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Abstract

This is the second paper in a series of two studying monogenicity of number rings from

a moduli-theoretic perspective. By the results of the first paper in this series, a choice of

a generator θ for an A-algebra B is a point of the schemeMB/A. In this paper, we study

and relate several notions of local monogenicity that emerge from this perspective. We

first consider the conditions under which the extension B/A admits monogenerators

locally in the Zariski and finer topologies, recovering a theorem of Pleasants as a special

case. We next consider the case in which B/A is étale, where the local structure of étale

maps allows us to construct a universal monogenicity space and relate it to an

unordered configuration space. Finally, we consider when B/A admits local

monogenerators that differ only by the action of some group (usually Gm or Aff1),

giving rise to a notion of twisted monogenerators. In particular, we show a number ring

A has class number one if and only if each twisted monogenerator is in fact a global

monogenerator θ .
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1 Introduction

We begin by recalling the essential points of the previous paper of this series [4]. Given

an extension of commutative rings with identity (henceforth, rings) B/A, we say that that

B is monogenic over A if there is an element θ ∈ B so that B = A[θ ]. Such an element

is called a monogenerator. Similarly, B is said to be k-genic over A if there exists a tuple

(θ1, . . . , θk ) ∈ Bk so that B = A[θ1, . . . , θk ]. Such a tuple is a generating k-tuple. We are

motivated by the case of an extension of number rings ZL/ZK .

Such extensions of number rings are finite locally free over a Noetherian base. In fact

all we need for our results are maps of schemes that are Zariski locally of this form. We

gather these hypotheses into a common “Situation” for convenience.

Situation 1.1 Let π : S′ → S be a finite locally free morphism of schemes of constant

degree n ≥ 1 with S locally noetherian, and let X → S be a quasiprojective morphism

(almost always A1
S or Ak

S).

In the preceding paper we prove the following representability result, which implies in

particular that if B is finite locally free over a Noetherian ring A, then there is a scheme

that represents the monogenerators for B over A.

Theorem 1.2 ([4, Proposition 2.3, Corollary 3.8]) Let π : S′ → S be as in Situation 1.1.

Then

(1) There exists a smooth, quasiaffine S-scheme MX,S′/S representing the contravariant

functor on S-schemes

(T → S) �→

⎧
⎪⎪«
⎪⎪¬

S′ ×S T X ×S T

T

s

∣∣∣∣∣∣∣∣
s is a closed immersion.

«
⎪⎪¬
⎪⎪­
.

(2) If X = A1
S , thenMX,S′/S is an affine S-scheme.

We writeMk,S′/S for the case in which X = Ak
S . We call the schemeMk,S′/S the scheme

of k-generators. If k = 1, we write MS′/S instead of M1,S′/S and call it the scheme of

monogenerators or monogenicity space. If S′ = SpecB and S = SpecA are affine, we may

writeMk,B/A orMB/A instead.

In the case that S = SpecA, S′ = SpecB, andT = SpecC , standard universal properties

imply that the T -points ofMk,S′/S are in natural bijection with the generating k-tuples of

B ⊗A C over C . If we assume further that T � S, we find that the S-points ofMk,B/A are

in bijection with generating k-tuples for B over A.

By analogy with the affine case, we therefore say that the S-points ofMk,S′/S are generat-

ing k-tuples and the S-points ofMS′/S aremonogenerators for S′ → S. Such a morphism

ismonogenic if a monogenerator exists.
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1.1 Equations in local coordinates

The scheme M1,S′/S has a simple description in local coordinates on S which we recall

so that we may use it in computations. We start by noticing that M1,S′/S is naturally a

subscheme of another moduli scheme, the Weil Restriction.

Definition 1.3 Let π : S′ → S be as in Situation 1.1. The Weil Restriction of X ×S S′

to S, denoted RX,S′/S , is the scheme (unique up to isomorphism) which represents the

contravariant functor

(T → S) �→

⎧
⎪⎪«
⎪⎪¬

S′ ×S T X ×S T

T

s

«
⎪⎪¬
⎪⎪­

on S-schemes.

We abbreviate RX,S′/S in a parallel fashion toMX,S′/S . It is proven in [23, Theorem 1.3,

Proposition 2.10] that the Weil Restriction exists and is a quasiprojective S-scheme. We

prove in [4, Proposition 2.3] that the natural map MX,S′/S → RX,S′/S is a quasi-compact

open immersion.

In the case that B is a finite free Noetherian A-algebra with A-basis e1, . . . , en, things are

simpler. It is easy to check that

An
S

∼= R1,S′/S

via the isomorphism sending (x1, . . . , xn) to the unique map S′ ×S T → A1
T = SpecOT [t]

over T sending t to x1e1 + · · · + xnen.

Definition 1.4 Suppose B is a finite free Noetherian A-algebra with A-basis e1, . . . , en.

Let aij for 1 ≤ i, j ≤ n be the unique elements of A[x1, . . . , xn] so that we have

(x1e1 + · · · + xnen)
i−1 = ai,1e1 + · · · + ai,nen

in the ring B[x1, . . . , xn]. We call the matrix M(e1, . . . , en) = [aij]1≤i,j≤n the matrix of

coefficientswith respect to the basis e1, . . . , en. Its determinant i(e1, . . . , en) ∈ A[x1, . . . , xn]

is the local index form with respect to the basis e1, . . . , en.

Theorem 1.5 ([4, Theorem3.1]) Withnotation as above,M1,B/A is the distinguished open

subscheme ofR1,S′/S cut out by the non-vanishing of the local index form. In particular,

M1,B/A
∼= SpecA[x1, . . . , xn, i(e1, . . . , en)

−1].

Additionally, we recall from [4] that the local index forms give the complement ofMS′/S

inRS′/S a closed subscheme structure:

Definition 1.6 (Non-monogenerators NS′/S) Let IS′/S be the ideal sheaf on RS′/S gen-

erated locally by local index forms. We call this the index form ideal. Let NS′/S be the

closed subscheme of R cut out by the vanishing of IS′/S . We call this the scheme of

non-monogenerators, since its support is the complement ofMS′/S inside ofRS′/S .

Since Mk,S′/S is a scheme, it is a sheaf in the fpqc topology on (Sch/S). This invites a

local study of monogenicity1 of S′ → S, the subject of this paper.

1 ‘Monogeneity’ is also common in the literature.
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(Globally) Monogenic

Gm-Twisted Monogenic

Aff1-Twisted Monogenic

Monogenic at
completions

Zariski-Locally Monogenic
Monogenic at
points

Fpqc-Locally
Monogenic

Étale-Locally
Monogenic

Monogenic at
geometric points

§4.2

Thm. 2.1Thm. 2.1

Thm. 2.10 Thm. 2.10

Cor. 2.11

Fig. 1 A guide to notions of monogenicity and their relationships. The vertical dashed implication holds

under additional hypotheses, see Cor. 2.11

1.2 Results

We identify and relate several “local” notions of monogenicity. To guide the reader, their

relationships are indicated in Figure 1.

A sheaf theoretic notion of local monogenicity immediately presents itself.2

Definition 1.7 Let τ be a subcanonical Grothendieck topology on schemes, for example

theZariski, Nisnevich, étale, fppf, or fpqc topologies.We say that S′/S is τ -locally k-genic if

the sheafMk,S′/S is locally non-empty in the topology τ . I.e., there is a τ -cover {Ui → S}i∈I
of S such thatMk,S′/S(Ui) is non-empty for all i ∈ I .

The notions of τ -local monogenicity are considered in Sect. 2, and we find that these

reduce to just two notions of “local monogenicity.”

Theorem 1.8 Let π : S′ → S be as in Situation 1.1.

(1) (Theorem 2.1) The following are equivalent:

(a) π is locally monogenic in the Zariski topology;

(b) π is “monogenic at completions,” i.e. for all points x of S, we have that S′ ×S

Spec ÔS,x is monogenic;

(c) π is “monogenic at points,” i.e. for each point x of S with residue field k(x), we

have that S′ ×S Spec k(x) → Spec k(x) is monogenic.

(2) (Theorem 2.10) The following are equivalent:

(a) π is locally monogenic in the étale topology;

(b) π is locally monogenic in the fpqc topology;

(c) π is “monogenic at geometric points,” i.e. for all algebraically closed fields k and

maps Spec k → S, we have that S′ ×S Spec k → Spec k is monogenic.

