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Abstract
In this article a higher order support theory, called the cohomological jump loci, is introduced
and studied for dg modules over a Koszul extension of a local dg algebra. The generality of
this setting applies to dgmodules over local complete intersection rings, exterior algebras and
certain group algebras in prime characteristic. This family of varieties generalizes the well-
studied support varieties in each of these contexts. We show that cohomological jump loci
satisfy several interesting properties, including being closed under (Grothendieck) duality.
Themain application of this support theory is that over a local ring the homological invariants
of Betti degree and complexity are preserved under duality for finitely generated modules
having finite complete intersection dimension.
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Introduction

Over a local complete intersection ring the minimal free resolution of a finitely generated
module has polynomial growth. More precisely the Betti numbers are eventually modeled
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by a quasi-polynomial of period two. A striking result of Avramov and Buchweitz in [4],
implicitly contained in [1], is that the degrees of the quasi-polynomials corresponding to the
Betti numbers of a finitely generated module and its (derived) dual coincide; see also [31,
38]. In this article we strengthen this result by showing their leading terms also agree.

Throughout we fix a surjective map ϕ : A → B of local rings with common residue field
k. We assume ϕ is complete intersection of codimension c in the sense that its kernel is
generated by an A-regular sequence of length c. Let M be a finitely generated B-module that
has finite projective dimension over A.

Classical results of Eisenbud [22] and Gulliksen [26] associate to ϕ a ring of cohomology
operators S = k[χ1, . . . , χc], with each χi residing in cohomological degree 2, in a way
that the graded k-space ExtB(M, k) is naturally a finitely generated graded S-module. The
Hilbert–Serre theorem implies that the Krull dimension of ExtB(M, k) over S is the degree
of the quasi-polynomial eventually governing the sequence of Betti numbers βB

i (M) for M .
This value is called the complexity of M over B, denoted cxB M; see Definition 3.1 for a
precise definition.

This article concerns the behaviour of this quasi-polynomial with respect to the derived
duality M∗ = RHomB(M, B). When M is maximal Cohen-Macaulay, this coincides with
the ordinary B-dual module.

In this notation, it was shown in [4] that the supports of ExtB(M, k) and ExtB(M∗, k)
over S are the same and hence cxB M = cxB M∗; see also [31, 38] for different proofs.
However the methods in loc. cit. are not fine enough to show that the leading coefficients of
the quasi-polynomials corresponding to the Betti numbers of two B-modules agree.

Theorem A Let ϕ : A → B be a surjective complete intersection map with common residue
field k. For a finitely generated B-module M whose projective dimension over A is finite,
the multiplicities of ExtB(M, k) and ExtB(M∗, k) over S coincide. In particular, the leading
terms of the quasi-polynomials eventually modeling βB

i (M) and βB
i (M∗) agree.

The theorem above is contained in Theorem 3.6 where it is stated in terms of Betti degrees;
see Definition 3.1. These values, studied in [1–3, 27], are normalized leading coefficients for
the quasi-polynomials eventually corresponding to sequences of Betti numbers. Theorem A
can also be proven using work of Eisenbud, Peeva and Schreyer [23]; see Remark 3.7 for a
discussion of this connection. From Theorem A we deduce that the Betti degree of a module
of finite complete intersection dimension and its dual coincide; see Corollary 3.10. Another
consequence is the following.

Corollary B If A is Gorenstein, the leading terms of quasi-polynomials eventually modeling
the Betti numbers and the Bass numbers of M are the same.

The proof of Theorem A is geometric in nature, and does not rely on special properties
of resolutions with respect to the duality functor. We show that the Betti degree is encoded
in a sequence of varieties, refining the support theory of Avramov and Buchweitz, studied
and extended by many others in local algebra [1, 4, 11, 19, 28, 35]. Cohomological supports
have yielded applications in revealing asymptotic properties for local complete intersection
maps in loc. cit., and more recently, their utility has been detecting the complete intersection
property among surjective maps and maps of essentially finite type [15, 16, 34]. Below we
discuss properties of the support theory presented in this article, and direct the curious reader
to their construction in Definition 1.6.

We associate to M a nested sequence of Zariski closed subsets of P
c−1
k , called the

cohomological jump loci of M ,

P
c−1
k = V0

ϕ(M) ⊇ V1
ϕ(M) ⊇ V2

ϕ(M) ⊇ . . . .
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The first jump locus V 1
ϕ (M) is the support of ExtB(M, k) over S, and hence it coincides with

the cohomological support of M studied by Avramov et. al. From a geometric perspective,
the sequence of cohomological jump loci can be arbitrarily complicated: any nested sequence
of closed subsets of P

c−1
k can be realized as the sequence jump loci of some B-module, up

to re-indexing; see Theorem 1.14.
This theory is analogous to the jump loci in [18] for differential graded Lie algebras

which have found numerous applications in geometry and topology. The cohomological
jump loci in the present article have several interesting properties. For example, they respect
the triangulated structure of derived categories in an “additive” sense; see Proposition 2.10
for a precise formulation. We highlight two properties here. First, upon a reduction to the
case of maximal complexity, the sequence of cohomological jump loci for M encodes its
Betti degree; this is the content of Lemma 3.5. The second property, found in Theorem 2.8,
is the following.

