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T hi s p a p e r st u di e s a c o m m o nl y o b s er v e d p h e n o m e n o n: t h e i niti ati o n of fr a ct ur e fr o m c or n er s i n a 

brittl e s oft m at eri al. A r e ct a n g ul ar h y dr o g el i s pr e p ar e d a n d gl u e d b et w e e n t w o pl a sti c fil m s, s u c h 

t h at  t h e  h y dr o g el  m e et s  t h e  fil m s  at  9 0 ◦ c o r n e r s.  W h e n  t h e  t w o  pl a sti c  fil m s  ar e  p ull e d,  t h e 

h y dr o g el  u n d er g o e s  a  s h e ar  d ef or m ati o n,  a n d  t h e  str e s s- str ai n  c ur v e  i s  r e c or d e d  u ntil  fr a ct ur e 

i niti at e s fr o m a c or n er. W e fi n d t h at t h e s h e ar m o d ul u s i s i n d e p e n d e nt of t h e t hi c k n e s s H of t h e 

h y dr o g el,  b ut  t h e  s h e ar  str e n gt h  s c al e s  a s  ~ H − 0. 4 .  A  n u m e ri c al  si m ul ati o n  s h o w s  a  n o nli n e ar 

el a sti c  z o n e  ar o u n d  t h e  c or n er,  i n  w hi c h  t h e  str e s s  fi el d  v ari e s  sl o wl y.  H o w e v er,  w h e n  t h e 

n o nli n e ar el a sti c z o n e i s s m all c o m p ar e d t o t h e t hi c k n e s s, a n a n n ul u s e xi st s i n w hi c h a si n g ul ar 

fi el d of li n e ar el a sti cit y pr e v ail s. I n t hi s a n n ul u s, t h e str e s s fi el d s c al e s wit h t h e di st a n c e R fr o m 

t h e c or n er a s ~ R − 0. 4 1 . W e c all t hi s c o n diti o n s m all- s c al e n o nli n e ar el a sti cit y. O ur r e s ult s i n di c at e 

t h at s m all- s c al e n o nli n e ar el a sti cit y pr e v ail s e v e n w h e n t h e a p pli e d s h e ar str ai n i s a s l ar g e a s 8 0 %. 

T hi s c o n diti o n e x pl ai n s t h e e x p eri m e nt all y o b s er v e d s c ali n g b et w e e n str e n gt h a n d t hi c k n e s s. T h e 

c o n diti o n of  s m all- s c al e n o nli n e ar el a sti cit y si m pli fi e s  t h e c h ar a ct eri z ati o n of  fr a ct ur e i niti at e d 

fr o m c or n er s of brittl e s oft m at eri al s.   

1. I nt r o d u cti o n 

C or n er s c o n c e ntr at e str e s s a n d oft e n i niti at e fr a ct ur e. F or h ar d m at eri al s, t h e str e s s ar o u n d a c or n er i nt e n si fi e s b y a si n g ul ar fi el d of 

li n e ar el a sti cit y (Willi a m s, 1 9 5 2 ; B o g y, 1 9 7 1 ; H ei n a n d Er d o g a n, 1 9 7 1 ). T h e e x p o n e nt of t h e si n g ul arit y m d e p e n d s o n t h e a n gl e of t h e 

c or n er a n d el a sti c mi s m at c h b et w e e n t h e m at eri al s. T hi s li n e ar el a sti c si n g ul arit y i s u s e d t o c orr el at e t h e e x p eri m e nt al c o n diti o n s 

u n d er w hi c h fr a ct ur e i niti at e s fr o m c or n er s i n h ar d m at eri al s of v ari o u s s h a p e s a n d si z e s ( R e e d y, 1 9 9 0 ; R e e d y a n d G u e s s, 1 9 9 3 ; Li u a n d 

Fl e c k, 1 9 9 9 ; D u n n et al., 2 0 0 0 ; L a b o s si er e a n d L. D u n n, 2 0 0 1 ). I n p arti c ul ar, t h e str e n gt h i s f o u n d t o s c al e wit h t h e l e n gt h s c al e L of t h e 

e x p eri m e nt a s ~ L − m . 

E v e n t h o u g h fr a ct ur e i n n o nli n e ar el a sti c m at eri al s al s o oft e n i niti at e s fr o m c or n er s, it i s u n k n o w n w h et h er a si mil ar a p pr o a c h t o 

t h at d e s cri b e d a b o v e c a n b e a p pli e d. T hi s q u e sti o n i s st u di e d i n t h e pr e s e nt p a p er. W e pr e p ar e a r e ct a n g ul ar p ol y a cr yl a mi d e h y dr o g el 

a n d gl u e it b et w e e n t w o i n e xt e n si bl e p ol y e st er fil m s. T h e e d g e s of t h e h y dr o g el m e et t h e fil m s t o f or m 9 0- d e gr e e c or n er s. T h e h y dr o g el 

i s l a p- s h e ar e d u ntil fr a ct ur e i niti at e s fr o m a c or n er. W e r e c or d t h e s h e ar str e s s- str ai n c ur v e s f or h y dr o g el s of diff er e nt t hi c k n e s s e s H . 