We then use the structure of finite algebras over fields to classify monogenicity at

points. In particular, we recover Pleasants’s characterization [32, Theorems 1 and 2] of

monogenicity at completions as a corollary.

2We remark that Zariski local monogenicity is equivalent to the condition of “local monogenicity” considered by

Bhargava et al. in [2] but strictly weaker than their condition of “no local obstruction to monogenicity.”
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Theorem 1.9 Let S′ → S be induced by k → B where k is a field and B is a local Artinian

k-algebra with residue field � and maximal ideal m. Then S′ → S is monogenic if and only

if

(1) Spec � → Spec k is monogenic;

(2) dim� m/m2 ≤ 1; and

(3) If dim� m/m2 = 1 and �/k is inseparable, then

0 → m/m2 → B/m2 → � → 0

is a non-split extension.

Theorem 1.10 Suppose S′ → S is induced by k → A where k is a field and B is an

Artinian k-algebra. Write B =
∏

i Bi where the Bi are local artinian k-algebras with

respective residue fields �i. Then S′ → S is monogenic if and only if

(1) SpecBi → S is monogenic for each i;

(2) for each finite extension � of k, S′ has fewer points with residue field isomorphic to �

than A1
S .

In Sect. 3, we consider monogenicity spaces of étale S′ → S, a salient case since exten-

sions of number rings are generically étale and such étale maps share a common local

structure: Finite étale maps are étale-locally isomorphic to the trivial n-sheeted cover

S � · · · � S → S. The latter has MS′/S equal to the configuration space of n distinct

points in A1. Therefore we may interpret monogenicity spaces as twisted generalizations

of configuration spaces, at least when S′ → S is étale.

Using the fact [38, 04HN] that every finite étale map of degree n is pulled back from the

morphism of stacksB�n−1 → B�n, we then construct amonogenicity spaceMB�n−1/B�n .

Theorem 1.11 There are isomorphisms

RB�n−1/B�n
∼= [An/�n],

NB�n−1/B�n
∼= [�̂/�n],

andMB�n−1/B�n
∼= [(An − �̂)/�n]

in which the action by �n is in each case the appropriate restriction of the permutation

action on coordinates of An, and �̂ denotes the “fat diagonal” of An, the locus where some

pair of coordinates coincide.

In particular, the C-points of MB�n−1/B�n coincide with the points of the unordered

configuration space of n points in C. This monogenicity space is universal for étale maps

in the sense that the monogenicity space MS′/S of each étale S′ → S is pulled back from

MB�n−1/B�n .

We then consider several examples enabled by the structure ofMS′/S in the étale case,

among them a connection to braid groups, a construction of the moduli space of genus

zero pointed curves frommonogenicity spaces, themonogenicity space of aG-torsor, and

the monogenicity space of an isogeny of elliptic curves.

We remark that the monogenicity spaceMB�n−1/B�n appears to be a scheme theoretic

enhancement of the universal spaces of [18, Sect. 3] and [16, Sect. 1] in the category of
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topological spaces. Meanwhile, the universal monogenicity space M∗/BG for G-torsors

appears to be a scheme theoretic enhancement of the space B1G considered in [11, The-

orem 1.3].

A local-to-global sequence is missing for τ -local monogenicity. Yet there are natural

group actions on MS′/S , in particular by Gm and Aff1. In Sect. 4 we study “twisted”

versions of monogenicity in which S′ → S has local monogenerators that differ from each

other by the action of such groups. More precisely:

Definition 1.12 (Twisted monogenerators)

A (Gm)-twisted monogenerator for B/A is:

(1) a Zariski open cover SpecA =
⋃

i D(fi) for elements fi ∈ A,

(2) a system of “local” monogenerators θi ∈ B
[
f −1
i

]
for B[f −1

i ] over A[f −1
i ], and

(3) units aij ∈ A
[
f −1
i , f −1

j

]∗

such that

• for all i, j, we have aij .θj = θi,

• for all i, j, k , the “cocycle condition” holds:

aij .ajk = aik .

Two such systems {(aij), (θi)}, {(a′
ij), (θ

′
i )} are equivalent if, after passing to a common

refinement of their respective covers, there is a global unit u ∈ A∗ such that u · aij = a′
ij

and u ·θi = θ ′
i . Likewise B/A is Aff1-twistedmonogenic if there is a cover with θi ’s as above,

but with the units in item (3) replaced by pairs aij , bij ∈ A
[
f −1
i , f −1

j

]
such that each aij is

a unit and aijθj + bij = θi.

Under certain hypotheses, we show:

Proposition 4.14: B/A isGm-twisted monogenic if and only if it is Aff1-twisted monogenic.

Theorem 4.19: The class number of a number ring ZK is one if and only if all twisted

monogenic extensions of number rings ZL/ZK are in fact monogenic.

Remark 4.12: There is a local-to-global sequence relating affine equivalence classes of

monogenerators with global monogenerators as above.

Theorem 4.2: There are moduli spaces of Gm and Aff1-twisted monogenerators analo-

gous toMS′/S .

Theorem 4.17: There are finitely many twisted monogenerators up to equivalence.

We remark that a Gm-twisted monogenerator is equivalent to an embedding S′ over

S into a line bundle L on S. Such embeddings into line bundles were considered for

topological spaces in [25].

Section 5 concludes with ample examples of the scheme of monogenerators and the

various interactions between the forms of local monogenicity.

To avoid repetition, we invite the reader to consult the first paper in this series for a

more detailed survey of the relevant literature.
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2 Local monogenicity

2.1 Zariski-local monogenicity

This section shows Zariski-local monogenicity can be detected over points and comple-

tions as spelled out in Remark 2.3. We will make frequent use of the vocabulary and

notation of [4, Sect. 3].

Theorem 2.1 The following are equivalent:

(1) π : S′ → S is Zariski-locally monogenic.

(2) There exists a family of maps {fi : Ui → S} such that

(a) the fi are jointly surjective;

(b) for each point p ∈ S, there is an index i and point qp ∈ f −1
i (p) so that fi induces

an isomorphism k(p) → k(qi);

(c) S′ ×S Ui → Ui is monogenic for all i.

(3) π : S′ → S is monogenic over points, i.e., S′ ×S Spec k(p) → Spec k(p) is monogenic

for each point p ∈ S.

Proof (1) =⇒ (2): Choose the Ui to be a Zariski cover on which S′ → S is monogenic.

(2) =⇒ (3): Suppose such a cover {fi : Ui → S} is given. For each i, let σp : Spec k(p) →
Ui be the section through qp. monogenicity is preserved by pullback on the base, so pulling

back S′ ×S Ui → Ui along σp implies (3).

(3) =⇒ (1): Let p ∈ S be a point with residue field k(p) and let θ be a monogenerator

for S′ ×S Spec k(p) → Spec k(p). We claim that θ extends to a monogenerator over an

open subset U ⊆ S containing p, from which (1) follows. The claim is Zariski local,

so assume S = SpecA and π∗OS′ �
⊕n

i=1OSei is globally free. The Weil Restriction

RS′/S := HomS(S
′, X ′) is then isomorphic to affine space An

S .

We first extend θ to a section of RS′/S . The monogenerator entails a point θ :

Spec k(p) → MS′/S ⊆ RS′/S � An
S , i.e. n elements x1, . . . , xn ∈ k(p). Choose arbi-

trary lifts xi ∈ A(p) of xi. The n elements xi must have a common denominator, so we

have x1, . . . , xn ∈ A
[
f −1

]
for some f . Thus our point θ : Spec k(p) → An

S extends to

θ̃ : D(f ) → RS′/S for some distinguished open neighborhood D(f ) ⊆ S containing p.

Finally, we restrict θ̃ to a section of MS′/S . The monogenicity space MS′/S is an open

subschemeof theWeil RestrictionRS′/S , so θ̃ : D(f ) → RS′/S restricts to amonogenerator

θ̃ |U : U → MS′/S where U = θ̃−1(MS′/S) ⊂ D(f ). By hypothesis, p ∈ U , so θ̃ |U is the

desired extension of θ . ��

Remark 2.2 The same proof shows that S′ → S is Zariski-locally k-genic if and only if its

fibers S′ ×S Spec k(p) → Spec k(p) are k-genic.