Theorem C Let ϕ : A → B be a surjective complete intersection map. If M is a finitely
generated B-module whose projective dimension over A is finite, then there are the equalities
Vi

ϕ(M) = Vi
ϕ(M∗) for all i ≥ 0.

Outline

In Sect. 1 we introduce the theory of cohomological jump loci. This is done in greater gen-
erality than discussed above. Namely we let A be a local differential graded (=dg) algebra
and consider a Koszul complex B on a finite list of elements in A0; in this context M is a dg
B-module that is perfect over A. A number of examples are provided and we conclude the
section with our realizability result, discussed above, in Theorem 1.14.

In Sect. 2 we establish basic and important properties of cohomological jump loci. The
main result of the section is that the cohomogical jump loci of M and M∗ are the same; this
is the subject of Theorem 2.8. Finally, Sect. 3 specializes to the context of the introduction,
and to modules of finite complete intersection dimension. This contains applications to local
algebra like Theorem A and Corollary B, discussed above.

1 Definitions and examples

Throughout this article (A,m, k) is a fixed commutative noetherian local dg algebra. That
is, A = {Ai }i≥0 is a nonnegatively graded, strictly graded-commutative dg algebra with
(A0,m0, k) a commutative noetherian local ring, and the homology modules Hi (A) are
finitely generated over H0(A).

We fix a list of elements f = f1, . . . , fc in m0 and set

B := A〈e1, . . . , ec | ∂ei = fi 〉
to be the Koszul complex on f over A—that is, B is the exterior algebra over A on exterior
variables e1, . . . , en of degree 1 with differential uniquely determined, via the Leibniz rule,
by ∂ei = fi . This will be regarded as a dg A-algebra in the standard fashion, and we let
ϕ : A → B be the structure map.

We will also denote throughout

S := k[χ1, . . . , χc],
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the graded polynomial algebra over k generated by polynomial variables χi of cohomological
degree 2. We refer to S as the ring of cohomology operators (over k) corresponding to ϕ; this
name is justified in 1.4.

Remark 1.1 If A is a local ring (that is, concentrated in degree 0), as in the introduction,
then B is quasi-isomorphic to A/( f ) under the additional assumption that f is an A-regular
sequence. In this case, everything that follows directly translates to the setting where we
instead define B = A/( f ) from the beginning, cf. [24, Theorem 6.10].

We let D(B) denote the derived category of dg B-modules. This is a triangulated category
in the usual way; see [5, Section 3]. Restricting along the structure map A → B defines a
functor D(B) → D(A). Through this map objects of D(B) are regarded as objects of D(A).

It will be convenient for us to work in the following subcategory of D(B).

Definition 1.2 LetDb(B/A) denote the full subcategory ofD(B) consisting of dg B-modules
which are perfect when restricted to D(A). That is, M belongs to Db(B/A) provided that,
while viewed as an object of D(A), it belongs to the smallest thick subcategory containing
A. This category is denoted Dϕ–b(B) in [25].

Remark 1.3 When A is a regular local ring,Db(B/A) is simply the bounded derived category
of dg B-modules; namely, Db(B/A) is exactly the full subcategory of D(B) consisting of dg
B-modules with finitely generated homology over the ring A, which is often denoted Db(B).

The utility of this category is due to a theorem of Gulliksen [26, Theorem 3.1] which is
recast in the following construction.
1.4. If M is an object of Db(B/A) then RHomB(M, k) can naturally be given the structure
of a perfect dg S-module.

Indeed, RHomB(M, k) is quasi-isomorphic to HomA(F, k) ⊗k S, with the twisted
differential

∂Hom(F,k) ⊗ 1 +
n∑

i=1

Hom(ei−, k) ⊗ χi

where F
	−→ M is a semifree resolution of M over B. This defines a dg S-module structure

that is independent of choice of F up to quasi-isomorphism; cf. [3, Section 2]. When we need
to refer to this dg S-module explicitly, it will be denoted RHomA(M, k) ⊗τ

k S; this notation
is used, for example, in Theorem 2.8.

We point out that F
	−→ M can be taken to be any dg B-module map where the underlying

graded A-module of F is a finite coproduct of shifts of A, provided such an F exists. When
A is a ring, the existence of such a resolution is contained in [3, 2.1]. If such a resolution
exists, then one can show that HomA(F, k) ⊗τ

k S is a perfect dg S-module arguing as in [7,
9, 35]. However, at this level of generality, the existence of such resolutions has not been
established, and so we argue in a different fashion.

Under the identification of RHomB(M, k)with RHomA(M, k)⊗τ
k Swe have the following

quasi-isomorphism

RHomB(M, k)

(χ) RHomB(M, k)
	 RHomA(M, k)

and because M is perfect over A, the homology module H(RHomA(M, k)) is a finite k-
space. It follows by a homological version of Nakayama’s lemma, see for example [35,
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Theorem 3.2.4], that ExtB(M, k) = H(RHomB(M, k)) is finitely generated over S. Finally,
sinceS has finite global dimension, we conclude that RHomB(M, k) is perfect when regarded
as a dg S-module as claimed.

