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Abstract

We construct divergent models of AD+ along with the failure of the Contin-
uum Hypothesis (CH) under various assumptions. Divergent models of AD+

plays an important role in descriptive inner model theory; all known analyses
of HOD in AD+ models (without extra iterability assumptions) are carried out
in the region below the existence of divergent models of AD+. Our results are
the first step toward resolving various open questions concerning the length of
definable prewellorderings of the reals and principles implying ¬CH, like MM,
that divergent models shed light on, see Question 5.1.

1 Introduction

In this paper, we identify the reals R with NN, the set of all infinite sequences of
natural numbers equipped with the Baire topology.

Definition 1.1 Suppose M and N are transitive models of AD+. We say that M
and N are divergent models of AD+ if there are sets of reals A ∈M and B ∈ N such
that A /∈ N and B /∈M .
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If M,N are divergent models of AD+, then the Wadge hierarchies of M,N
“diverge”, or equivalently ℘(R) ∩ M * N and ℘(R) ∩ N * M . Woodin has
shown that letting Γ = ℘(R) ∩M ∩ N , then Γ = ℘(R) ∩ L(Γ,R) and furthermore,
L(Γ,R) � ADR + DC. The upper-bound consistency strength of divergent models of
AD+, as shown by Woodin, is the existence of a Woodin cardinal which is a limit of
Woodin cardinals. This bound is conjectured to be exact.1 Divergent models of AD+

plays a very important role in descriptive inner model theory; virtually, all known
analyses of HOD in strong AD+ models are carried out below this bound (see cf.
[Sar14], [ST23]).

Working in a universe satisfying CH, Woodin constructed divergent models of
AD+ [Far10]. We prove that it is consistent that there are divergent models of AD+

while CH fails.

Theorem 1.2 Suppose CH holds and there are two sets of reals A,B such that

• (R, A)], (R, B)] exist and are ℵ1-universally Baire,

• L(A,R), L(B,R) are models of AD+ such that letting HA = HODL(A,R) and
HB = HODL(B,R), there is some α < min{ωHA

1 , ωHB
1 } such that the α-th real in

the canonical well-order of HA is different from the α-th real in the canonical
well-order of HB.

Let P be the standard ccc forcing that adds ω2 many Cohen reals and g ⊆ P be
V -generic. Then in V [g], there are A∗, B∗ and embeddings jA, jB such that

1. jA : L(A,RV ) → L(A∗,RV [g]), jB : L(B,RV ) → L(B∗,RV [g]) fix all ordinals,
and

2. L(A∗,RV [g]), L(B∗,RV [g]) are divergent models of AD+.

Corollary 1.3 Con(ZFC+ there is a Woodin limit of Woodin cardinals) implies
Con(CH fails and there are divergent models of AD+).

Proof. By results of Woodin’s (see [Far10]), the hypothesis of Theorem 1.2 is consis-
tent relative to the existence of a Woodin limit of Woodin cardinals. The corollary
follows from Theorem 1.2. �

The following theorem is folklore. We include the proof here for self-containment.
It is used in the proof of Corollary 1.5. A forcing P is said to be weakly proper if
whenever g ⊂ P is V -generic, for any ordinal α, ℘

V [g]
ω1 (α) ⊂ ℘Vω1

(α). Γ∞ denotes the
collection of universally Baire sets.

1It has come to my attention recently that G. Sargsyan (unpublished) has shown this.
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Theorem 1.4 Assume there is a proper class of Woodin cardinals and A ⊆ R is
universally Baire. Suppose P is weakly proper. Then for any V -generic g ⊆ P,
there is some universally Baire set B ∈ V such that letting B∗ be the canonical
interpretation of B in V [g], A is Wadge reducible to B∗.

