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1 Introduction
The theorem of the primitive element states that given a finite separable field extension
L/K,thereis an element 6 of L such that L = K(9). This holds for any extension of number
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fields L/K. By contrast, the extension of their rings of integers Z; /Zx may require up to
[log,([L : K])] elements of Z; to generate Zy, as a Zg-algebra [57].

Question 1.1 Which extensions 7 /Zx are generated by a single element over Zy ? More
generally, which finite locally free algebras B/A are generated by a single element over A?
How many elements does it take to generate B over A otherwise?

Definition 1.2 A finite locally free A-algebra B is monogenic! if there is an element 6 € B
such that B = A[0]. The element 0 is called a monogenic generator or monogenerator of
Bover A.

If there are elements 6y, . . ., 6 € Bsuch that B = A[6y, ..., 6], then B/A is k-genic and
61, . .., 0r) is a generating k-tuple.

This paper is motivated by the observation that monogenicity? of an algebra can be
restated geometrically:

Lemma 1.3 Let A C B be an inclusion of rings. A choice of element 0 € B is equivalent to
a commutative triangle

~

where sy is the map induced by the A-algebra homomorphism A[t] — B taking t to 6.
The element 0 is a monogenerator if and only if the map sy is a closed immersion.

Likewise, a k-tupleé = (04, ...,0k) € B" determines a corresponding map s; : Spec B —
A’;‘ induced by the A-algebra homomorphism Alty, . . ., ty] — B taking t; — 0;. The tuple
(61, ..., Ok) generates B over A if and only if s is a closed immersion.

Proof Omitted. O

We ask if there is a scheme that represents such commutative triangles as in moduli the-
ory [21, Chap. 1]. We prove that for any Noetherian ring A and finite locally-free A-algebra
B, there is a representing scheme 7713,4 over Spec A called the scheme of monogenerators.
There is an analogous scheme of generating k-tuples or scheme of k-generators denoted
by My g/ 4. When the extension B/A is implied, we simply write 771 or 171 as appropriate.

Theorem 1.4 Let B/A be a finite locally free extension of Noetherian rings. There is an
affine A-scheme g4 and finite type quasiaffine A-schemes Iy g, 4, for k > 1, with natural
bijections

Homscy ) (Spec C, 1Ml a) = {9 € B | 0 is a monogenerator for C @4 B over C}
and

Homscy/ay(Spec C, My pra) = {é e Bf | 6isa generating k-tuple for C ®4 B over C}

!The literature often uses the phrase “L is monogenic over K” to mean Z;/Z is monogenic as above. We prefer “Z,,
is monogenic over Zg” in order to treat fields and more exotic rings uniformly. If B is monogenic of degree n over A

with monogenerator 6, the elements {1, 8,62, ..., 0"} are elsewhere referred to as a “power A-integral basis.”
2Monogeneity’ is also common in the literature.
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for A-algebras C.

The problem of finding generating k-tuples of Z /Zy is thereby identified with that of
finding Z-points of the schemes 117, /7,. The functors Hom(—, 177;) automatically
form sheaves in the fpqc topology (and therefore also in coarser topologies). This permits
monogenicity to be studied locally, a perspective that we will pursue further in the second
paper in this series.

The extensions of rings B/A under consideration are much more general than extensions
of number rings, and there is no difficulty in extending the construction of 771g,4 to maps
of schemes S’ — S locally of the form Spec B — Spec A with B finite locally free over A.
For example, a finite map of algebraic curves C — D is of this form. We can therefore
view monogenicity in other contexts as analogous to monogenicity of number rings.

Some of these other extensions of rings are nevertheless functorially related to exten-
sions of number rings. For example, for every extension of number rings Z; /Zk, there
is a map SpecC — SpecZg. Pulling back SpecZ; — SpecZg along this map yields
SpecC" — SpecC, a trivial cover of a point. Pulling back 171z, /7, along the same map
yields 17lcn . This part of the monogenicity space is already interesting:

Example 1.5 Let A = C and B = C". The complex points of the monogenicity space are
naturally in bijection with the points of the configuration space of # distinct points in C:

mLB/A((C) =~ Conf,(C):={(x1, ..., xy) € c” |x; # Xj for i ;ﬁ]}

Monogenicity therefore generalizes configuration spaces by conceiving of B/A as “fam-
ilies of points” to be configured in A!. See Examples 3.6 and 4.2 for details.

The scheme of monogenerators admits a simple description in local coordinates: it is
the complement in the Weil Restriction of the vanishing of a “local index form,” closely
related to the well-known index forms considered elsewhere in the study of monogenicity.

In the case B is a free A-algebra with basis ey, . . ., ey, the local index form with respect to
the basis ey, . . ., e, is

i(e, ..., en) = det(ay)i<ij<n

where a;; € Alxy, ..., x,] are the unique coefficients such that (x1e; + --- + xpen)y ! =
Y imaija; foreachj=1,...,n.

Theorem 1.6 (Theorem 3.5) If B is a free A-algebra with basis ey, . . ., e,, we have
Mp/a = SpecAlx1, ..., %y i(e1, .. ., en) 1.

More conceptually, 7711 5,4 is the locus in A” where the matrix of coefficients (a;j)1<ij<n
has maximal rank.

The monogenicity space of a finite locally free map of Noetherian schemes is always
Zariski locally of this form by Corollary 2.14. The monogenicity space 111y g/ /s is therefore
the complement of a family of determinental varieties in an affine bundle over S.

Similar work shows that for k > 1, My /s is locally on S the locus on which a cer-
tain non-square matrix M attains maximal rank. Taking determinants of minors exhibits
M55 also as the complement of a family of determinental varieties. Using the minors
of M, we obtain /7l; s/s as a union of distinguished affines: 17l /5 is not in general affine.
See Theorem 3.14.
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B. Poonen constructed an algebraic stack parameterizing a choice of finite locally free
A-algebra B, i.e. of an S’ over S. We combine this with our moduli of generators for §’/S

and show the result is a scheme in the final Sect. 5:

Theorem 1.7 (Theorem 5.3 for C = S) Let % be the moduli problem over S-schemes T
consisting of:

o A finite locally free map T' — T
o A monogenerator T' C AlT.

Then F is representable by a scheme.

1.1 Outline of this paper

Section 2 defines our main object of study 71s/s for a finite locally free map " — S. We
provein Proposition 2.3 that 77lg /s is representable as a scheme. This scheme parametrizes
choices of monogenerators for the algebra extension Og/Os. We offer basic properties
and examples. In Sect. 2.1, we prove functoriality of 17lg/s. In Sect. 2.2 we relate our
construction of 171 /s to the classical Hilbert scheme and a related construction of Poonen
[58].

In Sect. 3, we obtain explicit affine charts for /71 s using local index forms and deduce
affineness for 171g,4. The index form tells whether a given section § € Qg is a monogen-
erator for Og/ /Og or not. We generalize to provide explicit equations for k-generators in
Sect. 3.2. In Theorem 3.13, we prove that when none of the local index forms are zero
divisors, the divisor class of the scheme of non-monogenerators in Homg(S, Al) is the
pullback of the Steinitz class of /S from S.

Section 4 gives a variety of concrete examples of the scheme of monogenerators 171,
including: separable and inseparable field extensions, a variety of orders in number fields
including Dedekind’s non-monogenic cubic, jet spaces, and completions. These explicit
equations put into practice classical theory in addition to the theory we have built. We
encourage the reader to consult these examples to complement the results in earlier
sections.

Section 5 presents a related moduli problem parameterizing not only monogenerators
but a choice of algebra as well. Theorem 5.3 proves that this related moduli problem is

representable as well, albeit as an algebraic stack instead of a scheme.

1.2 Summary of previous results

The question of which rings of integers are monogenic was posed to the London Math-
ematical Society in the 1960’s by Helmut Hasse. Hence the study of monogenicity is
sometimes known as Hasse’s problem. For an in-depth look at monogenicity with a focus
on algorithms for solving index form equations, see Gadl’s book [24]. Evertse and Gyéry’s
book [18] provides background with a special focus on the relevant Diophantine equa-
tions. For another bibliography of monogenicity, see Narkiewicz’s texts [53, pp. 79-81]
and [54, pp. 75-77].

The prototypical examples of number rings are monogenic over Z, such as quadratic
and cyclotomic rings of integers. Dedekind [14] produced the first example of a non-
monogenic number ring (see Example 4.12). Dedekind used the splitting of the prime 2 to
show that the field obtained by adjoining a root of x> — x? — 2x — 8 to Q is not monogenic
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over Z. Hensel [45] showed that local obstructions to monogenicity come from primes
whose splitting cannot be accommodated by the local factorization of polynomials in the
sense of Dedekind-Kummer factorization. See [63, Proposition II1.12] and also [57] which
is discussed briefly below. For very recent English translations of the original pioneering
works, consult [31] and [32].

Global obstructions also preclude monogenicity. For a number field L/Q, the field index
[Zr : Z[x]]. A number field L can have field index
1 and Z; may still not be monogenic, for example the ring of integers of Q(+/25 - 7); see

is the greatest common divisor ged,, .7,
[53, page 65] or Example 4.14. Define the minimal index to be miny ez, [Z; : Z[a]]. The
monogenicity of Zy /Z is equivalent to having minimal index equal to 1. An early result
of Hall [40] shows that there exist cubic fields with arbitrarily large minimal indices. In
[69], this is generalized to show that every cube-free integer occurs as the minimal index
of infinitely many radical cubic fields.

