,1. However, P(h,) = 1implies that ®(g,,;) = ®(h}) < ®(h0) = ®(g,). (®(g,) : n € wyisan
infinite decreasing sequence of ordinals which is impossible. This shows that Cy must be homogeneous
for P taking value 0.

Let C; = {a € Cy : enumc, (@) = a}. Let C; be the club of limit points of C,. Let f € [C,]”". Let
Yo = 0. If @ is a limit ordinal and for all 8 < a, yg has been defined, then let y, = sup{yg : 8 < a}.
If « is a successor ordinal, then let y, = nextc, (yfi) Since f (y{,) € C, and C, consists of the
limit points of Cy, yo < f (yfz). Define k € [Cy]:”' by recursion as follow: Suppose 6 < w;p and
k | ys has been defined. For each @ < vygs4q, let k(ys + @) = nexté’o(a“) (75+1)' Since Y541 is
indecomposable and ysy; € C; = {a € Cy : enumc, (@) = a}, Fact 2.12 implies that this defines
k I vs+1 and sup(k I ¥s+1) = Ys+1. Thus, ya v forall @ < wl Observe that for each 6§ < w;q,

7{;“ < next® (75+1) =k(ys) = mln(B ) < sup(B ) = 75“ < f(y(sﬂ) = mm(B s+1)- Now, suppose
g C fand €, = € (thatis, forall @ < wy, y§ = ya) Then we have that for all § < w;, sup(B%) =
Yea = Vi < min(BY) <sup(BY) = vk, < f(vf,) < g(vi,) = g(v§,,) = min(BS, ). By the
observation above, there is an hg € [Coli”' so that hY = g and hy = k. Then P(hg) = O implies
that ®(g) < (k). It has been shown that for all g & f with €, = €¢, ®(g) < P(k). Hence,
sup(%j}") < ®(k) < w. o

Lemma 6.15. Assume DC, w; —. (w1)2“’ ' and that the almost everywhere short length club uni-
formization principle holds at w,. Suppose @ : [w1].”" — wy is a function so that for ug,! -almost all f,
®(f) € C¢. Then there is a club C C w; and a function I'® : [C]¥" — wy so that that the following
holds:

1. Forall f € [C]¥, T®(f) < ®(f).
2. Forall f € [C]¥, ot({a : T®(f) < @ < ®()}) is an additively indecomposable ordinal.
3. Forall f € [CIy", forallg € f withCf = €4 and g | TP(f) = f I T®(f), then ®(g) = ®(f).

Proof. By the assumption and Fact 6.9, there is a club Cy so that the following holds.

(a) Forall f € [Cy],if ®(f) < f(a), then f | a is a continuity point for ® relative to Cy.
(b) ©(f) eCy.

For f € [Col! and B < wy, let A(f,B) = sup(?ij’B) < w1 by Fact 6.14 (where B®# is defined
in Definition 6.13). Observe that by condition (b), A(f,8) € €. Let Z; = {A(f,B) : B < ©(f)}.
Let I'(f) = min{8 < ®(f) : A(f,B) = min(Zy)}. The main property of I" is that for all § with
L(f) < B < @(f), A(f,B) = A(f,T(f)). Define X: [Col:”" — wi by Z(f) = A(f,T(f)). Again,
for all f € [Coli”', Z(f) € €. Applying Fact 6.12 to Z, I' and ®, there is a club C; C Cp on which
¥, I' and @ are subsequence monotonic: that is, for all f € [C1]!, for all g T f, ®(f) < ®(g),
Z(f) < Z(g) and T'(f) < T'(g).
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Claim 1: For all f € [C];"", forallg T f with € =€ and g I T'(f) = f I T(f), Z(f) = Z(g)
and I'(f) =T'(g).
To see Claim 1: Because g C f and subsequence monotonicity of I', I'(f) < I'(g). Hence, Ach

A®TY) and thus 2(g) < X(f). However, subsequence monotonicity of £ and g T f imply X(f) <
¥(g). Thus, 2(f) = Z(g). Now, suppose I'(f) < I'(g). This implies that there is an & C g with
Ch=Cu h I T(f) =g I T(f) = f 1 T(f) and ®(h) > =(g) = (). Thus, h € Aj}”” and therefore
ACf,T(f)) =2 D(h) > Z(f) = A(f,T'(f)), which is a contradiction. One must have that I'(g) < I'(f).
Since it has already been observed above that I'(f) < I'(g), I'(f) = I'(g). This establishes Claim 1.