Remark 2.3 Item (2) of Theorem 2.1 implies the following are also equivalent to Zariski-

local monogenicity:

(1) S′ → S is “monogenic at local rings,” i.e, for each point p of S, S′ ×S SpecOS,p →
SpecOS,p is monogenic.

(2) S′ → S is “monogenic at completions,” i.e., for each point p of S, S′ ×S Spec ÔS,p →
Spec ÔS,p is monogenic, where ÔS,p denotes the completion of OS,p with respect to

its maximal ideal.
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(3) S′ → S is locally monogenic in the Nisnevich topology as in Definition 1.7.

Corollary 2.4 ([36, Proposition III.6.12]) Let S′ → S be an extension of local rings induc-

ing a separable extension of residue fields. Then S′ is monogenic over S.

Proof Use the equivalence of item (1) in Remark 2.3 and (3) in Theorem 2.1. ��

We now recall some ideas in order to compare with related results in the number ring

case.

Definition 2.5 Let ZL/ZK be an extension of number rings. Given θ ∈ ZL generating

L/K , we write IndexZL/ZK (θ ) for the index [ZL : ZK [θ ]]. A non-zero prime of p ⊂ ZK is

a common index divisor3 for the extension ZL/ZK if IndexZL/ZK (θ ) ∈ p for every θ ∈ ZL

generating L/K .

Common index divisors are exactly the primes p whose splitting in ZL cannot be mir-

rored by irreducible polynomials in k(p)[x]; see [19,32].

We recall [4, Remark 3.11] that ifU is an open affine subscheme of S on which S′ is free

with basis e1, . . . , en then IndexZL/ZK (x1e1 + · · · + xnen) is a local index form on U .

Restating the property of being monogenic at points in terms of the index form, we

obtain a generalization of the notion of having no common index divisors:

Proposition 2.6 S′ → S is monogenic over points if and only if for each point p of S and

local index form i around p, there is a tuple (x1, . . . , xn) ∈ k(p)n such that i(x1, . . . , xn) is

nonzero in k(p).

Proof S′ ×Spec k(p) → Spec k(p) is monogenic precisely when Spec k(p)[x1, . . . , xn, i(x1,

. . . , xn)−1] has a k(p) point. ��

Immediately we recover an explicit corollary validating the generalization:

Corollary 2.7 Suppose S′ → S is induced by an extension of number rings ZL/ZK . Then

S′ → S is Zariski-locally monogenic if and only if there are no common index divisors for

ZL/ZK .

Example 2.8 There are extensions of number rings that are locally monogenic but not

monogenic.

In [2], Alpöge, Bhargava, and Shnidman say that an extensionZK /Zhas no local obstruc-

tion to monogenicity if a local index form represents 1 over Zp for all primes p or −1 over

Zp for all primes p. This is a stronger condition than Zariski-local monogenicity, and they

show in [2,3] that a positive proportion of quartic and cubic fields are not monogenic

despite having no local obstruction to monogenicity.

Narkiewicz [29, p. 65] gives the following concrete example of a locally monogenic but

not monogenic extension. Let L = Q( 3
√
m) with m = ab2, ab square-free, 3 � m, and

m �≡ ±1 mod 9. The number ringZL is not monogenic overZ despite having no common

index divisors.We consider the case ab2 = 7·52 in Example 5.3. This also gives an example

3Common index divisors are also called essential discriminant divisors and inessential or nonessential discriminant

divisors. The shortcomings of the English nomenclature likely come from what Neukirch [30, page 207] calls “the

untranslatableGerman catchphrase [...] ‘außerwesentlicheDiskriminantenteile.”’Our nomenclature is closer to Fricke’s

‘ständiger Indexteiler.’
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of an extension which is Zariski locally monogenic but which has a local obstruction to

monogenicity.

2.2 Monogenicity over geometric points

Definition 2.9 Say that S′ over S ismonogenic over geometric points if, for eachmorphism

Spec k → S where k is an algebraically closed field, S′ ×S Spec k → Spec k is monogenic.

While it is a weaker condition than monogenicity over points in general, it is equivalent

to some conditions that might seem more natural.

Theorem 2.10 The following are equivalent:

(1) the local index forms for S′/S are nonzero on each fiber ofRS′/S → S;

(2) for each point p ∈ S with residue field k(p), there is a finite Galois extension L/k(p)

such that S′ ×S Spec L → Spec L is monogenic, and this extension may be chosen to

be trivial if k(p) is an infinite field;

(3) S′ → S is monogenic over geometric points;

(4) there is a jointly surjective collection of maps {Ui → S} so that S′ ×S Ui → Ui is

monogenic for each i;

(5) MS′/S → S is surjective;

(6) S′ → S is étale-, smooth-, fppf-, or fpqc-locally monogenic.

If, in addition, NS′/S is a Cartier divisor in R (i.e., the local index forms are non-zero

divisors), the above are also equivalent to:

(7) NS′/S → S (Definition 1.6) is flat.

To see some of the subtleties one can compare item (1) above with Lemma 2.6 and item

(4) above with item (2) of Theorem 2.1.

Proof The assertions are Zariski-local, so we may choose local coordinates as usual (S =
SpecA, S′ = SpecB, coordinates xI ).

(1) =⇒ (2): Suppose first that p ∈ S is a point with k(p) an infinite field. Let p

be the corresponding prime of A and write i for the restriction of the local index form

modulo p. Recall that since k(p) is infinite, polynomials in k(p)[x1, . . . , xn] are determined

by their values on (xi) ∈ k(p)n. Since i is nonzero, i(a1, . . . , an) must be nonzero for some

(a1, . . . , an) ∈ k(p)n. This shows that S′ ×S Spec k(p) → Spec k(p) is monogenic, so we

have (2).

Next suppose k(p) is a finite field. Then, since i is nonzero, there is a finite field extension

L (necessarilyGalois) of k(p) such that there exists (a1, . . . , an) ∈ Ln with i(a1, . . . , an) �= 0.

This shows that S′ ×S Spec L → Spec L is monogenic, so we have (2) again.

(2) =⇒ (3): Let k be an algebraically closed field and Spec k → S a map. Let p be

the image of Spec k , and let L be the field extension given by (2). Then pullback along

Spec k → Spec L implies that S′ ×S Spec k → Spec k is monogenic.

(3) =⇒ (4): Take {Ui → S} to be {Spec k(p) → S}p∈S .
(4) =⇒ (1): For each point p ∈ S, choose an index i and a point qp ∈ Ui mapping to p.

Let i be an index form around p. By pullback, S′ ×S qp → qp is monogenic, so i pulls back

to a nonzero function over k(qp). Therefore i is nonzero over k(p) as well.
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(2) =⇒ (5): For each point p ∈ S, the Spec L point of MS′/S witnessing monogenicity

of S′ ×S Spec L → Spec L is a preimage of p.

(5) =⇒ (6): Note that MS′/S → S is smooth, since MS′/S → RS′/S → S is the

composite of an open immersion and an affine bundle. Moreover, the identity function on

MS′/S by definition yields a monogenerator for S′ ×S MS′/S → MS′/S . Therefore, S′/S is

smooth-locally monogenic. Since the smooth topology is equivalent to the étale topology,

there is an étale cover U → S factoring throughMS′/S → S. Since S′ ×S MS′/S → MS′/S

is already monogenic, S′ ×S U → U is also monogenic. This étale cover is also a cover in

the fppf and fpqc topologies.

(6) =⇒ (4): Trivial.

(1) ⇐⇒ (7): The sequence

0 → IS′/S → OR1,S′/S → ONS′/S → 0

may be written as

0 → A[xI ]
i→ A[xI ] → A[xI ]/i → 0

where i is a local index form for S′/S.

Recall that an A[xI ]-module M is flat if and only if for each prime p of A and ideal q

of A[xI ] lying over p, Mq is flat over Ap. Therefore, by the local criterion for flatness [38,

00MK], NS′/S is flat over S if and only if

Tor
Ap

1 (Ap/pAp, (A[xI ]/i)q) = 0

for all such ideals p and q. Therefore, NS′/S is flat if and only if

A[xI ]q/pA[xI ]q
i(mod p)−→ A[xI ]q/pA[xI ]q

is injective for all p and q as above. All of these maps are injective if and only if the maps

of A[xI ]-modules

Ap[xI ]/pAp[xI ]
i(mod p)−→ Ap[xI ]/pAp[xI ]

are all injective as p varies over the prime ideals ofA. SinceAp[xI ]/pAp[xI ] ∼= (Ap/pAp)[xI ]

is an integral domain for each p, injectivity fails if and only if i reduces to 0 in the fiber

over some p. We conclude that (1) holds if and only if (7) holds. ��

Corollary 2.11 If all of the points of S have infinite residue fields, then the following are

equivalent:

(1) S′ → S is monogenic over geometric points;

(2) S′/S is Zariski-locally monogenic.