Corollary 1.5 Assume there is a proper class of Woodin cardinals. Suppose A,B
are as in the hypothesis of Theorem 1.2. Furthermore, assume that Γ∞ ⊂ L(A,R) ∩
L(B,R). Let P be the forcing that adds ω2 Cohen reals and g ⊆ P be V -generic.
Then in V [g], Γ∞ ⊂ L(A∗,RV [g]) ∩ L(B∗,RV [g]).

Now we address the question of whether the hypothesis of Corollary 1.5 is consis-
tent. We construct divergent models of AD+ that contain the collection of universally
Baire sets from a strong hypothesis. We are hopeful that with recent advancement
in descriptive inner model theory, this hypothesis can be shown to be consistent.

Definition 1.6 Let M be a hybrid premouse. We say that M is appropriate
premouse if M = (|M|,∈,E, S) is an amenable J-structure that satisfies:

1. the predicate S codes (P0,Σ), where P0 = (M|δ0)]2 for some Woodin cardinal
δ0 such that P0 is an lsa hod premouse and Σ is the short-tree strategy of P0; 3

2. there is a proper class of Woodin cardinals and a Woodin limit of Woodin
cardinals > δ0 as witnessed by a fine-extender sequence (in the sense of [Ste10])
coded by E;

3. for any set generic h, Σ has a canonical interpretation Σh in V [h]; more pre-
cisely, there is a term-relation τ such that for all generic h, τh = Σh;

4. in all generic extensions V [g] of V for which P0 is countable, Σg /∈ (Γ∞)V [g] but
letting Γ(P0,Σ

g) be the set of A such that there is a countable T according to
Σg such that A ≤w Σg

T ,M(T ), then Γ(P0,Σ
g) = (Γ∞)V [g]. This essentially says

that all lower-level strategies of Σg or its iterates are in (Γ∞)V [g].

(M,Ψ) is an appropriate mouse if M is an appropriate premouse and Ψ is an
iteration strategy for M such that if i :M→N be an iteration according to Ψ, then
for any N -generic g, i(τ)g = (ΨN)shP0

� N [g], here (ΨN)shP0
is the restriction of the

tail strategy ΨN on N to short trees on P0.

2By this we mean P0 is the first active initial segment of M extending M|δ0.
3See [ST23] for a detailed theory of lsa hod mice. Roughly, P0 is a hod mouse with the largest

Woodin cardinal δ0 and the least < δ0-strong cardinal is a limit of Woodin cardinals.
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It is not known if the existence of an appropriate mouse is consistent; a weaker
version of this is shown to be consistent in [ST19] and plays a key role in deter-
mining the exact consistency strength of Woodin’s Sealing of the Universally Baire
sets. Property 4, namely the assumption on Σ, is an abstraction of properties of
excellent mice defined in [ST19] and is the key property that allows us to prove The-
orem 1.7. The intuition giving rise to 4 comes from the construction of models of
LSA− over − UB in [ST19], where the LSA model is generated by a pair (P ,Σ) such
that Σ is a short-tree strategy for an lsa-type hod premouse P and Γ(P ,Σ) = Γ∞.
In the proof of Theorem 1.7, we use this property to show that Γ∞ (in a generic
extension of the appropriate mouse) is in both divergent models, by showing the
interpretation of τ by the generic is in both models. The main difference between
an appropriate mouse and an excellent mouse lies in property 2. We do not yet
have a theory of layered-hod mice that reaches the level of “ZFC+ there is a Woodin
cardinal which is a limit of Woodin cardinals” (WLW), but such a theory exists
for least-branch hod mice ([Ste22]), so it seems very plausible that the existence of
appropriate mice is consistent.4

The following property abstracts out some of the features of countable sub-
structures of models obtained by fully-backgrounded constructions (see cf. [Ste10,
Nee02]). We say that V satisfies countable self-iterability if for any cardinal δ and
any countable X ≺ Vδ+1, the transitive collapse M of X is fully iterable with δ-
universally Baire strategy Λ; furthermore, letting τ : M → X be the uncollapse
map, Λ is τ -realizable, i.e. whenever π : M → N is an iteration map according to Λ
with |N | < ω1, there is some σ : N → Vδ+1 such that τ = σ ◦ π.

