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Abstract

This is the first in a series of two papers that study monogenicity of number rings from a

moduli-theoretic perspective. Given an extension of algebras B/A, when is B generated

by a single element θ ∈ B over A? In this paper, we show there is a schemeMB/A

parameterizing the choice of a generator θ ∈ B, a “moduli space” of generators. This

scheme relates naturally to Hilbert schemes and configuration spaces. We give explicit

equations and ample examples.
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1 Introduction

The theorem of the primitive element states that given a finite separable field extension

L/K , there is an element θ of L such that L = K (θ ). This holds for any extension of number
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fields L/K . By contrast, the extension of their rings of integers ZL/ZK may require up to

�log2([L : K ])� elements of ZL to generate ZL as a ZK -algebra [57].

Question 1.1 Which extensions ZL/ZK are generated by a single element over ZK ? More

generally, which finite locally free algebras B/A are generated by a single element over A?

How many elements does it take to generate B over A otherwise?

Definition 1.2 A finite locally freeA-algebra B ismonogenic1 if there is an element θ ∈ B

such that B = A[θ ]. The element θ is called a monogenic generator or monogenerator of

B over A.

If there are elements θ1, . . . , θk ∈ B such that B = A[θ1, . . . , θk ], then B/A is k-genic and

(θ1, . . . , θk ) is a generating k-tuple.

This paper is motivated by the observation that monogenicity2 of an algebra can be

restated geometrically:

Lemma 1.3 Let A ⊆ B be an inclusion of rings. A choice of element θ ∈ B is equivalent to

a commutative triangle

SpecB A1
A,

SpecA

sθ

(1)

where sθ is the map induced by the A-algebra homomorphism A[t] → B taking t to θ .

The element θ is a monogenerator if and only if the map sθ is a closed immersion.

Likewise, a k-tuple �θ = (θ1, . . . , θk ) ∈ Bk determines a corresponding map s�θ : SpecB →
Ak
A induced by the A-algebra homomorphism A[t1, . . . , tk ] → B taking ti �→ θi. The tuple

(θ1, . . . , θk ) generates B over A if and only if s�θ is a closed immersion.

Proof Omitted. 	

We ask if there is a scheme that represents such commutative triangles as inmoduli the-

ory [21, Chap. 1].We prove that for anyNoetherian ringA and finite locally-freeA-algebra

B, there is a representing schemeMB/A over SpecA called the scheme of monogenerators.

There is an analogous scheme of generating k-tuples or scheme of k-generators denoted

byMk,B/A. When the extension B/A is implied, we simply writeM orMk as appropriate.

Theorem 1.4 Let B/A be a finite locally free extension of Noetherian rings. There is an

affineA-schemeMB/A andfinite type quasiaffineA-schemesMk,B/A, for k ≥ 1, with natural

bijections

Hom(Sch/A)(SpecC,MB/A) ∼=
{
θ ∈ B | θ is a monogenerator for C ⊗A B over C

}

and

Hom(Sch/A)(SpecC,Mk,B/A) ∼=
{
�θ ∈ Bk | �θ is a generating k-tuple for C ⊗A B over C

}

1The literature often uses the phrase “L is monogenic over K ” to mean ZL/ZK is monogenic as above. We prefer “ZL

is monogenic over ZK ” in order to treat fields and more exotic rings uniformly. If B is monogenic of degree n over A

with monogenerator θ , the elements {1, θ , θ2 , . . . , θn−1} are elsewhere referred to as a “power A-integral basis.”
2 ‘Monogeneity’ is also common in the literature.
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for A-algebras C.

The problem of finding generating k-tuples of ZL/ZK is thereby identified with that of

finding ZK -points of the schemes Mk,ZL/ZK
. The functors Hom(−,Mk ) automatically

form sheaves in the fpqc topology (and therefore also in coarser topologies). This permits

monogenicity to be studied locally, a perspective that we will pursue further in the second

paper in this series.

The extensions of ringsB/Aunder consideration aremuchmore general than extensions

of number rings, and there is no difficulty in extending the construction ofMB/A to maps

of schemes S′ → S locally of the form SpecB → SpecA with B finite locally free over A.

For example, a finite map of algebraic curves C → D is of this form. We can therefore

view monogenicity in other contexts as analogous to monogenicity of number rings.

Some of these other extensions of rings are nevertheless functorially related to exten-

sions of number rings. For example, for every extension of number rings ZL/ZK , there

is a map SpecC → SpecZK . Pulling back SpecZL → SpecZK along this map yields

SpecCn → SpecC, a trivial cover of a point. Pulling back MZL/ZK along the same map

yieldsMCn/C. This part of the monogenicity space is already interesting:

Example 1.5 Let A = C and B = Cn. The complex points of the monogenicity space are

naturally in bijection with the points of the configuration space of n distinct points in C:

M1,B/A(C) � Confn(C):={(x1, . . . , xn) ∈ Cn | xi �= xj for i �= j}.

Monogenicity therefore generalizes configuration spaces by conceiving of B/A as “fam-

ilies of points” to be configured in A1. See Examples 3.6 and 4.2 for details.

The scheme of monogenerators admits a simple description in local coordinates: it is

the complement in the Weil Restriction of the vanishing of a “local index form,” closely

related to the well-known index forms considered elsewhere in the study ofmonogenicity.

In the case B is a free A-algebra with basis e1, . . . , en, the local index form with respect to

the basis e1, . . . , en is

i(e1, . . . , en) = det(aij)1≤i,j≤n

where aij ∈ A[x1, . . . , xn] are the unique coefficients such that (x1e1 + · · · + xnen)
j−1 =∑n

i=1 aijai for each j = 1, . . . , n.

Theorem 1.6 (Theorem 3.5) If B is a free A-algebra with basis e1, . . . , en, we have

MB/A
∼= SpecA[x1, . . . , xn, i(e1, . . . , en)

−1].

More conceptually, M1,B/A is the locus in An where the matrix of coefficients (aij)1≤i,j≤n

has maximal rank.

The monogenicity space of a finite locally free map of Noetherian schemes is always

Zariski locally of this form by Corollary 2.14. The monogenicity spaceM1,S′/S is therefore

the complement of a family of determinental varieties in an affine bundle over S.

Similar work shows that for k > 1, Mk,S′/S is locally on S the locus on which a cer-

tain non-square matrixM attains maximal rank. Taking determinants of minors exhibits

Mk,S′/S also as the complement of a family of determinental varieties. Using the minors

ofM, we obtainMk,S′/S as a union of distinguished affines:Mk,S′/S is not in general affine.

See Theorem 3.14.
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B. Poonen constructed an algebraic stack parameterizing a choice of finite locally free

A-algebra B, i.e. of an S′ over S. We combine this with our moduli of generators for S′/S
and show the result is a scheme in the final Sect. 5:

Theorem 1.7 (Theorem 5.3 for C = S) Let F be the moduli problem over S-schemes T

consisting of:

• A finite locally free map T ′ → T

• A monogenerator T ′ ⊆ A1
T .

Then F is representable by a scheme.

1.1 Outline of this paper

Section 2 defines our main object of studyMS′/S for a finite locally free map S′ → S. We

prove inProposition2.3 thatMS′/S is representable as a scheme.This schemeparametrizes

choices of monogenerators for the algebra extension OS′/OS . We offer basic properties

and examples. In Sect. 2.1, we prove functoriality of MS′/S . In Sect. 2.2 we relate our

construction ofMS′/S to the classical Hilbert scheme and a related construction of Poonen

[58].

In Sect. 3, we obtain explicit affine charts forMS′/S using local index forms and deduce

affineness forMB/A. The index form tells whether a given section θ ∈ OS′ is a monogen-

erator forOS′/OS or not. We generalize to provide explicit equations for k-generators in

Sect. 3.2. In Theorem 3.13, we prove that when none of the local index forms are zero

divisors, the divisor class of the scheme of non-monogenerators in HomS(S
′,A1) is the

pullback of the Steinitz class of S′/S from S.

Section 4 gives a variety of concrete examples of the scheme of monogenerators M,

including: separable and inseparable field extensions, a variety of orders in number fields

including Dedekind’s non-monogenic cubic, jet spaces, and completions. These explicit

equations put into practice classical theory in addition to the theory we have built. We

encourage the reader to consult these examples to complement the results in earlier

sections.

Section 5 presents a related moduli problem parameterizing not only monogenerators

but a choice of algebra as well. Theorem 5.3 proves that this related moduli problem is

representable as well, albeit as an algebraic stack instead of a scheme.

1.2 Summary of previous results

The question of which rings of integers are monogenic was posed to the London Math-

ematical Society in the 1960’s by Helmut Hasse. Hence the study of monogenicity is

sometimes known as Hasse’s problem. For an in-depth look at monogenicity with a focus

on algorithms for solving index form equations, see Gaál’s book [24]. Evertse and Győry’s

book [18] provides background with a special focus on the relevant Diophantine equa-

tions. For another bibliography of monogenicity, see Narkiewicz’s texts [53, pp. 79–81]

and [54, pp. 75–77].

The prototypical examples of number rings are monogenic over Z, such as quadratic

and cyclotomic rings of integers. Dedekind [14] produced the first example of a non-

monogenic number ring (see Example 4.12). Dedekind used the splitting of the prime 2 to

show that the field obtained by adjoining a root of x3 − x2 − 2x− 8 to Q is not monogenic
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over Z. Hensel [45] showed that local obstructions to monogenicity come from primes

whose splitting cannot be accommodated by the local factorization of polynomials in the

sense of Dedekind-Kummer factorization. See [63, Proposition III.12] and also [57] which

is discussed briefly below. For very recent English translations of the original pioneering

works, consult [31] and [32].

Global obstructions also precludemonogenicity. For a number field L/Q, the field index

is the greatest common divisor gcdα∈ZL
[ZL : Z[α]]. A number field L can have field index

1 and ZL may still not be monogenic, for example the ring of integers of Q(
3
√
25 · 7); see

[53, page 65] or Example 4.14. Define the minimal index to be minα∈ZL [ZL : Z[α]]. The

monogenicity of ZL/Z is equivalent to having minimal index equal to 1. An early result

of Hall [40] shows that there exist cubic fields with arbitrarily large minimal indices. In

[69], this is generalized to show that every cube-free integer occurs as the minimal index

of infinitely many radical cubic fields.