W h er e a s t h e s h e ar m o d ul u s i s i n d e p e n d e nt of H , t h e s h e ar str e n gt h s c al e s a s ~ H − 0. 4 (S e cti o n 2 ). W e t h e n si m ul at e t h e l a p s h e ar t e st 

wit h fi nit e el e m e nt s. A n o nli n e ar el a sti c z o n e e xi st s ar o u n d t h e c or n er, i n w hi c h t h e str e s s fi el d v ari e s sl o wl y. W h e n t h e n o nli n e ar 

el a sti c z o n e i s s m all c o m p ar e d t o t h e t hi c k n e s s of t h e h y dr o g el, a n a n n ul u s e xi st s i n w hi c h a si n g ul ar fi el d of li n e ar el a sti cit y pr e v ail s. 
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Inside the annulus, the stress field closely matches that of linear elasticity that is, the stress field scales with the distance R from the 
corner as ~ R 0.41 (Section 3). We call this condition small-scale nonlinear elasticity. Our numerical simulation shows that the small- 
scale nonlinear elasticity condition holds when the hydrogel fractures at a shear strain as large as 80%. We interpret the experimentally 
observed strength-thickness scaling in terms of the linear elastic singular field (Section 4). We calculate the corner toughness from the 
experimental results and show that it is independent of thickness. The condition of small-scale nonlinear elasticity simplifies the 
characterization of fracture initiated from corners of brittle soft materials. 

2. Lap shear of a soft material 

2.1. Sample preparation 

We prepare polyacrylamide (PAAm) hydrogels by free radical polymerization of acrylamide monomer (Sigma Aldrich, A8887), 
using N,N -methylenebisacrylamide crosslinker (Sigma Aldrich, M7279) and 2-hydroxy-4 (2-hydroxyethoxy)-2-methylpropiophenone 
photoinitiator (Sigma Aldrich, 410896). The molar ratios of water, crosslinker, and initiator to monomer are 25, 5 10 3, and 5 
10 4, respectively. The resulting hydrogels are 86 wt% water. We perform a uniaxial tensile test on the hydrogel, and find that the 
stress-stretch curve is well represented by the neo-Hookean model (Fig. 1). 

Rectangular samples are cut from a large sheet of the hydrogel with a razor blade. A sample of the hydrogel is glued between two 
polyester films (McMaster-Carr, 8567K92) using cyanoacrylate (Krazy glue). The edges of the hydrogel meet the surfaces of the films to 
form 90-degree corners. 

Fig. 1. Uniaxial stress-stretch curve. Define the nominal stress by dividing the tensile force by the cross sectional area of the undeformed sample, F/ 
A. Define the stretch by dividing the deformed length by the undeformed length, l/L. The dashed line is the neo-Hookean model with a shear 
modulus of 15.6 kPa. 

Fig. 2. Shear stress-strain curves of samples of various thicknesses obtained by lap shear. For each thickness, multiple samples are tested. Define the 
shear stress by F/BL and the shear strain by d/H. A neo-Hookean stress-strain curve is plotted with a shear modulus of 14 kPa. 
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2.2. Lap shear 

Lap shear is commonly used to characterize soft layers (Banea and da Silva, 2009; da Silva et al., 2009a, 2009b). Here we lap shear a 
PAAm hydrogel bonded between two polyester films (Fig. 2). Define the shear stress and shear strain by 

(1)  

where F is the force applied to the polyester films, d is the relative displacement of the two films, and H, B and L are the thickness, 
width, and length of the hydrogel, respectively. The width B is chosen to be much larger than the thickness H, such that the hydrogel 
deforms under the plane strain conditions. 

The stress and strain defined by Eq. (1) call for some explanation, because lap shear deforms the hydrogel inhomogeneously. The 
corners concentrate stress, but the regions of stress concentration are small compared to the length L of the hydrogel if L/H 1. 
However, when the length L is too long, the shear lag effect will remove shear stress in the middle portion of the hydrogel (Cox, 1952; 
Hui et al., 2018; Wang et al., 2020). The shear lag model identifies a length scale: 

(2)  

where Eb and Hb are the Young s modulus and thickness of the stiff layers and is the shear modulus of the soft layer. When H L 
Ls a large portion of the hydrogel deforms by nearly homogeneous shear. In our experiments, we choose L such that this condition 
holds. Taking H 1 mm, 14 kPa, Hb 0.25 mm, and Eb 3 GPa, we estimate Ls ~ 23 cm. As a result, the polyester films behave like 
inextensible tapes. The shear stress-strain curve prior to fracture is governed by the average deformation over the entire sample, 
whereas the fracture condition is governed by the stress concentration at the corners. Consequently, lap shear allows us to obtain 
reliable stress-strain curves up until fracture. 

Hydrogels have time-dependent rheological behavior. Leading effects include viscoelasticity and poroelasticity. Our experiments 
are conducted in dry air, and the applied shear strain rate is held constant at 0.2 s 1. The applied shear strain at rupture is between 0.5 
and 2, giving a time to rupture on the order of ~10 s. Viscoelasticity of the polyacrylamide hydrogel has been studied by measuring 
hysteresis in the stress-stretch curves, and the stretch-rate effect on the stress-stretch curves (Hassan et al., 2022; Kim et al., 2021). Both 
types of experiment have shown that the polyacrylamide hydrogel has negligible viscoelasticity. The length scale associated with 
poroelasticity is estimated as L ~ (Dt)0.5, where t is the time scale of the experiment and D is the diffusion coefficient of water (Hong 
et al., 2008). Taking t ~ 10 s and D ~ 10 10 m s 2, we estimate L ~ 10 6 m, beyond which the material is elastic within the time of the 
experiment. The length scale L is much smaller than the thickness of the hydrogel H ~ 1 mm, so through-thickness migration of water 
in the hydrogel is negligible. This length scale L is comparable to the size of the fracture process zone in polyacrylamide hydrogels 
(Chen et al., 2017), so that migration of water is contained within the fracture process zone. In this paper, we treat the hydrogel outside 
of the fracture process zone as a neo-Hookean elastic solid. There are no studies on the effect of poroelasticity on the initiation of 
fracture near corners, but there are studies of this effect on crack growth (Bouklas et al., 2015; Garyfallogiannis et al., 2022; Noselli 
et al., 2016; Wang and Hong, 2012). Ample opportunity exists to study the effect of poroelasticity on the initiation of fracture near 
corners and crack growth in hydrogels. 