Remark 2.12 The conclusion of Corollary 2.11 fails dramatically if S has finite residue

fields. For S′ → S coming from an extension of number rings condition (1) always holds

(see Corollary 2.16 below), yet there are extensions that are not locally monogenic. In this

sense, monogenicity is more subtle in the arithmetic context than the geometric one. For

an example of an extension that is monogenic over geometric points but is notmonogenic

over points see Example 5.1.
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2.3 Monogenicity over points

In light ofTheorems2.1 and2.10, it is particularly interesting to characterizemonogenicity

of S′ → S in the case that S is the spectrum of a field k . In this case S′ is the spectrum of an

n-dimensional k-algebra B. Such algebras are Artinian rings, and a well-known structure

theorem implies that B is a direct product of local Artinian rings Bi. We will exploit this

to give a complete characterization of Zariski-local monogenicity.

The result in the case that both S′ and S are spectra of fields is well-known.

Theorem 2.13 (Theorem of the primitive element) Let �/k be a finite field extension.

Then Spec � → Spec k is monogenic if and only if there are finitely many intermediate

subfields �/�′/k.

In particular, a finite separable extension of fields is monogenic.

We next consider the monogenicity of S′ → S when S′ is a nilpotent thickening of

Spec �, leaving S = Spec k fixed. A key ingredient is a study of the square zero extensions

of Spec �.

We remark for comparison that the proof belowdoes not consider a nilpotent thickening

of the base S → S̃. In fact, if S → S̃ is a nilpotent closed immersion with S′ = S ×S̃ S̃
′,

any monogenerator θ : S → MS′/S extends to S̃ locally in the étale topology. This results

from the smoothness ofMS̃′/S̃ → S̃.

Theorem 1.9. Let S′ → S be induced by k → B where k is a field and B is a local Artinian

k-algebra with residue field � andmaximal idealm. Then S′ → S is monogenic if and only

if

(1) Spec � → Spec k is monogenic;

(2) dim� m/m2 ≤ 1; and

(3) If dim� m/m2 = 1 and �/k is inseparable, then

0 → m/m2 → B/m2 → � → 0

is a non-split extension.

Proof If the tangent space (m/m2)∨ has dimension greater than 1, then no map S′ → A1
S

can be injective on tangent vectors as is required for a closed immersion.

On the other hand, if the tangent space of S′ has dimension 0, we have B = �, and the

result is true by hypothesis.

Now suppose the tangent space of S′ has dimension 1. A morphism S′ → A1
S is a closed

immersion if and only if it is universally closed, universally injective, and unramified [38,

Tag 04XV].

Choose a closed immersion Spec � → A1
k
. Equivalently, write � = k[t]/(f (t)) where f (t)

is the monic minimal polynomial of some element θ ∈ �. Since Spec � → S′ is a universal

homeomorphism [38, Tag 054M], any extension of Spec � → A1
k
to S′ → A1

k
inherits the

properties of being universally injective and universally closed from Spec � → A1
k
.

Whether such an extension S′ → A1
k
is ramified can be checked on the level of tangent

vectors [38, Tag 0B2G]. It follows that a morphism S′ → A1
k
is a closed immersion if and

only if its restriction to the vanishing of m2 is. On the other hand, any map V (m2) → A1
k

extends to S′ → A1
k
(choose a lift of the image of t arbitrarily). Therefore, it suffices to

consider the case that S′ is a square zero extension of Spec �.
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By hypothesis, we have a presentation of � as k[t]/(f (t)). We conclude with some ele-

mentary deformation theory, see for example [35, §1.1]. We have a square zero extension

of �

0 → (f (t))/(f (t)2) → k[t]/(f (t))2 → � → 0.

By assumption, B is also a square zero extension of �:

0 → m → B → � → 0.

By [35, Proposition 1.1.7], there is amorphism of k-algebras φ : k[t]/(f (t))2 → B inducing

the identity on �. Since (f (t))/(f (t)2) ∼= � as a k[t]/(f (t)2) module, φ either restricts to an

isomorphism f (t)/(f (t))2 → m or else the zero map. In the former case, the composite

k[t] → k[t]/(f (t))2 → B is a surjection, and we are done. In the latter case, B is the

pushout of the extension k[t]/(f (t))2 along (f (t))/(f (t)2)
0→ m, so B is the split extension

�[ε]/ε2.

If �/k is separable, then the extension k[t]/(f (t))2 is itself split [35, Proposition B.1,

Theorem 1.1.10], i.e. there an isomorphism k[t]/(f (t))2 ∼= �[ε]/ε2. Composing with

k[t] → k[t]/(f (t)2) gives the required monogenerator.

If �/k is inseparable and B ∼= �[ε]/ε2, we will show that S′ → S is not monogenic. Any

generator for �[ε]/ε2 over k must also be a generator for �[ε]/ε2 over the maximal sepa-

rable subextension k ′ of �/k , so we may assume that �/k is purely inseparable. Moreover,

any generator θ for �[ε]/ε2 over k must reducemodulo ε to a generator θ of �/k . Since �/k

is purely inseparable, the minimal polynomial f (t) of θ satisfies f ′(t) = 0. Note θ = θ + cε

for some c ∈ �. Since θ is assumed to be amonogenerator, there is a polynomial g(t) ∈ k[t]

such that ε = g(θ ). Reducing, g(θ ) = g(θ ) = 0, so g(t) = q(t)f (t) for some q(t) ∈ k[t].

Then

g(θ ) = g(θ ) + g ′(θ )cε

= 0 + q′(θ )f (θ )cε + q(θ )f ′(θ )cε

= 0,

a contradiction. We conclude that in this case S′ → S is not monogenic. ��

Remark 2.14 In the case that k is perfect, the first and third conditions hold automatically.

If S′ is regular of dimension 1 the second condition is trivial.

Theorem 1.10. Suppose S′ → S is induced by k → A where k is a field and B is an

Artinian k-algebra. Write B =
∏

i Bi where the Bi are local artinian k-algebras with

respective residue fields �i. Then S′ → S is monogenic if and only if

(1) SpecBi → S is monogenic for each i;

(2) for each finite extension � of k , S′ has fewer points with residue field isomorphic to

� than A1
S .

Proof Note that a map
⊔

i SpecBi → A1
S is a closed immersion if and only if each map

SpecBi → A1
S is a closed immersion and the closed immersions are disjoint: SpecBi ×A1

S

SpecBj = ∅ for all i �= j. This is equivalent to the statement thatA[t] →
∏

i Bi is surjective

if and only if A[t] → Bi is surjective for each i and Bi ⊗A[t] Bj = 0 whenever i �= j, which

follows quickly in turn from the Chinese remainder theorem.
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The proof of Theorem 1.9 shows that a closed immersion SpecBi → A1 can be chosen

with image any of the points of A1
S with residue field �i. Then the condition on numbers

of points is exactly what we need for the images of the SpecBis not to overlap without

running out of points. (Since topologically, the components are single points.) ��

Remark 2.15 Condition (2) is trivial in the case that the residue fields of S are infinite,

highlighting the relative simplicity of monogenicity in the geometric context.

If S′ → S is instead induced by an extension of number rings, then Remark 2.14 implies

condition (1) is trivial. In particular, an extension of Z has common index divisors if and

only if there is “too much prime splitting” in the sense of condition (2). This recovers the

theorem of [19] (also see [32, Cor. to Thm. 3]) that p is a common index divisor if and only

if there are more primes in ZL above p of residue class degree f than there are irreducible

polynomials of degree f in k(p)[x] for some positive integer f.

Corollary 2.16 If S′ → S is induced by an extension of number rings ZL/ZK , then S
′ → S

is monogenic over geometric points.

Proof Letpbe apoint ofS. LetA = ZL⊗ZK k(p) be the ring for thefiber ofS
′ over Spec k(p).