Themonogenicity of a given extension ofZ is encoded by a Diophantine equation called

the index form equation. Győry made the initial breakthrough regarding the resolution

of index form equations and related equations in the series of papers [33–36], and [37].

These papers investigate monogenicity and prove effective finiteness results for affine

inequivalent monogenerators in a variety of number theoretic contexts. For inequivalent

monogenic generators one should also consult [6,19], and the survey [20]. Specializing

families of polynomials to obtainmonogenic extensions is investigated in [49]. In large part

due to the group in Debrecen, there is a vast literature involving relative monogenicity:

[23,26,28–30,38,39], and [27].

Pleasants [57] bounds the number of generators needed for a field of degree n by

�log2(n)�, with equality if 2 splits completely. This upper bound is a consequence of a

precise description of exactly when an extension is locally k-genic in the sense that the

completion at each prime is k-genic. For number rings, Pleasants answers the question of

what the minimal positive integer k > 1 is such that ZL is k-genic. Global obstructions

only appear in the case of monogenicity: for k > 1, Pleasants shows that local k-genicity

is equivalent to global k-genicity.

A related account is given in [18, Chap. 11], where it is shown that given an orderO of a

finite étaleQ-algebra, one can effectively compute the smallest k such thatO is k-genic. In

the spirit of the previous work of Győry, one can also effectively compute the k generators

of O over Z.

Monogenicity has recently been viewed from the perspective of arithmetic statistics:

Bhargava, Shankar, and Wang [11] have shown that the density of monic, irreducible

polynomials in Z[x] such that a root is a monogenerator is 6
π2 = ζ (2)−1 ≈ 60.79%.

That is, about 61% of monic, integer polynomials correspond to monogenerators. They

also show the density of monic integer polynomials with square-free discriminants (a

sufficient condition for a root to be a monogenerator) is

∏

p

(
1 − 1

p
+ (p − 1)2

p2(p + 1)

)
≈ 35.82%.

Thus these polynomials only account for slightly more than half of the polynomials yield-

ing a monogenerator. Using elliptic curves, [1] shows that a positive proportion of cubic

number fields are not monogenic despite having no local obstructions. More recently,

the trio have undertaken a similar investigation for quartic fields [2]. For quartic orders,
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Bhargava [8] also establishes a new upper bound on the number of essentially different

monogenerators. In a pair of papers that investigate a variety of questions ([64] and [65]),

Siad shows that monogenicity appears to increase the average amount of 2-torsion in the

class group of number fields. In particular, monogenicity has a doubling effect on the

average amount of 2-torsion in the class group of odd degree number fields. Previously,

[9] had established this result in the case of cubic fields.

Following the completion of this paper, we were made aware of several bodies of related

work on monogenicity in geometric contexts, such as Stein manifolds [17,66,67] and

Riemann surfaces [59]. The question of the existence of monogenerators, referred to as

“primitive elements” was raised by Alling for Riemann surfaces [3] and then for Stein

manifolds by Röhrl [60].

In these geometric contexts, the relationship between the existence of monogenerators

and embeddings into trivial line bundles has been frequently observed (see for example,

[17, Sect. 1], [67, Proposition 2]). It is natural then to consider embeddings of finite covers

into line bundles or vector bundles rather than trivial bundles. (In fact, we do so in the

category of schemes in the sequel to this paper: finite maps π : S′ → S admitting an

embedding into a line bundle are instances of what we call twisted monogenic extensions.)

Such embeddings of finite covers into bundles have seen much study in other geomet-

ric categories, such as those of topological spaces, smooth manifolds, piecewise linear

manifolds and others, see for example [13,16,22,25,41–43,50–52,62]. In many of these

papers a key step was the construction of a representing space for such embeddings of

covers under the assumption that the covers were regular or unbranched, see [17, The-

orem 1.3], [25, Sect. 1], [41, Sect. 3], [43, Sect. 3]. These spaces are closely related to our

space of monogenerators in the case that S′ → S is étale. Another related construction

is Lønsted’s representing space Vn(L) [51, Proposition 1], which parametrizes branched

coverings in the category of topological spaces f : X̃ → X together with an embedding of

X̃ into a line bundle L over X . Our work appears to be the first construction of a space of

monogenerators in the category of schemes.

Casnati-Ekedahl obtain an essentially canonical generating set of order n− 1 for degree

n extensions S′/S [12]. The functor of points is also gaining traction as a new tool to

study related problems, such as in [68] which considers a functor of points similar to

Definition 2.2. We thank the referee for bringing these two works to our attention.

1.3 Acknowledgements

Sebastian Bozlee would like to thank David Smyth and Ari Shnidman for their support

and for helpful conversations.

Leo Herr would like to thank Gebhard Martin, the mathoverflow community for [47]

and [46], Tommaso de Fernex, Robert Hines, and Sam Molcho. Tommaso de Fernex

looked over a draft and made helpful suggestions about jet spaces. Leo Herr thanks the

NSF for providing partial support by the RTG grant #1840190.

Hanson Smith would like to thank Henri Johnston and Tommy Hofmann for help with

computing a particularly devious relative integral basis in Magma.

All four authors would like to thank their graduate advisors Katherine E. Stange (first

and fourth authors) and JonathanWise (second and third authors). This project grew out

of the fourth author trying to explain his thesis to the second author in geometric terms.



S. Arpin et al. Res. Number Theory (2023) 9:14 Page 7 of 33 14

We are greatful to Richard Hain for making us aware of the literature on monogenicity

for Stein spaces and topological spaces. For numerous computations throughout, we were

very thankful to be able to employ Magma [5] and SageMath [71]. For a number of
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2 The scheme of monogenic generators

We now use Lemma 1.3 to construct the scheme of monogenic generators MS′/S , our

geometric reinterpretation of the classical question of monogenicity. Given any extension

of number fields L/K , the map S′:=SpecZL → S:=SpecZK is finite locally free and

X = Ak
ZK

→ SpecZK is quasiprojective; these properties suffice for our purposes. Leaving

X general permits analogues ofmonogenicity such as embeddings intoPk , which aremore

natural when S′ → S is a map of proper varieties. We invite the reader to picture S′ as
the ring of integers SpecZL in a number field, S = SpecZK , and X as A1. We return to

X = A1, Ak in Sect. 3; we will see there that our approach recovers the well-known index

form equations.

Situation 2.1 Let π : S′ → S be a finite locally free morphism of constant degree n ≥
1 with S locally noetherian. Consider a quasiprojective morphism X → S and write

X ′:=X ×S S
′.

The constant degree assumption is for simplicity; the reader may remove it by working

separately on each connected component of S. In the sequel paper, we will occasionally

allow S to be an algebraic stack, though themorphism S′ → S will always be representable.

Write (Sch/S) for the category of S-schemes. We now define MX,S′/S by describing the

functor of maps into it and then showing it is representable.

Definition 2.2 In Situation 2.1, consider the presheaf on (Sch/S) which sends an S-

scheme T → S to the set of morphisms s fitting into the diagram:

T → S �→

⎧
⎪⎪«
⎪⎪¬

S′ ×S T X ×S T

T

s

«
⎪⎪¬
⎪⎪­

(2)

with restriction given by pullback. Refer to this presheaf either as the relative hompresheaf

HomS(S
′, X ′) [72, 0D19] or theWeil RestrictionRX ′ ,S′/S [10, Sect. 7.6].

The sheaf of monogenerators is the subpresheaf

MX,S′/S ⊆ RX ′ ,S′/S

whose sections are diagrams exactly as above, but with s a closed immersion.

We write Mk,S′/S ,Rk,S′/S for X = Ak
S , MS′/S = M1,S′/S , and RS′/S = R1,S′/S . When

S′ → S or X is understood, we may drop “S′/S” or “X” from the notation. If S′ = SpecB

and S = SpecA are affine, we writeMk,B/A orMB/A instead.

Lemma 1.3 expresses the presheafMk,S′/S as

Mk,S′/S(T ) =
{
(θ1, . . . , θk ) ∈ �(T ×S S

′,OT×SS′ )⊕k | OT×SS′ = OT [θ1, . . . , θk ]
}
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An S-point of M1 is said to be a monogenerator of S′/S and we say S′/S is monogenic if

such a point exists. This recovers the definition of monogenicity of algebras when S is

affine. These presheaves are representable:

Proposition 2.3 The presheavesMX ⊆ RX ′ ,S′/S are both representable by quasiprojective

S-schemes and the inclusion is a quasicompact open immersion. If f : X → S is smooth,

unramified, or étale, the same is true forRX ′ ,S′/S → S andMX → S.

Proof The Weil Restriction RX ′ ,S′/S is representable by a scheme quasiprojective over S

[48, Theorem 1.3, Proposition 2.10]. If X ′ → S′ is a finite-type affine morphism, the same

is true for RX ′ ,S′/S → S by locally applying [48, Proposition 2.2(1),(2)]. The inclusion

MX ⊆ RX ′ ,S′/S is open by [72, 05XA] and automatically quasicompact becauseRX ′ ,S′/S is

locally noetherian. The second statement is immediate. 	


Corollary 2.4 The presheaves MX ,RX ′ ,S′/S are sheaves in the Zariski, Nisnevich, étale,

fppf, and fpqc topologies on (Sch/S).

Definition 2.5 Let τ be a subcanonical Grothendieck topology on schemes, for example

theZariski, Nisnevich, étale, fppf, or fpqc topologies.We say that S′/S is τ -locally k-genic if

the sheafMk,S′/S is locally non-empty in the topology τ . I.e., there is a τ -cover {Ui → S}i∈I
of S such thatMk,S′/S(Ui) is non-empty for all i ∈ I . By default, we use the étale topology.

A k-genic extension S′/S is τ -locally k-genic. If τ1 is a finer topology than τ2, then

τ2-locally monogenic implies τ1-locally monogenic.

Remark 2.6 We pose a related moduli problem F in Sect. 5 that parameterizes a choice

of finite locally free map S′ → S together with a monogenerator. It is also representable

by a scheme. The mere choice of a finite locally free map S′ → S is representable by an

algebraic stack, as shown in [58] and recalled in Sect. 2.2.