When A is an (orindary) ring and f is an A-regular sequence, S2 is the usual k-space of
operators associated to f in the works of Avramov [1], Eisenbud [22], Gulliksen [26], Mehta
[33], and others; this is clarified in [12].

Remark 1.5 While our focus is on the S-action on ExtB(M, k), the cohomology operators χ

do lift to elements of ExtB(M, M), and we will use this in 1 below.
Indeed,mimicking the proof of [3, Proposition 2.6], it follows that the operatorsχ defining

S can be realized as elements in the Hochschild cohomology of B over A. More precisely,
with Be

A denoting the enveloping dg algebra of B over A, there is an isomorphism of dg
algebras

RHomBe
A
(B, B) 	 B[χ1, . . . , χc]

where each χi is in cohomological degree 2. This quasi-isomorphism yields a homomor-
phism B[χ1, . . . , χc] → RHomB(M, M), through which ExtB(M, M) obtains an action of
the cohomology operators. Furthermore, the natural projectionπ : B[χ1, . . . , χc] → S deter-
mines the same S-action as the one discussed in 1.4 on RHomB(M, k) for any dg B-module
M .

Let SpecS denote the set of homogeneous prime ideals of S with the Zariski topology,
having closed sets of the form

V(η1, . . . , ηt ) = {p ∈ SpecS : ηi ∈ p for all i}
for some list of homogeneous elements η1, . . . , ηt in S. For a graded S-module X and
p ∈ SpecS we write Xp for the (homogeneous) localization of X at p. Furthermore, κ(p)

will be the graded field κ(p) := Sp/pSp.

Given a graded field κ , any finitely generated κ-module X has the form κr for some r ,
and below we use the notation rankκ X = r .

Definition 1.6 Let p be in SpecS and M be in D(B). Define the cohomological rank of M
at p to be

crkp(M) := rankκ(p) H(RHomB(M, k) ⊗L
S κ(p)).

The i th cohomological jump locus of M is defined to be

Vi
ϕ(M) := {p ∈ SpecS : crkp(M) ≥ i}.

Remark 1.7 For a dg B-module M , trivially V0
ϕ(M) = SpecS and there is a descending

chain of subsets of SpecS:
V0

ϕ(M) ⊇ V1
ϕ(M) ⊇ V2

ϕ(M) ⊇ . . . . (1.7.1)

Hence when M is in Db(B/A), this chain must stabilize at ∅ since RHomB(M, k) is perfect
over S by 1.4.

If M is in Db(B/A) we have that V1
ϕ(M) is simply the support of ExtB(M, k) regarded as

a graded S-module; this is contained in [20, Theorem 2.4]. That is,

V1
ϕ(M) = {p ∈ SpecS : ExtB(M, k)p �= 0}

= V(η1, . . . , ηt )
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whereη1, . . . , ηt generate annS ExtB(M, k). In particular,V1
ϕ(M) is a closed subset of SpecS,

providedM is inDb(B/A).Looking ahead, in Proposition 2.1, we show that Vi
ϕ(M) is closed

for all i , whenever M is in Db(B/A).

Remark 1.8 When A is a ring, V1
ϕ(M) is the cohomological support of M over B as defined

in [34, 35]; these are derived versions of the support varieties in local algebra studied in [1,
4, 11, 28].

1.9. Let X be a dg S-module with finitely generated homology. The total Betti number of X
is

βS
total(X) =

∑

i∈Z

rankk TorSi (X , k);

the sum is only over finitely many integers as S has finite global dimension.

Example 1.10 Assume M is a perfect dg B-module and r = βS
total(RHomB(M, k)). It follows

directly that

Vi
ϕ (M) =

⎧
⎪⎨

⎪⎩

SpecS i = 0

{(χ)} 1 ≤ i ≤ r

∅ i > r .

Example 1.11 Let ν denote the embedding dimension of A0 and let K A denote the Koszul
complex on a minimal generating set for the maximal ideal of A0 over A. As f is contained
in m0, there is a dg B-module structure on K A which is explained below: Fixing a minimal
generating set x = x1, . . . , xν for m0 with ∂e′

i = xi in K A and writing each

fi =
ν∑

j=1

ai j x j ,

determines a B-action on K A by

ei · ω =
⎛

⎝
ν∑

j=1

ai j e
′
j

⎞

⎠ ω.

In particular, if f ⊆ m2
0 it follows from 1.4 that there is the following isomorphism of graded

S-modules

RHomB(K A, k) ∼= HomA(K A, k) ⊗k S ∼=
∧ (

Σ−1kν
)

⊗k S

and hence, crkp(K A) = 2ν . Therefore, there are the following equalities

Vi
ϕ

(
K A

)
=

{
SpecS i ≤ 2ν

∅ i > 2ν .

When A is a regular local ring, we have calculated the sequence of jump loci Vi
ϕ(k) since

K A 	−→ k as dg B-modules.
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Example 1.12 Assume A is a regular local ring (or more generally, a UFD) and consider

R := A/( f ) where f = f1, f2. When f is a regular sequence, B
	−→ R and so from

Example 1.10 we have the equalities

Vi
ϕ (R) =

⎧
⎪⎨

⎪⎩

SpecS i = 0

{(χ)} i = 1

∅ i > 1.