The monogenicity of a given extension of Z is encoded by a Diophantine equation called
the index form equation. Gyéry made the initial breakthrough regarding the resolution
of index form equations and related equations in the series of papers [33-36], and [37].
These papers investigate monogenicity and prove effective finiteness results for affine
inequivalent monogenerators in a variety of number theoretic contexts. For inequivalent
monogenic generators one should also consult [6,19], and the survey [20]. Specializing
families of polynomials to obtain monogenic extensions is investigated in [49]. In large part
due to the group in Debrecen, there is a vast literature involving relative monogenicity:
[23,26,28-30,38,39], and [27].

Pleasants [57] bounds the number of generators needed for a field of degree n by
[log,(n)1, with equality if 2 splits completely. This upper bound is a consequence of a
precise description of exactly when an extension is locally k-genic in the sense that the
completion at each prime is k-genic. For number rings, Pleasants answers the question of
what the minimal positive integer k > 1 is such that Z; is k-genic. Global obstructions
only appear in the case of monogenicity: for k > 1, Pleasants shows that local k-genicity
is equivalent to global k-genicity.

A related account is given in [18, Chap. 11], where it is shown that given an order O of a
finite étale Q-algebra, one can effectively compute the smallest k such that O is k-genic. In
the spirit of the previous work of Gy6ry, one can also effectively compute the k generators
of O over Z.

Monogenicity has recently been viewed from the perspective of arithmetic statistics:
Bhargava, Shankar, and Wang [11] have shown that the density of monic, irreducible
polynomials in Z[x] such that a root is a monogenerator is % = 727! = 60.79%.
That is, about 61% of monic, integer polynomials correspond to monogenerators. They
also show the density of monic integer polynomials with square-free discriminants (a
sufficient condition for a root to be a monogenerator) is

I (1 L1y (f_—l)z> ~ 35.82%.

Y p pilet+l)

Thus these polynomials only account for slightly more than half of the polynomials yield-
ing a monogenerator. Using elliptic curves, [1] shows that a positive proportion of cubic
number fields are not monogenic despite having no local obstructions. More recently,
the trio have undertaken a similar investigation for quartic fields [2]. For quartic orders,
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Bhargava [8] also establishes a new upper bound on the number of essentially different
monogenerators. In a pair of papers that investigate a variety of questions ([64] and [65]),
Siad shows that monogenicity appears to increase the average amount of 2-torsion in the
class group of number fields. In particular, monogenicity has a doubling effect on the
average amount of 2-torsion in the class group of odd degree number fields. Previously,
[9] had established this result in the case of cubic fields.

Following the completion of this paper, we were made aware of several bodies of related
work on monogenicity in geometric contexts, such as Stein manifolds [17,66,67] and
Riemann surfaces [59]. The question of the existence of monogenerators, referred to as
“primitive elements” was raised by Alling for Riemann surfaces [3] and then for Stein
manifolds by Rohrl [60].

In these geometric contexts, the relationship between the existence of monogenerators
and embeddings into trivial line bundles has been frequently observed (see for example,
[17, Sect. 1], [67, Proposition 2]). It is natural then to consider embeddings of finite covers
into line bundles or vector bundles rather than trivial bundles. (In fact, we do so in the
category of schemes in the sequel to this paper: finite maps 7 : S — S admitting an
embedding into a line bundle are instances of what we call twisted monogenic extensions.)
Such embeddings of finite covers into bundles have seen much study in other geomet-
ric categories, such as those of topological spaces, smooth manifolds, piecewise linear
manifolds and others, see for example [13,16,22,25,41-43,50-52,62]. In many of these
papers a key step was the construction of a representing space for such embeddings of
covers under the assumption that the covers were regular or unbranched, see [17, The-
orem 1.3], [25, Sect. 1], [41, Sect. 3], [43, Sect. 3]. These spaces are closely related to our
space of monogenerators in the case that S’ — S is étale. Another related construction
is Lonsted’s representing space V(L) [51, Proposition 1], which parametrizes branched
coverings in the category of topological spaces f : X — X together with an embedding of
X into a line bundle L over X. Our work appears to be the first construction of a space of
monogenerators in the category of schemes.

Casnati-Ekedahl obtain an essentially canonical generating set of order n — 1 for degree
n extensions S’/S [12]. The functor of points is also gaining traction as a new tool to
study related problems, such as in [68] which considers a functor of points similar to
Definition 2.2. We thank the referee for bringing these two works to our attention.
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2 The scheme of monogenic generators

We now use Lemma 1.3 to construct the scheme of monogenic generators g /g, our
geometric reinterpretation of the classical question of monogenicity. Given any extension
of number fields L/K, the map S":=SpecZ; — S:=SpecZg is finite locally free and
X = A%K — Spec Zg is quasiprojective; these properties suffice for our purposes. Leaving
X general permits analogues of monogenicity such as embeddings into P, which are more
natural when S’ — S is a map of proper varieties. We invite the reader to picture S’ as
the ring of integers Spec Z; in a number field, S = Spec Zx, and X as Al. We return to
X = Al, AX in Sect. 3; we will see there that our approach recovers the well-known index

form equations.

Situation 2.1 Let 7 : S’ — S be a finite locally free morphism of constant degree n >
1 with S locally noetherian. Consider a quasiprojective morphism X — S and write
X=X xg§.

The constant degree assumption is for simplicity; the reader may remove it by working
separately on each connected component of S. In the sequel paper, we will occasionally
allow S to be an algebraic stack, though the morphism §” — S will always be representable.
Write (Sck/S) for the category of S-schemes. We now define 771y s//s by describing the
functor of maps into it and then showing it is representable.

Definition 2.2 In Situation 2.1, consider the presheaf on (Sck/S) which sends an S-
scheme T — S to the set of morphisms s fitting into the diagram:

T— S+ \ / 2)

with restriction given by pullback. Refer to this presheaf either as the relative hom presheaf
Hom(S’, X’) [72, 0D19] or the Weil Restriction Rx,s/s [10, Sect. 7.6].
The sheaf of monogenerators is the subpresheaf

Mys s € Rxr,s1/s

whose sections are diagrams exactly as above, but with s a closed immersion.

We write mks//g, mk,g//g for X = Ag, mg//g = ml,s//g, and mgl/g = gel,gf/s. When
S’ — S or X is understood, we may drop “S’/S” or “X” from the notation. If S’ = Spec B
and S = Spec A are affine, we write 171; g4 or 11g/4 instead.

Lemma 1.3 expresses the presheaf 171 ¢/ as

Miss(T) = {0160 € (T x5 8, Or)™ | Orgs = Orlon, ... 641
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An S-point of 1M1 is said to be a monogenerator of S'/S and we say S'/S is monogenic if
such a point exists. This recovers the definition of monogenicity of algebras when S is
affine. These presheaves are representable:

Proposition 2.3 The presheaves 1ly C Ryx,s1/s are both representable by quasiprojective
S-schemes and the inclusion is a quasicompact open immersion. If f : X — S is smooth,
unramified, or étale, the same is true for Ry s/s — S and Ny — S.

Proof The Weil Restriction Ry g//s is representable by a scheme quasiprojective over §
[48, Theorem 1.3, Proposition 2.10]. If X’ — S’ is a finite-type affine morphism, the same
is true for Rx's/ys — S by locally applying [48, Proposition 2.2(1),(2)]. The inclusion
Ny € Ry ,s1/s is open by [72, 05XA] and automatically quasicompact because Ry,s//s is
locally noetherian. The second statement is immediate. O

Corollary 2.4 The presheaves 1lx, Rx' s /s are sheaves in the Zariski, Nisnevich, étale,
fppf, and fpqc topologies on (Sch/S).

Definition 2.5 Let t be a subcanonical Grothendieck topology on schemes, for example
the Zariski, Nisnevich, étale, fppf, or fpqc topologies. We say that S’ /S is t-locally k-genic if
the sheaf 171y s/ /5 is locally non-empty in the topology . Le., thereis a t-cover {U; — S}ies
of S such that 7 5,5 (U;) is non-empty for all i € 1. By default, we use the étale topology.

A k-genic extension S'/S is t-locally k-genic. If 77 is a finer topology than 7, then
72-locally monogenic implies 71 -locally monogenic.

Remark 2.6 We pose a related moduli problem .% in Sect. 5 that parameterizes a choice
of finite locally free map S" — S together with a monogenerator. It is also representable
by a scheme. The mere choice of a finite locally free map S’ — S is representable by an
algebraic stack, as shown in [58] and recalled in Sect. 2.2.

Our main example of S" — S comes from rings of integers in number fields Zj, /Zg, but
here is another:

Example 2.7 Let S = SpecZ and S, = SpecZ[e]/€". The Weil Restriction Rxs; /s is
better known as the jet space Jx,—1 [73]. For any ring A, (n — 1)-jets are maps

SpecAle]/e" — X.

Jet spaces are usually considered over a field k by base changing from S. The monogenicity
space Mly,s; /s < Jx,n—1 parametrizes embedded (n—1)-jets, whose map Spec A[e]/e” C X
is a closed embedding. If n = 2, Jx, is the Zariski tangent bundle and My, /s is the
complement of the zero section.