2.3. Shear stress-strain curves 

We measure the shear stress-strain curves for hydrogels of thicknesses H (Fig. 2). Prior to fracture, the stress-strain curves are linear 
for all thicknesses. For each shear stress-strain curve, the slope defines the shear modulus , and the maximum stress defines the shear 
strength c. For a neo-Hookean material under shear deformation, the stress-strain relation is linear for strain of any magnitude (Wang 
et al., 2020): 

Fig. 3. Shear modulus and shear strength of the hydrogels of various thicknesses. (a) Shear modulus is independent of thickness. (b) Shear strength 
scales with the thickness as c ~ H 0.4. 
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τ = μ γ . ( 3) 

B ot h t h e m o d uli a n d t h e str e n gt h s v ar y fr o m s a m pl e t o s a m pl e. T h e m o d uli s h o w n o s y st e m ati c d e p e n d e n c e o n t hi c k n e s s, b ut t h e 

str e n gt h s s h o w cl e ar d e p e n d e n c e o n t hi c k n e s s. T h e s e o b s er v ati o n s ar e al s o e vi d e nt w h e n m o d ul u s a n d str e n gt h ar e pl ott e d a s f u n cti o n s 

of t hi c k n e s s ( Fi g. 3 ). T h e a v er a g e s h e ar m o d ul u s i s μ = 1 4 k P a. T h e s h e ar str e n gt h s c al e s wit h t hi c k n e s s a s τ c ~ H − 0. 4 . T h e r e m ai n d er of 

t h e p a p er s et s o ut t o u n d er st a n d t h e s e tr e n d s. 

I n e a c h r u n of t h e e x p eri m e nt, fr a ct ur e i niti at e s fr o m a c or n er of t h e h y dr o g el, n e ar t h e i nt erf a c e b et w e e n t h e h y dr o g el a n d a 

p ol y e st er fil m ( Fi g. 4 ). Fr a ct ur e i niti at e s w h e n t h e s h e ar str e s s- str ai n c ur v e p e a k s. Aft er fr a ct ur e i niti at e s, t h e str e s s dr o p s pr e ci pit o u sl y, 

a n d a cr a c k gr o w s u n st a bl y u ntil it r e a c h e s t h e ot h er e n d of t h e h y dr o g el. W h e n t h e h y dr o g el i s t hi c k, t h e cr a c k gr o w s n e ar t h e i nt erf a c e 

f or s o m e di st a n c e, ki n k s t o t h e ot h er i nt erf a c e, a n d t h e n gr o w s n e ar t h e i nt erf a c e u ntil it r e a c h e s t h e ot h er e n d of t h e h y dr o g el ( Fi g. 4 a). 

W h e n t h e h y dr o g el i s t hi n, t h e cr a c k ki n k s p eri o di c all y b et w e e n t h e t w o i nt erf a c e s ( Fi g. 4 b). T hi s p eri o di c cr a c k tr aj e ct or y l o o k s si mil ar 

t o t h at o b s er v e d  i n a  t hi n e p o x y l a y er  b et w e e n  t w o al u mi n u m  s u b str at e s ( C h ai,  1 9 8 6 ). N ot e  t h at t h e e p o x y  l a y er  i s l o a d e d  b y  a 

d o u bl e- c a ntil e v er b e a m, b ut t h e h y dr o g el i s l o a d e d b y l a p s h e ar. It i s u n cl e ar t o u s w h et h er t h e p eri o di c cr a c k tr aj e ct ori e s i n t h e t w o 

m at eri al s ar e c oi n ci d e nt al. Si n c e t hi s w or k f o c u s e s o n fr a ct ur e i niti ati o n, w e will n ot st u d y t h e cr a c k tr aj e ct ori e s f urt h er. I n all c a s e s, 

e v e n w h e n t h e cr a c k gr o w s n e ar a n i nt erf a c e, fr a ct ur e i s c o h e si v e. T h er e ar e al w a y s t hi n l a y er s of h y dr o g el l eft o n t h e p ol y e st er fil m s. 

W e n o w c o n si d er w h et h er fr a ct ur e at t h e c or n er i s g o v er n e d b y t h e pr e s e n c e of u ni nt e nti o n al fi a w s. W e m e a s ur e t h e fr a ct ur e 

t o u g h n e s s, G c ~ 3 5 J / m 2 , b y l a p s h e a r of t h e h y dr o g el c o nt ai ni n g a l o n g pr e cr a c k (W a n g et al., 2 0 2 0 ). W e c al c ul at e t h e w or k of 

fr a ct ur e, W c ~ 9 0 0 J / m 3 , b y t h e a r e a u n d er t h e t e n sil e str e s s- str et c h c ur v e of t h e h y dr o g el c o nt ai ni n g n o pr e cr a c k (Fi g. 1 ). T h e r ati o, 