Now assume f does not form an A-regular sequence; in this case there exists an A-regular
sequence f ′

1, f ′
2 with fi = f ′

i g for some g ∈ m0. It follows that

0 → A

(− f ′
2

f ′
1

)

−−−−−→ A2

(
f1 f2

)

−−−−−→ A → 0

is an A-free resolution of R, and this has a dg B-module structure with the e1 and e2 action
indicated by

e1 : 0 A A2 A 0

e2 : 0 A A2 A 0.

(
0 g

)
(
1
0

)

(−g 0
)

(
0
1

)

It follows easily, using 1.4, that RHomB(R, k) is isomorphic to the complex of free S-
modules:

0 → Σ−4S 0−→ Σ−2S⊕2

(
χ1 χ2

)

−−−−−→ S → 0.

Therefore, assuming k is algebraically closed,

Vi
ϕ(R) =

⎧
⎪⎨

⎪⎩

SpecS i ≤ 2

{(χ1, χ2)} i = 3, 4

∅ i > 4.

Example 1.13 Let A = k�x, y, z� and set f = x3, y3, z3. For the A/( f )-module M =
A/( f , xz, yz2). Using similar calculations as the ones in Example 1.12 it follows that

Vi
ϕ(M) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

SpecS i ≤ 8

V(χ1) 9 ≤ i ≤ 12

V(χ1, χ2) 13 ≤ i ≤ 14

{(χ)} 15 ≤ i ≤ 16

∅ i > 16.

In particular, this example produces a complete flag in A
3 from an indecomposable A/( f )-

module.

We end this section with the following realizability theorem that, roughly speaking, says
there is essentially no restriction on the sequence of closed subsets that appear as the sequence
of jump loci for a fixed dg B-module. This is a higher order version of the realizability results
for supports corresponding to a deformation (or Koszul complex); see [8, 19, 35].
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Theorem 1.14 If f ⊆ m2
0, then for every descending chain of closed subsets

SpecS = W0 � W1 � W2 � . . . � Wt = ∅

there exists M in Db(B/A) and an increasing sequence of integers 0 = j0 < j1 < . . . < jt
such that

V j
ϕ(M) = Wi

for ji ≤ j < ji+1.

For a fixed dg B-module M , we call the numbers j0, . . . , jt in Theorem 1.14, at which
the jump loci change, the jump numbers of M . It follows from Lemma 3.5 below that the
first jump number is always even. The last jump number jt is always βS

total(RHomB(M, k));
see 1.9.

An essential ingredient in the proof of Theorem 1.14 is the theory of Koszul objects
introduced by Avramov and Iyengar in [8].
1.15. Fix a dg B-module M and η as in S. Lifting η to B[χ1, ..., χc] along π in Remark 1.5
determines a morphism η̃ in D(B)

M
η̃−→ Σ|η|M .

AKoszul object on M with respect to η is the mapping cone of η̃, denoted M//η; we point out
that M//η is not unique, even up to isomorphism, in D(B). Given a sequence η = η1, . . . , ηn
in S we define M//η inductively as Mn where

Mi+1 := Mi//ηi+1 with M0 = M .

It is a direct calculation that RHomB(M//η, k) is isomorphic to

KosS(η) ⊗S RHomB(M, k)

as dg S-modules, up to a shift; in particular, RHomB(M//η, k) is independent of the chosen
lifts η̃i of each ηi along π.

Proof of Theorem 1.14 Write each Wi as V(ηi ) for some list of elements ηi from S of length
ni . Define Mi to be K A//ηi ; see 1.15. It follows from Example 1.11 that RHomB(Mi , k) is
isomorphic to

KosS(ηi ) ⊗k

∧
Σ−1kν

as dg S-modules, up to shift, where ν denotes the minimal number of generators for m0.

From here it is clear that

V j
ϕ(Mi ) = V(ηi )

for all j = 1, . . . , ni and Vϕ(Mi ) = ∅ for all j > ni . The dg B-module

M := M1 ⊕ . . . ⊕ Mt−1

has the desired properties.
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2 Basic properties

We adopt the notation set in Sect. 1. In this section we show the support theory introduced in
the previous section satisfies several important properties.

Proposition 2.1 Let M be in Db(B/A). For each i ≥ 0, the jump locus Vi
ϕ(M) is a Zariski

closed subset of SpecS.
This follows from the following standard lemmas.

Lemma 2.2 Fix a graded field κ , and let X be a finitely generated dg κ-module. Then

rankκ H(X) = 2 rankκ

(
coker ∂X

)
− rankκ X .

Proof. Let B and Z denote the boundaries and cycles of X . Since rank is additive on exact
sequences, the desired statements follow immediately from the following diagramwith exact
rows and columns.

0 0 0

0 B Z H(X) 0

0 B X coker ∂X 0

0 0 ΣB ΣB 0

0 0 0

Lemma 2.3 Let X be a dg S-module which, upon forgetting its differential, is free of rank of
r over S, and set C = coker ∂ X . For each i ≥ 0, there is an equality

SuppS

(
r+i∧

(C ⊕ C)

)
= {p ∈ SpecS : rankκ(p) H(X ⊗S κ(p)) ≥ i},

and so, in particular, the right-hand set above is a Zariski closed subset of SpecS.