Note that k(p) is either of characteristic 0 or finite, so k(p) is perfect. Decompose A into a

direct product of local Artinian k(p) algebras Ai. Since k(p) is perfect, conditions (1) and

(3) of Theorem 1.9 hold for SpecAi → Spec k(p). Condition (2) holds as well since S′ is

regular of dimension 1. Therefore SpecAi → Spec k(p) is monogenic for each i.

Now consider the base change of S′ to the algebraic closure k(p) of k(p). Write B for the

ring of functionsZL⊗ZK k(p) of this base change, andwriteB as a product of local Artinian

algebras Bj . For each i we have that SpecAi ⊗k(p) k(p) → Spec k(p) is monogenic. Each

SpecBj is a closed subscheme of exactly one of the SpecAi ⊗k(p) k(p)s, so by composition,

SpecBj → Spec k(p) is monogenic for each j. This gives us condition (1) of Theorem 1.10

for S′ ×S Spec k(p) → Spec k(p). Since k(p) is infinite, condition (2) holds triviallly. We

conclude that S′ ×S Spec k(p) → Spec k(p) is monogenic, as required. ��

3 Étale maps, configuration spaces, andmonogenicity

This section concerns maps π : S′ → S that are étale, or unramified. Locally, the mono-

genicity space becomes a configuration space, classifying arrangements of n distinct points

on a given topological space. Philosophically,MS′/S therefore regards S′ → S as a twisted

family of points to be configured in A1. We are led to interpret MS′/S as an arithmetic

refinement of the configuration space of A1. In Remark 3.5, we see that an action of

the absolute Galois group Gal(Q/Q) on the étale fundamental group of MS′/S has been

observed in anabelian geometry. We end Subsection 3.2 with a handful of exotic applica-

tions in other areas.

All extensions S′ → S sit somewhere between the étale case and jet spaces

SpecA[ε]/εn → SpecA (see [4, Example 2.7, 4.3, 4.16]), between being totally unram-

ified and totally ramified. In Sect. 3.4, we recall a general construction of the discriminant

which cuts out the locus of ramification. Specifically, [33, Sect. 6] says that our descrip-

tion in the étale case holds precisely away from the vanishing of the discriminant. The

discriminant plays a similar role in the classical case when investigating the monogenicity

of an extension defined by a polynomial. We end with some remarks on using stacks to

promote a ramified cover of curves to an étale cover of stacky curves as in [9].
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3.1 The trivial cover

We start with the simplest case of an étale cover: the trivial cover of S by several copies of

itself.Wework rather concretely and revisit the general situationwithmore sophistication

in the next subsection. Write 〈n〉 = {1, 2, . . . , n} and 〈n〉S =
⊔

1≤i≤n S → S for the trivial

degree n finite étale cover.

Example 3.1 (Monogenicity of a trivial cover) Let S′ = 〈n〉S and let π : 〈n〉S → S be the

map induced by the identity on each copy of S. Given a commutative diagram

A1
S

〈n〉S S,

�ifi

π

one expects that the map �ifi will be a closed immersion if and only if fi(s) �= fj(s) for all

1 ≤ i < j ≤ n and s ∈ S. A computation in coordinates will confirm this.

We will use the notation of Definition 1.4 and Theorem 1.5 to compute MS′/S in local

coordinates. Working Zariski locally on S, we may assume that S′ = SpecAn, S = SpecA,

and that e1, . . . , en are the standardbasis vectors forAn. Let x1, . . . , xn be the corresponding

coordinates forRS′/S , so that

RS′/S
∼= An

S .

This isomorphism identifies theT -point (x1, . . . , xn) ofAn
S with themap�ixi : 〈n〉T → A1

T

whose restriction to the ith copy of T in 〈n〉T is xi.

Next, observe that in ORS′/S (S)

(x1e1 + · · · + xnen)
j = x

j
1e1 + · · · + x

j
nen

for all 0 ≤ j ≤ n−1.Therefore, thematrix of coefficientsM(e1, . . . , en) is theVandermonde

matrix with ith column given by
[
1 xi x

2
i · · · xn−1

i

]T
. The index form is then the well-

known Vandermonde determinant:

i(e1, . . . , en)(x1, . . . , xn) = detM(e1, . . . , en) = ±
∏

i<j

(xi − xj).

The index form vanishes therefore on the so-called fat diagonal �̂ ⊆ An, given by the

union of all loci V (xi − xj) where two coordinates are equal.

It follows that

MS′/S
∼= Spec

S
OS

⎡
£x1, . . . , xn,

∏

i<j

(xi − xj)
−1

¤
⎦ ,

the complement in An
S of �̂. This space is otherwise known as the space of ordered

configurations of n points, Confn(A1
S) → S.

Slightly more abstract reasoning yields a similar result if X is any quasi-projective S

scheme.

Example 3.2 (MX,S′/S for a trivial cover) Let X → S be a quasiprojective map, S′ = 〈n〉S
and let π : 〈n〉S → S be the map induced by the identity on each copy of S. Observe that



S. Arpin et al. Res. Number Theory (2023) 9:43 Page 15 of 39 43

if T → S is an S-scheme, we have natural identifications

RX,S′/S(T ) ∼=
{
maps of T -schemes f : 〈n〉T → X ×S T

}

∼=
{
n-tuples of maps of T -schemes fi : T → X ×S T , where i = 1, . . . , n

}

∼=
{
n-tuples of maps of S-schemes fi : T → X , where i = 1, . . . , n

}

∼= X ×S X ×S · · · ×S X︸ ︷︷ ︸
n-times

(T ) = X×n
S (T ),

so we may identifyRX,S′/S with the n-fold fiber product of X over S.

For each 1 ≤ i < j ≤ n, we can construct a subscheme �i,j of X×n
S consisting of the

points whose ith and j coordinates are equal. We let the fat diagonal �̂ be the scheme

theoretic union of the subschemes �i,j . Since X → S is separated, this fat diagonal is a

closed subscheme of X×n
S .

Observe that any morphism of T -schemes f =
⊔n

i=1 fi : 〈n〉T → X ×S T in RX,S′/S(T )

will be proper and unramified asπ : 〈n〉T → T is proper and unramified andX×ST → T

is separated. In addition, for each point x ∈ 〈n〉T , the induced field extension κ(x) ⊇
κ(f (x)) is an isomorphism, since the same is true of the map π : 〈n〉T → T .

Now, by [38, Tag 01S4, (2) ⇐⇒ (3) ] and [38, Tag 04XV, (1) ⇐⇒ (3)], f is a closed

immersion if and only if it is injective. This happens if and only if the corresponding func-

tion
∏n

i=1 fi : T → X×n
S factors through the complement of the fat diagonal. Therefore

MX,S′/S
∼= X×n

S − �̂.

3.2 The case of étale S′
→ S

Consider the category (Sch/∗) of schemes over a final scheme ∗ equipped with the étale

topology. For example, take ∗ = SpecZ or SpecC. Write �n for the symmetric group on

n letters and B�n for the stack on (Sch/∗) of étale �n-torsors.

Regard �n−1 as the subgroup of �n of permutations fixing the nth letter, and let

B�n−1 → B�n be the map induced by the inclusion. The isomorphism class of the

resulting map of classifying spaces is unchanged if �n−1 is taken as the subgroup fixing

some other letter, since resulting inclusion map only differs from this one by conjugation.

The morphism B�n−1 → B�n is the universal n-sheeted cover in the following sense.

Lemma 3.3 ([9, Lemma 2.2.1], [22, Lemma 3.2]) Let n be a positive integer. Let C be the

fibered category over (Sch/∗) with:

(1) objects the finite étale morphisms π : S′ → S of degree n;

(2) arrows the cartesion diagrams

T ′ S′

T S;

(3) projection to (Sch/∗) given by S′ → S �→ S.

Then there is an equivalence of fibered categories B�n → C given by taking a map f : S →
B�n to the pullback of B�n−1 → B�n along f .
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Recall that pullback squares of schemes

T ′ S′

T S

�

induce identifications

RT ′/T � RS′/S ×S T and M1,T ′/T � M1,S′/S ×S T.

Reduce thereby to the universal n-sheeted finite étale cover S′ = B�n−1, S = B�n. Each

has an affine line A1
B�n

= [A1/�n] obtained via quotienting by the trivial action.