The truncation maps Jx,, — Jx,—1 restrict to maps Mys: . 7s = Mxs, s The inverse
limit lim,, Jx,, sends rings A to maps called arcs

SpecAft] - X

according to [7, Remark 4.6, Theorem 4.1]. Under this identification, the limitlim,, lx,s; /s
parametrizes those arcs that are closed immersions into X x Spec A.

Compare embedded (1 — 1)-jets to “regular” ones. An (n — 1)-jet f : Speck[e]/e” — X
over a field k is called regular [15, Sect. 5] if f/(0) # 0. Le., the truncation of higher order
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terms f : Speck[e]/e> — X is a closed immersion. Regular (1 — 1)-jets are precisely the
pullback mmi/s XJx Ixn-

Extensions of number rings are generically étale, with a divisor of ramification. The
finite locally free map S), — S in jet spaces is the opposite, ramified everywhere.

Definition 2.8 (Steinitz Classes)

We have assumed that 7 : &' — S is finite locally free of rank #, so 7,Og is a locally
free Og-module of rank n. By taking an nth exterior power, one obtains a locally free
©Og-module

n
det 7, Og:= /\ 74 Og/

of rank 1 [44, Chap. II, Exercise 6.11]. The Steinitz class of = : S — § is the isomorphism
class of det 7, Og in Pic(S).

The Weil Restriction Ry /s is precisely the rank k# vector bundle with sheaf of sec-
tions ﬂ*(gg,. To see this, recall that the set of T-points of the S-scheme Ry /s is by
definition the set of T-morphisms { S xg T — A/}} By the universal property of A%,
such morphisms are in bijection with k-tuples of elements of I'(T, Qg ;7). It follows that
Homg(—, Ris/s) = (7O as quasicoherent sheaves on S. When 7,Og ~ " O - ¢;
is trivial, so is Rg//s.

Example 2.9 The Steinitz class of the jet space of AX is the trivial vector bundle: Joak =
AK+1) (73 Corollary 5.2].

Remark 2.10 Although A! and hence Ry /s are ring objects, 171; is neither closed under
addition nor multiplication. For addition, note that if 0 € Oy is a generator, then so is
—6,but 0 4+ (—0) = 0 is not for n # 1.

Lemma 2.11 Let 0 € ['(S, Og/) be any element. There is a canonical monic polynomial
my(t) € T'(S, Os)[t] of degree n such that my(0) = 0.

Proof We begin by constructing mg(t) locally, following [4, Proposition 2.4].

Assume first that 7 : S’ — S is such that 7,Q0gy = @?” as an Og-module. Choose
a I'(S, Og)-basis {x1,...,x,} of I'(S/, Og). For each i = 1, ..., n, write Ox; = Z}Ll ajjxj
where a;; € T'(S', Og). Now we let

mg(t) = det(Si,'t — 611']').

As in the proof of [4, Proposition 2.4], my(¢) has coefficients in I'(S, O5), is monic of degree
n, and my(0) = 0. Moreover, my(t) does not depend on the basis chosen since my(¢) is
computed by a determinant.

Now for general 7 : S’ — S, choose an open cover {U;} of S on which 7, Og trivializes.
On each open set, the construction of the previous paragraph yields a monic polynomial
m;(t) € Os(U;)[t] of degree n vanishing on 6|;,. Since the construction of the polynomials
commutes with restriction and is independent of choice of basis, we have

mi(O)|unu; = mi©)lunu;-

We conclude by the sheaf property. ]
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Remark 2.12 Lemma 2.11 defines a map m : Rg;s — A% sending an element 6 €
(S, Og) to the coeflicients (b,,_1, . . ., bp) of the universal canonical monic minimal poly-

nomial
mp(t) = t" + by_1t"" 1+ -+ + by

The preimage of a point of A% is the set of roots of the corresponding polynomial in Og'.

In the case that S’ — S is a trivial n-sheeted cover, ie. ' = S U --- U S, we may
trivialize the vector bundle Rg/,;s = A¥ using the standard basis {e; = (1,0,---,0),e2 =
0,1,--+,0),...} of 1,05 = Og x ---Og. It is easy to compute that my(¢) = [, (£ —
x;) with respect to this basis, so that the coefficients b; are the elementary symmetric
polynomials in the x;. It follows that the map m : Rg//s — Ag is the coarse quotient space
for the natural action of the symmetric group X, on the {e;}-coordinates of Ry s.

If S’ — Sisétale, S’ — S is étale locally a trivial cover as above. However, the X, -action
need not globalize. For example, consider the 3-power map [3] : G, — G, for S’ — S.
We will consider the situation of S’ — § étale in more depth in the second paper of this

series.

2.1 Functoriality of 171y

We now establish some basic functoriality properties of 17x,s//s and compare them with
the well-known functoriality properties of the Weil Restriction. Functoriality in S (Corol-
lary 2.14) allows us to compute affine charts for 17 55 zariski locally on S in Sect. 3.

Lemma 2.13 Suppose given a commutative square

T — §

I

T —— S

and an S-scheme X. Let f : T' — S’ xg T be the map induced by the universal property
of pullback.
Then

1. There is an induced map of T -sheaves
15,7 Rxsys Xs T — Ry, 177/75
given on (U — T)-points by
, s , flu . s ~
U —->XxsU) » (T'xtU— U — XxsUZ=Xr xr U),

where X7:=X x5 T and U'":=S" x5 U.
2. Assume S — Sand T' — T both lie in Situation 2.1. If f is a closed immersion, then

the map ts,T induces a map on sub T-sheaves
ps1 : Mxsys xs T — Ny, 71/7-

Proof Omitted. |

This simplifies in the case that the diagram is cartesian.
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Corollary 2.14 IfS’ — S is as in Situation 2.1 and

T/ S/

I

T —— S

is a cartesian square of schemes, then there is a natural isomorphism
Myss xs T — My, /17

Proof Themapf : T — S xgs T is an isomorphism. i

If f is not a closed immersion, composition with f|;; need not preserve closed immer-
sions. Thus Mly,s//s is not functorial for general commutative squares.

Example 2.15 If S = SpecA, T — § <« §' are identity maps and 77 — T is non-
monogenic then the global sections of 17lg/s xs T are A, while 17l7/;7 has no global
sections, so there is no map Mg /s xs T — M7//7.

Example 2.16 IfS' = | | S is a finite disjoint union of finite locally free maps S; — S, the
pullback T' x5 §" is the disjoint union |_| T’ x5 S;. Write X/ = X’ x5 &, it follows from the
universal property of coproducts and the above that the Weil Restriction decomposes as

Rxss =[] Rx1,s1/s:
i

The monogenicity space is not the product g5 x # []Mg/sx- Rather, we claim a
map

I_l Si—>X

is a closed immersion if and only if each map
Si—> X

is a closed immersion and the closed immersions are disjoint:
Sixx S]f =0

for all i # j. This follows formally from the fact that closed immersions are precisely the
proper monomorphisms.

Not only is 17y 5//s functorial in S, but we show its normalization and reduction can

often be performed on S:

Lemma 2.17 Let X — S be smooth and write T' = T xs S’ foran S-scheme T. If T — S
is the normalization, the map

My, 7 = Mxs/s

is also normalization. Likewise, if T — S is the reduced induced subscheme S,.q C S, the
pullback n]X,S//S XS Syed = anS T /Sred is the reduction Ofm)(,s//g,

Proof For the normalization, one uses [72, 03GV] and properties of 1lx,s/s in Proposi-
tion 2.3 to see that 7y, 77 — Mlx s s is also normalization.
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Consider the cartesian square

mXS,edl T'/Sred n/lX)S//S

! |

Sy ————— 8.

Being reduced is local in the smooth topology [72, 034E], so 171x, T /Sred is reduced. By

the universal property of induced reduced subscheme, the map 11y, T Sed Mx.s /s

red
factors uniquely through (17lx//s)seq. On the other hand, the map (Mxs /s)rea — S

Sred by
the universal property of the pullback. By uniqueness of associated maps we conclude that

factors uniquely through S,.4, so there is a unique map (x5 /s)rea — Mlx; T/
re

Mixs 1/Sea = (Mx57/8)red- o

2.2 Relation to the Hilbert scheme
With this section we pause our development of 771 to relate our construction to other
well-known objects. Though the rest of the paper does not use this section, it behooves
us to situate our work in the existing literature.

At the possible cost of representability of 71y /s, let X — S be any morphism of
schemes in this section. Recall the Hilbert scheme of points [72, 0B94]

Hilbf(/S(T)::{closed embeddings Z € X x5 T | Z — T finite locally free deg. n}

There is an algebraic moduli stack 2, of finite locally free maps of degree 1 [58, Definition
3.2], with universal finite locally free map 3, — 2,. Any map & — S in Situation
2.1 is pulled back from 3, — 2,. We restrict to S-schemes without further mention:
A, =2A, x S.

Recall Poonen’s description of 2,,: A finite locally free map 7 : Z — T is equivalent
to the data of a finite locally free Or-algebra Q given by 7,.©z. Suppose for the sake of
exposition that a locally free algebra Q has a global basis Q >~ (9;‘?”. The algebra structure

is a multiplication map
Q®or 2 —> 2

that can be written as a matrix using the basis. Conditions of associativity and commuta-
tivity are polynomial on the entries of this matrix. We get an affine scheme of finite type
8, parametrizing matrices satisfying the polynomial conditions, or equivalently multipli-
cation laws on globally free finite modules [58, Proposition 1.1]. Two different choices of
global basis (9;‘?” ~Q~ (9?” differ by an element of GL,(O7). Taking the stack quotient
by this action GL,, C B, erases the need for a global basis and gives 2,,.