Our main example of S′ → S comes from rings of integers in number fields ZL/ZK , but

here is another:

Example 2.7 Let S = SpecZ and S′
n = SpecZ[ε]/εn. The Weil Restriction RX ′ ,S′

n/S
is

better known as the jet space JX,n−1 [73]. For any ring A, (n − 1)-jets are maps

SpecA[ε]/εn → X.

Jet spaces are usually considered over a field k by base changing from S. Themonogenicity

spaceMX,S′
n/S

⊆ JX,n−1 parametrizes embedded (n−1)-jets, whosemap SpecA[ε]/εn ⊆ X

is a closed embedding. If n = 2, JX,1 is the Zariski tangent bundle and MX,S′
2/S

is the

complement of the zero section.

The truncation maps JX,n → JX,n−1 restrict to mapsMX,S′
n+1/S

→ MX,S′
n/S

. The inverse

limit limn JX,n sends rings A to maps called arcs

SpecA�t� → X

according to [7, Remark4.6,Theorem4.1].Under this identification, the limit limnMX,S′
n/S

parametrizes those arcs that are closed immersions into X × SpecA.

Compare embedded (n− 1)-jets to “regular” ones. An (n− 1)-jet f : Spec k[ε]/εn → X

over a field k is called regular [15, Sect. 5] if f ′(0) �= 0. I.e., the truncation of higher order
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terms f : Spec k[ε]/ε2 → X is a closed immersion. Regular (n − 1)-jets are precisely the

pullbackMX,S′
1/S

×J1,X JX,n.

Extensions of number rings are generically étale, with a divisor of ramification. The

finite locally free map S′
n → S in jet spaces is the opposite, ramified everywhere.

Definition 2.8 (Steinitz Classes)

We have assumed that π : S′ → S is finite locally free of rank n, so π∗OS′ is a locally

free OS-module of rank n. By taking an nth exterior power, one obtains a locally free

OS-module

det π∗OS′ :=
n∧

π∗OS′

of rank 1 [44, Chap. II, Exercise 6.11]. The Steinitz class of π : S′ → S is the isomorphism

class of det π∗OS′ in Pic(S).

The Weil Restriction Rk,S′/S is precisely the rank kn vector bundle with sheaf of sec-

tions π∗Ok
S′ . To see this, recall that the set of T -points of the S-scheme Rk,S′/S is by

definition the set of T -morphisms
{
S′ ×S T → Ak

T

}
. By the universal property of Ak

T ,

such morphisms are in bijection with k-tuples of elements of �(T,OS′×ST ). It follows that

HomS(−,Rk,S′/S) ∼= (π∗OS′ )k as quasicoherent sheaves on S. When π∗OS′ � ⊕n
OS · ei

is trivial, so isRS′/S .

Example 2.9 The Steinitz class of the jet space of Ak is the trivial vector bundle: Jn,Ak =
Ak(n+1) [73, Corollary 5.2].

Remark 2.10 Although A1 and hence RS′/S are ring objects, M1 is neither closed under

addition nor multiplication. For addition, note that if θ ∈ OS′ is a generator, then so is

−θ , but θ + (−θ ) = 0 is not for n �= 1.

Lemma 2.11 Let θ ∈ �(S′,OS′ ) be any element. There is a canonical monic polynomial

mθ (t) ∈ �(S,OS)[t] of degree n such that mθ (θ ) = 0.

Proof We begin by constructingmθ (t) locally, following [4, Proposition 2.4].

Assume first that π : S′ → S is such that π∗OS′ ∼= O
⊕n
S as an OS-module. Choose

a �(S,OS)-basis {x1, . . . , xn} of �(S′,OS′ ). For each i = 1, . . . , n, write θxi = ∑n
j=1 aijxj

where aij ∈ �(S′,OS′ ). Now we let

mθ (t) = det(δijt − aij).

As in the proof of [4, Proposition 2.4],mθ (t) has coefficients in�(S,OS), is monic of degree

n, and mθ (θ ) = 0. Moreover, mθ (t) does not depend on the basis chosen since mθ (t) is

computed by a determinant.

Now for general π : S′ → S, choose an open cover {Ui} of S on which π∗OS′ trivializes.

On each open set, the construction of the previous paragraph yields a monic polynomial

mi(t) ∈ OS(Ui)[t] of degree n vanishing on θ |Ui . Since the construction of the polynomials

commutes with restriction and is independent of choice of basis, we have

mi(t)|Ui∩Uj = mj(t)|Ui∩Uj .

We conclude by the sheaf property. 	
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Remark 2.12 Lemma 2.11 defines a map m : RS′/S → An
S sending an element θ ∈

�(S′,OS′ ) to the coefficients (bn−1, . . . , b0) of the universal canonical monicminimal poly-

nomial

mθ (t) = tn + bn−1t
n−1 + · · · + b0.

The preimage of a point of An
S is the set of roots of the corresponding polynomial inOS′ .

In the case that S′ → S is a trivial n-sheeted cover, i.e. S′ = S 
 · · · 
 S, we may

trivialize the vector bundle RS′/S ∼= An
S using the standard basis {e1 = (1, 0, · · · , 0), e2 =

(0, 1, · · · , 0), . . .} of π∗OS
∼= OS × · · ·OS . It is easy to compute that mθ (t) = ∏n

i=1(t −
xi) with respect to this basis, so that the coefficients bi are the elementary symmetric

polynomials in the xi. It follows that the mapm : RS′/S → An
S is the coarse quotient space

for the natural action of the symmetric group 
n on the {ei}-coordinates ofRS′/S .

If S′ → S is étale, S′ → S is étale locally a trivial cover as above. However, the
n-action

need not globalize. For example, consider the 3-power map [3] : Gm → Gm for S′ → S.

We will consider the situation of S′ → S étale in more depth in the second paper of this

series.

2.1 Functoriality ofMX

We now establish some basic functoriality properties ofMX,S′/S and compare them with

the well-known functoriality properties of theWeil Restriction. Functoriality in S (Corol-

lary 2.14) allows us to compute affine charts forM1,S′/S zariski locally on S in Sect. 3.

Lemma 2.13 Suppose given a commutative square

T ′ S′

T S

and an S-scheme X. Let f : T ′ → S′ ×S T be the map induced by the universal property

of pullback.

Then

1. There is an induced map of T-sheaves

τS,T : RX,S′/S ×S T → RXT ,T ′/T ,

given on (U → T )-points by

(U ′ s−→ X ×S U ) �→ (T ′ ×T U
f |U−→ U ′ s−→ X ×S U ∼= XT ×T U ),

where XT :=X ×S T and U ′:=S′ ×S U.

2. Assume S′ → S and T ′ → T both lie in Situation 2.1. If f is a closed immersion, then

the map τS,T induces a map on sub T-sheaves

ρS,T : MX,S′/S ×S T → MXT ,T ′/T .

Proof Omitted. 	


This simplifies in the case that the diagram is cartesian.
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Corollary 2.14 If S′ → S is as in Situation 2.1 and

T ′ S′

T S

is a cartesian square of schemes, then there is a natural isomorphism

MX,S′/S ×S T → MXT ,T ′/T

Proof The map f : T ′ → S′ ×S T is an isomorphism. 	


If f is not a closed immersion, composition with f |U need not preserve closed immer-

sions. ThusMX,S′/S is not functorial for general commutative squares.

Example 2.15 If S = SpecA, T → S ← S′ are identity maps and T ′ → T is non-

monogenic then the global sections of MS′/S ×S T are A, while MT ′/T has no global

sections, so there is no mapMS′/S ×S T → MT ′/T .

Example 2.16 If S′ = ⊔
S′
i is a finite disjoint union of finite locally free maps S′

i → S, the

pullback T ×S S
′ is the disjoint union

⊔
T ×S S

′
i . Write X ′

i = X ′ ×S S
′
i , it follows from the

universal property of coproducts and the above that the Weil Restriction decomposes as

RX ′ ,S′/S =
∏

i

RX ′
i ,S

′
i/S

.

The monogenicity space is not the product MS′/S,X �= ∏
MS′

i/S,X
. Rather, we claim a

map
⊔

S′
i → X

is a closed immersion if and only if each map

S′
i → X

is a closed immersion and the closed immersions are disjoint:

S′
i ×X S′

j = ∅

for all i �= j. This follows formally from the fact that closed immersions are precisely the

proper monomorphisms.

Not only is M1,S′/S functorial in S, but we show its normalization and reduction can

often be performed on S:

Lemma 2.17 Let X → S be smooth and write T ′ = T ×S S
′ for an S-scheme T . If T → S

is the normalization, the map

MXT ,T ′/T → MX,S′/S

is also normalization. Likewise, if T → S is the reduced induced subscheme Sred ⊆ S, the

pullbackMX,S′/S ×S Sred � MXSred
,T ′/Sred is the reduction ofMX,S′/S .

Proof For the normalization, one uses [72, 03GV] and properties of MX,S′/S in Proposi-

tion 2.3 to see thatMXT ,T ′/T → MX,S′/S is also normalization.
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Consider the cartesian square

MXSred
,T ′/Sred MX,S′/S

Sred S.

Being reduced is local in the smooth topology [72, 034E], soMXSred
,T ′/Sred is reduced. By

the universal property of induced reduced subscheme, the mapMXSred
,T ′/Sred → MX,S′/S

factors uniquely through (MX,S′/S)red . On the other hand, the map (MX,S′/S)red → S

factors uniquely through Sred , so there is a unique map (MX,S′/S)red → MXSred
,T ′/Sred by

the universal property of the pullback. By uniqueness of associatedmaps we conclude that

MXSred
,T ′/Sred

∼= (MX,S′/S)red . 	


2.2 Relation to the Hilbert scheme

With this section we pause our development of M to relate our construction to other

well-known objects. Though the rest of the paper does not use this section, it behooves

us to situate our work in the existing literature.

At the possible cost of representability of MX,S′/S , let X → S be any morphism of

schemes in this section. Recall the Hilbert scheme of points [72, 0B94]

HilbnX/S(T ):=
{
closed embeddings Z ⊆ X ×S T

∣∣ Z → T finite locally free deg. n
}
.

There is an algebraicmoduli stackAn offinite locally freemapsof degreen [58,Definition

3.2], with universal finite locally free map Zn → An. Any map S′ → S in Situation

2.1 is pulled back from Zn → An. We restrict to S-schemes without further mention:

An = An × S.