Proof. Fix p ∈ SpecS. Applying Lemma 2.2 to X ⊗S κ(p) gives

rankκ(p) H(X ⊗S κ(p)) = 2 rankκ(p) (C ⊗S κ(p)) − r ,

from which we obtain the equivalence

rankκ(p) H(X ⊗S κ(p)) ≥ i ⇐⇒ rankκ(p) ((C ⊕ C) ⊗S κ(p)) ≥ r + i .

We are done once noting the latter statement is true precisely when

(
r+i∧

(C ⊕ C)

)
⊗S κ(p) =

r+i∧
((C ⊕ C) ⊗S κ(p))) �= 0.
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Proof of Proposition 2.1 First, since M is perfect as a dg A-module, RHomB(M, k) is per-
fect as dg S-module by 1.4. This means there is a quasi-isomorphism of dg S-modules
RHomB(M, k) 	 X , where X is a dg S-module with underlying S-module being free of
finite rank; see [5, Theorem 4.8]. Hence we may apply Lemma 2.3 to X to obtain

Vi
ϕ(M) = SuppS

r+i∧
(C ⊕ C)

where C = coker ∂ X and r is the rank of X regarded as a free S-module.

2.4. Let ψ : A0 → A′
0 be a flat local extension, and write k′ for the residue field of A′

0.
Denote the corresponding dg algebras by A′ = A ⊗A0 A′

0 and B ′ = B ⊗A0 A′
0, the induced

homomorphism by ϕ′ : A′ → B ′, and the corresponding ring of cohomology operators by
S′ = S ⊗k k′. Then there is an induced map on spectra

ψ∗ : SpecS′ → SpecS.

The next result explains how the cohomological jump loci behave with respect to these maps.

Lemma 2.5 With notation as in 2.4 above, if M is an object of Db(B/A) then M ′ = M⊗A A′
is an object of Db(B ′/A′) and for all i

Vi
ϕ(M) = ψ∗(Vi

ϕ′(M ′)
)
.

Proof Let p′ be a prime of SpecS′ and set p = ψ∗p′. There are isomorphisms

RHomB′(M ′, k′) ⊗L
S′ κ(p′) ∼= RHomB(M, k) ⊗L

S S′ ⊗L
S′ κ(p′)

∼= RHomB(M, k) ⊗L
S κ(p) ⊗κ(p) κ(p′).

Knowing this, the lemma follows directly from the definition of cohomological jump loci;
see Definition 1.6.

Lemma 2.6 Let M, N be in Db(B/A). Suppose

q : RHomA(M, k) ⊗k S → RHomA(N , k) ⊗k S
is a dg S-module map such that the underlying map of S-modules remains a chain map
between the twisted complexes

qτ : RHomA(M, k) ⊗τ
k S → RHomA(N , k) ⊗τ

k S.

Then q is a quasi-isomorphism if and only if qτ is a quasi-isomorphism.

Proof This follows directly from the Eilenberg–Moore comparison theorem [39, Theorem
5.5.11] following the observation that the ordinary and twisted complexes coincide upon
passing to their associated graded complexes with respect to the (χ)-adic filtration.

Lemma 2.7 Consider, for some 1 ≤ c′ ≤ c, the factorization A → B ′ → B where B ′ =
A〈e1, . . . , ec′ | ∂ei = fi 〉. Then for any M in Db(B/A) we have

RHomB′(M, k) 	 RHomB(M, k) ⊗L
S S/p

as dg S-modules where p = (χc′+1, . . . , χc) ⊆ S.
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Proof Let S′ = k[χ1, . . . , χc′ ] denote the ring of cohomology operators corresponding to
A → B ′. By direct inspection of the construction in 1.4, we see

RHomB′(M, k) = RHomA(M, k) ⊗τ
k S′

	 RHomA(M, k) ⊗τ
k S/p

	 (
RHomA(M, k) ⊗τ

k S
) ⊗L

S S/p

	 RHomB(M, k) ⊗L
S S/p.

The next result is themain one from this section. For what follows, we reserve the notation

(−)∗ := RHomB(−, B)

for the duality functor on D(B). However, as A → B is a Koszul extension, B-duality
coincides with Σc RHomA(−, A). Thus (−)∗ restricts to an endofunctor on Db(B/A).

Theorem 2.8 For any M in Db(B/A), there are equalities Vi
ϕ(M) = Vi

ϕ(M∗) for each
positive integer i . Hence crkp M = crkp M∗ for all primes p of S.

Proof First, we may assume that the residue field k is algebraically closed by Lemma 2.5
and by [14, Appendice, §2] (see also [30, Theorem 10.14]). Since the jump loci are closed,
conical subsets of SpecS by Proposition 2.1, it follows that Vi

ϕ(M) is either empty, {(χ)},
or the closure of the coheight one primes it contains. Therefore it suffices to show that
crkp M = crkp M∗ for all coheight one primes p of SpecS and for p = (χ). The proof of
the latter is essentially contained in the former, so we will proceed assuming p is coheight
one. Using the Nullstellensatz and a linear change of variables, we may further assume
p = (χ2, . . . , χc).