G c / W c ,  d e fi n e s  a  m at eri al  s p e ci fi c  l e n gt h,  c all e d  t h e  fr a ct o c o h e si v e  l e n gt h  (C h e n  et  al.,  2 0 1 7 ).  T h e  fr a ct o c o h e si v e  l e n gt h  of  t h e 

h y dr o g el i s G c / W c ~ 4 0 µ m. Si n c e t h e fr a ct o c o h e si v e l e n gt h i s l ar g er t h a n t h e si z e of t y pi c al fi a w s cr e at e d d uri n g s a m pl e pr e p ar ati o n, it 

i s u nli k el y t h at fr a ct ur e i s g o v er n e d b y u ni nt e nti o n al fi a w s. F urt h er m or e, si n c e t h e st ati sti c al s c att er i s si mil ar f or t h e m o d ul u s a n d 

str e n gt h ( Fi g. 3 ), it i s u nli k el y t h at t h er e ar e si g ni fi c a nt fi a w s of u n k n o w n l e n gt h c a u si n g fr a ct ur e i niti ati o n. T h er ef or e, w e h y p ot h e si z e 

t h at fr a ct ur e i niti ati o n i s g o v er n e d b y t h e str e s s c o n c e ntr ati o n at t h e c or n er. 

3. St r e s s fi el d n e a r a c o r n e r 

3. 1. Li n e ar el asti cit y 

Str e s s c o n c e ntr at e s n e ar a c or n er. I n li n e ar el a sti cit y, t h e str e s s fi el d i s p o w er-l a w si n g ul ar ( Willi a m s, 1 9 5 2 ; B o g y, 1 9 7 1 ; H ei n a n d 

Er d o g a n, 1 9 7 1 ): 

σ ij( R , Θ )  = k R − m fij( Θ ), ( 4) 

Fi g. 4. M or p h ol o g y of fr a ct ur e. Aft er i niti ati n g at a c or n er, a cr a c k gr o w s i n t h e h y dr o g el. ( a) F or a t hi c k h y dr o g el, H = 6 m m, t h e cr a c k f oll o w s t h e 

i nt erf a c e f or s o m e di st a n c e b ef or e ki n ki n g t o t h e ot h er fil m, a n d t h e n gr o w s al o n g t h e ot h er i nt erf a c e. ( b) F or a t hi n h y dr o g el, H = 0. 7 5 m m, t h e 

cr a c k ki n k s p eri o di c all y b et w e e n t h e t w o fil m s. 

J. St e c k et al.                                                                                                                                                                                                           
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w h er e k i s t h e l o a di n g p ar a m et er t h at s c al e s t h e m a g nit u d e of t h e str e s s fi el d, R i s t h e r a di al di st a n c e fr o m t h e c or n er, Θ i s t h e r a di al 

a n gl e, m i s t h e p o w er of t h e si n g ul ar fi el d, a n d fij(Θ ) a r e t h e a n g ul ar f u n cti o n s. T h e e x p o n e nt m i s d et er mi n e d b y t h e g e o m etr y a n d t h e 

m e c h a ni c al pr o p erti e s of t h e m at eri al s. F or a s oft m at eri al d ef or mi n g u n d er t h e pl a n e str ai n c o n diti o n s, b o n d e d t o a ri gi d m at eri al wit h 

a 9 0- d e gr e e c or n er, li n e ar el a sti cit y pr e di ct s t h at m = 0. 4 1. 

3. 2.  N o nli n e ar el asti cit y 

T h e  str e s s  fi el d  i n  a  n o nli n e ar  el a sti c  m at eri al  d e p e n d s  o n  t h e  m at eri al  m o d el  ( L o n g  a n d  H ui,  2 0 1 5 ).  F or  a n  i n c o m pr e s si bl e 

n e o- H o o k e a n m at eri al, t h e fi el d ar o u n d a c or n er d o e s n ot h a v e a p u bli s h e d a n al yti c al s ol uti o n. R e s ult s f or a c o m pr e s si bl e m at eri al 

m o d el ar e di s c u s s e d i n A p p e n di x A , w hi c h c o m pl e m e nt s s e v er al r e c e ntl y p u bli s h e d w or k s (H ui et al., 2 0 2 2; L e n g y el et al., 2 0 1 4; M o 

et al., 2 0 2 1; T ar a nti n o, 1 9 9 9 ) . H er e w e u s e fi nit e el e m e nt s t o si m ul at e t h e n o nli n e ar el a sti c fi el d i n l a p s h e ar. W e m o d el t h e h y dr o g el a s 

a n e o- H o o k e a n s oli d u si n g t h e c o m m er ci al s oft w ar e A B A Q U S. A h y dr o g el of l e n gt h L = 1 0 0 m m a n d t hi c k n e s s H = 5 m m i s s u bj e ct t o a 

pr e s cri b e d di s pl a c e m e nt d o n t h e t o p b o u n d ar y ( Fi g. 5 a). T h e di s pl a c e m e nt of t h e b ott o m b o u n d ar y i s s et t o z er o. T h e l eft a n d ri g ht 

b o u n d ari e s ar e tr a cti o n fr e e. T h e h y dr o g el i s t a k e n t o b e i n c o m pr e s si bl e, a c o n diti o n t h at w e a p pr o xi m at e b y s etti n g P oi s s o n ’s r ati o t o 

0. 4 9 5. W e u s e pl a n e str ai n h y bri d q u a dril at er al a n d tri a n g ul ar el e m e nt s t hr o u g h o ut t h e e ntir e m o d el. T o r e s ol v e t h e c or n er str e s s 

c o n c e ntr ati o n, w e u s e a r e fi n e d m e s h n e ar t h e b ott o m-l eft c or n er ( Fi g. 5 b). A p ol ar c o or di n at e s y st e m i n t h e u n d ef or m e d st at e ( R , Θ ) i s 

c e nt er e d at t h e b ott o m-l eft c or n er. N e ar t hi s c or n er, t h e m e s h b e c o m e s 1 0 ti m e s fi n er f or e v er y d e c a d e i n R , pr o d u ci n g a l o g arit h mi c 

m e s h s p a ci n g i n R . T h e mi ni m u m m e s h si z e n e ar t h e c or n er i s 2 × 1 0 − 6 H . 