Recall Poonen’s description of An: A finite locally free map π : Z → T is equivalent

to the data of a finite locally free OT -algebra Q given by π∗OZ . Suppose for the sake of

exposition that a locally free algebra Q has a global basis Q � O
⊕n
T . The algebra structure

is a multiplication map

Q ⊗OT Q → Q

that can be written as a matrix using the basis. Conditions of associativity and commuta-

tivity are polynomial on the entries of this matrix. We get an affine scheme of finite type

Bn parametrizing matrices satisfying the polynomial conditions, or equivalently multipli-

cation laws on globally free finite modules [58, Proposition 1.1]. Two different choices of

global basisO⊕n
T � Q � O

⊕n
T differ by an element of GLn(OT ). Taking the stack quotient

by this action GLn

�

Bn erases the need for a global basis and gives An.

There is a map HilbnX/S → An sending a closed embedding Z ⊆ X |T to the finite locally

free map Z → T . The fibers of this map are exactly monogenicity spaces:

MX,S′/S S

HilbnX/S An.

� S′/S

This is because pulling back along the classifying map S → An fixes S
′ → S as the choice

of locally free map Z → T in the Hilbert scheme.

In turn, the monogenicity space of the universal finite locally free map Zn → An is

isomorphic to the Hilbert Scheme

MX,Zn/An � HilbnX/S
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over An. The space hn(A
k ) of [58, Sect. 4] isMk for the universal finite locally free map to

Bn.

Proposition 2.3 showsMS′/S(X) → S is smooth for X smooth, and likewise for unrami-

fied or étale. This means the map HilbnX/S → An is smooth, unramified, or étale if X → S

is.

Suppose X → S flat to identify the Chow variety of dimension 0, degree n subvari-

eties of X with SymnX [61] and take S equidimensional. The Hilbert-Chow morphism

Hilb
equi n
X/S → SymnX sending a finite, flat, equidimensional Z → S to the pushforward

of its fundamental class [Z] in Chow A∗(X) restricts to MX,S′/S . When S′/S is étale, we

will see the restriction of the Hilbert-Chow morphism MX,S′/S → SymnX is an open

embedding by hand in the sequel paper.

Question 2.18 Can known cohomology computations of HilbnX/S offer obstructions to

monogenicity under this relationship?

3 The local index form and construction ofM

This section describes equations for the complement of the monogenicity space M1,S′/S

inside R = HomS(S
′,A1) by working with the universal homomorphism over R. In the

classical case ZL/ZK we recover the well-known index form equation. Section 3.1 relates

the classical index form to MS′/S ⊆ R, while 3.2 generalizes the equations to k-genicity

Mk,S′/S .

See section 4.1 for more examples.

Remark 3.1 (Representable functors) Recall that if a functor F : Cop → Set is represented

by an objectX , then there is an element ξ of F (X) corresponding to the identitymorphism

X
id→ X , called the universal element of F . The proof of the Yoneda lemma shows that

for all objects Y and elements y ∈ F (Y ), there is a morphism fy : Y → X such that y is

obtained by applying F (fy) to ξ .

For a map f : X → Y of schemes, we write f 
 : OY → f∗OX for the map of sheaves and

its kin.

3.1 Explicit equations for the schemeM

The scheme R = RS′/S = HomS(S
′,A1) is a “moduli space” of maps S′ → A1. For any

T → S, every morphism S′ ×S T → A1
T is pulled back along some T → R from the

universal homomorphism

S′ ×S R A1
R
.

R

u

We want explicit equations for the complement of the open embeddingMS′/S ⊆ R.

Let t be the coordinate function on A1. The map u corresponds to an element θ =
u
(t) ∈ �(OS′×SR

). Let m(t) be the polynomial of Lemma 2.11 for θ , i.e. m(t) is a monic

polynomial in �(OR )[t] of degree n such thatm(θ ) = 0.

Definition 3.2 We call the polynomial m(t) the universal minimal polynomial of θ . Let

V (m(t)) be the closed subscheme of A1
R
cut out bym(t).



14 Page 14 of 33 S. Arpin et al. Res. Number Theory (2023) 9:14

The universal map u factors through this closed subscheme:

S′ ×S R V (m(t)) A1
R
.

R

v

π
τ

(3)

Since V (m(t)) → A1
R

is a closed immersion, the locus in R over which u restricts to a

closed immersion agrees with the locus over which v is a closed immersion.

Remark 3.3 ThemapV (m(t)) → R is finite globally free τ∗OV (m(t)) � ⊕n−1
i=0 OR · t i. The

map v : S′ ×S R → V (m(t)) comes from a map

v
 : τ∗OV (m(t)) → π∗OS′×SR

of finite locally free OR-modules. Locally, it is an n × n matrix. The determinant of this

matrix is a unit when it is full rank, i.e. when v is a closed immersion. The ith column is

θ i, written out in terms of the local basis of π∗OS′×SR
. We work this out explicitly to get

equations for the complement ofM ⊆ R.

Lemma 2.17 lets us find equations locally. Suppose S′ = SpecB and S = SpecA, where

B = ⊕n
i=1 A · ei is a finite free A-algebra of rank n with basis e1, . . . , en. Let I = {1, . . . , n}.

Write t for the coordinate function of A1 and write xI as shorthand for n variables xi

indexed by i ∈ I .

The scheme R = HomS(S
′,A1) is the affine scheme An

S = SpecA[xI ] and Diagram (3)

becomes

B[xI ] A[xI , t]/(m(t)) A[xI , t]

A[xI ]

v


π

τ 


The A[xI ]-homomorphism v
 sends

t �→ θ :=x1e1 + · · · + xnen.

Note that A[xI , t]/(m(t)) has an A[xI ] basis given by the equivalence classes of

1, t, . . . , tn−1 and B[xI ] has an A[xI ]-basis given by e1, . . . , en. With respect to these bases,

v
 is represented by thematrix of coefficients

M(e1, . . . , en) = [aij]1≤i,j,≤n. (4)

where aij ∈ A[xI ] are the unique coefficients such that θ j−1 = ∑n
i=1 aijei for each j =

1, . . . , n.

Definition 3.4 With notation as above, let i(e1, . . . , en) = det(M(e1, . . . , en)) ∈ A[xI ].We

call this element a local index form for S′ over S. When the basis is clear from context, we

may omit the basis elements from the notation.

Theorem 3.5 Suppose S′ → S is finite free and S is affine. With notation as above, M is

the distinguished affine subscheme D(i(e1, . . . , en)) insideR ∼= SpecA[xI ].

Proof By Proposition 2.3, M is an open subscheme of R. Therefore it suffices to check

thatD(i(e1, . . . , en)) andM have the same points. Let j : y → R be the inclusion of a point
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with residue field k(y). Then

j factors throughM ⇐⇒ j∗u is a closed immersion, whereu is the univ. hom.

⇐⇒ j∗v is a closed immersion, for v as in (3)

⇐⇒ v
 ⊗A k(y) is surjective

⇐⇒ j
(M(e1, . . . , en)) is full rank

⇐⇒ j
(i(e1, . . . , en)) is nonzero.

This establishes the claim. 	


Example 3.6 Let S′:=SpecCn → S:=SpecC as in Example 1.5. Let e1, e2, . . . , en be the

standard basis vectors of Cn. The monogenerators of S′ over S are precisely the closed

immersions:

S′ A1
S

S

Identify R � An
S . Let t denote the coordinate of A1

An
S
, and let x1, x2, ..., xn denote the

coordinates of An
S . The analogue of Diagram (3) for this case is:

S′ ×S An
S V (m(t)) A1

An
S

An
S

Wewrite downmθ (t), as in Lemma 2.11. The coordinate t of A1
An
S
maps to the universal

element θ = x1e1 + x2e2 + · · · + xnen. Since ei = (δij)
n
j=1 ∈ Cn, we have θei = xiei.

Computing the minimal polynomial,mθ (t) = det(δijt − aij) = ∏n
i=1(t − xi).

Notice that eiej = δijei. It follows that θ i = ∑n−1
j=0 xijej . Therefore M(e1, . . . , en) is the

Vandermonde matrix with ith row given by
[
1 xi x

2
i · · · xn−1

i

]
.

Remark 3.7 If B is a free A-algebra with basis {e1, . . . , en}, it follows that B is monogenic

over A if and only if there is a solution (x1, . . . , xn) ∈ An to one of the equations

i(e1, . . . , en)(x1, . . . , xn) = a

as a varies over the units of A. These are the well-known index form equations. When

A has only finitely many units (such as when A = Z) this perspective gives the set of

global monogenerators the flavor of a closed subscheme ofR even thoughM1 is an open

subscheme.

Corollary 3.8 ThemapM1,S′/S → S classifying monogenerators is affine in Situation 2.1.

Proof Theorem 3.5 shows that S possesses an affine cover on whichM1,S′/S restricts to a

single distinguished affine subset of the affine schemeR = SpecA[xI ]. 	


Lemma 3.9 Consider a local index form i(e1, . . . , en) = det(M(e1, . . . , en)) defined by a

basis B � ⊕n−1
i=0 A · ei as above. Suppose ẽ1, . . . , ẽn is a second basis of B over A and M̃
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is the matrix representation of v
 with respect to the bases {1, . . . , tn−1} and {ẽ1, . . . , ẽn}.
Then det(M̃) = u det(M) for some unit u of A.

Although the determinant of M may not glue to a global datum on S, this shows the

ideal that it generates does.

Lemma 3.10 The local index forms i(e1, . . . , en) are homogeneous with respect to the grad-

ing on A[xI ]. To see this, note that since the ith column of M(e1, . . . , en) represents θ i−1, its

entries are of degree i − 1 in x1, . . . , xn. The Leibnitz formula for the determinant

det(aij) =
∑

σ∈
n

(−1)σ ·
∏

aσ (i)i

shows that i(e1, . . . , en) is homogeneous of degree
∑n

i=1(i − 1) = i(i−1)
2 . The transition

functions induced by change of basis respect this grading, so the index form ideal IS′/S is a

sheaf of homogeneous ideals.

Remark 3.11 We compare our local index form to the classical number theoretic situa-

tion. For references see [18] and [24]. If K is a number field and L is an extension of finite

degree n, then there are n distinct embeddings of L into an algebraic closure that fix K .