Theorem 1.7 Suppose V = L[ ~E] is an extender model such that in V , there is a
proper class of Woodin cardinals and countable self-iterability holds. Suppose there
is an appropriate mouse (M,Ψ) such that Ψ ∈ Γ∞. Then in some generic extension
of M, there are divergent models of AD+ N1, N2 such that Γ∞ ⊂ N1 ∩N2.

Remark 1.8 Theorem 1.7 relates to Question 5.1(i) in light of recent development
in the core model induction; in particular, one can show under MM that Γ∞ contains
very complicated mice, e.g. there are Wadge initial segments Γ such that L(Γ) �
ADR + “Θ is regular” and much more. One can hope that MM implies the existence
of mice that satisfies WLW with universally Baire iteration strategies. 5.1(ii) is a
weakening of 5.1(i) as MM implies δ∼

1
2 = ω2. If 5.1(ii) was true, then Γ∞ is “large”

in that o(Γ∞) > ω2. It is open whether o(Γ∞) could be > ω3.

4What is missing from [Ste22] is a theory of short-tree strategy mice in the least-branch hierarchy.
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2 Preliminaries

Let Θ be the supremum of ordinals γ such that there is a surjection from R onto γ.
A very useful extension of the Axiom of Determinacy, AD, is a theory called AD+

isolated by Woodin. AD+ consists of the following statements.

• DCR.

• Every set of reals has an ∞-Borel code. (An ∞-Borel code is a pair (S, ϕ)
where S is a set of ordinals and ϕ is a formula of set theory. Let B(S,ϕ) = {r ∈
R : L[S, r] � ϕ(S, r)}. (S, ϕ) is an ∞-Borel code for a set A ⊆ R if and only if
A = B(S,ϕ).)

• Ordinal Determinacy, which is the statements that for every λ < Θ, X ⊆ R,
and continuous function π : ωλ→ R, the two player game on λ with payoff set
π−1(X) is determined.

It is conjectured that under ZF + DCR, AD implies AD+. All known models of AD
satisfy AD+.

For any model M of AD+, the ordinal ΘM is defined to be the supremum of
ordinals γ such that there is a surjection from R onto γ in M . For any set of reals A
in M , let w(A) denote the Wadge rank of A in M . A basic result due to R. Solovay,
is that ΘM is supremum of the Wadge ranks of sets of reals A in M .

We summarize basic facts about (weakly) homogeneously Suslin and universally
Baire sets we need. For a more detailed discussion, the reader should consult for
example [Ste09].

Given an uncountable cardinal κ, and a set Z, measκ(Z) denotes the set of all
κ-additive measures on Z<ω. If µ ∈ measκ(Z), then there is a unique n < ω such
that Zn ∈ µ by κ-additivity; we let this n = dim(µ). If µ, ν ∈ measκ(Z), we say
that µ projects to ν if dim(ν) = m ≤ dim(µ) = n and for all A ⊆ Zm,

A ∈ ν ⇔ {u : u � m ∈ A} ∈ µ.

In this case, there is a natural embedding from the ultrapower of V by ν into the
ultrapower of V by µ:
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πν,µ : Ult(V, ν)→ Ult(V, µ)

defined by πν,µ([f ]ν) = [f ∗]µ where f ∗(u) = f(u � m) for all u ∈ Zn. A tower of
measures on Z is a sequence 〈µn : n < k〉 for some k ≤ ω such that for all m ≤ n < k,
dim(µn) = n and µn projects to µm. A tower 〈µn : n < ω〉 is countably complete if
the direct limit of {Ult(V, µn), πµm,µn : m ≤ n < ω} is well-founded. We will also say
that the tower 〈µn : n < ω〉 is well-founded.