Next, let B ′ denote the dg subalgebra A〈e1〉 ⊆ B andS′ = k[χ1] denote the corresponding
ring of cohomology operators for A → B ′. Since S′ = S/p, if we let κ ′ denote the residue
field of S′ at (0), then κ ′ = κ(p) and hence by Lemma 2.7,

RHomB(M, k) ⊗L
S κ(p) 	 RHomB(M, k) ⊗L

S S′ ⊗L
S′ κ ′

	 RHomB′(M, k) ⊗L
S′ κ ′.

Once we recall the fact that for a perfect dg S′-module N one has the equality

rankκ ′ H
(
N ⊗L

S′ κ ′) = rankκ ′ H
(
RHomS′(N ,S′) ⊗L

S′ κ ′) ,

we see that it is sufficient to show

RHomB′(M∗, k) 	 RHomS′(RHomB′(M, k),S′).

To this end, observe that we have the following isomorphisms of dg S′-modules:

RHomB′(M∗, k) 	 RHomA(M∗, k) ⊗τ
k S′

	 Homk(k ⊗L
A M∗, k) ⊗τ

k S′

	 Homk(RHomA(M, k), k) ⊗τ
k S′;

the second one being nothing more than adjunction, while the third uses the dg B-module
isomorphism RHomA(M, k) 	 k⊗L

A M
∗ which is one place the assumption that M is perfect
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over A is being invoked. Furthermore, the natural maps

Homk(RHomA(M, k), k) ⊗k S′

Homk(RHomA(M, k),S′)

RHomS′(RHomA(M, k) ⊗k S′,S′)

	
	

are each quasi-isomorphisms of dg S′-modules. A direct computation shows that the
composite map is compatible with the twisted differential, inducing a map

Homk(RHomA(M, k), k) ⊗τ
k S′ → RHomS′(RHomA(M, k) ⊗τ

k S′,S′),

which, by Lemma 2.6, is also a quasi-isomorphism. Combining this quasi-isomorphism with
the already established ones above, we obtain the desired result.

Remark 2.9 In the case that A is a local ring and B = A/( f ) is the quotient by a regular
sequence f = f1, . . . , fc, we indicate here how to interpret the above theorymore classically
in terms of matrix factorizations.

Fix a nonzero point (a1, . . . , ac) in kc and choose lifts ãi of each ai to A. Any complex
M in D(B) be regarded as a A/(

∑
ãi fi )-module through the factorization

A → A/
(∑

ãi fi
) → B.

For ease of notation, let Aã denote A/(
∑

ãi fi ). By [11, Theorem 2.1], for lifts ã and ã′ of
a point a in kc there is an equality of Betti numbers β

Aã
i (M) = β

Aã′
i (M) for each integer

i . Hence we simply write βa
i (M) for β

Aã
i (M). Furthermore, when M is in Db(B/A) the

sequence of values βa
i (M) eventually stabilizes; this stable value is denoted βa(M), called

the stable Betti number of M at a. Moreover βa(M) is exactly the rank of the free modules
appearing in a matrix factorization describing the tail of a free Aã-module resolution of M ;
cf. [22, 37].When A is Gorenstein, this is also the k-rank of each stable (or Tate) cohomology
module ExtiB(M, k).

When k is algebraically closed, by invoking the Nullstellensatz, the (inhomogeneous)
maximal ideals of SpecS correspond to kc, affine c-space over k. In light of the discussion
above, for each nonnegative integer i , it is sensible to consider the following subset of kc:

{a ∈ kc : 2βa(M) ≥ i} ∪ {0}. (2.9.1)

The proof of Theorem 2.8 shows that the closed points of the cone over Vi
ϕ(M) correspond

exactly with the subset in 2.9.1. When i = 1, the subset 2.9.1 is the classical support variety
from [1, 3.11].

We end this section with an accoutrement demonstrating an a priori surprising property of
the cohomological jump lociwhen taken in total. There are general axioms for a support theory
on a triangulated category; see, for example, the conditions specified in [13, Theorem 1]. Two
such axioms are: first, that the support takes direct sums to unions, and second, the so-called
two-out-of-three property on the supports of objects in an exact triangle. The following
proposition says that the jump loci all together satisfy a higher-order generalization of these
usual containment properties.
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Proposition 2.10 Given an exact triangle L → M → N → in Db(B/A) there is the
following containment of jump loci

Vl
ϕ(M) ⊆

⋃

i+ j=l

Vi
ϕ(L) ∩ V j

ϕ(N );

equality holds when M → N admits a section.

Proof This follows directly from the exact triangle obtained by applying − ⊗L
S κ(p) to the

exact triangle L → M → N →, and noting that when M → N admits a section, so does
the corresponding induced map.

Remark 2.11 In light of Proposition 2.10, the higher jump loci Vi
ϕ for i > 1 do not respect

containment among thick subcategories of Db(B/A). This should be contrasted with usual
support varieties V1

ϕ which can even be used to classify the thick subcategories of Db(B/A)

when A is a regular ring and f is an A-regular sequence; see [31, 38].

3 Applications to betti degree

In this section (A,m, k) is a local ring, f = f1, . . . , fc is an A-regular sequence. Set
B = A/( f ), and let ϕ : A → B be the canonical projection. As noted in Remark 1.1, we
can freely apply the results from the preceding sections while studying Ext-modules over B
in the present section.