Theorem 1.11. There are isomorphisms

RB�n−1/B�n
∼= [An/�n],

NB�n−1/B�n
∼= [�̂/�n],

andMB�n−1/B�n
∼= [(An − �̂)/�n]

in which the action by �n is in each case the appropriate restriction of the permutation

action on coordinates of An.

Proof We observe that the n-sheeted cover associated to the trivial torsor ∗ → B�n is

the trivial cover 〈n〉 → ∗. Therefore, by our work in the case of a trivial cover

RB�n−1/B�n ×B�n ∗ ∼= R〈n〉/∗ ∼= An

NB�n−1/B�n ×B�n ∗ ∼= N〈n〉/∗ ∼= �̂

MB�n−1/B�n ×B�n ∗ ∼= M〈n〉/∗ ∼= An − �̂ ∼= Confn(A
1).

There is a �n action on R〈n〉/∗ so that RB�n−1/B�n is the stack quotient of R〈n〉/∗ by

�n. Pulling back R〈n〉/∗ → ∗ to ∗ ×B�n ∗ in both ways shows that the action is given by

permuting the sheets of 〈n〉. Under the isomorphism of R〈n〉/∗ with An of Example 3.1,

the action is given by permuting the coordinates.

We conclude

RB�n−1/B�n
∼= [An/�n]

NB�n−1/B�n
∼= [�̂/�n]

MB�n−1/B�n
∼= [(An − �̂)/�n]

in which the action by �n is in each case the appropriate restriction of the permutation

action on coordinates of An. ��

The spaceMB�n−1/B�n is also interpretable as the space of unordered configurations of

points:

MB�n−1/B�n
∼= UConfn(A

1) = {(x1, . . . , xn) | xi �= xj}/�n.
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Observe that the fat diagonal �̂ is exactly the locus of An where �n has stabilizers.

The coarse moduli space of [An/�n] is An by the fundamental theorem of symmetric

functions, with the composite

An →
[
An/�n

]
→ An; x = (x1, . . . , xn) �→ (s1(x), s2(x), . . . , sn(x))

given by the elementary symmetric polynomials si(x1, . . . , xn) [5, Sect. 16.1-2]. The com-

posite sends a list of n roots to the coefficients of the monic polynomial of degree n

vanishing at those roots, up to sign:

(t − x1) · · · (t − xn) = tn − s1(x)t
n−1 + s2(x)t

n−2 − · · · ± sn(x).

The assignment is plainly invariant under relabeling the xi by �n.

The map to the coarse moduli space [An/�n] → An is an isomorphism precisely over

M1,B�n−1/B�n . The image of NB�n−1/B�n in An is the closed subscheme cut out by the

discriminant of the above polynomial

Disc

(
n∏

i=1

(t − xi)

)
= D(s1(x), s2(x), . . . , sn(x))

=
∏

i<j

(xi − xj)
2,

the square of the Vandermonde determinant. The resulting divisor is the pushforward of

NB�n−1/B�n to the coarse moduli space An.

We summarize the above discussion for general targets X in the place of A1:

Theorem 3.4 Let X be a quasiprojective scheme, and let XB�n :=[X/�n] = X × B�n be

the stack quotient by the trivial �n action.

• The Weil Restriction is the stacky symmetric product:

R[X/�n],B�n−1/B�n :=
[
SymnX

]
=

[
Xn/�n

]
.

• The space of monogenerators for S′ = B�n−1, S = B�n is the nth unordered configu-

ration space:

M[X/�n],B�n−1/B�n = UConfnX :={(x1, . . . , xn) | xi �= xj for i �= j}/�n.

• The complementary space of non-monogenerators is the stack quotient by �n of the

“fat diagonal” of n points in X which are not pairwise distinct:

N[X/�n],B�n−1/B�n =
[
�̂X/�n

]
= {(x1, . . . , xn) | some xi = xj , i �= j}/�n.

3.3 Implications

The rest of the section gives sample applications, exotic examples, and directions based

on the correspondence with configuration spaces.

Remark 3.5 Classical work on the analogues of monogenicity in complex geometry, such

as [17], has recognized that embeddings into A1-bundles are closely related to the braid

group, essentially because the fundamental group of the configuration space of n points

in C is the braid group on n strands. In the scheme theoretic setting, our best analogue of

the fundamental group is the étale fundamental group.



43 Page 18 of 39 S. Arpin et al. Res. Number Theory (2023) 9:43

The computations above imply that

M1,B�n−1/B�n ×Z Q ∼= UConf(A1
Q).

In [15], it is computed that this space has étale fundamental group a semi-direct product

B̂n � GQ,

where B̂n is the profinite completion of the braid group on n strands andGQ is the absolute

Galois group of Q. As discussed in [15], the conjugation action of GQ on B̂n extends to an

action by the Grothendieck-Teichmüller group ĜT . Conjecturally,GQ = ĜT . Though all

varieties over Q yield actions of the Galois groupGQ, we were surprised to rediscover one

of its central representations used in number theory.

The following result is well-known, as the square of the Steinitz class is the discriminant,

and thediscriminant is a unitwhenS′ → S is étale.However,wehave apleasant alternative

proof in terms of our universal étale cover.

Theorem 3.6 If S′ → S is étale, the Steinitz class is 2-torsion in Pic(S). If S has character-

istic 2, the Steinitz class vanishes.

Proof It is enough to show that the Steinitz class det π∗OS′ is 2-torsion for the universal

case π : B�n−1 → B�n. Consider the pullback square

〈n〉 B�n−1

∗ B�n.

j

τ π

i

The pushforward π∗OB�n−1 is trivialized on the étale cover i : ∗ → B�n, as

i∗(π∗OB�n−1 ) ∼= τ∗O〈n〉 = O
n
∗ .

We find that the descent datum for π∗OB�n−1 with respect to this cover has gluing

On
∗×�n

→ On
∗×�n

on ∗ ×B�n ∗ ∼= ∗ × �n given by permuting the coordinates by σ over

∗×σ for eachσ ∈ �n. This is represented by a permutationmatrix, which has determinant

±1. Therefore the gluing data for det π∗OB�n−1 is given locally bymultiplying by±1. Since

±1 is 2-torsion in O∗ and trivial if S has characteristic 2, the result follows. ��

Example 3.7 (Torsors for finite groups)

Let G be a finite group. A G-torsor S′ → S is, in particular, a finite étale map of degree

n = #G admitting the above description. Notice that the action of G on S′ induces an

action of G onMS′/S .

The map S′ → S is classified by a map S → BG, the stack of G-torsors, and we may

regardMS′/S as pulled back from either themonogenicity space of the universalG-torsor,

M∗/BG , or the monogenicity space of the universal n-fold coverMB�n−1/B�n . To compare

the two, observe that the left regular representationG

�

G gives an inclusionG ⊆ �n upon

ordering the setG. The induced representable map BG → B�n is essentially independent

of the ordering since different orderings induce conjugate maps. The classifying map

S → B�n is the composite S → BG → B�n with the left regular representation. The

monogenicity spaceM∗/BG is [A|G| − �̂/G] where G acts on A|G| by permuting the basis

vectors by the left regular representation.
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A similar description locally holds for other finite étale group schemes. For merely

finite flat group schemes G such as αp,μp in characteristic p, the group action on the

monogenicity space ofG-torsors S′ → S still holds but the local decomposition S′ =
⊔

n S

and �n action do not.

Corollary 3.8 If S′ → S is a G-torsor for G a finite group, and either

(1) |G| is odd
(2) |G| is even and G has non-cyclic Sylow 2-subgroup

then the Steinitz class of S′ → S is trivial in Pic(S)

Proof Repeating the construction of Theorem 3.6, we see that if the left regular represen-

tation of G factors through An, the Steinitz class is trivial. The conditions given identify

precisely when this happens. ��

The stacksR1,B�n−1/B�n we study arise naturally in log geometry as “Artin fans” [1].

Example 3.9 (Moduli spaces of curves in genus 0)

LetM0,n be the moduli stack of smooth curves of genus 0 (i.e. P1) with nmarked points.

The evident [41] isomorphism with a quotient of configuration space gives:
[
MP1 ,Cn/C/PGL2

]
�

[
Confn(P

1)/PGL2
]

� M0,n.

One can always put the first point at ∞ and get equivalent descriptions:

M0,n �
[
MA1 ,Cn/C/Aff1

]
�

[
Confn(C)/Aff1

]
,

where Aff1 is the group of affine transformations Gm � A1. The stack quotient classifies

local affine equivalence classes of monogenerators, as detailed in Sect. 4.