Recall we identify the set of reals R with the Baire space ωω.

Definition 2.1 Fix an uncountable cardinal κ. A function µ̄ : ω<ω → measκ(Z) is
a κ-complete homogeneity system with support Z if for all s, t ∈ ω<ω, writing
µt for µ̄(t):

1. dom(µt) = dom(t),

2. s ⊆ t⇒ µt projects to µs.

Often times, we will not specify the support Z; instead, we just say µ̄ is a κ-complete
homogeneity system.

A set A ⊆ R is κ-homogeneous iff there is a κ-complete homogeneity system µ̄
such that

A = Sµ =def {x : µ̄x is countably complete}.

A is homogeneous if it is κ-homogeneous for all κ. Let Hom∞ be the collection of all
homogeneous sets.

Definition 2.2 Fix an uncountable cardinal κ. A function µ̄ : ω<ω → measκ(Z) is
a κ-complete weak homogeneity system with support Z if it is injective and for
all t ∈ ω<ω:

1. dom(µt) ≤ dom(t),

2. if µt projects to ν, then there is some i < dom(µt) such that ν = µt�i.

A set A ⊆ R is κ-weakly homogeneous iff there is a κ-complete weak homo-
geneity system µ̄ such that

A = Wµ̄ =def {x : ∃(ik : k < ω) ∈ ωω〈µx|ik : k < ω〉 is well-founded}.

A is weakly homogeneous if it is κ-weakly homogeneous for all κ. Let wHom∞ be the
collection of all weakly homogeneous sets.
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Definition 2.3 A ⊆ R is κ-universally Baire if there are trees T, U ⊆ (ω ×
ON)<ω that are κ-absolutely complemented, i.e. A = p[T ] = R\p[U ] and whenever
P is a forcing such that |P| < κ and g ⊆ P is V -generic, in V [g], p[T ] = R\p[U ]. In
this case, we let Ag = p[T ] be the canonical interpretation of A in V [g].

A is universally Baire if A is κ-universally Baire for all κ. Let Γ∞ be the
collection of all universally Baire sets.

We remark that if A is κ-universally Baire as witnessed by pairs (T1, U1) and
(T2, U2) and P ∈ Vκ and g ⊂ P is V -generic, then Ag = p[T1] = p[T2], i.e. Ag
does not depend on the choice of absolutely complemented trees that witness A is
κ-universally Baire. A similar remark applies to κ-(weakly) homogeneously Suslin
sets.

Suppose there is a proper class of Woodin cardinals. The following are some
standard results about universally Baire sets we will use throughout our paper. The
proof of these results can be found in [Ste09].

1. Hom∞ = wHom∞ = Γ∞.

2. For any A ∈ Γ∞, L(A,R) � AD+; furthermore, given such an A, there is a
B ∈ Γ∞ such that B /∈ L(A,R) and A ∈ L(B,R). In fact, A] is an example of
such a B.

3. Suppose A ∈ Γ∞. Let B be the code for the first order theory with real
parameters of the structure (HC,∈, A) (under some reasonable coding of HC
by reals). Then B ∈ Γ∞ and if g is V -generic for some forcing, then in V [g],
Bg ∈ Γ∞ is the code for the first order theory with real parameters of (HCV [g],∈
, Ag).

Under the same hypothesis, the results above also imply that

• Γ∞ is closed under Wadge reducibility,

• if A ∈ Γ∞, then ¬A ∈ Γ∞,

• if A ∈ Γ∞ and g is V -generic for some forcing, then there is an elementary
embedding j : L(A,R)→ L(Ag,Rg), where Rg = RV [g].