Denote them σ1, . . . , σn. Let Tr denote the trace from L to K . The discriminant of L over

K is defined to be the ideal Disc(L/K ) generated by the set of elements of the form

(
det[σi(ωj)]1≤i,j≤n

)2 = det
[
Tr

(
ωiωj

)]
1≤i,j≤n

,

where we vary over all K -bases for L, {ω1, . . . ,ωn}, with each ωi ∈ ZK . If α is any element

of L, then the discriminant of α over K is defined to be

DiscL/K (α) =
(
det

(
σi

(
αj−1

))
1≤i,j≤n

)2

=
∏

1≤i<j≤n

(
σi(α) − σj(α)

)2
,

where the second equality comes from Vandermonde’s identity. Note that DiscL/K (α) is a

power of the discriminant of the minimal polynomial of α. For every α generating L over

K one has

DiscL/K (α) = [ZL : ZK [α]]
2Disc(L/K ).

One defines the index form of ZL over ZK be to

IndexZL/ZK (α) = [ZL : ZK [α]] =
√∣∣∣∣

DiscL/K (α)

Disc(L/K )

∣∣∣∣.

Compare this with [18, Eq. 5.2.2]. In the case where {ω1, . . . ,ωn} is a ZK -basis for ZL,

employing some linear algebra [18, Eq. (1.5.3)], one finds IndexZL/ZK is, up to an element

ofZ∗
K , the determinant of the change of basis matrix from {ω1, . . . ,ωn} to {1,α, . . . ,αn−1}.

The matrix in Eq. (4) is just such a matrix and its determinant coincides up to a unit

with the index form in situations where the index form is typically defined. The generality

of our setup affords us some flexibility that is not immediate from the definition of the

classical index form equation.
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The local index forms give the complement of MS′/S in RS′/S a closed subscheme

structure.

Definition 3.12 (Non-monogenerators NS′/S) Let IS′/S be the ideal sheaf on R gener-

ated locally by local index forms. We call this the index form ideal. Let NS′/S be the

closed subscheme of R cut out by the vanishing of IS′/S . We call this the scheme of

non-monogenerators, since its support is the complement ofMS′/S inside ofR.

Lemma 3.9 implies that IS′/S is locally principal, and Lemma 3.10 shows that it is

naturally homogeneous.

Theorem 3.13 When the scheme of non-monogeneratorsNS′/S is an effective Cartier divi-

sor (equivalently, when none of the local index forms are zero divisors), the divisor class of

NS′/S inR = HomS(S
′,A1) is the same as the pullback of the Steinitz class of S′/S from S.

Proof Recall thatV (m(t)) is the vanishingofm(t) inA1
R
, wherem(t) is the genericminimal

polynomial for S′/S. Let τ be the natural map τ : V (m(t)) → R. Consider the morphism

v
 : τ∗OV (m(t)) → π∗OS′×SR

of sheaves onR. The first sheaf is free of rank n sincem(t) is a monic polynomial: there is

a basis given by the images of 1, t, . . . , tn−1. Therefore, taking nth wedge products in the

previous equation, we have a map

det(v
)OR
∼= det(τ∗OV (m(t))) → det

(
π∗OS′×SR

)
.

By construction, this map is locally given by a local index form, i(e1, . . . , en). Since we

have assumed that NS′/S is an effective Cartier divisor, det(v
) is injective. Therefore, the

det(v
) identifies a non-zero section of det(π∗OS′×SR
). By definition of NS′/S , we may

identify det(π∗OS′×SR
) withO(NS′/S).

Writing ψ : R → S for the structure map, we also have that

det(π∗OS′×SR
) ∼= ψ∗ det(π∗OS′ ).

since taking a determinental line bundle commutes with arbitrary base change and π∗
commutes with base change for finite flat maps. The class of the line bundle det(π∗OS′ )

in Pic(S) is by definition the Steinitz class. 	


3.2 Explicit equations for polygeneratorsMk

The work above readily generalizes to describeMk .

Fix a number k ∈ N. We now construct explicit equations for the complement ofMk as

a subscheme ofRk = HomS(S
′,Ak ) when S′ → S is free and S is affine. These hypotheses

hold Zariski locally on S, so by Lemma 2.17, this gives a construction forMk locally on S

in the general case.

Let S′ = SpecB and S = SpecA, where B = ⊕n
i=1 A · ei is a finite free A-algebra of rank

nwith basis e1, . . . , en. Let J = {1, . . . , k} and I = {1, . . . , n}. Write tJ for the |J | coordinate
functions t1, . . . , tk of Ak and write xI×J as shorthand for |I × J | variables xij indexed by

(i, j) ∈ I × J .
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The schemeRk is represented by the affine scheme SpecA[xI×J ] and the universal map

forRk is the commutative triangle

S′ ×S Rk Ak
Rk

Rk

u

where the horizontal arrow u is induced by the ring map A[xI×J , tJ ] → B[xI×J ] sending

tj �→ θj :=
∑

i∈I
xijei.

Notice that S′ ×S Rk → Rk is in Situation 2.1. Apply Lemma 2.11 to find monic degree

n polynomialsmj(tj) ∈ A[xI×J , tJ ] such thatmj(θj) = 0 in B[xI×J ]. Write v
 for the unique

map

v
 : A[xI×J , tJ ]/(mj(tj) : j ∈ J ) −→ B[xI×J ]

factoring u
 : A[xI×J , tJ ] → B[xI×J ].

Now, A[xI×J , tJ ]/(mj(tj) : j ∈ J ) is a free A[xI×J ]-module of rank nk with basis given

by the equivalence classes of the products tr11 · · · trk
k

as the powers rj vary between 0 and

n − 1. Since B[xI×J ] is also a free A[xI×J ]-module with basis e1, . . . , en, we may choose

an ordering of the powers tr11 · · · trk
k

and represent the map v
 by an nk × n matrix M.

Now, u is a closed immersion if and only if v
 is surjective, which is equivalent in turn

to the condition that M has maximal rank. We check this condition using the following

procedure: For each subset C ⊆ {1, . . . , kn} of size n, letMC be the submatrix ofM whose

columns are indexed by C and let det(MC ) be the determinant.

Theorem 3.14 Suppose S′ → S is finite free and S is affine. Then with notation as above,

Mk is the union of the distinguished affines D(det(MC )) inside Y .

Proof Check on points as in Theorem 3.5. 	


4 Examples of the scheme of monogenerators

We conclude with several examples to illustrate the nature and variety of the scheme of

monogenerators. We will consider situations in which the classical index form of Remark

3.11 is well-studied, such as field extensions and extensions of number rings, as well as

the more exotic situation of jet spaces. We will make frequent reference to computation

of the index form using the techniques of Sect. 3.1.

4.1 First examples

Example 4.1 (Quadratic Number Fields) Let K = Q(
√
d), for any square-free integer d.

It is well-known that the ring of integers ZK is monogenic: ZL
∼= Z[

√
d] or Z[ 1+

√
d

2 ],

depending on d mod 4. We will confirm this using our framework, and determine the

schemeM1 of monogenic generators.

Let α denote the known generator of OL, either
√
d or 1+

√
d

2 . Let us take {1,α} as the
basis e1, . . . , en. The universal map diagram (3) becomes:

Z[a, b,α] Z[a, b, t]/(m(t)) Z[a, b, t]

Z[a, b]
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where the map Z[a, b, t]/(m(t)) → Z[a, b,α] is given by t �→ a + bα, i.e. a is coefficient

of 1 and b is the coefficient of α. The universal minimal polynomial m(t) is given by

t2 − Tr(a + bα)t + N(a + bα).

This diagram encapsulates all choices of generators as follows. The elements of Z[α]

are all of the form a0 + b0α for a0, b0 ∈ Z. Integers a0, b0 ∈ Z are in bijection with maps

φ : Z[a, b] → Z sending a �→ a0, b �→ b0. Applying the functor Z ⊗φ,Z[a,b] − to the

diagram above yields a diagram

Z[α] Z[t]/(m(t)) Z[t]

Z

where themapZ[t]/(m(t)) → Z[α] takes t �→ a0+b0α. The image is preciselyZ[a0+b0α],

and the index form that we are about to compute detects whether this is all of Z[α].

Returning to the universal situation, the matrix representation of the map Z[a, b, t]/

(m(t)) → Z[a, b,α] (what we have been calling the matrix of coefficients (4)) is given by
[
1 a

0 b

]
.

Notice that we did not need to compute m(t) to get this matrix. The determinant, b, is

the local index form associated to the basis {1,α}. Therefore M1
∼= Z[a, b, b−1]. Taking

Z-points ofM1, we learn that a + bα (a, b ∈ Z) is a monogenic generator precisely when

b is a unit, i.e. b = ±1.

Proposition 4.5 generalizes this example to any degree-two S′ → S, always finite locally

free.

Example 4.2 In Example 3.6, the local index form with respect to the basis e1, . . . , en is

the Vandermonde determinant:

i(e1, . . . , en)(x1, . . . , xn) = ±
∏

i<j

(xi − xj).

Therefore MS′/S = SpecC[x1, . . . , xn, (
∏

i<j(xi − xj))
−1]. Inverting (xi − xj) requires the

n points to be distinct, describing the configuration space Confn(C). The claim of Exam-

ple 1.5 follows.

Example 4.3 (Jets in A1) Let S = SpecZ and S′
n = SpecZ[ε]/εn, as in Example 2.7. We

explicitly describeM1,S′
n/S

⊆ R = Jn−1,A1 .

Choose the basis 1, ε, . . . , εn−1 for Z[ε]/εn. With respect to this basis, we may write the

universal map diagram as

Z[x1, . . . , xn, ε]/ε
n Z[x1, . . . , xn, t]/(m(t)) Z[x1, . . . , xn, t]

Z[x1, . . . , xn]

where t �→ x1 + x2ε + · · · + xnε
n−1.

Change coordinates by t �→ t − x1 so that the image of t is

t �→ θ = x2ε + · · · + xnε
n−1.
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Fig. 1 The matrix determined by an (n − 1)-jet

This makes the minimal polynomial easy to compute: it must be m(t) = tn, since θn

vanishes and tn is monic of degree n. Our next task is to compute the representation of θ j

in {1, ε, . . . , εn−1}-coordinates for j = 0, . . . , n − 1. The multinomial theorem yields

(x2ε + x3ε
2 + · · · + xnε

n−1)j =
∑

i2+i3+···+in=j

(
j

i2, . . . , in

) n∏

t=2

x
it
t ε(t−1)it .