Define P : [C1]i”" — 2 by P(f) = 0if and only if ®(f) = Z(f). By w; —« (w1),”', there is a club
C, € C| which is homogeneous for P.

Claim 2: C, is homogeneous for P taking value 0.

To see Claim 2: Pick f € [C2]". Let p : w — Z(f) be an increasing cofinal sequence with
p(0) =T'(f). One will construct a sequence {f;, : n € w) with the following properties:

l. fo=f.Foralln € w, f, € [C", fus1 C fnand Cp, =€ = Cp.
2. Foralln € w, forall @ > 2(f), fu(a@) = f(a).

3. Foralln € w, fus1 I p(n) = fu T p(n).
4. Foralln € w, p(n) < ®(f,) < Z(f).

T(g) c

Let fo = f and note that p(0) = T'(f) < ©(f) = ®(fp). Suppose f,, has been constructed satisfying
the above four properties. Since f,, C f, Claim 1 implies X(f,,) = 2(f) and I'(f,) =T'(f) < p(n). By
condition (4), p(n) < ®(f,) and therefore by the main property of I', A(fy, p(n)) = A(fu, T (fn)) =
Z(fu) = Z(f). Since p(n + 1) < Z(f), there exists an h E f,, with €, = €, h | p(n) = f,, | p(n)
and p(n+1) < ®(h) < X(h) = Z(f) by Claim 1. Since ®(h) € € (is a closure point of &) by
the assumptions, ®©(/) is a limit ordinal and therefore, ®(4) < sup(h [ ®(h)) < h(P(h)). Since
®(h) < Z(f), h | Z(f) is a continuity point for @ relative to C,. Define f,4; € [C2]! by

h(a)  a <Z(f)

fn+1(a)={f(a) S(f) <a’

Note that f,,,1 is indeed an increasing and discontinuous function since X(f) € € and €, = €
imply that sup(fyr1 1 (f)) = sup(h 1 (f)) = Z(f) < F(E() = furt (E(f))- Since h [ £(f) is
a continuity point for @ relative to Cp, ®(f,+1) = ©(h). This function f;,; satisfies all the required
properties relative to the previous f,,.

By DC, there is a sequence {f,, : n € w) with all the required properties. Define f,, € [C2]”' by
fo(@) =sup{fu(a) : n < w}. Note that for all n, f, T fu, €z = € and f, I p(n) = fu | p(n).
(Note that X(f) € €, since Z(f) € €, for all n € w.) Since ® satisfies subsequence monotonicity
on C;, f, C f, implies that p(n) < ®(f,) < ®(f,). Thus, Z(f) < ®(f,). Since f, T f and
fo TT(f) = f I T(f), Claim 1 implies that 2(f) = Z(f,,). By definition, ®(f,) < Z(f,). Hence,
Y(fw) = ®(fu). Since f,, € [C2]", P(f.,) = 0 and C, is homogeneous for P, one must have that C,
is homogeneous for P taking value 0. This completes the argument for Claim 2.

For each f € [C]", ®(f) = Z(f) = A(f,T(f)). This implies the club C, and the function I
satisfy condition (1) and (3). For each f € [C,];”", let 65 = ot({e : T'(f) < @ < ®(f)}). Let €5 be
the least ordinal so that there exists an additively indecomposable ordinal vy with 6y = € +v¢. Let
I®(f) =T (f) + er. Now, I'® satisfies all the desired properties. m]

Definition 6.16. Let n € w, C C w; be a club and Iy, ...,[,—; : [C]y' — w; be a sequence of
functions. (C, T, ...,I',—1) is a good sequence if and only if the following holds.

1. Forall f € [C]* and forall k < n— 1, Tiy1 (f) < T (f).
2. Foreachi <n—1,ot({a: i1 (f) < a <Iy(f)}) is an additively indecomposable ordinals or the
ordinal 1.
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3. Forallj <n-1,forall f € [C]", forall g € [C], if
ocgC fand G, =Gy,
o forall j <k <n—1,sup(g [ [k (f)) =sup(f I T'k(f)).
oandg [ Tt (f) = f [ Tt (),
then I'; (f) = I'j(g).