Finally, the reader should consult [Ste10] for the basics of inner model theory.
This is the background needed to follow the proof of Theorem 1.7. Consult [ST23,
ST19] for more information on the theory of short-tree strategy mice related to lsa
hod mice and appropriate mice; we will not need this material in this paper, however.
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In the following, we fix a natural coding of (ω1, ω1)-iteration strategies for countable
mice by sets of reals, e.g. we fix a function τ : HC → R that codes elements of HC
by reals as in [Woo10, Chapter 2] and Code : ℘(HC)→ ℘(R) is the induced function
given by: Code(A) = τ [A].

3 Divergent models of AD+ and the failure of CH

Proof.[Proof of Theorem 1.2] Fix A,B,P, g as in the statement of the theorem. Let
Rg = RV [g]. Let α be the least such that letting xA be the α-th real in the canonical
well-order of HA and xB be the α-th real in the canonical well-order of HB, then
xA 6= xB.

Let (U,ϕ) and (W,ψ) be∞-Borel codes for A,B respectively. Let s ∈ (℘ω1(ω2))V [g].
Note that s is added by a countable suborder of P by the countable chain condition
of P. Let Rs = RV [s] and define As by: for all x ∈ Rs,

x ∈ As ⇔ L[U, x] � ϕ[x, U ].

We define Bs using (W,ψ) in a similar fashion. Let

Ms = L(As,Rs),

and

Ns = L(Bs,Rs),

Claim 1: Suppose t ∈ (℘ω1(ω2))V [g] and s ⊆ t. Then the map πAs,t : Ms → Mt

defined by: πAs,t � Rs ∪ ON = id and πAs,t(As) = At is an elementary embedding.
Similarly, πBs,t is an elementary embedding.

Proof. We prove the statement for A. This follows from [Woo10, Theorem 10.63,
2.27–2.29] and [Far10, Theorem 6.3, 6.4]. The key points are:

• All sets of reals in L(A,R) are ℵ1-universally Baire, as (R, A)] is ℵ1-universally
Baire.

• The suborder of P adding s is weakly proper and countable, so πA∅,s � ON = id

and πA∅,s(A) = As is the canonical interpretation of A in V [s].

�

Let M∞ be the direct limit of FA = {Ms, π
A
s,t : s ⊆ t ∈ (℘ω1(ω2))V [g]} and N∞ be

the direct limit of FB = {Ns, π
B
s,t : s ⊆ t ∈ (℘ω1(ω2))V [g]}.
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Claim 2: M∞, N∞ are well-founded.
Proof. The directed systems FA,FB consist of well-founded models and the

directed relation (⊆) is in fact countably directed, i.e. if (sn : n < ω) is such
that for all n, sn ∈ (℘ω1(ω2))V [g], then there is some s ∈ (℘ω1(ω2))V [g] such that
sn ⊆ s for all n. Therefore, M∞, N∞ are well-founded as any witness that M∞ (N∞)
is ill-founded has preimage in some Ms (Ns). �

Let

πA : L(A,R)→M∞ = L(A∞,Rg)

and

πB : L(B,R)→M∞ = L(B∞,Rg)
5

be the direct limit maps. Note that πA � ON = πB � ON = id. Now we claim
that M∞, N∞ are divergent models of AD+ in V [g]. This finishes the proof of the
theorem.

We note that πA(xA) = xA is the α-th real in the canonical well order of HODM∞ .
This follows from the fact that πA is elementary and fixes all ordinals. Similarly,
πB(xB) = xB is the α-th real in the canonical well order of HODM∞ . If M∞, N∞ are
compatible, then the α-th real in HODM∞ must be equal to the α-th real in HODN∞ .
To see this, suppose without loss of generality ℘(R)M∞ ⊆ ℘(R)N∞ . Suppose β ≤ ΘN∞

is such that ℘(R)M∞ = {A ∈ N∞ : w(A) < β}. This easily gives HODM∞ is OD
in N∞ and that the canonical well-order of OD-reals in M∞ is compatible with the
canonical well-order of OD-reals in N∞. So xA = xB. Contradiction. �

Proof.[Proof of Theorem 1.4] Fix A,P, g as in the statement of the theorem. Let
κ be a measurable cardinal such that

• P ∈ Vκ.