There is a map Hilb% /s — Uy sending a closed embedding Z C X1 to the finite locally
free map Z — T. The fibers of this map are exactly monogenicity spaces:

Mys)s — S
l : ls’ /S
Hilby s —— Ay
This is because pulling back along the classifying map S — 2I,, fixes S’ — S as the choice
of locally free map Z — T in the Hilbert scheme.

In turn, the monogenicity space of the universal finite locally free map 3, — U, is
isomorphic to the Hilbert Scheme

Mx3, /2, ~ Hilby



S. Arpin et al. Res. Number Theory (2023) 9:14 Page130f33 14

over 2,,. The space b, (AX) of [58, Sect. 4] is 171y, for the universal finite locally free map to
B.

Proposition 2.3 shows 171g,5(X) — S is smooth for X smooth, and likewise for unrami-
fied or étale. This means the map Hilb% /s 2, is smooth, unramified, or étale if X — S
is.

Suppose X — S flat to identify the Chow variety of dimension 0, degree n subvari-
eties of X with Sym"”X [61] and take S equidimensional. The Hilbert-Chow morphism
Hllb;z?/usl " — Sym”"X sending a finite, flat, equidimensional Z — S to the pushforward
of its fundamental class [Z] in Chow A, (X) restricts to 1Mxs//s. When S'/S is étale, we
will see the restriction of the Hilbert-Chow morphism Mlygs,s — Sym”X is an open
embedding by hand in the sequel paper.

Question 2.18 Can known cohomology computations of Hilb% /s offer obstructions to
monogenicity under this relationship?

3 The local index form and construction of /71
This section describes equations for the complement of the monogenicity space 171y s/ /s
inside R = Hom,(S', A!) by working with the universal homomorphism over R. In the
classical case Zj /Zx we recover the well-known index form equation. Section 3.1 relates
the classical index form to 77lg//s C (R, while 3.2 generalizes the equations to k-genicity
Mys1/s.

See section 4.1 for more examples.

Remark 3.1 (Representable functors) Recall that if a functor F : C% — Set is represented
by an object X, then there is an element & of F(X) corresponding to the identity morphism
X L X, called the universal element of F. The proof of the Yoneda lemma shows that
for all objects Y and elements y € F(Y), there is a morphism f, : ¥ — X such that y is
obtained by applying F(f,) to &.

Foramapf : X — Y of schemes, we write f* : Oy — f,Oy for the map of sheaves and
its kin.

3.1 Explicit equations for the scheme 771

The scheme R = Rg/s = Homg(S', Al) is a “moduli space” of maps S’ — Al. For any
T — S, every morphism S’ xg T — Al is pulled back along some T — R from the
universal homomorphism

S xg R ——*“ 5 AL.

We want explicit equations for the complement of the open embedding 1ls/ ;s C R.

Let ¢ be the coordinate function on A!. The map u corresponds to an element # =
ub(t) e I'(Og x¢x). Let m(t) be the polynomial of Lemma 2.11 for 6, i.e. m(t) is a monic
polynomial in I'(Og)[t] of degree #n such that m(0) = 0.

Definition 3.2 We call the polynomial m(¢) the universal minimal polynomial of 6. Let
V (m(t)) be the closed subscheme of A}k cut out by m(z).
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The universal map u factors through this closed subscheme:

S xs R —= V(m(t)) — A,
\)J{/ (3)

Since V(m(t)) — A}R is a closed immersion, the locus in R over which u restricts to a
closed immersion agrees with the locus over which v is a closed immersion.

Remark 3.3 Themap V(m(t)) — R is finite globally free T, Oy () = @;’:_01 Og -t'. The
map v:S§ xs R — V(m(t)) comes from a map

VrL : T*@V(m(t)) — W*QS’XSLW

of finite locally free Ox-modules. Locally, it is an # x # matrix. The determinant of this
matrix is a unit when it is full rank, i.e. when v is a closed immersion. The ith column is
6, written out in terms of the local basis of 77, Og ;. We work this out explicitly to get
equations for the complement of 771 C R.

Lemma 2.17 lets us find equations locally. Suppose S’ = Spec B and S = Spec A, where
B = @le A - e; is a finite free A-algebra of rank n with basis ey, ..., e,. Let/ = {1,..., n}.
Write ¢ for the coordinate function of Al and write x; as shorthand for n variables x;
indexed by i € I.

The scheme R = Homg(S/, Al) is the affine scheme A% = Spec A[x/] and Diagram (3)

becomes

Blxg] <X— Alxp, t] /(m(t))/<— Alxy, £]
Alxy]
The A[x;]-homomorphism v* sends

t— O:=x1e1+ - - + x,€y.

Note that A[xy, t]/(m(¢)) has an A[x;] basis given by the equivalence classes of
1 4. ..,t" ! and B[x;] has an A[x;]-basis given by ey, . . ., e,. With respect to these bases,
v is represented by the matrix of coefficients

Mley, ..., en) = laijli<ij<n- (4)
where a;; € Alx;] are the unique coefficients such that g1 = > ajje; for each j =

1,...,n

Definition 3.4 With notation as above, leti(ey, .. ., e,) = det(M(e, ..., e,)) € Alxr]. We
call this element a local index form for S’ over S. When the basis is clear from context, we

may omit the basis elements from the notation.

Theorem 3.5 Suppose S' — S is finite free and S is affine. With notation as above, 11 is
the distinguished affine subscheme D(i(ey, . . ., ey)) inside R = Spec A[x;].

Proof By Proposition 2.3, 171 is an open subscheme of (R. Therefore it suffices to check
that D(i(ey, . . ., e,)) and 771 have the same points. Letj : y — (R be the inclusion of a point
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with residue field k(y). Then

j factors through 71 <= j*uis a closed immersion, where u is the univ. hom.
< j*vis a closed immersion, for v as in (3)
— ®4 k(y) is surjective
— jn(M(el, ...,ey))is full rank

<« j*(i(ey, . . ., e,)) is nonzero.

This establishes the claim. O

Example 3.6 Let §":=SpecC" — S:=SpecC as in Example 1.5. Let ey, ey, . . ., e, be the
standard basis vectors of C”. The monogenerators of S’ over S are precisely the closed

immersions:

Identify R =~ Ag’. Let ¢ denote the coordinate of A}v’ and let xy, x9, ..., x,, denote the
S
coordinates of A¢. The analogue of Diagram (3) for this case is:

§' x5 A — V(m(t)) — A,
\ Ag

We write down m1g(t), as in Lemma 2.11. The coordinate ¢ of A}v maps to the universal
element & = x1e7 + x0e3 + -+ - + x,e,. Since ¢; = (5ij);l:1 € C", we have Oe; = x;e;.
Computing the minimal polynomial, m(t) = det(8;¢ — a;) = [/, (¢ — x:).

Notice that e;e; = §;je;. It follows that gi = Z;l:_()l x;ej. Therefore M(e, .. ., ey,) is the

Vandermonde matrix with ith row given by [1 X xF x;’_l].

Remark 3.7 If B is a free A-algebra with basis {ey, . . ., e,}, it follows that B is monogenic
over A if and only if there is a solution (x3, . . ., x,,) € A” to one of the equations

iler, ..., en)X1, .., %0) =a

as a varies over the units of A. These are the well-known index form equations. When
A has only finitely many units (such as when A = Z) this perspective gives the set of
global monogenerators the flavor of a closed subscheme of (R even though 771; is an open
subscheme.

Corollary 3.8 The map 1My,5/s — S classifying monogenerators is affine in Situation 2.1.

Proof Theorem 3.5 shows that S possesses an affine cover on which 171, g//s restricts to a
single distinguished affine subset of the affine scheme R = Spec A[x;]. O

Lemma 3.9 Counsider a local index form i((ey, ..., e,) = det(M(ey, ..., e,)) defined by a
basis B ~ @;’Z_OIA - e; as above. Suppose &y, . .., &, is a second basis of B over A and M
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is the matrix representation of v* with respect to the bases {1, ...,t" '} and (&, ..., &,).

Then det(M) = u det(M) for some unit u of A.

Although the determinant of M may not glue to a global datum on S, this shows the
ideal that it generates does.

Lemma 3.10 The local index formsi(ey, . . ., e,) are homogeneous with respect to the grad-

ing on Alxz]. To see this, note that since the ith column of M(ey, . . ., ey) represents 61, its
entries are of degree i — 1 in x1, . . ., x,. The Leibnitz formula for the determinant
det(ay) = Y (=1 - [ a0
oex,
shows that i(e, ..., e,) is homogeneous of degree ) i (i — 1) = @ The transition

Sfunctions induced by change of basis respect this grading, so the index form ideal U s is a
sheaf of homogeneous ideals.