Lemma 6.17. Assume DC, wi —. (w1),” and that the almost everywhere short length club uni-
formization principle holds at w. If (D, Iy, ..., Tn_1) is a good sequence so that T',_, is not pig,\-almost
everywhere the constant O function, then there is a C C D and a function T, so that (C,T¢, ...,T—1, )
is a good sequence.

Proof. 1t will be shown by induction on the length n > 1 of the good sequence. Suppose (D, T) is a
good sequence so that Iy is not y,! -almost everywhere constantly 0. Depending on whether for u,)! -
almost all f, Ty( f) is a successor ordinal, a limit ordinal which is not a closure point of f or a closure
pointof f,let C € D and I'| = ' be given by Lemma 6.10, Lemma 6.11 or Lemma 6.15. (C, Ty, I'})
is the desired extension.

Now, suppose that n > 1 and that any length n — 1 good sequence where the last function is not zg,, -
almost everywhere constantly O can be extended. Let (D, Iy, ...,I,—1) be a good sequence of length n
with I',,_; not ,uﬁ}-almost everywhere constantly 0. The restriction (D, '}, ...,[',,—1) is a length n — 1
good sequence. Applying the induction hypothesis to this sequence, there is a Dy € D and a function I’
so that (Dg,T'y,,...,I,—1, ) is a length n good sequence and by applying Fact 6.9 to I', one may also
assume that for all f € [Do]" and @ < wy, if T(f) < f(a), then f | « is a continuity point for T’
relative to Dy.

(Case 1) Forall f € [Do]", ot({a : T(f) <a<T1(H)}) = 1.

Setting C = Dgand I',, =T, (C, T, ..., [,—1, [) is the desired extension.

(Case 2) Forall f € [Dg]!, ot{(a : T(f) < @ < T—1(f)}) is an indecomposable ordinal.

For all B such that I'(f) < B < Th—1(f), let

Tf={gEf¢(5g=(5f AgTB=FfTBANO<i<n—1)(sup(g I'Ti(f)) =sup(f I Ti(f)))}

Let (5? ={To(g) : g€ Tf}. Let A(f,B) = sup(@?) which is an ordinal less than w by Fact 6.14 since

T[{ c A;O’O and hence (ﬁ? C 23;0’0 (recall that A?”O and 23;0’0 were defined in Definition 6.13). Note that
it I(f) < Bo < B1 < Tu-1(f), then A(f, B1) < A(f, Bo). Let Zy = {A(f.B) : T(f) < B <Tu-1(N)}
Define I, : [Do]s”" — wi by T, (f) = min{B : T(f) < B < Tn_1(f) Amin(Z¢) = A(f,B)}. Define
3 [Dolt = wi by Z(f) = A(f, T, (f)). The main property is that for all 8 with I,(f) < 8 <
o1 (), ACEB) = A(f, T (f)) = Z(f). Applying Fact 6.12 to X, ', and Iy, there is a club Dy C Dy
so that 2, I';, and 'y are subsequence monotonic on Dj.

Claim 1: Forall f € [D;];”",ifg € [D]:"" hasthe property thatg C f,€, = €¢,forall1 <i < n-1,
sup(g I Ti(f)) = sup(f T Ti(f)) and f [ Tn(f) = g I Tn(f), then Z(f) = 2(g) and I’y (f) = T'n(g).

To see Claim 1: Since g T f, subsequence monotonicity implies that I',,(f) < I,(g). Since
I'(f) < T,(f) and (D, T, ...,I,—1, ") is a good sequence, one has by Definition 6.16 condition (3)
thatforall 1 <i < n—1,T;(f) =T;(g). Hence, one has that Tgr"(g) c T;”<f) and hence 2(g) < Z(f).
However, by subsequence monotonocity, one has £(f) < X(g). Hence, Z(f) = Z(g). Suppose for
sake of contradiction that I',(f) < I',,(g). Since I' satisfies the fine continuity property of Fact 6.9
relative to Dy, I'(g) = T'(f). Now, since I'(g) = T'(f) < I',(f) < I'y(g), the definition of I',(g)
implies there is an h with €, = €4, A [ [, (f) = g T TW(f) = f I Tu(f), forall 1 <i <n-1,
sup(h 1 Ti(f)) = sup(g 1 Ti(f)) = sup(f I T;(h)) and To(h) > £(g) = X(f). However, h ¢ T,
and thus A(f,T'(f)) = To(h) > Z(f) = A(f,T'(f)) which is a contradiction. This shows that one must
have I';,(f) = I',(g). The proof of Claim 1 is complete.