• A is κ-homogeneous.

• Every κ-homogeneously Suslin set in V [g] is universally Baire in V [g].

Let µ̄ = (µs : s ∈ ω<ω) be a homogeneous system witnessing A is κ-homogeneously
Suslin, i.e.

x ∈ A⇔ (µx|i : i < ω) is countably complete.

5It is clear that RM∞ = RN∞ = Rg.
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Since P ∈ Vκ, for each s ∈ ω<ω, there is ν ∈ measκ(κ|s|) in V such that ν∗ = µs,
where ν∗ = {A ∈ V [g] : ∃B ∈ ν(B ⊆ A)} is the canonical extension of ν in V [g]. By
the weak properness of P, there is a countable set of measures σ ⊂ measκ(

⋃
n κ

n) in
V such that

µ̄ ⊆ σ∗ = {ν∗ : ν ∈ σ}.

In V , let ν̄ = (νs : s ∈ ω<ω) be an enumeration of σ such that

(i) for each s ∈ ω<ω, νs concentrates on κ|s|;

(ii) if νt projects to ν, then there is some i < dom(νt) such that νt|i = ν.

Now define the following set B, which is just the κ-homogeneously Suslin set given
by ν̄: for x ∈ R,

x ∈ B ⇔ (νx|k : k < ω) is countably complete.

Let B∗ be the canonical extension of B induced by ν̄∗ = (ν∗s : s ∈ ω<ω) in V [g].
Thus, B∗ is κ-homogeneously Suslin and hence is universally Baire in V [g]. Let
f : ω<ω → ω<ω be:

f(s) = t where t is such that µs = ν∗t .

By the properties of ν̄ and µ̄, we have

(a) f(s) has the same length as s for every s ∈ ω<ω.

(b) f is order preserving, i.e. if s0 is an initial segment of s1 then f(s0) is an initial
segment of f(s1).

Let f̂ : RV [g] → RV [g] be the continuous map induced by f :

f̂(x) =
⋃
i<ω f(x|i).

We have for any x ∈ RV [g]:

x ∈ A⇔ (µx|i : i < ω) is countably complete

⇔ (ν∗f(x|i) : i < ω) is countably complete

⇔ f̂(x) ∈ B∗

Thus f̂ witnesses A is Wadge reducible to B∗.
�
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Proof.[Proof of Corollary 1.5] First note that P is weakly proper so we can apply
Theorem 1.4. Now note that

o(Γ∞)V [g] = sup[jA � o(ΓV∞)] = sup[jB � o(ΓV∞)]. (1)

Here, o(Γ∞) is the length of the Wadge prewellorder on Γ∞. To see 1, note that for

each X ∈ Γ∞, jA(X), jB(X) ∈ Γ
V [g]
∞

6 and is the canonical interpretation of X, so
jA(X) = jB(X). Now apply Theorem 1.4 to see that jA � ΓV∞ = jB � ΓV∞ is cofinal in

Γ
V [g]
∞ .

Finally, for each X ∈ Γ∞, X is Wadge reducible to A (X ≤w A) in L(A,R).
To see this, note that A /∈ Γ∞. Otherwise, by the facts mentioned at the end of
Section 2, there is some C ∈ Γ∞ such that A ∈ L(C,R); futhermore, C] ∈ Γ∞, so
C] /∈ L(A,R). This contradicts Γ∞ ⊂ L(A,R). Since A /∈ Γ∞,Γ∞ ⊂ L(A,R), and
L(A,R) � AD+, the claim is established.

By elementarity jA(X) ≤w A∗. By (1), Γ
V [g]
∞ ⊂ L(A∗,RV [g]). Similarly, Γ

V [g]
∞ ⊂

L(B∗,RV [g]) �

4 Divergent models of AD+ over UB

In this section, we give the proof of Theorem 1.7. The proof closely resembles
Woodin’s original proof of the existence of divergent models of AD+ in [Far10, Section
6]; the reader is advised to consult that proof for details we omit here.