Remark 3.11 We compare our local index form to the classical number theoretic situa-
tion. For references see [18] and [24]. If K is a number field and L is an extension of finite
degree n, then there are # distinct embeddings of L into an algebraic closure that fix K.
Denote them o7, . . ., 0,,. Let Tr denote the trace from L to K. The discriminant of L over
K is defined to be the ideal Disc(L/K) generated by the set of elements of the form

(det[oi(@))]1<ij<n)” = det [Tr (wj)]

1<ij<n’

where we vary over all K-bases for L, {wy, . . ., w,}, with each w; € Zg. If « is any element
of L, then the discriminant of a over K is defined to be

Discy k() = (dEt (U" (aj_l>>15i,j§n>2

1_[ (oi() — G;‘(Ol))z:

1<i<j<n

where the second equality comes from Vandermonde’s identity. Note that Discz/x (@) is a
power of the discriminant of the minimal polynomial of «. For every o generating L over
K one has

Discy k(@) = [Zy, : Zx[a]])* Disc(L/K).
One defines the index form of Z over Zy be to

Discr/x ()
Disc(L/K)

Indexz, /7, (@) = [Zr : Zg[a]] = ‘

Compare this with [18, Eq. 5.2.2]. In the case where {w;, ..., w,} is a Zg-basis for Z;,
employing some linear algebra [18, Eq. (1.5.3)], one finds Indexz, /7, is, up to an element
of Zj, the determinant of the change of basis matrix from {wy, ..., w,} to {1, a, .. ., o1},

The matrix in Eq. (4) is just such a matrix and its determinant coincides up to a unit
with the index form in situations where the index form is typically defined. The generality
of our setup affords us some flexibility that is not immediate from the definition of the

classical index form equation.
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The local index forms give the complement of 77lg,s in Rg/s a closed subscheme
structure.

Definition 3.12 (Non-monogenerators Mg s) Let Jg s be the ideal sheaf on R gener-
ated locally by local index forms. We call this the index form ideal. Let g5 be the
closed subscheme of /R cut out by the vanishing of Jg//5. We call this the scheme of
non-monogenerators, since its support is the complement of /71 /s inside of RR.

Lemma 3.9 implies that Jg s is locally principal, and Lemma 3.10 shows that it is
naturally homogeneous.

Theorem 3.13 When the scheme of non-monogenerators g s is an effective Cartier divi-
sor (equivalently, when none of the local index forms are zero divisors), the divisor class of
Ng s in R = Homg(S', A') is the same as the pullback of the Steinitz class of S'/S from S.

Proof Recallthat V (m(t)) is the vanishing of m(z) in A}R ,where m(t) is the generic minimal
polynomial for §’/S. Let T be the natural map t : V(m(¢)) — R. Consider the morphism

VIi : T*@V(m(t)) d JT*@S/XSgg

of sheaves on R. The first sheaf is free of rank # since m(t) is a monic polynomial: there is
a basis given by the images of 1,4, ..., t"~!. Therefore, taking nth wedge products in the
previous equation, we have a map

det(vﬁ)@g{ = det(l'*(c)v(m(t))) — det (ﬂ*(c)s/XSm) .

By construction, this map is locally given by a local index form, i(ey, ..., e,). Since we
have assumed that /g /s is an effective Cartier divisor, det(v¥) is injective. Therefore, the
det(v") identifies a non-zero section of det(4+ Qg «sx). By definition of Mg /s, we may
identify det(ﬂ*@S/XSgg) with (9(775//5).

Writing ¥ : R — S for the structure map, we also have that

det(7,Og/ xsz) = V" det(7,Oy).

since taking a determinental line bundle commutes with arbitrary base change and =,
commutes with base change for finite flat maps. The class of the line bundle det(r,Oy/)
in Pic(S) is by definition the Steinitz class. m|

3.2 Explicit equations for polygenerators 777
The work above readily generalizes to describe 777.

Fix a number k € N. We now construct explicit equations for the complement of 171, as
a subscheme of Ry = Homg (S, A%)when S’ — Sis free and S is affine. These hypotheses
hold Zariski locally on S, so by Lemma 2.17, this gives a construction for 771 locally on S
in the general case.

Let S’ = SpecBand S = Spec A, where B = B A - ¢; is a finite free A-algebra of rank
nwithbasisey, ..., e . Let] ={1,...,k}andI = {1, ..., n}. Write ¢ for the |J| coordinate
functions ¢y, . . ., t of A% and write x7y j as shorthand for | x J| variables x;; indexed by
(,j) el x]J.
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The scheme Ry is represented by the affine scheme Spec A[x/«;] and the universal map
for Ry is the commutative triangle

S’ Xsﬂk—>A
\ /

where the horizontal arrow u is induced by the ring map A[x;xj, £7] — Blxx;] sending

i — 9]‘ = Z Xije;.

iel

Notice that S’ xs Ry — Ry is in Situation 2.1. Apply Lemma 2.11 to find monic degree
n polynomials m1;(t;) € Alx;xs, tj] such that m1;(6;) = 0in Blxy,;]. Write v# for the unique
map

i s Alxrxg, t]]/(m,'(tj) :j €]) — Blxix/]
factoring u : A[xyy, tj] — Blxrxs].

Now, Alx;xy, t7]/(m;(t;) : j € ]) is a free Alx;x;]-module of rank 1k with basis given

by the equivalence classes of the products ¢} - - - t]:k as the powers r; vary between 0 and
n — 1. Since Blxyyy] is also a free A[x;«;]-module with basis ey, ..., e,, we may choose

K % n matrix M.

an ordering of the powers #]' - - - t,:k and represent the map v* by an #
Now, u is a closed immersion if and only if v* is surjective, which is equivalent in turn
to the condition that M has maximal rank. We check this condition using the following
procedure: For each subset C C {1, .. ., kn} of size n, let M be the submatrix of M whose

columns are indexed by C and let det(M¢) be the determinant.

Theorem 3.14 Suppose S’ — S is finite free and S is affine. Then with notation as above,
My is the union of the distinguished affines D(det(Mc)) inside Y.

Proof Check on points as in Theorem 3.5. ]

4 Examples of the scheme of monogenerators

We conclude with several examples to illustrate the nature and variety of the scheme of
monogenerators. We will consider situations in which the classical index form of Remark
3.11 is well-studied, such as field extensions and extensions of number rings, as well as
the more exotic situation of jet spaces. We will make frequent reference to computation
of the index form using the techniques of Sect. 3.1.

4.1 First examples

Example 4.1 (Quadratic Number Fields) Let K = Q(+/d), for any square-free integer d.
1+vd ]
2 ’

depending on d mod 4. We will confirm this using our framework, and determine the

It is well-known that the ring of integers Zy is monogenic: Z; = Z[+/d] or Z|

scheme 771; of monogenic generators.
Let o denote the known generator of Oy, either Vd or 1+2\/g . Let us take {1, o} as the
basis ey, . . ., ;. The universal map diagram (3) becomes:

Zla, b,a]l +— Zla, b, t] )) <— Zla, b, t]
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where the map Z[a, b, t]/(m(t)) — Zla, b, o] is given by ¢t + a + ba, i.e. a is coefficient
of 1 and b is the coefficient of o. The universal minimal polynomial m(¢) is given by
t2 — Tr(a + ba)t + N(a + ba).

This diagram encapsulates all choices of generators as follows. The elements of Z[«]
are all of the form ag + boa for ag, by € 7. Integers ag, by € Z are in bijection with maps
¢ : Zla,b] — Z sending a > ag, b — bo. Applying the functor Z ®¢ 745 — to the
diagram above yields a diagram

where the map Z[t]/(m(t)) — Z[«] takest — ap+boa. The image is precisely Z[ao+boc],

and the index form that we are about to compute detects whether this is all of Z[«].
Returning to the universal situation, the matrix representation of the map Z[a, b, t]/

(m(t)) — Zla, b, «] (what we have been calling the matrix of coefficients (4)) is given by

b i)

Notice that we did not need to compute m(¢) to get this matrix. The determinant, b, is
the local index form associated to the basis {1, &}. Therefore 11, = Z[a, b, b~']. Taking
Z-points of 171;, we learn that a + ba (4, b € 7Z) is a monogenic generator precisely when
bisaunit,ie b= +£1.

Proposition 4.5 generalizes this example to any degree-two S’ — S, always finite locally
free.

Example 4.2 In Example 3.6, the local index form with respect to the basis ey, ..., e, is
the Vandermonde determinant:

ey, ...,en)x1, ..., %) = £ H(xi - %;).
i<j
Therefore Mg ;s = Spec Clxy, .. ., %y, (]_[Kj(x,' - x,'))*l]. Inverting (x; — x;) requires the

n points to be distinct, describing the configuration space Conf,(C). The claim of Exam-
ple 1.5 follows.