Definition 3.1 ( [1, (3.1),(4.1)]) Let M be an object of D(B). The complexity of M , denoted
cxB(M), is the smallest natural number b such that the sequence {βB

i (M)}∞n=0 of Betti num-
bers over B, given by βB

i (M) = rankk ExtiB(M, k), is eventually bounded by a polynomial
of degree b − 1. If no such integer exists one sets cxB(M) to be infinity.

If M has finite complexity cxB(M) = n + 1, the Betti degree of M (over B) is defined to
be

βdegB(M) = 2nn! lim sup
i→∞

βB
i (M)

in
. (3.1.1)

3.2. According to 1.4, if M is in Db(B/A) then ExtB(M, k) is a finitely generated graded S-
module. In particular, by theHilbert-SerreTheorem, cxB(M) is exactly theKrull dimensionof
ExtB(M, k) over S. Hence, cxB(M) ≤ c, and by the Nullsetellsatz, cxB(M) is the dimension
of the Zariski closed subset V1

ϕ(M); cf. [1, 4]. It is worth remarking that the above assertions
hold at the level of generality in Sect. 1; however, the next discussion is one place we are
forced to specialize to the setting of the present section.
3.3. Let M be in Db(B/A) with cxB(M) = n + 1. Then there exist polynomials qev and qodd
of degree n whose leading coefficients agree such that for all i � 0

βB
i (M) =

{
qev(i) i is even

qodd(i) i is odd;

see [1, Remark 4.2]. In particular, the sequence defining βdegB(M) in Definition 3.1
converges and the leading coefficient of both qev and qodd is βdegB(M)/2nn!.

Finally up to further scaling βdegB(M) can also be realized as the multiplicity of
ExtB(M, k) over S.
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3.4. Fix M in Db(B/A) with complexity cxB(M) = n + 1. Let S be the polynomial ring S
regraded so that the variables χi are in cohomological degree 1. We may define E to be the
graded S-module consisting of the even degrees of ExtB(M, k), i.e.

Ei = Ext2iB (M, k).

When endowed with the degree filtration, E≥n = ⊕
i≥n E

i , the associated Hilbert
polynomial is qev(2t) as defined in 3.3. In particular, the leading term is given by

βdegB(M)/2n

n! (2t)n = βdegB(M)

n! tn .

When endowed with the (χ)-adic filtration, the leading term of the associated Hilbert
polynomial is of the form

e(E)

n! tn

where e(E) is the multiplicity of E as an S-module. Since E is finitely generated over S,
for all n sufficiently large, En+1 = (χ)En , and hence the leading terms of the two Hilbert
polynomials agree, so

e(E) = βdegB(M).

This is the reason for the normalization factor of 2nn! in the definition 3.1.1; in particular the
number βdegB(M) is always a positive integer.

Finally, since S is a regular integral domain, we obtain the equality [32, Theorem 14.8]

e(E) = e(S) · rankS(0) E(0) = rankS(0) E(0).

Repeating this process for the module consisting of the odd degrees of ExtB(M, k) yields

rankS(0) ExtB(M, k)(0) = 2βdegB(M).

Lemma 3.5 An object M of Db(B/A) has maximal complexity c if and only if V1
ϕ(M) =

SpecS, and in this case

2βdegB(M) = max
{
i : Vi

ϕ(M) = SpecS
}

.

Proof Recall from 3.3, that cxB(M) = dim V 1
ϕ (M). From this, we see that maximal

complexity of M is equivalent to V1
ϕ(M) = SpecS.

Since the jump loci are closed, Vi
ϕ(M) = SpecS if and only if (0) ∈ Vi

ϕ(M). However,

rankκ(0) H(RHomB(M, k) ⊗L
S κ(0)) = rankS(0) ExtB(M, k)(0)

hence

max
{
i : Vi

ϕ(M) = SpecS
}

= rankS(0) ExtB(M, k)(0).

The lemma now follows from 3.4.

We remind the reader that we use the notation (−)∗ = RHomB(−, B) for B-duality
throughout, and that up to a shift, this coincides with the A-duality RHomA(−, A).

Theorem 3.6 Let A → B be a surjective map of local rings whose kernel is generated by an
A-regular sequence. If M is in Db(B/A) then βdegB(M) = βdegB(M∗).
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Proof We first reduce to the case of full complexity. Since Betti numbers, and hence the
Betti degree, are unchanged by flat base change, we may assume that the residue field
k is infinite. Recall from 3.2 that the Krull dimension of ExtB(M, k) over S is equal to
cx(M) = c′. By Noether normalisation we can make a linear change of coordinates and
assume that ExtB(M, k) is finite over k[χ1, . . . , χc′ ]. Writing B ′ = A/( fc′+1, . . . , fc) and
p = (χ1, . . . , χc′) ⊆ S it follows from Lemma 2.7 that

RHomB′(M, k) 	 RHomB(M, k) ⊗L
S S/p.

The right-hand-side has cohomology which is finite over k[χ1, . . . , χc′ ] (since it is built by
RHomB(M, k)), and simultaneously annihilated by p; therefore it must be finite dimensional.
This means that ExtB′(M, k) is bounded, and we conclude that M is in Db(B/B ′), and it has
the maximal complexity c′ among objects of this category.