Define P : [D];"" — 2by P(f) = 0if and only if [o(f) = Z(f). By wi —. (w),”, there is a club
D, € D; which is homogeneous for P.
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Claim 2: D, is homogeneous for P taking value 0.

First, if there is an f € [D,];"' such that Z(f) is a successor, then the supremum in the definition
of 2(f) = A(f,T'n(f)) is obtained. That is, there isa g C f with € = €, g [ [',(f) = f I Tu(f),
forall 1 <i<n-1,sup(g [ T;(f)) =sup(f I T;(f)) and Th(g) = Z(f). By Claim 1, (g) = Z(f).
Thus, P(g) = 0 and since g € [D,]:"!, D, must be homogeneous for C taking value 0.

Thus, assume that for all f € [D;]"", Z(f) is a limit ordinal. Pick any f € [D;]:"'. Let p : w —
I,—1(f) be an increasing cofinal sequence through I',,_; (f) with p(0) = T',(f). Let 7 : w — Z(f) be
an increasing sequence through X(f). One will construct a sequence (f : k € w) with the following
properties:

1. fo=f.Forallk € w, fx € [D2]:"", fis1 € frand Cp, = Cp = Cp.
2. Forall k € w, forall @ > T,1(f), fr(@) = f(a@).

3. Forall k € w, fir1 [ p(k) = fi | p(k).
4. Forall k € w, (k) < To(frs1) < Z(f).

Let fo = f. Suppose fr has been constructed satisfying the above properties. Claim 1 implies that
2(fr) = Z(f) and T, (fx) = I,(f). The main property above and the fact that p(k) > p(0) = I, (fx)
give that A(f, p(k)) = A(fx,Tn(fx)) = Z(fi) = Z(f). Thus, there is an h T f; with €, = €,
h 1 p(k)=fi I p(k),foralll <i<n-1sup(h [ Ii(fi)) =sup(fi ITi(fi))and7(k) <To(h) <
2(fr)- Now, define fi.| by

h(a) @ <Tui(f)
fl@  Tia(f)<a

Since (Dg, T, ...,I—1, ') is a good sequence and i | T'(f) = f | T'(f), one has that I';(h) = T;(f)
forall 1 <i < n— 1. (In particular, I',,_y (h) = I',—1(f).) Since fi+1 [ Tn-1(h) = h | T,—1(h), for all
i <n—1,sup(fis1 [ Ti(h)) =sup(h | T;(h)) and (D, Ty, ...,[,,—1) is a good sequence, one has that
To(fx+1) = To(h) > 7(k). Thus, fi41 satisfies the required properties.

By DC, there is a sequence {fx : k € w) with the desired properties. Define f, € [D>]' by
fw(@) = sup{fi(@) : k < w}. Since f,, E fi+1, the subsequence monotonicity of Iy implies that
7(k) < To(fr+1) < To(fw). Hence, Z(f) < I'p(f). Claim 1 implies that Z(f) = X(f,,). Therefore,
2(fw) < To(fw)- Since T'y(f,) < 2(f,) by definition, one has shown that I'y(f,,) = 2(f,,). Since
P(f,) = 0 and f, € [D;]:"", one must have that D, is homogeneous for P taking value 0. This
completes the proof of Claim 2.

Claim 2 implies that (C, T, ...,[,-1,},) is a good sequence where C = D;,. This completes the
argument. a

Jir1 (@) = {

Theorem 6.18. Assume DC, w; —. (a)l)z‘” ' and that the almost everywhere short length club uni-
formization principle holds at wy. Let ® : [w1]{"" — wi. There is a club C C w; and finitely many
functions Yy, ..., X,_ so that for all f € [C],"", for all g € [C],"', if € = € and for all i < n,
sup(g I Yi(f)) =sup(f [ Yi(f)), then ®(f) = D(g).

Proof. Fix @ : [w1]:>' — wy. Let T consists of good sequences {(C, I, ..., T,,_1) with Ty(f) = ®(f)
for all f € C. Define an ordering on < on 7 by (D, %y, ..., ¥u-1) < (C,Ty,...,T,—1) if and only if
n<m,D C Candforall f € [D], foralli <n, I;(f) =¥ (f).