The coefficient of εp is

∑

i2+i3+···+in=j
i2+2i3+···(n−1)in=p

(
j

i2, . . . , in

) n∏

t=2

x
it
t .

The matrix of coefficients in Fig. 1 represents the Z[x1, . . . , xn]-linear map from

Z[x1, . . . , xn, t]/(m(t)) to Z[x1, . . . , xn, ε]/ε
n = ⊕n−1

i=0 Z[x1, . . . , xn] · εi. The coefficient

of εp above appears in the (j + 1)st column and (p + 1)st row.

SinceMn is lower triangular, it has determinant x
n(n−1)

2
2 . An (n − 1)-jet thereby belongs

to MA1 ,S′
n/S

if and only if the coefficient x2 is a unit. The xi are naturally coordinates of

the jet space, yieldingMA1 ,S′
n/S

= SpecZ[x1, . . . , xn, x
−1
2 ] ⊆ RS′

n/S
= Jn−1,A1 .

The scheme of k-generators Mk need not be affine. Even for the Gaussian integers

Z[i]/Z, we have thatMk = Ak × (Ak \ {�0}). We prove this in Proposition 4.5, after a small

lemma. The second factor begs to be quotiented by group actions of Gm, 
n, or GLn:

doing so leads to the notion of twisted monogenicity considered in the sequel paper.

Lemma 4.4 Consider S′ → S in Situation 2.1. Locally on S, the ring OS′ has an OS-basis

in which one basis element is 1.

Proof Omitted. 	


Proposition 4.5 Suppose S′ → S in Situation 2.1 has degree 2 and let �0 ∈ Ak
S be the zero

section. Then affine locally on S we have an isomorphism

Mk,S′/S ∼= Ak
S × (Ak

S \ �0).
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Proof Working affine locally and applying Lemma 4.4, we may take S′ = SpecB and

S = SpecA, where B has anA-basis of the form {1, e}. Write b1, . . . , bk for the coordinates

on the second Ak
S , so

�0 = V (b1, . . . , bk ) ⊆ Ak
S .

In the notation preceding Theorem 3.14, we may take xi,1 = ai, xi,2 = bi, and ti �→ ai +
bie. Thematrix of coefficients will have columns given by the {1, e}-basis representation of
the images of 1, ti, and titj as i, j vary over distinct integers in {1, . . . , k}. Write e2 = c+ de

where c, d ∈ A. Then the column of the matrix representing 1 is
[
1

0

]
,

the columns representing the images of the ti are
[
ai

bi

]
,

and the columns representing the images of titj are

[
aiaj + bibjc

aibj + ajbi + bibjd

]
.

Among the determinants of the 2 × 2 minors of this matrix are b1, . . . , bk , coming from

the submatrices
[
1 ai

0 bi

]
.

The remaining determinants all lie in the ideal (b1, . . . , bk ) since all elements of the second

row of the matrix lie in this ideal. We conclude by Theorem 3.14 thatMk,S′/S is the union

of the open subsets D(bi) of SpecA[a1, b1, . . . , ak , bk ], as required. 	


As an alternative to taking the union of k-determinants, we can use a generalization

of the determinant first introducted by Cayley, later rediscovered and generalized by

Gel’fand, Kapranov and Zelevinsky:

Question 4.6 The map v
 above is a multilinear map from the tensor product of k free

modules A[xI×J , tj]/mj(tj) of rank n over A[xI×J ] to the rank-n free module B[xI×J ]. For

k = 1, M1 is the complement of the determinant of v
. In general, the map v
 is locally

given by a hypermatrix of format (n − 1, . . . , n − 1) [56]. This n × n × · · · × n-hypercube

of elements of A[xI×J ] describes a multilinear map the same way ordinary n × n matrices

describe a linear map. What locus does the hyperdeterminant cut out inRk?

Example 4.16 addresses the case k = 2 for jet spaces.

4.2 Field extensions

When S′ = Spec L → S = SpecK is induced by a field extension L/K , we know that the

monogenic generators of L over K are precisely the elements of L that do not belong to

any proper subfield of L. Therefore, on the level of K -points of M1, we can expect to see

that the index form vanishes on precisely the proper subfields of L. However, it has further

structure that is better seen after extension to a larger field.
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Example 4.7 [A Z/2 × Z/2 field extension] Let S = SpecQ and S′ = SpecQ(
√
2,

√
3).

The isomorphism of groups Q(
√
2,

√
3) ∼= Q ⊕ Q

√
2 ⊕ Q

√
3 ⊕ Q

√
6 identifies the Weil

RestrictionR
Q(

√
2,

√
3)/Q

and its universal maps with Spec of

Q[a, b, c, d][
√
2,

√
3] Q[a, b, c, d][t].

Q[a, b, c, d]

a+b
√
2+c

√
3+d

√
6←�t

HenceR
Q(

√
2,

√
3)/Q

= Q[a, b, c, d] and the universal morphism

u : S′ ×S RQ(
√
2,

√
3)/Q

→ A1
R

Q(
√
2,

√
3)/Q

is induced by

t �→ a + b
√
2 + c

√
3 + d

√
6.

We expand the images of the powers 1, t, t2, t3 to find the matrix of coefficients

£
¤¤¤¥

1 a a2 + 2b2 + 3c2 + 6d2 a3 + 6ab2 + 9ac2 + 36bcd + 18ad2

0 b 2ab + 6cd 3a2b + 2b3 + 9bc2 + 18acd + 18bd2

0 c 2ac + 4bd 3a2c + 6b2c + 3c3 + 12abd + 18cd2

0 d 2bc + 2ad 6abc + 3a2d + 6b2d + 9c2d + 6d3

¦
§§§̈ . (5)

Wecompute the local index formassociated to our chosenbasis by taking thedeterminant:

i(a, b, c, d) = −8b4c2 + 12b2c4 + 16b4d2 − 36c4d2 − 48b2d4 + 72c2d4

= −4(2b2 − 3c2)(b2 − 3d2)(c2 − 2d2).

Note that this determinant has degree 6. Dropping subscripts, the factorization implies

that the closed subscheme of non-generators N inside R ∼= A4
Q
has three components of

degree 2.We remark that ifQ is replaced by a field of characteristic 2, then the index form

vanishes and the extension fails to be monogenic.

Consider the Q-points of M1,S′/S = R − N. These are in bijection with the elements

a+ b
√
2+ c

√
3+ d

√
6 ∈ Q(

√
2,

√
3) where a, b, c, d are in Q and the index form does not

vanish. Equivalently,

2b2 − 3c2 �= 0, b2 − 3d2 �= 0, and c2 − 2d2 �= 0.

Let θ = a+ b
√
2+ c

√
3+d

√
6 for some a, b, c, d ∈ Q and consider what it would mean

to fail one of these conditions. If 2b2−3c2 = 0 for b, c ∈ Q, it must be that b = c = 0. Then

θ ∈ Q(
√
6), a proper subfield of Q(

√
2,

√
3). Similarly, if b2 − 3d2 = 0 then θ ∈ Q(

√
3),

and if c2−2d2 = 0 then θ ∈ Q(
√
2). It follows that theQ-points ofM1,S′/S are in bijection

with the elements of Q(
√
2,

√
3) that do not lie in a proper subfield, as we expect from

field theory.

This example is notmonogenic ifQ is replacedbyZbecauseof problems in characteristic

2. See Example 4.13 for an analysis of the monogenicity of some orders contained in the

field considered above.

Example 4.8 [A Z/4Z-extension] Let S = SpecQ(i) and S′ = SpecQ(i,
4
√
2). We have a

global Q(i)-basis {1, 4
√
2,

√
2,

4
√
2
3} for Q(i,

4
√
2) over Q(i). We may use this basis to write
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R ∼= SpecQ(i)[a, b, c, d] where the universalmap fromA1 is t �→ a+b
4
√
2+c

√
2+d(

4
√
2)3.

The matrix of coefficients is
£
¤¤¤¥

1 a a2 + 2c2 + 4bd a3 + 6b2c + 6ac2 + 12abd + 12cd2

0 b 2ab + 4cd 3a2b + 6bc2 + 6b2d + 12acd + 4d3

0 c b2 + 2ac + 2d2 3ab2 + 3a2c + 2c3 + 12bcd + 6ad2

0 d 2bc + 2ad b3 + 6abc + 3a2d + 6c2d + 6bd2

¦
§§§̈ .

The determinant yields the local index form with respect to this basis:

(b2 − 2d2)(b4 + 8c4 − 16bc2d + 4b2d2 + 4d4).

Wenote that the first factor vanishes for a, b, c, d ∈ Q(i) when a+b
4
√
2+c

√
2+d

4
√
2
3 ∈

Q(i,
√
2). At first glance the second factor is more mysterious, but after adjoining enough

elements, the entire index form factors into distinct linear terms:

(b −
√
2d)(b +

√
2d)(ib − (1 + i)

4
√
2c +

√
2d)(−ib − (1 − i)

4
√
2c +

√
2d)

· (−ib + (1 − i)
4
√
2c +

√
2d)(ib + (1 + i)

4
√
2c +

√
2d).

This behavior of factorization into distinct linear factors occurs in general:

Proposition 4.9 Let S′ → S be induced by a finite separable extension of fields L/K. Let

e1, . . . , en be a K-basis for L, and let x1, . . . , xn be the corresponding coordinates forR. Then

the local index form i(e1, . . . , en) factors completely into distinct linear factors in x1, . . . , xn

over the normal closure L̃ of L/K.

Compare this with Example 4.2. There, monogenerators correspond to configurations

of n points in A1 and the distinct linear factors of i(e1, . . . , en) correspond to when pairs

of points collide. Here the situation is the same except a separable field extension—

geometrically, an étale localization—is required first. This étale local characterization of

monogenerators is common to all étale S′ → S, a case that we will examine in more depth

in the sequel paper.

Some interesting and useful specifics in the case of number fields are investigated in

more depth in chapter 7 of [24].

Proof We may consider i(e1, . . . , en) as an element of L̃[x1, . . . , xn] by pulling back to

RL/K ×S Spec L̃ ∼= RL⊗K L̃/L̃. Our strategy is to compute a second generator of the pullback

of IS′/S with respect to a more convenient basis.