T h e t r u e st r e s s σ 1 2 at Θ = 0 i s pl ott e d a s a f u n cti o n of R f or diff er e nt a p pli e d str ai n s (Fi g. 6 ). T h e s h e ar str e s s i s n or m ali z e d b y t h e 

s h e ar m o d ul u s. Si n c e t h e t hi c k n e s s of t h e s a m pl e i s m u c h s m all er t h a n t h e l e n gt h, t h e n e ar- c or n er fi el d i s i n s e n siti v e t o t h e l e n gt h L , 

a n d w e n or m ali z e t h e r a di u s b y t h e t hi c k n e s s H . W h e n t h e a p pli e d s h e ar str ai n i s γ = 0. 0 2 5, t h e s h e ar str e s s r e c o v er s t h e a p pli e d s h e ar 

str e s s w h e n R > 2 H , a n d b e n d s t o a hi g h l e v el w h e n R < 1 0 − 5 H. I n a n i nt e r m e di at e i nt er v al, 1 0− 5 H < R < 3 × 1 0 − 1 H , t h e s c ali n g of 

t h e s h e ar str e s s a p pr o xi m at el y m at c h e s t h at of a li n e ar el a sti c pl a n e str ai n c or n er o n a ri gi d s u b str at e, w h er e σ 1 2 ~ R − 0. 4 1 w h e n 

P oi s s o n ’s r ati o i s 0. 5 ( Willi a m s, 1 9 5 2 ; R e e d y, 1 9 9 0 ). W h e n γ i s b et w e e n 0. 0 2 5 a n d 0. 8, t h e s h e ar str e s s s c al e s a c c or di n g t o t h e li n e ar 

el a sti c si n g ul arit y f or i nt er m e di at e R / H , a n d v ari e s sl o wl y at s m all R / H . T hi s sl o w v ari ati o n of σ 1 2 i s c o n si st e nt wit h t h e b e h a vi or of a 

n e arl y i n c o m pr e s si bl e Bl at z- K o m at eri al n e ar a c or n er, f or w hi c h w e s h o w t h e tr u e str e s s i s n ot p o w er-l a w si n g ul ar ( A p p e n di x A ). W e 

Fi g. 5. Fi nit e el e m e nt m o d el. ( a) M e s h of a n e ntir e s a m pl e, l e n gt h L a n d t hi c k n e s s H , s a n d wi c h e d b et w e e n t w o ri gi d s u b str at e s. W h e n t h e t o p 

s u b str at e i s s h e ar e d r el ati v e t o t h e b ott o m s u b str at e b y a di s pl a c e m e nt d , t h e s a m pl e d ef or m s u n d er t h e pl a n e str ai n c o n diti o n s. ( b) M e s h n e ar a 

c or n er i n a r e gi o n of h ei g ht 0. 0 1 H . 

Fi g. 6. Fi nit e el e m e nt r e s ult s. N or m ali z e d tr u e s h e ar str e s s, σ 1 2 / μ , a s a f u n cti o n of R / H f or diff er e nt a p pli e d str ai n s γ = d / H . T h e s h e ar str e s s i s 

e v al u at e d al o n g t h e b o u n d ar y at Θ = 0. T h e d a s h e d li n e s ar e t h e li n e ar el a sti c s ol uti o n e v al u at e d fr o m E q. ( 6) wit h Y = 0. 2 2 f or e a c h γ . 
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designate the nonlinear elastic zone as the region of small R/H where the scaling of the shear stress deviates from the linear elastic 
singularity. For 1, 2, and 4, the scaling of the shear stress does not match the linear elastic singularity for any R/H. We plot the 
remaining components of the stress field and the strain energy density, W, along 0 in Appendix B (Fig. B1). The variation of 11 and 
W with R/H closely follow that of 12. The true stresses 22 and 33 also follow the linear elastic singularity for intermediate R/H and , 
but plateau rapidly to for small R/H. 

The stress field and strain energy density along 45 are plotted as functions of R/H for different applied strains (Fig. B2). Both 
the stress field and the strain energy density along 45 resemble those along 0, following the scaling of the linear elastic 
singularity for intermediate values of R/H and . This suggests that the region where the stress field is described by a linear elastic 
singularity is annular, provided that 0.8. Furthermore, the stress 12 is plotted as a function of with constant R/H and different 
applied strains (Fig. B3). We also plot the remaining components of the stress field along R/H 10 1 as functions of (Fig. B4). All 
components fluctuate with when the strain is small, but are approximately constant with when the strain is large. The transition 
between the small and large strain behaviors occurs gradually between 0.1 and 1. 

4. Small-scale nonlinear elasticity 

The stress field near a corner of a linear elastic material is power-law singular, while that of a nonlinear elastic material is not 
(Section 3). However, a zone can exist in a nonlinear elastic material where the stress field is described by a linear elastic singularity, 
provided the deformation is small. Inside this zone, the stress increases while approaching the corner, until the material behaves 
nonlinearly. We denote the radius of this transition as RN (Fig. 7), which scales the size of the nonlinear elastic zone. On the other hand, 
the linear elastic singularity does not describe the stress field near the boundaries of the sample, where it is instead set by the far field 
loading. We denote the upper radius for which the linear elastic singularity holds by RL (Fig. 7), where RL is much smaller than the 
length scale of the boundaries. In lap shear, this length scale is the thickness H. These two lengths, RN and RL, define an annulus in 
which a singular field of linear elasticity prevails. This region is called the k-annulus. 