Example 4.3 (Jets in A') Let S = SpecZ and S/, = Spec Z[€]/€", as in Example 2.7. We
explicitly describe 113,57 /s € R = J,,_; p1-

Choose the basis 1, , . . ., €71 for Z[e]/€". With respect to this basis, we may write the
universal map diagram as

ZIx1, .. os Xy €/€" —— Zlx1, ..., %0 t)/(m(t)) —— Zlx1, ..., %p £]

— 1

Z[xl, .. -;xn]
where t — x] + xp€ + - - - + x,e" L.
Change coordinates by ¢ — ¢ — x1 so that the image of £ is

> 0 =xpe+ - +x,e" L.
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1 0 0 0 0 0
0 0 0 0 0
0 3 x2 0 0 e 0
M, = 0 x4 2913 r; 0 0
0 x5 2xoxg+a3 3adry a3 0
0 =z, P
Fig. 1 The matrix determined by an (n — 1)-jet

This makes the minimal polynomial easy to compute: it must be m(t) = t”, since 6"
vanishes and ¢” is monic of degree 7. Our next task is to compute the representation of 6/
in{1,¢,...,€" 1}-coordinates forj = 0, ..., n — 1. The multinomial theorem yields

. n
(voe +x3€2 + - F a7y = Z <i2 / ; ) Hxife(t_l)if.
) ot =2

igtiz+-tip=j

The coefficient of €7 is

. n
] .
> ()T
itisttii= N2 =2
i+ 2i3-++(n—1)in=p
The matrix of coefficients in Fig. 1 represents the Z[xi,...,xy,]-linear map from
Zlx1, ..., % t)/(m(2)) to Zxy, ..., xp €]/e" = @;’;01 Zlx1, ..., %] - €. The coefficient

of €” above appears in the (j + 1)st column and (p + 1)st row.
n(n—1)
Since M), is lower triangular, it has determinant x, *

. An (n — 1)-jet thereby belongs
to My /s if and only if the coefficient x5 is a unit. The x; are naturally coordinates of
the jet space, yielding 1111 ¢/ /g = Spec Z[x1, . . ., %, xz_l] C Rs /s = Ju_1,a1-

The scheme of k-generators 77, need not be affine. Even for the Gaussian integers
7li]/Z, we have that 117, = AK x (AK\ {6}). We prove this in Proposition 4.5, after a small
lemma. The second factor begs to be quotiented by group actions of G, X, or GL,:
doing so leads to the notion of twisted monogenicity considered in the sequel paper.

Lemma 4.4 Consider S’ — S in Situation 2.1. Locally on S, the ring Og has an Og-basis
in which one basis element is 1.

Proof Onmitted. o

Proposition 4.5 Suppose S’ — S in Situation 2.1 has degree 2 and let0 € Alg be the zero
section. Then affine locally on S we have an isomorphism

Mys /s = AL x (AK\ 0).
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Proof Working affine locally and applying Lemma 4.4, we may take S’ = Spec B and
S = Spec A, where B has an A-basis of the form {1, e}. Write by, . . ., by for the coordinates
on the second Alg, 500 = Vi(by,...,br) C A’g.

In the notation preceding Theorem 3.14, we may take x;1 = a;, x;2 = b;, and t; — a; +
bje. The matrix of coefficients will have columns given by the {1, e}-basis representation of
the images of 1, ¢;, and £;¢; as i, j vary over distinct integers in {1, .. ., k}. Write e =c+de
where ¢, d € A. Then the column of the matrix representing 1 is

1
0 bl

the columns representing the images of the ¢; are

»
b |

and the columns representing the images of ¢;z; are

aiaj + b,'bjc
_(lib]’ + djbi + b,’bjd '

Among the determinants of the 2 x 2 minors of this matrix are by, .. ., by, coming from
the submatrices

1 a;
0 b '

The remaining determinants all lie in the ideal (b1, . . ., by ) since all elements of the second
row of the matrix lie in this ideal. We conclude by Theorem 3.14 that 171y 5//s is the union
of the open subsets D(b;) of Spec Alay, by, . . ., ak, by, as required. O

As an alternative to taking the union of k-determinants, we can use a generalization
of the determinant first introducted by Cayley, later rediscovered and generalized by
Gel'fand, Kapranov and Zelevinsky:

Question 4.6 The map v* above is a multilinear map from the tensor product of k free
modules Alxyxj, tj]/mj(t;) of rank n over Alxyx;] to the rank-n free module B(xrx;]. For
k = 1, My is the complement of the determinant of v*. In general, the map v* is locally
given by a hypermatrix of format (n — 1,...,n — 1) [56]. Thisn x n x - - - x n-hypercube
of elements of Alx1«j] describes a multilinear map the same way ordinary n X n matrices
describe a linear map. What locus does the hyperdeterminant cut out in Ry ?

Example 4.16 addresses the case k = 2 for jet spaces.

4.2 Field extensions

When S’ = SpecL — S = SpecK is induced by a field extension L/K, we know that the
monogenic generators of L over K are precisely the elements of L that do not belong to
any proper subfield of L. Therefore, on the level of K-points of 771}, we can expect to see
that the index form vanishes on precisely the proper subfields of L. However, it has further
structure that is better seen after extension to a larger field.

Page 21 of 33
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Example 4.7 [A 7)2 x 7./2 field extension] Let S = Spec@Q and S’ = Spec Q(+/2, v/3).
The isomorphism of groups Q(W2,v3) = Q@ Qv2 ® Qv3 ® Q6 identifies the Weil
Restriction Ry 5 /) and its universal maps with Spec of

Qla, b ¢, d][V3, V3] < a-+by/2+c/3+d /6t Qla, b, ¢, d][t].

\/

Qla, b, ¢, d]
Hence G%Q( V330 = Qla, b, ¢, d] and the universal morphism
uiS' xs Rowavmre = Migavig
is induced by
t> a+bV2+cV/3+dVe.
We expand the images of the powers 1, ¢, t2, 13 to find the matrix of coefficients

1 aa®+2b*> + 3¢ + 6d*> a® + 6ab? + 9ac* + 36bcd + 18ad?

0b 2ab + 6cd 3a%b + 2b3 + 9bc? + 18acd + 18bd> )
0c 2ac + 4bd 3a%c + 6b%c + 3¢3 + 12abd + 18cd?
0d 2bc + 2ad 6abc + 3ad + 6b%d + 9¢%d + 6d°

We compute the local index form associated to our chosen basis by taking the determinant:

i(a b, ¢, d) = —8b*c® + 12b%c* + 16b*d* — 36¢*d? — 48b%d* + 72c%d*
= —4(2b* — 3¢*)(b* — 3d?)(c? — 2d?).

Note that this determinant has degree 6. Dropping subscripts, the factorization implies
that the closed subscheme of non-generators 77 inside R = A?Q has three components of
degree 2. We remark that if Q is replaced by a field of characteristic 2, then the index form
vanishes and the extension fails to be monogenic.

Consider the Q-points of 771;,5//s = R — 1. These are in bijection with the elements
a+ b2+ c/3+dV6 € QW2 v/3) where a, b, ¢, d are in Q and the index form does not
vanish. Equivalently,

20 —3c2 £0, b*—3d>#0, and % —24% #0.

Let = a+ b2+ c/3+d+/6 for somea, b, ¢, d € Q and consider what it would mean
to fail one of these conditions. If 26> —3¢? = Ofor b, ¢ € Q, it must be that b = ¢ = 0. Then
0 € Q(V6), a proper subfield of Q2 V/3). Similarly, if b> — 3d> = O then 6 € Q/3),
and if ¢2 — 2d? = 0 then 6 € Q(+/2). It follows that the Q-points of 111}, 5 are in bijection
with the elements of Q(+/2, +/3) that do not lie in a proper subfield, as we expect from
field theory.

This example is not monogenic if Q is replaced by Z because of problems in characteristic
2. See Example 4.13 for an analysis of the monogenicity of some orders contained in the
field considered above.

Example 4.8 [A 7Z./47Z-extension] Let S = Spec Q(i) and S’ = Spec Q(;, J2). We have a
global Q(i)-basis {1, V2,32, 3/53} for Q(i, v/2) over Q(i). We may use this basis to write
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R = Spec Q(i)[a, b, ¢, d] where the universal map from Al is ¢ > a+by2+c24d(/2)3.
The matrix of coefficients is

1 a a®+ 2¢% + 4bd a® + 6b%c + 6ac® + 12abd + 12cd>
0b 2ab+4cd 3a*b+ 6bc? + 6b%d + 12acd + 4d°
0 ¢ b* + 2ac + 2d* 3ab® + 3a*c + 2¢® + 12bcd + 6ad?
0d 2bc+2ad  b®+ 6abc + 3a*d + 6¢*d + 6bd>

The determinant yields the local index form with respect to this basis:
(6> — 2d%)(b* + 8c* — 16bc*d + 4b°d” + 4d*).

We note that the first factor vanishes for a, b, ¢, d € Q(i) when a + by2+c/2+d (753 €
Q(i, +/2). At first glance the second factor is more mysterious, but after adjoining enough

elements, the entire index form factors into distinct linear terms:

(b — V2d)(b + V2d)(ib — (1 + i)v2¢c + V2d)(—ib — (1 — i)v/2¢ + v/2d)
(=ib+ (1 — )V2c + V2d)(ib + (1 + i)¥2¢ + V/24d).

This behavior of factorization into distinct linear factors occurs in general:

Proposition 4.9 Let S’ — S be induced by a finite separable extension of fields L/K. Let
el ...,eybeaK-basisforL, andlet x1, . . ., x, be the corresponding coordinates for R. Then
the local index form i(ey, . . ., e,) factors completely into distinct linear factors in xy, . . ., x,
over the normal closure L of L/K.

Compare this with Example 4.2. There, monogenerators correspond to configurations
of n points in Al and the distinct linear factors of i(ey, . . ., e,) correspond to when pairs
of points collide. Here the situation is the same except a separable field extension—
geometrically, an étale localization—is required first. This étale local characterization of
monogenerators is common to all étale S’ — S, a case that we will examine in more depth
in the sequel paper.

Some interesting and useful specifics in the case of number fields are investigated in
more depth in chapter 7 of [24].

Proof We may consider i(ey, ..., e,) as an element of L[xy, ..., x,] by pulling back to
Rpx xsSpecL = R Lexl/L- Our strategy is to compute a second generator of the pullback
of Jg /s with respect to a more convenient basis.