By theChinese remainder theorem,L⊗K L̃ ∼=
∏n

i=1 L̃. Let ẽ1, . . . , ẽn be the standard basis

of (L̃)n, let x̃1, . . . , x̃n be the corresponding coordinates onRL⊗K L̃/L̃ � RL̃n/L̃, and let θ̃ =
x̃1ẽ1+· · ·+ x̃nẽn. Computing amatrixM for themap L[x̃1, . . . , x̃n, t]/m(t) → L̃[x̃1, . . . , x̃n]

sending t �→ θ̃ , we see that it is a Vandermonde matrix with factors x̃1, . . . , x̃n, since

(x̃1ẽ1 + · · · + x̃nẽn)
k = x̃k1 ẽ1 + · · · x̃kn ẽn,

when computed in the product ring (L̃)n. Therefore |i(ẽ1, . . . , ẽn)| = | det(M)| =
|∏i<j(x̃i − x̃j)|. Applying the L̃-linear change of basis from {x̃i} to {xi}, we see that

i(e1, . . . , en) is a product of distinct linear factors in x1, . . . , xn. 	


The proposition above does not consider inseparable extensions. To see what can hap-

pen then, we begin with an example.
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Example 4.10 [A purely inseparable extension] For F3(α)[β]/(β
3 − α) over F3(α), write

a, b, c for the universal coefficients of the basis 1,β ,β2. In other words, θ = a+ bβ + cβ2.

One computes that the index form is then

b3 − c3α.

To find the monogenic generators of this extension, we look for a, b, c ∈ F3(α) so that

b3 − c3α �= 0. Clearly, at least one of b, c must be nonzero. Choose b, c arbitrarily so that

one is nonzero. Is this enough to ensure we have a monogenerator?

Suppose first that b �= 0. Then b3 − c3α = 0 implies c ∈ F3(β) \ F3(α), a contradiction.

Symmetrically, if c �= 0 and b3 − c3α = 0, then b ∈ F3(β) \ F3(α), a contradiction again.

We conclude that the set of monogenerators is

M1,S′/S(F3(α)) = {a + bβ + cβ2 | a, b, c ∈ F3(α) and (b, c) �= (0, 0)}.
= F3(β) \ F3(α),

as one expects from field theory.

The polynomial b3−c3α is irreducible in F3(α)[a, b, c], so the scheme of non-generators

N is an irreducible subscheme ofR � A3. However,N is not geometrically reduced: after

base extension to F3(β), the index form factors as (b − cβ)3.

The factorization noted above is not an isolated phenomenon:

Proposition 4.11 Let S′ → S be induced by a degree n:=pm completely inseparable

extension of fields K (α1/pm )/K. Then over K (α1/pm ), the local index form factors into a

repeated linear factor of multiplicity pm.

Proof Consider the local index form i(e1, . . . , en) as an element ofK (α1/pm )[x1, . . . , xn] by

pulling back to

RK (α1/pm )/K ×S S
′ ∼= RK (α1/pm )⊗KK (α1/pm )/K (α1/pm ).

Once again, to arrive at the result, we will compute a second generator of the pull back of

IS′/S with respect to another basis.

By the Chinese remainder theorem,

K (α1/pm ) ⊗K K (α1/pm ) ∼= K [t]/(tp
m − α) ⊗K K (α1/pm )

∼= K (α1/pm )[t]/((t − α1/pm )p
m
)

∼= K (α1/pm )[ε]/εp
m
,

where ε = t − α1/pm .

Let b1 = 1, b2 = ε, . . . , bpm = εp
m−1 be a basis for K (α1/pm )[ε]/εp

m
over K (α1/pm ),

and let y1, . . . , yn be corresponding coordinates on RK (α1/pm )/K ×S S′. We are now in

the situation of Example 4.3. Following the calculation there, we do a second change

of coordinates to the basis c1 = 1, c2 = ε − y1, . . . , cn = (ε − y1)
n−1 and let z1, . . . , zn

be the corresponding coordinates on RK (α1/pm )/K ×S S′. Taking the determinant of the

matrixM of the map K (α1/pm )[z1, . . . , zn, t]/m(t) → K (α1/pm )[ε][z1, . . . , zn]/ε
pm sending
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t �→ z1c1 + · · · + zncn with respect to the bases {1, . . . , tn−1} and {c1, . . . , cn}, we obtain

i(c1, . . . , cn) = z

(
pm(pm−1)

2

)

2 .

Applying the change of basis from {z1, . . . , zn} to {x1, . . . , xn}, we see that i(e1, . . . , en) is a
power of a linear term. 	


4.3 Orders in number rings

Example 4.12 [Dedekind’s Non-Monogenic Cubic Field] Let η denote a root of the poly-

nomial X3 − X2 − 2X − 8 and consider the field extension L:=Q(η) over K :=Q. When

Dedekind constructed this example [14] it was the first example of a non-monogenic

extension of number rings. Indeed two generators are necessary to generate ZL/ZK : take

η2 and η+η2

2 , for example. In fact, {1, η+η2

2 , η2} is aZ-basis forZL. Thematrix of coefficients

with respect to the basis {1, η+η2

2 , η2} is
£
¤¥
1 a a2 + 6b2 + 16bc + 8c2

0 b 2ab + 7b2 + 24bc + 20c2

0 c −2b2 + 2ac − 8bc − 7c2

¦
§̈
.

Taking its determinant, the index form associated to this basis is

−2b3 − 15b2c − 31bc2 − 20c3.

Were the extensionmonogenic, we would be able to find a, b, c ∈ Z so that the index form

above is equal to ±1.

To see that there are no solutions, we may reduce the index form modulo 2 to obtain

b2c + bc2.

Iterating through the four possible values of (b, c) ∈ (Z/2Z)2 shows that the index form

always to reduces to 0.

Example 4.13 (A non-monogenic order and monogenic maximal order)

Consider the extension Z[
√
2,

√
3] of Z. This extension is similar to Example 4.7, but

with rings instead of fields.

Note also that Z[
√
2,

√
3] is not the maximal order of Q(

√
2,

√
3). As we will see below,

the maximal order is Z[
√√

3 + 2]. The isomorphism of groups Z[
√
2,

√
3] � Z ⊕ Z

√
2⊕

Z
√
3⊕ Z

√
6 identifies the Weil RestrictionR

Z[
√
2,

√
3]/Z

and its universal maps with Spec

of

Z[a, b, c, d][
√
2,

√
3] Z[a, b, c, d][t].

Z[a, b, c, d]

a+b
√
2+c

√
3+d

√
6←�t

Now,

1 �→ 1

t �→ a + b
√
2 + c

√
3 + d

√
6

t2 �→ (a + b
√
2 + c

√
3 + d

√
6)2

t3 �→ (a + b
√
2 + c

√
3 + d

√
6)3
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is given by the same matrix 5 as in Example 4.7:

£
¤¤¤¥

1 a a2 + 2b2 + 3c2 + 6d2 a3 + 6ab2 + 9ac2 + 36bcd + 18ad2

0 b 2ab + 6cd 3a2b + 2b3 + 9bc2 + 18acd + 18bd2

0 c 2ac + 4bd 3a2c + 6b2c + 3c3 + 12abd + 18cd2

0 d 2bc + 2ad 6abc + 3a2d + 6b2d + 9c2d + 6d3

¦
§§§̈ .

Taking the determinant, the index form with respect to our chosen basis is

−8b4c2 + 12b2c4 + 16b4d2 − 36c4d2 − 48b2d4 + 72c2d4

= −4(2b2 − 3c2)(b2 − 3d2)(c2 − 2d2).

The Z-points ofM1,Z[
√
2,

√
3]/Z

are in bijection with the tuples (a, b, c, d) ∈ Z4 such that

the determinant is a unit. Since the determinant is divisible by 2, this never happens. We

conclude that Z[
√
2,

√
3] is not monogenic over Z.

The non-monogenicity of the order Z[
√
2,

√
3] is in marked contrast to the maximal

order of Q(
√
2,

√
3), which is monogenic. A computation shows that a power integral

basis for the maximal order is given by {1,α,α2,α3},where α is a root of t4 − 4t2 + 1. One

could take α =
√√

3 + 2. Here the Weil Restriction RZ[α]/Z and its universal maps are

identified with Spec of

Z[a, b, c, d][α] Z[a, b, c, d][t].

Z[a, b, c, d]

a+bα+cα2+dα3←�t

The element-wise computation

1 �→ 1

t �→ a + bα + cα2 + dα3

t2 �→ (a + bα + cα2 + dα3)2

t3 �→ (a + bα + cα2 + dα3)3

yields the matrix of coefficients

£
¤¤¤¥

1 a a2 − c2 − 2bd − 4d2 A

0 b 2ab − 2cd B

0 c b2 + 2ac + 4c2 + 8bd + 15d2 C

0 d 2bc + 2ad + 8cd D

¦
§§§̈ ,

where

A = a3 − 3b2c − 3ac2 − 4c3 − 6abd − 24bcd − 12ad2 − 45cd2,

B = 3a2b − 3bc2 − 3b2d − 6acd − 12c2d − 12bd2 − 15d3,

C = 3ab2 + 3a2c + 12b2c + 12ac2 + 15c3 + 24abd + 90bcd + 45ad2 + 168cd2,

D = b3 + 6abc + 12bc2 + 3a2d + 12b2d + 24acd + 45c2d + 45bd2 + 56d3.

The determinant of this matrix yields the index form

(b2 − 2c2 + 6bd + 9d2)(b2 − 6c2 + 10bd + 25d2)(b2 + 4bd + d2).
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One can compute that the index of Z[
√
2,

√
3] inside of Z[

√√
3 + 2] is 2. Therefore the

index forms are equivalent away from the prime 2.

Example 4.14 Let K = Q, L = K (
3
√
52 · 7). The ring of integers ZL = Z[

3
√
52 · 7, 3

√
5 · 72]

is not monogenic over Z. Let α = 3
√
52 · 7, β = 3

√
5 · 72. It turns out that {1,α,β} is a

Z-basis for ZL, so the universal map may be identified with

ZL[a, b, c] Z[a, b, c][t].

Z[a, b, c]

a+bα+cβ←�t

Expanding

1 �→ 1

t �→ a + bα + cβ ,

t2 �→ (a + bα + cβ)2

we find that the matrix of coefficients is
£
¤¥
1 a a2 + 70bc

0 b 2ab + 7c2

0 c 2ac + 5b2

¦
§̈
.