We may now assume that M has maximal complexity within Db(B/A), so we can use
Lemma 3.5 and Theorem 2.8 to deduce

2βdegB(M) = max
{
i : Vi

ϕ(M) = SpecS
}

= max
{
i : Vi

ϕ(M∗) = SpecS
}

= 2βdegB(M∗).

From this we obtain the desired equality βdegB(M) = βdegB(M∗).

Remark 3.7 Let M be a module over a deformation A → B, as in the setup of Theorem 3.6.
Eisenbud, Peeva and Schreyer prove in [23] that the Betti degree of M is equal to the rank
of a minimal matrix factorization for M , of a generically chosen relation in an intermediate
deformation A′ (chosen as in the proof of Theorem 3.6); see [23, Theorem 4.3] for a precise
statement. Our Theorem 3.6 can also be deduced from this result. Conversely, [23, Theo-
rem 4.3] can alternatively be proven using the cohomological jump loci along the lines of
Theorem 3.6.

Eisenbud, Peeva and Schreyer make essential use of the theory of higher matrix factor-
izations in their work. This raises the question of the connection between the data visible in
a higher matrix factorization of a module M and its cohomological jump loci.

The conclusion in Theorem 3.6 for the quasi-polynomials governing the Betti numbers
of M and M∗ cannot be improved. That is to say, the lower order terms of the respective
quasi-polynomials need not agree.

Example 3.8 Consider A = k�x, y� and B = A/(x3, y3). For M = B/(x2, xy, y2) and
i ≥ 0 there are equalities

βB
i (M) =

⎧
⎨

⎩

3
2 i + 1 i even

3
2 i + 3

2 i odd
and βB

i (M∗) =
⎧
⎨

⎩

3
2 i + 2 i even

3
2 i + 3

2 i odd.

3.9.We now fix a local ring B (and we forget A for a brief moment). Following the work of
Avramov, Gasharov and Peeva [6] and Sather-Wagstaff [36], a complex M of B-modules is
said to have finite ci-dimension if there exists a diagram of local rings

A −→ B ′ ←− B

in which B → B ′ is flat and A → B ′ is a surjective deformation, and such that M ⊗B B ′ is
isomorphic in D(A) to a bounded complex of projective modules.
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Corollary 3.10 If B is a local ring and M is a complex of B-modules with finitely generated
homology and finite ci-dimension, then βdegB(M) = βdegB(M∗).

Proof Both the duality and the Betti degree are preserved by flat base change, so we may
assume that B admits a deformation ϕ : A → B such thatM is inDb(B/A), and the statement
follows from Theorem 3.6.

Remark 3.11 Let M be a maximal Cohen-Macaulay module over B which has finite ci-
dimension. It is well known that M admits a complete resolution over B, in the sense of [17]
that M is the cokernel of a differential in a acyclic complex of projective B-modules. The
two ends of this complete resolution (the projective resolution and coresolution of M) grow
quasi-polynomially with the same degree; see, for example, [4, 9, 31]. Corollary 3.10 asserts
that moreover the leading terms of these two quasi-polynomials are the same. This is in stark
contrast with the results of [29], where modules are exhibited with complete resolutions that
have wildly asymmetric growth. All such modules must have infinite ci-dimension.

We now move on to our final result. If we specialize to the case where A is a Gorenstein
ring, then Gorenstein duality allows us to form a connection between the Betti numbers of a
module and its Bass numbers as a direct corollary to Theorem 3.6.

Definition 3.12 ( [1, (5.1)]) Let M be an object of D(B). Recall that the i-th Bass number of
M is defined to be

μi
B(M) := rankk ExtiB(k, M).

The cocomplexity (or plexity as used in [4, 10]) ofM , denoted pxB(M), is defined to be the
smallest nonnegative integer b such that the sequence {rankk ExtnB(k, M)}∞n=0 is eventually
bounded by a polynomial of degree b − 1.

Suppose pxB(M) = n + 1. Define the Bass degree of M over B to be

μdegB := 2nn! lim sup
i→∞

μi
B(M)

in
.

Corollary 3.13 If A is Gorenstein then for any M in Db(B/A)

μdegB(M) = βdegB(M).

Proof This is an easy consequence of Gorenstein-duality and Theorem 3.6. Namely, A being
Gorenstien forces B to be Gorenstein and so there is an isomorphism of graded k-spaces

ExtB(M∗, k) ∼= Σs ExtB(k, M)

for some integer s. Hence μdegB(M) = βdegB(M∗) and so now applying Theorem 3.6, we
obtain the desired equality.

Question 3.14 Let M and N be two dg B-modules, each perfect over A, and assume that
ExtB(M, N ) is degree-wise of finite length (in large degrees). In this context the numbers
lengthB ExtiB(M, N ) are also eventually modelled by quasi-polynomial q(M, N ) of period
two; cf. [17, 10.3] and [21]. In the case that A is regular, Avramov and Buchweitz prove,
using the theory of support varieties for pairs of modules, that q(M, N ) and q(N , M) have
equal degrees [4]. Corollary 3.13 suggests the following question: Assuming A is Gorenstein,
what is the relationship between the leading terms of q(M, N ) and q(N , M)?
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