Let M,Ψ be as in the statement of the theorem and assume this is a minimal
such mouse. Let P0 = (M|δ0)] be as in clause 1 of Definition 1.6. Let λ = λM > δ0

be the Woodin limit of Woodin cardinals of M. Let c ∈ V be a Cohen real over M
and let A ∈ Γ∞ be such that c is OD in L(A,R).

The existence of A follows from countable self-iterability and the argument in
[Far10, Section 6.2]. We sketch a proof here. A codes a pair (P,Λ � HC) where P
is the transitive collapse of a countable X ≺ Vδ+1 such that c ∈ X and δ is large
enough that δ-universally Baire sets are universally Baire, and Λ is a δ-universally
Baire strategy of P . P is an extender model since V = L[ ~E] is an extender model.
Therefore, A is universally Baire. So L(A,R) � AD+. By replacing P by HullP ({c})
we may assume P projects to ω and Λ is the unique iteration strategy for P . Since
c ∈ P , P is an extender model, and Λ � HC can be extended to a unique ω1 + 1-
iteration strategy for P in L(A,R), the direct limit of all countable nondropping
iterates of M via Λ is defined and is OD in L(A,R) and hence c is OD in L(A,R).

6This follows from [Woo10, Theorem 10.63]. The maps jA, jB maps each X ∈ ΓV
∞ to its canonical

interpretation in V [g].
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We may and do choose A such that Code(Ψ) <w A as witnessed by a real x∗.7

To see such an A exists, suppose Code(Ψ) = p[T ] = R\p[U ], where T, U are trees
witnessing Code(Ψ) is δ-universally Baire for some δ. By choosing A coding the first
order theory of (HC,∈, (P,Λ)) with real parameters such that

• P is the transitive collapse of some countable X ≺ Vγ+1 and

• (T, U) ∈ X for γ sufficiently large that Λ, the strategy for P , is universally
Baire,

we can compute Ψ from A as follows. Note that Λ exists by countable self-iterability
and since Λ ∈ Γ∞, so is A. Let x ∈ Code(Ψ) = p[T ], let π : P → N be the
iteration map that is induced by a genericity iteration according to Λ to make x
generic for the extender algebra at the first Woodin cardinal of N ; we assume the
first Woodin cardinal is < γ. Let (T ∗, U∗) be the image of (T, U) under the transitive
collapse map τ and (T̃ , Ũ) = π(T ∗, U∗). We claim that N [x] � x ∈ p[T̃ ]; otherwise,
since T̃ , Ũ are absolutely complemented for forcings of size the first Woodin cardinal
of N , N [x] � x ∈ p[Ũ ]. Since Λ is a τ -realizable strategy, there is an embedding
σ : N → Vγ+1 such that τ = σ ◦ π. This easily gives x ∈ p[U ]. Contradiction.
Similarly, if x ∈ p[U ], then N [x] � x ∈ p[Ũ ]. The above calculations show that
Code(Ψ) is projective in Code(Λ): for any x ∈ R, x ∈ Code(Ψ) if and only if there
is a non-dropping, countable tree T with last model N according to Λ such that
letting π : P → N be the iteration map, x ∈ p[π(T ∗)]. By the choice of A, Code(Ψ)
is Wadge reducible to A.

Say c is the α-th real in the canonical well-order of HODL(A,R). Let C = B],
where B codes the first order theory of (HC,∈, A) with real parameters; again,
C ∈ Γ∞ and hence L(C,R) � AD+. Let π : M → N be the map induced by a
countable iteration according to Ψ above P0 such that

1. letting λ∗ = π(λ), then (C � λ∗,R � λ∗) is in N [g], where g ∈ V is N -generic
for π(WM

λ ) =def W
N
λ∗ , the λ∗-generator extender algebra of N at λ∗,8

2. R ∩ L[C � λ∗] = RN [g] and L(C � λ∗,R � λ∗) ≺ L(C,R),

3. c, x∗ ∈ RN [g].