By the Chinese remainder theorem, Lol = ]_[L'»’=1 L.Letéy, ..., &, bethestandard basis
of (L)", let %y, . . ., &, be the corresponding coordinates on GQL®K£/Z ~ mzn/z, and let § =
%181+ - - +%,8,. Computing a matrix M for the map L[%1, . . ., &, t]/m(t) — L[X1, ..., %]
sending t — 0, we see that it is a Vandermonde matrix with factors &1, . . ., %, since

(181 + -+ Fuen)* = 2o+ %

when computed in the product ring (L)". Therefore |i(éy,...,&,)| = |det(M) =
ITL <j(5ci — %)|. Applying the L-linear change of basis from {%;} to {x;}, we see that
i(e1, ..., ey) is a product of distinct linear factors in xy, . . ., x;. O

The proposition above does not consider inseparable extensions. To see what can hap-
pen then, we begin with an example.
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Example 4.10 [A purely inseparable extension] For F3(«x)[8]/(8% — a) over F3(a), write
a, b, ¢ for the universal coefficients of the basis 1, 8, 82. In other words, § = a + bp + ¢8>
One computes that the index form is then

b — Ba.

To find the monogenic generators of this extension, we look for 4, b, ¢ € F3(«) so that
b® — 3a # 0. Clearly, at least one of b, c must be nonzero. Choose b, c arbitrarily so that
one is nonzero. Is this enough to ensure we have a monogenerator?

Suppose first that b # 0. Then b® — c3a = 0 implies ¢ € F3(8) \ F3(), a contradiction.
Symmetrically, if ¢ # 0 and 5> — c®a = 0, then b € F3(8) \ F3(«), a contradiction again.
We conclude that the set of monogenerators is

Myss(F3(@) = {a +bp + ¢B? | a b, c € F3(a) and (b, ¢) # (0,0)}.
= F3(B) \ F3(a),

as one expects from field theory.

The polynomial b® — Ba isirreducible in Fs(a)[a, b, ¢], so the scheme of non-generators
N is an irreducible subscheme of R ~ A3. However, 11 is not geometrically reduced: after
base extension to F3(8), the index form factors as (b — ¢f)3.

The factorization noted above is not an isolated phenomenon:

Proposition 4.11 Let S’ — S be induced by a degree n:=p™ completely inseparable
extension of fields K(a'/?")/K. Then over K(a'/P"), the local index form factors into a
repeated linear factor of multiplicity p™.

Proof Consider the local index form i(ey, . . ., e,) as an element of K(a/P™")[x1, ..., xp] by
pulling back to

Ricirvmyjxc Xs §'= R (@)@ K (@ /7™y JK (@10

Once again, to arrive at the result, we will compute a second generator of the pull back of
Ysr/s with respect to another basis.
By the Chinese remainder theorem,

K@Y?") @k K(@P") = K[t]/(##" — a) @k K(a'/7")
= K(@YP")[e]/ (£ — oMP" ")
= K(@YP")[e]/e?”,

where € = ¢t — o1/7",

Let by = L,by = ¢,...,byn = €”"~1 be a basis for K(a2/?")[e]/e?" over K(a'/?"),
and let y1,...,y, be corresponding coordinates on Ry (1) Xs S'. We are now in
the situation of Example 4.3. Following the calculation there, we do a second change
of coordinates to the basis c; = 1,cp = € — y1,...,¢, = (€ —y1)" L and let zy, ..., 2,
be the corresponding coordinates on Ry 41/ /K XS §’. Taking the determinant of the
matrix M of the map K (a'/7")[z1, . . ., 2y, t]/m(t) — K@Y?")[ellz, ..., znl /?" sending
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t — z1¢1 + - - - + z,c, with respect to the bases {1, ..., " 1} and {cy, . . ., ¢,}, we obtain
(p’”(p”‘—l))
‘ 2
i(cr, ... cn) = 2, .

Applying the change of basis from {zy, ..., z,} to {x1, . .., x,}, we see that i(e1, ..., e,) is a
power of a linear term. O

4.3 Orders in number rings

Example 4.12 [Dedekind’s Non-Monogenic Cubic Field] Let 1 denote a root of the poly-
nomial X3 — X2 — 2X — 8 and consider the field extension L:=Q(5) over K:=Q. When
Dedekind constructed this example [14] it was the first example of a non-monogenic
extension of number rings. Indeed two generators are necessary to generate Zy /Z: take

duznz 4’

n%an , for example. In fact, {1, -, %} is a Z-basis for Z; . The matrix of coefficients

2
with respect to the basis {1, %, n’}is

la a®+ 6b%+ 16bc + 8¢>
0 b 2ab + 7b? + 24bc + 20c?
0 ¢ —2b2% + 2ac — 8bc — 7¢>

Taking its determinant, the index form associated to this basis is
—2b> — 15b%c — 31bc* — 20,

Were the extension monogenic, we would be able to find 4, b, ¢ € Z so that the index form
above is equal to £1.
To see that there are no solutions, we may reduce the index form modulo 2 to obtain

b*c + bc?.

Iterating through the four possible values of (b, ¢) € (Z/27)* shows that the index form
always to reduces to 0.

Example 4.13 (A non-monogenic order and monogenic maximal order)

Consider the extension Z[+/2, /3] of Z. This extension is similar to Example 4.7, but
with rings instead of fields.

Note also that Z[+/2, +/3] is not the maximal order of Q(+/2, v/3). As we will see below,
the maximal order is Z[v/+/3 + 2]. The isomorphism of groups ZIN2 3 ~Z® 72D
7~/3 @ 7~/6 identifies the Weil Restriction Ruvav3) /Z and its universal maps with Spec
of

atbV2eV3HdVot g o ),

/

Zla, b, ¢, d]

Zla b, ¢, d][vV2,V/3] «

Now,

1—1

t> a+bvV2+cV3+dvVe

2 > (a4 bvV2 + cv/3 + d/6)?
3> (a4 bvV2 + V3 + dV6)>
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is given by the same matrix 5 as in Example 4.7:

1 aa®+2b*+ 3¢+ 6d* a® + 6ab? + 9ac* + 36bcd + 18ad?
0b 2ab + 6cd 3a’b + 2b® + 9bc* + 18acd + 18bd>
0c 2ac + 4bd 3a%c + 6b*c + 3¢® + 12abd + 18cd?
0d 2bc + 2ad 6abc + 3a*d + 6b*d + 9c¢*d + 643

Taking the determinant, the index form with respect to our chosen basis is
—8b*c* + 120%c* + 16b*d* — 36c*d* — 48b%d* + 72c%d*
= —4(2b* — 3c*)(b* — 3d*)(c* — 2d?).

The Z-points of mLZ[ﬁ@/Z are in bijection with the tuples (4, b, ¢, d) € Z* such that
the determinant is a unit. Since the determinant is divisible by 2, this never happens. We
conclude that Z[+/2, /3] is not monogenic over Z.

The non-monogenicity of the order Z[+/2, +/3] is in marked contrast to the maximal
order of (@(\/5, \/§), which is monogenic. A computation shows that a power integral
basis for the maximal order is given by {1, , @2, &3}, where « is a root of t* — 4¢2 + 1. One
could take @ = v/+/3 + 2. Here the Weil Restriction Rz[)/z and its universal maps are
identified with Spec of

Zla b, ¢, d]la] +—LHerelrdd <t e dlle).

'\/

Zla, b, ¢, d]

The element-wise computation

1—1

t > a+ba+ ca® +do®

2 > (a+ ba + ca® + da?)?
3+ (a+ ba + ca® + da?)?

yields the matrix of coefficients

la a’ — c® — 2bd — 4d> A

0b 2ab — 2cd B

0 ¢ b? + 2ac + 4c> + 8bd + 15d°* C

0d 2bc + 2ad + 8cd D
where

A =a® —3b%*c — 3ac® — 4¢3 — 6abd — 24bcd — 12ad* — 45c¢d?,

B = 3a®b — 3bc? — 3b*d — 6acd — 12¢*d — 12bd® — 15d°,

C = 3ab® + 3a%c + 12b%c + 12ac* + 15¢® + 24abd + 90bcd + 45ad® + 168cd?,
D = b3 + 6abc + 12bc* + 3a*d + 12b%d + 24acd + 45c2d + 45bd* + 564°.

The determinant of this matrix yields the index form

(b — 2¢2 + 6bd + 9d%)(b* — 6¢* + 10bd + 25d°)(b* + 4bd + d?).
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One can compute that the index of Z[+/2, +/3] inside of Z[v/+/3 + 2] is 2. Therefore the
index forms are equivalent away from the prime 2.

Example 4.14 Let K = Q, L = K(~/5% - 7). The ring of integers Z; = Z[v/52 7,45 - 72]
is not monogenic over Z. Let « = V527, B = /5 - 72. 1t turns out that {1, , B}isa
Z-basis for Zp, so the universal map may be identified with

Zila b o] «—FPt g0 bl
Zla, b, c]
Expanding
1—~1

t— a+ ba+cB,
2 (a+ ba + cB)?

we find that the matrix of coefficients is

1 a a® + 70bc
0 b 2ab + 7c>
0 ¢ 2ac + 5b>

Computing the determinant, we get the index form 5 — 7¢3. Reducing modulo 7, we

see that the index form cannot be equal to £1, so the extension is not monogenic.