One can likewise obtain the other moduli spaces of curves by an ad hoc construction.

Consider U → M the universal connected, proper, genus-g nodal curve, its relative

smooth locus Usm ⊆ U, and the monogenicity space

MUsm ,〈n〉M/M

of the trivial cover 〈n〉 over the moduli space M. The monogenicity stack is naturally

isomorphic to the space of nodal, n-marked curves Mg,n. One can also obtain the open

substack of stable curves as the universal Deligne-Mumford locus M g,n ⊆ Mg,n.

3.4 When is a map étale?

We recall from [33, Sect. 6] that a map S′ → S is étale precisely when the discriminant of

the algebra does not vanish.We recall from [33] that there is an algebraic moduli stackAn

of finite locally free algebras and the affine scheme of finite type Bn parametrizing such

algebras together with a choice of global basis Q �
⊕

OS · ei.
Suppose π : S′ → S comes from a finite flat algebra Q with a global basis ϕ : Q �⊕n
i=1OS · ei, corresponding to a map S → Bn. There is a trace pairing Tr : Q → OS [38,

0BSY] which we can use to define the discriminant:

Disc(Q,ϕ):= det
[
Tr(eiej)

]
∈ �(OS)

Changing ϕ changes the function Disc by a unit. The function Disc does not descend

to An, but the vanishing locus V (Disc) ⊆ Bn does. Writing Bet
n , A

et
n for the open com-
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plements of the vanishing locus V (Disc), a map π : S′ → S is étale if and only if S → An

factors through the open substack Aet
n ⊆ An [33, Proposition 6.1].

Remark 3.10 Most finite flat algebras are not étale, nor are they degenerations of étale

algebras. B. Poonen shows the moduli of étale algebras inside of all finite flat algebras

Aet
n ⊆ An cannot be dense by computing dimensions [33, Remark 6.11]. The closure A

et
n

is nevertheless an irreducible component.

What if S′ → S is not étale? Readers familiar with [9] know one can sometimes endow

a ramified map S′ → S with stack structure S̃ and S̃′ at the ramification to make S̃′ → S̃

étale. Then all S̃′ → S̃ are �n-torsors, and not just ramified covers S′ → S. The ideas in

Sect. 3.2, in particular an analogue of Theorem 3.4, apply in this level of generality. We

sketch these ideas over C.

Consider

y2 = x(x − 1)(x − λ),

for some λ ∈ C. If C :=P1
C
and C ′ is the projective closure of the above affine equation, the

projection (x, y) �→ x extends to a finite locally free map π : C ′ → C . This is in Situation

1.1 so our definitions make sense for it. However π is ramified at four points, preventing

us from interpreting its monogenicity space using the perspective of this section. Never-

theless, we may observe that the function y gives a section of M1,C ′/C over C \ ∞. The

section naturally extends to a section ofRP1 ,C ′/C over all of C .

LetX :=P1
C . If we work overC and endowC ′ andC with stack structure to obtain a finite

étale cover of stacky curves C̃ ′ → C̃ as in [9], the stacky finite étale cover together with

the map C̃ ′ → X is parameterized by a representable map C̃ → [SymnX] to the stack

quotient

[SymnX]:=
[
Xn/�n

]
.

We can similarly allow C ′ and C to be nodal families of curves over some base S. Maps

from nodal curves C̃ over S entail an S-point of themoduli stackM([SymnX]) of prestable

maps to the symmetric product. As in [4, Proposition 2.3], there is an open substack for

which themap from the coarse spaceC ′ toX is a closed immersion.The stackM([SymnX])

splits into components indexed by the ramification profiles of the cover of coarse spaces

C ′ → C .

There are some subtleties in characteristic p—one cannot treat all ramification as a μn

torsor because some ramification is a Z/pZ-torsor in characteristic p. The formalism of

tuning stacks [13] is a substitute in arbitrary characteristic.

4 Twistedmonogenicity

TheHasse local-to-global principle is the idea that “local” solutions to a polynomial equa-

tion over all the p-adic fields Qp and the real field R can piece together to a single “global”

solution over Q. We ask the same for monogenicity: given local monogenerators, say over

completions or local in the Zariski or étale topologies, do they piece together to a single

global monogenerator?

The Hasse principle fails for elliptic curves. Let E be an elliptic curve over a number

field K and consider all its places ν. The Shafarevich-Tate group X(E/K ) of an elliptic

curve sits in an exact sequence
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0 → X(E/K ) → H1
et (K, E) →

∏

ν

H1
et (Kν , E).

Elements ofX are genus-one curves with rational points over each completionKν that do

not have a point over K . Similarly, we want sequences of cohomology groups to control

when local monogenerators do or do not come from a global monogenerator.

For such a sequence, one needs to know how a pair of local monogenerators can differ.

Onewould like a groupG or sheaf of groups transitively acting on the set of localmonogen-

erators so that cohomology groups can record the struggle to patch local monogenerators

together into a global monogenerator.

Suppose B/A is an algebra extension inducing S′ → S and θ1, θ2 ∈ B are both mono-

generators. Then

θ1 ∈ B = A[θ2], θ2 ∈ B = A[θ1],

so each monogenerator is a polynomial in the other:

θ1 = p1(θ2) and θ2 = p2(θ1), with p1(x), p2(x) ∈ A[x].

We can think of the pi(x) as transition functions or endomorphisms of the affine line A1.

Even though p1(p2(θ1)) = θ1, it is doubtful that p1 ◦ p2 = idA1 or even that pi(x) are

automorphisms of A1.

One might attempt to find a group G containing all possible polynomials p1(x), p2(x).

We would then have a homomorphism (of non-commutative monoids) E → G where

E is some sub-monoid of End(A1), the monoid of endomorphisms of A1 (equivalently,

the monoid of one-variable polynomials under composition). Even if we only insist that

E contains x, −x, and x2, we find that the images of x and −x coincide in G since both

compose with x2 to the same polynomial. This is not acceptable as x and−x act in distinct

ways on monogenerators.

Instead of working with the group of all possible polynomial transition functions as

above, we require our transition functions pi(x) to lie in a groupG

�

A1 acting onA1. Two

particularly natural options for G present themeselves, namely the group sheaves:

Gm(A) = A∗, u · u′:=uu′

Aff1(A) = A∗ � A, (u, v) · (u′, v′):=(uu′, uv′ + v).

Affine transformations Aff1 are essentially polynomials ux + v of degree one under com-

position. These act on monogenerators:

Gm

�

A1 : a ∈ A∗, θ ∈ M(A), a.θ :=a · θ ,

Aff1

�

A1 : a ∈ A∗, b ∈ A, θ ∈ M(A), (a, b).θ :=aθ + b.

Definition 4.1 (Twisted monogenerators)

A (Gm)-twisted monogenerator for B/A is:

(1) a Zariski open cover SpecA =
⋃

i D(fi) for elements fi ∈ A,

(2) a system of “local” monogenerators θi ∈ B
[
f −1
i

]
for B[f −1

i ] over A[f −1
i ], and

(3) units aij ∈ A
[
f −1
i , f −1

j

]∗

such that
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• for all i, j, we have aij .θj = θi,

• for all i, j, k , the “cocycle condition” holds:

aij .ajk = aik .

Two such systems {(aij), (θi)}, {(a′
ij), (θ

′
i )} are equivalent if they differ by further refining

the cover SpecA =
⋃

D(fi) or global units u ∈ A∗: u · aij = a′
ij , u · θi = θ ′

i .

Likewise B/A is Aff1-twisted monogenic if there is a cover with θi ’s as above, but with

units (3) replaced by pairs aij , bij ∈ A
[
1
fi
, 1
fj

]
such that each aij is a unit and aijθj +bij = θi.

The elements θi may or may not come from a single global monogenerator θ ∈ A.

Nevertheless, the transition functions (aij) or (aij , bij) define an affine bundle L on SpecA

with global section θ induced by the θi ’s.We say S′/S is “twistedmonogenic” tomean there

exists a Gm-twisted monogenerator and similarly say “Aff1-twisted” monogenic. Both are

clearly Zariski-locally monogenic.

Compare with Cartier divisors:

twisted monogenerator Cartier divisor

global monogenerator rational function

Gm/Aff1action differing by units.