Claim 1: There is a (C, T, ..., [,—1) € T so that I',_; is ug! -almost everywhere constantly 0.

To see Claim 1: Suppose not. Then Lemma 6.17 implies that (7, <) is a tree with no dead branches.
DC implies there is an infinite <-descending sequence ((C;, I}, ..., F}) :Jj € w). Let C =, Cj.
Pick f € [C]s°'. Then (Fl’f( f) 1 i € w) is an infinite descending sequence of ordinals. Contradiction.
This completes the proof of Claim 1.

Let (C,Ty,...,I,_1) be a good sequence so that for all f € [C]*", To(f) = ©(f) and T,_ (f) = 0.
Now, suppose f, g € [C].”" with the property that €, = €7 and for all 0 < i < n, sup(g I [(f)) =
sup(f I Ti(f)). Let h : w; — w; be defined by A(0) = min{f[w;] U g[w1]}. Suppose & | a has
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been defined. Let h(a) be the least element of f[wi] U g[w;] greater than sup(h | «). Note that
h € [C]!, that is, is increasing, discontinuous, and has uniform cofinality w. Foreach0 < i < n—1, let
K; ={a:Ti1(f) < a <Ti(f)} and v; = ot(K;) which is either an additively indecomposable ordinal
or 1. Therefore, foreachO <i <n—1,0t({f(@) : @ € K;}) = ot({g(a@) : @ € K;}) = ot({f (), g() :
a € K;}) = v; since v; is an additively indecomposable ordinal or 1. Hence, for each 0 < i < n,
sup(f 1 T;(f)) = sup(g I Ti(f)) = sup(h | Ti()), €5 = € = €, fChand g E h.

Claim 2: For all k < n, I'—1_r (h) = To1-x (f) = Tho1-1(g)-

To see Claim 2: This will be shown by induction on k. If k = 0, then T',,_; (h) = Ty,—1(f) = Ty—1(h) =
0. Now, suppose k < n and for all j < k, it has been shown that I',_1_;(h) = i1 (f) = Tmi-(g).
Since it was shown above that f T h, € = €, sup(f I [,o1—j(h)) = sup(f | Tho1—;(f)) =
sup(h | Tno1—;(f)) = sup(h I I'y1_;(h)) for each j < k, Definition 6.16 condition (3) for the pair
(f,h) at Tj,_1_¢ implies that I',_;_; (f) = [',—1—x (k). The same argument for the pair (g, ) implies
I-1-1(g) = I'i—1-x (h). This concludes the proof of Claim 2.

Applying Claim 2 for k = n — 1, one has that ®(f) = To(f) = I'o(h) = T'h(g) = ®(g). For each
i <n-2,letY; =T;;1. Then C and the function Yy, ..., Y,,— are the desired objects. (This just removes
'y = ® which is redundant.) |

Next, one will show that the continuity property expressed in Theorem 6.18 holds under the axiom
of determinacy. The following is a consequence of the Moschovakis coding lemma.

Fact 6.19. Assume AD. 2(w) = (P(w;))E®),

The next fact asserts that every function @ : [w]:”" — w; is equal to a function in L(R)pu,, -almost
everywhere.

Fact 6.20. ([2]) Assume AD. Suppose @ : [wi]' — w;. Then there is a club C C w; so that
@ | [C]® € L(R).

It is not known if AD implies DCg; however, Kechris showed that L(R) satisfies DC.
Fact 6.21. ([11]) Assume AD. Then L(R) | AD + DC.

Theorem 6.22. Assume AD. Let ® : [w]' — wi. There is a club C C w, and finitely many
function Ty, ...,Ty_1 so that for all f € [C1,”", for all g € [Cl"', if € = € and for all i < n,
sup(g I T (f)) =sup(f [ Ii(f)), then ®(f) = (g).

Proof. By Fact 6.20, there is a club Cy € w; so that ® | [Co]' € L(R). By Fact 6.21, L(R)
satisfies AD and DC. AD implies w; —. (w1),”' by Fact 2.16. The almost everywhere short length club
uniformization for w; holds by Fact 6.5. Fact 6.19 implies w; = (w;)*®. Theorem 6.18 applied inside
L(R) for ® I [Cp];’" will provide a club C; C C and functions Iy, ..., I',,_; which satisfies the required
property in L(R). Fact 6.19 will imply that these objects continue to have the desired property in the
original universe satisfying determinacy. O
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