When RN is smaller than RL, the k-annulus exists. We call this condition small-scale nonlinear elasticity. This is analogous to the 
small-scale yielding condition (Anderson, 2017). When this condition holds, the stress field in the k-annulus is independent of the 
material behavior inside the nonlinear elastic zone. When the size of the nonlinear elastic zone is comparable to the size of the body, 
small-scale nonlinear elasticity does not hold, and the nonlinear boundary value problem must be solved. This is analogous to 
large-scale yielding in elastic-plastic fracture mechanics, where the solution of the HRR field is required to correlate the experiment 
conditions of fracture (Hutchinson, 1968; Rice and Rosengren, 1968). 

Our finite element results indicate that the k-annulus exists when 0.8 (Fig. 6). Therefore, we analyze the corner using the small- 
scale nonlinear elasticity condition and correlate the predictions with the experimental data in Fig. 3. We note that our analysis with 
the small-scale nonlinear elasticity condition is independent of the material behavior inside the nonlinear elastic zone. 

4.1. Loading parameter k 

We now connect the loading conditions to the linear elastic singularity. The applied shear strain produces a uniform shear stress 
in the bulk of the gel. is transmitted to the corner through the loading parameter k, producing the stress field ij(R, ) in Eq. (4). k 

is the only parameter linking the far field loading to the singular stress field. Dimensional analysis and linearity require that k should 
take the form: 

(5)  

where Y is a function of the dimensionless parameters of the system. The variation of Y with L/H follows the same considerations as Eq. 
(1). When H L Ls a large portion of the sample deforms homogeneously, and Y will not vary with L/H. Furthermore, we have 
assumed that the material is incompressible, so that the linear boundary value problem has no dimensionless parameter. Thus, Y is a 
dimensionless constant. 

Fig. 7. Small-scale nonlinear elasticity. A polar coordinate system (R, ) is centered at a corner. Near the corner, a nonlinear elastic zone of size RN 
exists. When RN H, an annulus of inner radius RN and outer radius RL exists, in which the linear elastic singularity prevails. Far from the corner, 
the material has uniform shear stress, . 
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We now write the singular stress field in terms of the far field strain, . Combining Eqs. (3), (4), and (5), and normalizing f12( ) such 
that f12( ) 1 at 0 gives: 

(6) 

We calibrate the parameter Y by matching Eq. (6) to the data in Fig. 6. Since Eq. (6) assumes linear elasticity, Y does not vary with 
the far field strain. Therefore, we evaluate Y at 0.025 to be Y 0.22. The linear results plotted in Fig. 6 correspond to Eq. (6) with Y 

0.22 for each . We note, however, that the deformation is not infinitesimal when is larger than a few percent. At large , finite 
deformation causes the linear elastic singularity to deviate from the finite element results in the k-annulus (Fig. 6). To quantify the 
magnitude of this effect, we plot Y as a function of in Fig. 8, where Y is calculated by matching Eq. (6) to the finite element results in 
the k-annulus for each . Y varies from Y 0.22 for 0.1 to Y 0.38 at 0.8. Since Y is a weak function of over multiple orders of 
magnitude, we expect the error from using Y 0.22 to be small when correlating the predictions from this method with the exper
imental data. 

Note that since the simulation was run with constant thickness, there can be a normal stress developed at the boundaries due to the 
Poynting effect (Truesdell and Noll, 2004). This effect is absent in linear elasticity, and is purely a result of finite deformation. We 
observe this effect in the true stress 11 far from the corner (Fig. B1b). At R/H 10, 11 is negligible when is small, but of comparable 
magnitude to 12 when ~ 1. It is possible that this stress can influence the stress field near the corner. However, the linear elastic 

Fig. 8. The dimensionless function Y as a function of applied shear strain . The dashed line corresponds to Y 0.22.  

Fig. 9. The normalized linear elastic annulus size, RL/H, and nonlinear elastic zone size, RN/H, as functions of applied shear strain . The dashed line 
is the linear elastic scaling of RN/H in Eq. (7). 
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solution in Eq. (6) with Y 0.22 accurately predicts 12 in the linear elastic annulus up to ~ 0.8. Eq. (6) does not include the effects of 
normal stresses at the boundaries when Y 0.22. Therefore, we do not consider how normal stresses at the boundaries affect the 
near-corner stress field in this paper. More research is needed into the relationship between the Poynting effect and the stress fields 
near corners and cracks. 

4.2. Nonlinear elastic zone size 

RN and RL are measured from the finite element results. Note that the linear elastic singularity is represented in Fig. 6 by lines of 
constant slope, equal to -0.41. By contrast, the slopes of the finite element results are approximately equal to -0.41 inside the k-annulus, 
but deviate from -0.41 outside the k-annulus. That is, for a given applied strain , the slope of the finite element result deviates from the 
linear elastic singularity twice. We define RN and RL, respectively, as the smaller and larger radii where the slope deviates from that of 
the linear elastic singularity by 10%. When the applied strain is very large, the slope deviates from -0.41 by greater than 10% for all R/ 
H. In this case, the k-annulus does not exist, and RN and RL are not defined. We plot RN/H and RL/H as functions of in Fig. 9. RN/H 
increases with , while RL/H is approximately independent of at RL/H 3 10 1. When RN RL, small-scale nonlinear elasticity 
holds. In Fig. 9, we see that small-scale nonlinear elasticity holds for up to 0.8. 