Computing the determinant, we get the index form 5b3 − 7c3. Reducing modulo 7, we

see that the index form cannot be equal to ±1, so the extension is not monogenic.

4.4 Other examples

Example 4.15 We investigate the analog of the integers in Example 4.10. We keep the

same notation. The base ring is F3[α] and the extension ring is F3[α][x]/(x
3 −α) = F3[β],

where β3 = α.

F3[a, b, c][β] F3[α][a, b, c][x].

F3[α][a, b, c]

a+bβ+cβ2←�x

1 �→ 1

x �→ a + bβ + cβ2

x2 �→ (a + bβ + cβ2)2

is given by
£
¤¥
1 a a2 + 2bcα

0 b c2α + 2ab

0 c b2 + 2ac

¦
§̈
.

The determinant is b3 − c3α, which is not geometrically reduced: it factors as (b − cβ)3.

To find the monogenerators of this extension, we set this expression equal to the units of

F3[α]. Since (F3[α])
∗ = ±1, the only solutions are b = ±1, c = 0. Thus

M1,F3[β]/F3[α](F3[α]) = {a ± β : a ∈ F3[α]}.
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We can see that, much like number rings, monogenicity imposes a stronger restriction

here than it does for the extension of fraction fields.

Example 4.16 (Jet spaces of A2)

Let k be a field, S = Spec k , and let S′ = k[ε]/εm+1. Analogously to the case for jets

in A1 (See example 2.7 and 4.3), the 2-genicity space of S′/S may be interpreted as the

subscheme of regular jets inside them-jet space Jm,A2 = RA2 ,S′/S of A2. We compute the

index form equations cutting out its complement. These become incomputable rapidly

even for smallm.

Consider anm-jet of A2 = Spec k[t, u] determined as in Example 4.3 by

t = a0 + a1ε + a2ε
2 + · · · amεm

u = b0 + b1ε + b2ε
2 + · · · bmεm.

Linear changes of coordinates ensure a0 = b0 = 0 and that our jets satisfy tm+1 = um+1 =
0 in k[ε]/εm+1. To find the matrix for the induced k-linear map from

k[t, u]/(tm+1, um+1) =
⊕

k · teuf

to the jets k[ε]/εm+1 = ⊕
k · εi, we need the coefficient of each εp in the expression:

teuf = (a1ε + a2ε
2 + · · · + amεm)e(b1ε + b2ε

2 + · · · + bmεm)f

=

»
¼¼½

∑

1≤r≤m

εr ·
∑

i1+i2+···+im=m
i1+2i2+···mim=r

(
e

i1, . . . , im

) m∏

t=0

aitt

¾
¿¿À

·

»
¼¼½

∑

1≤s≤m

εs ·
∑

j1+j2+···+jm=m
j1+2j2+···mjm=s

(
f

j1, . . . , jm

) m∏

t=0

b
jt
t

¾
¿¿À

=
∑

1≤p≤m

εp

»
¼¼¼¼¼½

∑

i1+i2+···+im=m
j1+j2+···+jm=m

(i1+j1)+2(i2+j2)+···+m(im+jm)=p

(
e

i1, . . . , im

)(
f

j1, . . . , jm

) m∏

t=0

a
it
t b

jt
t

¾
¿¿¿¿¿À

If e + f > p, the coefficient of εp in teuf is again zero. If e + f > m, all the coefficients are

zero. The correspondingm2 × mmatrix is “lower triangular” in this sense.

Take m = 1 to reduce to A. Cayley’s original situation of a 2 × 2 × 2 hypermatrix;

compute his second hyperdeterminant Det to be a21b
2
1. In this case, R2 is the tangent

space of A2, the index forms cut out the locus where both a1 and b1 are zero, and the

hyperdeterminant cuts out the locus where either a1 or b1 are zero.

For other affine spaces An, computability of Jm,An is a serious constraint. Even the

simplest case A3 and m = 1 yields a 2 × 2 × 2 × 2 hypermatrix. The formula for such a

hyperdeterminant is degree 24 and has 2,894,276 terms [56, Remark 5.7].
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4.5 Limits and colimits

If B/A is a limit of finite locally free A-algebras Bm, one may sometimes form its mono-

genicity space as well. Define

MX,B/A := lim
m

MX,Bm/A

to be the limit of the restriction mapsMX,Bm+1/A → MX,Bm/A.

Lemma 4.17 Let B be an A-algebra which is complete with respect to I ⊆ B. Suppose each

Bm:=B/Im is finite locally free over A and X → SpecA is quasiprojective. Then MX,B/A

as defined above is a scheme, not merely a pro-scheme. It in fact parameterizes closed

embeddings s : SpecB → X over SpecA as in Definition 2.2.

Proof The limitMX,B/A is a scheme because the transition mapsMX,Bm+1/A → MX,Bm/A

are affine [72, 01YX]. It parameterizes such closed embeddings of SpecB instead of mere

limits of closed embeddings due to a deep theorem of Bhatt: [7, Remark 4.6, Theorem

4.1]. 	


The spaces MX,B/A considered above generalize the arc spaces k�t�/k , k�x, y�/k men-

tioned in Example 2.7.

We would like to define the monogenicity space for colimits of algebras similarly, such

as the perfection of a ring in characteristic p. Unfortunately, this is impossible:

Remark 4.18 Suppose {Bi} is a diagram of A-algebras indexed by N. Then for each i < j

there is a natural map RBi/A → RBj/A. Notice that if the image of some θ ∈ Bi is a

monogenerator of Bj , then Bi → Bj is surjective. It follows that RBi/A → RBj/A only

takes MBi/A into MBj/A if SpecBj → SpecBi is a closed immersion over each open set

U ⊆ SpecA over whichMBi/A is non-empty. AssumingMB0/A is locally non-empty, the

only diagrams {Bi} for which the colimit colimiMBi/A can even be formed are those for

which each Bi → Bj is surjective. Since B0 is Noetherian, all such diagrams are eventually

constant and uninteresting.

5 Finite locally free algebras withmonogenerators

Wemention a relatedmoduli problem and how it fits into the present schema.We resume

the notation of Sect. 2.2. We rely on a classical representability result:

Theorem 5.1 ([21, Theorem 5.23]) If X → S is flat and projective and Y → S quasipro-

jective over a locally noetherian base S, the functor HomS(X, Y ) is representable by an

S-scheme.

The scheme HomS(X, Y ) is a potentially infinite disjoint union of quasiprojective S-

schemes.

Fix a flat, projective map C → S and quasiprojective X → S. Assign to any S-scheme

T the groupoid of finite locally free maps Y → C ×S T of degree n. One can think of this

as a T -indexed family of finite locally free maps Yt → C . This problem is represented by

RAn,C/S := HomS(C,An).

A variant Bn of An represents finite locally free algebras Q over a scheme T together

with a fixed global module basis Q � O
⊕n
T . We study moduli of finite locally free maps

Y → C ×S T together with a choice of monogenerator:
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Definition 5.2 The moduli problem F on S-schemes (Sch/S) has T -points given by:

• A finite, flat family Y → C ×S T of degree n,

• A closed embedding Y ⊆ X ×S C ×S T over C ×S T .

These data form a fibered category via pullback. Define a variant F ′ parameterizing the

data above togetherwith a global basisQ � O
⊕n
T for thefinite, flat algebraQ corresponding

to Y → C ×S T .

The map F ′ → F forgetting the basis is a torsor for the smooth group scheme

HomS(C,GLn). Let XC denote the pullback X ×S C .

Theorem 5.3 The functorsF andF ′ are representable by schemes. TheWeil Restriction

RBn,C/S = HomS(C,Bn) along C → S is a scheme, while RAn,C/S = HomS(C,An) is an

algebraic stack.

Proof The stack F is the Weil RestrictionRHilbnXC /C ,C/S of the Hilbert Scheme HilbnXC/C

forXC → C along themapC → S. Both are therefore representable by schemes using the

theorem. Note that HilbnXC/C is an infinite disjoint union of projective schemes indexed

by Hilbert polynomials and not itself projective, but this suffices for representability.

Here is another way to witness representability. There are universal finite locally free

maps

Z̃ Ỹ

C ×S HomS(C,Bn) C ×S HomS(C,An),

with and without a global basis Q � O
⊕n
T . The sheaf F may also be obtained by the

Weil Restriction along C ×S HomS(C,An) → HomS(C,An) of the monogenicity space

MX,Ỹ /C×SHomS (C,An)
. The same construction of F ′ can be obtained with Bn in place of

An.

We argueHomS(C,An) is representable by an algebraic stack. The schemeBn is a closed

subscheme of an affine space, hence separated. The Weil Restriction HomS(C,Bn) is a

scheme by Theorem 5.1 and the map

HomS(C,Bn) → HomS(C,An)

is again a torsor for the smooth group scheme HomS(C,GLn). Therefore HomS(C,An) is

algebraic. 	


Olsson’s result [55, Theorem 1.1] does not apply here because An is not separated. This

means the (representable) diagonal�An is not proper, and this diagonal is a pseudotorsor

for automorphisms of the universal finite locally free algebra. But the automorphism sheaf

Aut(Q) of some finite locally free algebras need not be proper:

Example 5.4 Take the 2-adic integers Z2, Q = Z2[x]/x
2, and the map Q → Q sending

x �→ 2x. This is an automorphism over the generic point Q2 = Z2[
1
2 ] and the zero map

over the special point Z/2Z = Z2/2Z2.

The diagonal �An even fails to be quasifinite because some finite locally free algebras

have infinitely many automorphisms:
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Example 5.5 (Infinite automorphisms) The dual numbers k[ε]/εn have an action of Gm

by ε �→ u · ε for a unit u ∈ Gm(k).

For another example, let k be an infinite field of characteristic three and consider Q =
k[x, y]/(x3, y3 − 1). Because (y + x)3 = y3, there are automorphisms y �→ y + ux for any

u ∈ k .

The reader may define stable algebras as those with unramified automorphism group

[72, 0DSN]. There is a universal open, Deligne-Mumford substack Ãn ⊆ An of stable

algebras [72, 0DSL].This locus consists of pointswhere the actionGLn
�

Bn hasunramified

stabilizers [58, Sect. 2].
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