7This means x∗ induces a continuous function f : R → R such that a ∈ Code(Ψ) if and only if
f(a) ∈ A. Recall the function Code introduced in Section 2 that codes subsets of HC by sets of
reals in a natural way.

8Since CH holds in V , we identity (R, C) with a subset of ω1 that codes it in a reasonable way.
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The proof of these items, making substantial use of the fact that λ is Woodin
limit of Woodin cardinals, is the same as in [Far10, Section 6.3]. So in N [g], there is
an ℵ1-universally Baire set A9 and two reals c, x such that

4. L(A,R) � AD+,

5. c is Cohen overN and c is the α-th real in the canonical well-order of HODL(A,R),

6. π(τ)g <w A as witnessed by x. 10

We note that clauses 4 and 5 follow from clause 2; clause 6 follows from clause 3 and
the choice of A.

Say p ∈ g forces (4)–(6). Note that by appropriateness of N (clauses 3 and 4)
and (6), in N [g], Γ∞ ⊂ L(A,R). Let g1×g2 ⊂ WN

λ∗ ×WN
λ∗ be N -generic and contains

(p, p). In N [g1 × g2], for i ∈ {1, 2}, there is a triple (Ai, ci, xi) satisfying (4)–(6)
for N [gi]. As in [Far10, Section 6.3] and the proof of Theorem 1.2, in N [g1 × g2],
there are sets A∗1, A

∗
2 and embeddings πi : L(Ai,RN [gi]) → L(A∗i ,RN [g1×g2]) that fix

the ordinals.
By (6), we have that π(τ)N [g1×g2] = π(τ)N [g2×g1] ∈ L(A∗i ,RN [g1×g2]) for i ∈ {1, 2}.

Therefore, by appropriateness,

ΓN [g1×g2]
∞ ⊂ L(A∗1,RN [g1×g2]) ∩ L(A∗2,RN [g1×g2]). (2)

As in [Far10, Section 6.3], π1(c1) = c1 6= π2(c2) = c2 as c1, c2 are mutually generic
over N . So in N [g1 × g2]

L(A∗1,RN [g1×g2]), L(A∗2,RN [g1×g2]) are divergent models of AD+. (3)

By elementarity of π applied to (2) and (3), in a generic extension of M, there
are divergent models of AD+ M1,M2 such that Γ∞ ⊂M1 ∩M2.

Remark 4.1 We note in the construction above, letting g be a generic overM such
that inM[g] there are divergent models M1,M2 as above, letting ∆ = M1∩M2∩℘(R),

then Γ
M[g]
∞ ( ∆. This is because τg ∈M1∩M2. By a result of Woodin, L(∆)∩℘(R) =

∆ and L(∆) � ADR, therefore, there are Suslin co-Suslin sets in M1 ∩M2 that are
not universally Baire.

9In N [g], C � λ∗ is ℵ1-universally Baire, not necessarily fully universally Baire.
10Recall that τ is the term relation in M that interprets the short-tree strategy Σ in all generic

extensions of M.
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5 Open questions

We collect some open problems concerning divergent models of AD+. First, we do
not know if divergent models of AD+ is consistent with or follows from various other
strong hypotheses that imply CH fails.

Question 5.1 1. Does MM imply there are divergent models of AD+?

2. Is the theory “there are divergent models of AD+ + δ∼
1
2 = ω2” consistent?

One way to answer the following question is to show it is possible to construct
appropriate mice.

Question 5.2 Is the theory “there is a proper class of Woodin cardinals and there
are divergent models of AD+ M and N such that Γ∞ ⊂M ∩N” consistent?
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