In ductile metals, the size of the nonlinear zone is typically estimated by setting the shear stress in the singular field equal to the 
yield stress (Anderson, 2017). By contrast, a nonlinear elastic material behaves nonlinearly when the stress is on the order of the 
modulus (Long et al., 2021). Therefore, we estimate the size of the nonlinear elastic zone, RN, by setting 12 ~ in Eq. (6): 

/
(7) 

We plot Eq. (7) as the dashed line in Fig. 9. The nonlinear elastic zone size is predicted from the linear elastic singularity up to a 

Fig. 10. Corner toughness kc as a function of thickness. A horizontal line is drawn at the average corner toughness of 0.27 Pa m0.41.  

Fig. A1. Wedge of angle undergoing finite plane strain deformation on a rigid substrate. Coordinate systems are centered at the intersection of the 
traction-free and displacement-free boundaries. A material particle is labeled by (a) (X1, X2) and (R, ) in the undeformed state and (b) (x1, x2) in the 
deformed state. 
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constant coefficient. Note that the linear prediction in Eq. (7) is independent of the material behavior in the nonlinear elastic zone. 

4.3. Corner toughness 

The parameter k may be used to define the loading necessary to initiate fracture at the corner (Reedy and Guess, 1993, 1995; Dunn 
et al., 1997). Fracture initiates at the corner when k reaches a critical value, kc, called the corner toughness. Using Eq. (5), we relate the 
corner toughness to the shear strength, c, as 

(8) 

Next, we use Eq. (8) to calculate the corner toughness of the hydrogel (Fig. 10). Every data point in Fig. 3b corresponds to a corner 
toughness in Fig. 10. The corner toughness is independent of thickness and has an average value of 0.27 kPa m0.41. Since the corner 
toughness is independent of the sample geometry, it is a material property. 

Note that the maximum strain applied in our experiments was 2 (Fig. 3). Therefore, we violate small-scale nonlinear elasticity 
when 0.8. In calculating the corner toughness, we have assumed that small-scale nonlinear elasticity applies for all thicknesses. 
Although the simulation shows that small-scale nonlinear elasticity is only valid for 0.8, our experimental data show that corner 
toughness is a material property up to 2. For a tougher hydrogel that ruptures at larger strains, the non-singular field near the 
corner will have a more significant effect on the initiation of fracture. Characterizing fracture initiation near corners in highly 
stretchable hydrogels is the subject of an ongoing work. 

We now estimate the nonlinear elastic zone size at the initiation of fracture using the corner toughness. Assume that nonlinear 
elasticity occurs when 12 ~ . Evaluating Eq. (4) at 0, R RN, and k kc yields 

(9) 

This estimate does not reference the geometry of the sample or the material behavior in the nonlinear elastic zone. For our material, 
Eq. (9) gives RN ~ 60 m, which readily satisfies the condition for small-scale nonlinear elasticity: RN RL H. In the present work, 
the corner toughness is not high, enabling us to apply small-scale nonlinear elasticity for modest H. 

Fig. B1. Strain energy density and normal stress at 0. (a) W/ , (b) 11/ , (c) 22/ , and (d) 33/ are plotted as functions of R/H for different 
applied strains . 
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5. Concluding remarks 

We have studied the initiation of fracture from a corner in a hydrogel. We observe that the modulus is independent of thickness, but 
the strength scales with the thickness as ~ H 0.4. This scaling is interpreted in terms of the elastic field around the corner. For a 90- 
degree corner and a neo-Hookean material, a finite element analysis shows a nonlinear elastic zone around the corner, in which the 
stress varies slowly. When the nonlinear elastic zone around the corner is much smaller than the thickness of the hydrogel, an annulus 
exists in which the linear elastic singularity prevails. Inside the annulus, the stress scales approximately as ~ R 0.41. We show that such 
a condition of small-scale nonlinear elasticity applies even when the applied strain is as large as 80%. Consequently, the linear elastic 
singularity explains the experimentally observed scaling between strength and thickness. We calculate the corner toughness from the 
experimental data and show that it is a constant independent of thickness. This approach greatly simplifies the characterization of 
fracture initiated from corners of brittle soft materials. 
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Appendix A. Blatz-Ko wedge undergoing plane strain deformation on a rigid substrate 

For a neo-Hookean material, the stress field near a corner under the plane strain conditions does not have a published analytical 
solution. There is a solution, however, to the stress field near an interface crack in a Blatz-Ko material undergoing plane strain 
deformation (Lengyel et al., 2014). Here we adapt their analysis to solve the nominal stress field for such a material near a wedge of 
angle . We consider the incompressible limit, such that the Blatz-Ko material model reduces to neo-Hookean. We find that the 
nominal stress field is singular, and the singular exponent is 1 /2 . When 90 degrees, 1 /2 0, and the asymptotic as
sumptions break down. Thus, the nominal stress field near the corner is not power-law singular. We also show that the true stress field 
near the corner is not power-law singular. 