4.4 Other examples
Example 4.15 We investigate the analog of the integers in Example 4.10. We keep the
same notation. The base ring is '3 [«r] and the extension ring is F3[a/][x]/(x® — ) = F3[g],

where 83 = a.

Fsla, b, ][] —tPPHcs < Fsle]la, b, ] [x].

‘\/’

Fsla]la, b, c]

l1—1
x> a+bp+ cp?
x> (a+bp + cp?)?

is given by

1a a®+ 2bca
0b 2o+ 2ab
0c¢ b%+2ac

The determinant is 5> — c3«, which is not geometrically reduced: it factors as (b — cf)>.
To find the monogenerators of this extension, we set this expression equal to the units of
F3[e]. Since (F3[e])* = %1, the only solutions are b = +1, ¢ = 0. Thus

My 18730 (F3la]) = {a £ B : a € F3[a]}.

14
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We can see that, much like number rings, monogenicity imposes a stronger restriction
here than it does for the extension of fraction fields.

Example 4.16 (Jet spaces of A?)

Let k be a field, S = Speck, and let S’ = k[e]/e”*+1. Analogously to the case for jets
in A! (See example 2.7 and 4.3), the 2-genicity space of S’/S may be interpreted as the
subscheme of regular jets inside the m-jet space J,, y2 = Ry2 ¢//s of A2, We compute the
index form equations cutting out its complement. These become incomputable rapidly
even for small m.

Consider an m-jet of A> = Spec k[¢, u] determined as in Example 4.3 by

t=ag+ae + are’ + - apue™

u=bo+bie + bye® + - bye™.
Linear changes of coordinates ensure ag = by = 0 and that our jets satisfy ¢! = ! =
0in k[e]/e™*1. To find the matrix for the induced k-linear map from

k[t u] /"L, Wty = @k -t

to the jets k[€]/e” 1 = @k - €/, we need the coefficient of each €” in the expression:

tu = (a1€ + are® + -+ + ame™) (b€ + bae® + - + bye™y

|y ¥ (,..,zm)l—[“

1<r<m i1+ia+--Fip=m
i14+2ip+---miy,=r

Seox (7

1<s<m /1+/2+ +1m—m
J1+22+-mjy,=s

I

= Z P Z <i1,,,e,,im) - )]m)l_[a;tb}t

1<p<m i1+is+Fip=m
jia-+ et m=m
(i1 H1)+2(i2+)2)++mim+im)=p

Ife+f > p, the coefficient of €” in t°4 is again zero. If e + f > m, all the coefficients are
zero. The corresponding m? x m matrix is “lower triangular” in this sense.

Take m = 1 to reduce to A. Cayley’s original situation of a 2 x 2 x 2 hypermatrix;
compute his second hyperdeterminant Det to be albz In this case, Ry is the tangent
space of A2, the index forms cut out the locus where both a; and b; are zero, and the
hyperdeterminant cuts out the locus where either a; or b; are zero.

For other affine spaces A”, computability of ], a» is a serious constraint. Even the
simplest case A3 and m = 1 yields a 2 x 2 x 2 x 2 hypermatrix. The formula for such a
hyperdeterminant is degree 24 and has 2,894,276 terms [56, Remark 5.7].
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4.5 Limits and colimits
If B/A is a limit of finite locally free A-algebras B,,, one may sometimes form its mono-
genicity space as well. Define

Mxpa = lmMNixg,/a

to be the limit of the restriction maps 17lx,g,,,,/4 — NlxB,,/a-

Lemma 4.17 Let B be an A-algebra which is complete with respect to I  B. Suppose each
B:=B/I"" is finite locally free over A and X — Spec A is quasiprojective. Then 11lx /4
as defined above is a scheme, not merely a pro-scheme. It in fact parameterizes closed
embeddings s : Spec B — X over Spec A as in Definition 2.2.

Proof The limit 171x,g/4 is a scheme because the transition maps 17lx g, /4 — Mxp,,/4
are affine [72, 01YX]. It parameterizes such closed embeddings of Spec B instead of mere
limits of closed embeddings due to a deep theorem of Bhatt: [7, Remark 4.6, Theorem
4.1]. O

The spaces 11x,p/4 considered above generalize the arc spaces k[t]/k, k[x, y]/k men-
tioned in Example 2.7.

We would like to define the monogenicity space for colimits of algebras similarly, such
as the perfection of a ring in characteristic p. Unfortunately, this is impossible:

Remark 4.18 Suppose {B;} is a diagram of A-algebras indexed by N. Then for each i < j
there is a natural map Rp, /4 — (RB/./A. Notice that if the image of some 6 € B; is a
monogenerator of Bj, then B; — B; is surjective. It follows that Rp,ja — ﬂ%Bj /4 only
takes 171p, /4 into mB,./A if Spec B; — Spec B; is a closed immersion over each open set
U < Spec A over which 171g, /4 is non-empty. Assuming 771z, ,4 is locally non-empty, the
only diagrams {B;} for which the colimit colim;/7lg;/4 can even be formed are those for
which each B; — B; is surjective. Since By is Noetherian, all such diagrams are eventually

constant and uninteresting.

5 Finite locally free algebras with monogenerators
We mention a related moduli problem and how it fits into the present schema. We resume
the notation of Sect. 2.2. We rely on a classical representability result:

Theorem 5.1 ([21, Theorem 5.23]) If X — S is flat and projective and Y — S quasipro-
jective over a locally noetherian base S, the functor Homg(X, Y) is representable by an
S-scheme.

The scheme Homg(X, Y) is a potentially infinite disjoint union of quasiprojective S-
schemes.

Fix a flat, projective map C — S and quasiprojective X — S. Assign to any S-scheme
T the groupoid of finite locally free maps Y — C x5 T of degree n. One can think of this
as a T-indexed family of finite locally free maps Y; — C. This problem is represented by

Ra,,cys = Homg(C Ay).

A variant 9B, of U, represents finite locally free algebras Q over a scheme T together
with a fixed global module basis Q ~ (C)QT)". We study moduli of finite locally free maps
Y — C xgs T together with a choice of monogenerator:
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Definition 5.2 The moduli problem % on S-schemes (Sc//S) has T-points given by:

+ A finite, flat family Y — C xgs T of degree #,
+ A closed embedding Y € X x5 C x5 T over C xg T.

These data form a fibered category via pullback. Define a variant .#’ parameterizing the
data above together with a global basis Q ~ (C)QT)” for the finite, flat algebra Q corresponding
toY > CxgT.

The map %' — % forgetting the basis is a torsor for the smooth group scheme
Homg(C, GL,). Let X¢ denote the pullback X xg C.

Theorem 5.3 The functors F and F' are representable by schemes. The Weil Restriction
R, c/s = Homg(C,B,) along C — S is a scheme, while Ryy,,c/s = Homg(C, U, is an
algebraic stack.

Proof The stack .# is the Weil Restriction g%Hﬂb;:(C/OC /s of the Hilbert Scheme HilbY, c/C
for Xc — C along the map C — S. Both are therefore representable by schemes using the
theorem. Note that HilbY_. sc 1s an infinite disjoint union of projective schemes indexed
by Hilbert polynomials and not itself projective, but this suffices for representability.
Here is another way to witness representability. There are universal finite locally free

maps
V4 Y
C xs Hom¢(C, B,,) C xs Homg(C, 2,,),

with and without a global basis Q =~ (C)?". The sheaf .# may also be obtained by the
Weil Restriction along C x5 Homg(C, 2A,) — Homg(C, 2,,) of the monogenicity space

mX,Y/stHomg
Ay

Weargue Homg(C, 2,,) is representable by an algebraic stack. The scheme B, is a closed

(1,)- The same construction of .7 " can be obtained with 9B, in place of

subscheme of an affine space, hence separated. The Weil Restriction Homg(C, 9B,) is a
scheme by Theorem 5.1 and the map

Homg(C, %B,,) — Homg(C, A,,)

is again a torsor for the smooth group scheme Homg¢(C, GL,). Therefore Homg(C, &,,) is
algebraic. ]

Olsson’s result [55, Theorem 1.1] does not apply here because 2l,, is not separated. This
means the (representable) diagonal Ag, is not proper, and this diagonal is a pseudotorsor
for automorphisms of the universal finite locally free algebra. But the automorphism sheaf
Aut(Q) of some finite locally free algebras need not be proper:

Example 5.4 Take the 2-adic integers Zy, Q = Z[x]/x%, and the map Q — Q sending
x +— 2x. This is an automorphism over the generic point Qy = Zz[%] and the zero map
over the special point Z/27 = 7, /27Z,.

The diagonal Ag, even fails to be quasifinite because some finite locally free algebras
have infinitely many automorphisms:
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Example 5.5 (Infinite automorphisms) The dual numbers k[€]/€” have an action of G,
by € > u - € for a unit u € G, (k).

For another example, let k be an infinite field of characteristic three and consider Q =
k[x, y]/(x3,y> — 1). Because (y + x)> = »>, there are automorphisms y > y + ux for any
uek.

The reader may define stable algebras as those with unramified automorphism group
[72, ODSN]. There is a universal open, Deligne-Mumford substack 2, < A, of stable
algebras [72,0DSL)]. This locus consists of points where the action GL,,C%B,, has unramified
stabilizers [58, Sect. 2].
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