Consider a material particle denoted by X in the undeformed state and x in the deformed state (Fig. A1). A field of deformation of 
the body is described by the function x(X). A plane strain deformation requires that x3 X3 for all X. In the following, indices labeled 
with Greek letters can be either 1 or 2. The in-plane deformation gradient is F dx /dX , and has two scalar invariants: I F11

2 F12
2 

F21
2 F22

2 and J F11F22 F12F21. 
Following Lengyel, we consider a compressible Blatz-Ko material model (Lengyel et al., 2014). Under the plane strain conditions, 

the Helmholtz free energy density W of this material is: 
( )

(A1)  

where is the shear modulus and is related to Poisson s ratio as /(1 2 ). represents the compressibility of the material. When 
the material is incompressible, 0.5, and approaches infinity. In the following, we consider the limit as approaches infinity. 

The in-plane components of the nominal stress, s dW/dF , are: 

  (A2)  

where is the 2-dimensional Levi-Civita symbol. 
In polar coordinates, static equilibrium in the absence of body forces, ds /dX 0, gives: 

( ) ( )

(A3a)  

( ) ( )

(A3b)  

where the polar coordinates (R, ) are defined in the undeformed state (Fig. A). 
Assume the deformed coordinates x1 and x2 are separable and have the asymptotic form: 

(A4)  

where n is a scalar between 0 and 1, and U ( ) are the angular functions. Taking the limits as R 0 and , the first terms of Eq. 
(A3) dominate. Thus, the governing equations reduce to Rn 2 U n2U 0. Since the governing equations must hold for all R, they 
further reduce to a pair of linear, homogeneous 2nd order differential equations with constant coefficients: 

(A5) 

The governing equations constitute an eigenvalue problem for eigenfunctions U and eigenvalues n. 
We set the boundary conditions such that the soft material is displacement-free at 0 and traction-free at . The 

displacement-free boundary condition requires that x1 R and x2 0 at 0, while the traction-free boundary condition requires 
that x 0 at . In the limit as R 0, the boundary conditions are expressed in terms of U : 

(A6a)  

(A6b) 

The general solution to Eq. (A5) is U a sin(n ) b cos(n ), where a and b are constants. Applying the boundary conditions, 
the characteristic equation for n is cos(n ) 0. The smallest positive integer solution gives: 

(A7) 

The general solution becomes U a sin(n ), where a are constants related to the far field loading. The deformed coordinates are: 
( )

(A8) 

The in-plane components of the deformation gradient in polar coordinates are computed as F x
R

R
X

x
X , giving: 

J. Steck et al.                                                                                                                                                                                                           



Journal of the Mechanics and Physics of Solids 170 (2023) 105115

13

(A9) 

The deformation field in Eq. (A8) provides the weak estimate that J O(R2n-2). The asymptotic behavior of J is thus undetermined, 
and must depend on higher order terms of x1 and x2. However, this weak estimate does indicate that the leading order singular term of 
J is weaker than R2n-2. We proceed without calculating the weaker order terms of J. 

When J is singular, the first term of Eq. (A2) dominates as R 0 and . In this limit, the components of the nominal stress are: 

(A10) 

The singular exponent of the nominal stress field is 1 n 1 /2 . Perhaps surprisingly, Eqs. (A7), (A9), and (A10) are identical 
to those for a wedge of an incompressible neo-Hookean material under the plane stress conditions (Tarantino, 1999; Mo et al., 2021). 

When , the problem reduces to an interface crack. In this case, n 1/2 and all components of the nominal stress have a R 1/2 

singularity. As decreases from , the stress singularity weakens. 
When /2, the problem reduces to a 90-degree corner. In this case, n 1, and F , s , and J are not power-law singular. 

Moreover, the true stress, calculated as J 1s F , is also not power-law singular. The true stress field may have a singularity 
weaker than that of a power-law, or it may be finite. This is in agreement with our finite element results inside the nonlinear elastic 
zone, where 12 varies slowly over the resolution of our simulation, R/H 2 10 6 (Fig. 6). 

We note that when /2, the first terms of Eq. (A3) do not necessarily dominate as R 0. In this case, the governing equations 
may not be given by Eq. (A5). To proceed, we assume Eq. (A4) with n 1, such that x1 and x2 are separable but F is not singular. The 
governing equations become: 

( ) ( ) ( )

( ) ( ) ( )
(A11) 

In the limit as , the second terms of Eq. (A11) dominate for all R. This is opposite to the conclusion when n 1. Consequently, 
U1 equals U2 up to a constant coefficient. It is then required that U1U2 U2U1 and U1U2 U2U1 are simultaneously zero. The second 
terms of Eq. (A11) equal zero for all R, and the governing equations again reduce to (A5), verifying our solution at /2. 

Before we submitted this paper, a new paper was published online by H. Hui, B. Zhu, and M. Ciccotti, which solved the stress field 
near a wedge in a Blatz-Ko material undergoing plane strain deformation (Hui et al., 2022). Our results for the deformation and 
nominal stress are in agreement. In particular, the deformation gradient in Eq. (A9) matches their Eq. (50), and the nominal stress in 
Eq. (A10) matches their Eq. (51). However, their analysis is more complete than ours in two ways. First, they compute higher order 
terms in x1 and x2, providing the asymptotic behavior of J and . These higher order terms also contain effects of the compressibility 
parameter, . Second, they find that when /2, the true stress field has a logarithmic singularity. The authors also note that there is 
no proof that the limit where corresponds to a neo-Hookean incompressible solid. 

Appendix B. Finite element results of stress field near the corner 

For all figures in Appendix B, the stress field near the corner is evaluated at applied shear strains 0.025, 0.05, 0.1, 0.2, 0.4, 0.6, 
0.8, 1, 2, and 4. Each line in Figs. B1, B2, B3, and B4 correspond to one applied . All components of the stress field increase with , and 
can be identified by matching the order of the lines in each figure to the applied strains. 
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