We recall the notions of “multiply monogenic orders” and “affine equivalence” in the

literature. Two monogenerators θ1, θ2 ∈ �(SpecA,MB/A) are said to be “affine equiva-

lent” if there are u ∈ A∗, v ∈ A such that uθ1 + v = θ2. In other words, affine equivalence

classes are elements of the quotient �(SpecA,MB/A)/Aff
1(A). Under certain hypothe-

ses in Remark 4.12, Aff1-twisted monogenicity is parameterized by the sheaf quotient

MB/A/Aff1. There is almost an “exact sequence”

Aff1(A) → �(MB/A) → �(MB/A/Aff1) → H1(Aff1)

that dictates whether a twisted monogenerator comes from an affine equivalence class of

global monogenerators.

We warm up with a classical approach to Gm-quotients, namely taking Proj . Then we

study Aff1-twisted monogenerators before finally introducingG-twisted monogenerators

for arbitrary groups G.

There is a moduli space for each notion of twisted monogenicity. We use these moduli

spaces now and defer the proof until Theorem 4.26:

Theorem 4.2 (=Theorem 4.26) Let Gm, Aff
1 act on A1 on the left in the natural way,

inducing a left action onMS′/S . The stack quotients [M/Gm] and
[
M/Aff1

]
representGm-

and Aff1-twisted monogenerators up to equivalence, respectively.

4.1 Gm-twisted monogenerators and proj of the weil restriction

Writing S′ = SpecB and S = SpecA, a twistedmonogenerator amounts to a Zariski cover

S = SpecA =
⋃

Ui, a system of closed embeddings θi : S′
Ui

⊆ A1
Ui

over Ui, and elements

aij ∈ Gm(Ui) such that

aij .θj = θi : S
′
Uij

→ A1
Uij

.

Equivalently, a twistedmonogenerator is a line bundle L on S defined by the above cocycle

aij and a global embedding θ : S′ ⊆ L over S. Twisted monogenerators (θi)i∈I , (θ ′
j )j∈J with
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respect to covers covers {Ui}i∈I , U ′
j j∈J

are identified if they differ by global units u ∈ Gm(S)

on a common refinement of the covers {Ui}i∈I , U ′
j j∈J

, i.e., if the corresponding line bundles

L, L′ are isomorphic in a way that identifies the closed embeddings θ , θ ′.

For number fields L/K with θ ∈ ZL and a ∈ ZK , one has aθ ∈ ZL. If a ∈ Z∗
K , then

θ is a monogenerator if and only if aθ is. The multiplication action Gm(ZK )
�

R(ZK )

corresponds to the global Gm action on the vector bundleR over S.

An action of Gm corresponds to a Z-grading on the sheaf of algebras [38, 0EKJ]. Locally

in S, π∗OS′ �
⊕n

i=1OS · ei and R � An
S . The Gm action is the diagonal action and

corresponds to the total degree of polynomials inOAn
S

= OS[x1, . . . , xn].

The associated projective bundle to the vector bundleR is given by the relative Proj [38,

01NS]

PRS′/S :=Proj
S
OR ,

with the total-degree grading. The ideal IS′/S cutting out the complement NS′/S of

M1,S′/S ⊆ R is graded by [4, Remark 3.10], defining a closed subscheme PNS′/S ⊆ PR.

Definition 4.3 Define the scheme of projective monogenerators

PMS′/S ⊆ PRS′/S :=Proj
S
ORS′/S

to be the open complement of the closed subscheme PNS′/S cut out by the graded homo-

geneous ideal IS′/S .

The reader may define projective polygenerators in the same fashion.

Lemma 4.4 The vanishing of the irrelevant ideal V (OR,+) of RS′/S is contained inside of

the non-monogenicity locus NS′/S for S
′ �= S.

Proof Locally, the lemma states that θ = 0 is not a monogenerator. ��

Remark 4.5 We relate the Proj construction to stack quotients by Gm according to

[31, Example 10.2.8]. The ring ORS′/S is generated by elements of degree one. Locally,

RS′/S � An
S and ORS′/S � OS[x1, . . . , xn] is generated by the degree one elements xi.

Write Spec
S
OR for the relative spectrum [38, 01LQ]. The map

Spec
S
OR \ V (OR,+) Proj

S
OR

−/Gm

is therefore a stack quotient or Gm-torsor.

We have a pullback square

MS′/S Spec
S
OR \ V (OR,+)

PMS′/S Proj
S
OR

�

of Gm-torsors and a stack quotient PMS′/S =
[
MS′/S/Gm

]
.

Theorem 4.2 states that [M/Gm] represents twistedmonogenerators, and nowwe know

the quotient stack is wondrously a scheme:
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Corollary 4.6 The schemePMS′/S = [M/Gm] represents theGm-twistedmonogenerators

of Definition 4.1. That is, PMS′/S is a moduli space for twisted monogenerators. The action

Gm

�

MS′/S is free.

Warning 4.7 Given a monogenerator θ ∈ ZL and a pair a ∈ Z∗
K , β ∈ ZL, write

β = b0 + b1θ + · · · + bn−1θ
n−1.

One may try to define a second action

a.β
?
:=b0 + b1aθ + b2a

2θ2 + · · · + bn−1a
n−1θn−1

encoding the degree with respect to θ , but this action does not define a grading as it is

almost never multiplicative. For example, take ZL = Z[
√
2] with monogenerator

√
2 over

ZK = Z. Then

a.2 = 2 �= a.
√
2 · a.

√
2.

In the case that S′ = SpecA[ε]/εm+1 and S = SpecA, we recall that RS′/S = JA1
A ,m

is the jet space of A1
A. Here, the action a.x is multiplicative and induces a second action

Gm

�

RS′/S = JA1 ,m. The two actions of λ ∈ Gm on a jet

f (ε) = a0 + a1ε + · · · + amεm

on A1 are λ.f (ε) = λ · f (ε) and λ.f (ε) = f (λε). The Proj of JX,m with respect to this second

Gm action is known as a “Demailly-Semple jet” or a “Green-Griffiths jet” in the literature

[40, Definition 6.1]. For certain S′ → S, there may be a distinguished one-parameter

subgroup, i.e., the image of Gm → AutS(S′), that results in a second action Gm

�

RS′/S

and allows an analogous construction.

4.2 Aff1-twisted monogenerators and affine equivalence

We enlarge our study to representing spaces of Aff1-twisted monogenerators and the

related study of affine equivalence classes of ordinary monogenerators. We delay twist-

ing by general sheaves of groups other than Gm and Aff1 until the next section. For

an S-scheme X , the automorphism sheaf Aut(X) is the subsheaf of automorphisms in

HomS(X, X).

Remark 4.8 The automorphism sheaf AutS(A1) has a subgroup of affine transformations

Aff1 under composition. These are identified in turn with A1 � Gm via

(a, b) �→ (x �→ bx + a).

The automorphism sheaf can be much larger for other Ak
S . For example,

(x, y) �→ (x + y3, y)

is an automorphism of A2.

The automorphism sheaf Aut(A1) is not the same as Aff1, though they have the same

points over reduced rings. See [12] for some discussion over nonreduced rings.

Recall that two monogenerators θ1, θ2 of an A-algebra B are said to be equivalent if

θ1 = uθ2 + v,
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where u ∈ A∗ and v ∈ A. Likewise, say that two embeddings θ1, θ2 : S′ → L of S′ into an

Aff1 bundle L over S are equivalent if there is in f ∈ Aff1(S) such that θ1 = f.θ2. The set

of monogenerators up to equivalence is then

�(S,M)/�(S,Aff1).

If S′ ∼→ S is an isomorphism and n = 1, the action of Aff1 is trivial. Otherwise, the

Aff1-action is often free:

Lemma 4.9 The actionAut(S′)

�

MX has trivial stabilizers, for any quasiprojective X. If S

is normal and S′ → S is not an isomorphism, the action Aff1

�

MS′/S has trivial stabilizers

as well.

Proof A stabilizer of the action AutS(S′)

�

MX entails a diagram

X X

S′ S′.∼

The fact that S′ ⊆ X is a monomorphism forces S′ � S′ to be the identity.

Normality of S means S is a finite disjoint union of integral schemes [38, 033N]; we

assume S is integral without loss of generality.

Computing stabilizers of Aff1

�

MS′/S is local, so wemay assume S′ → S is induced by a

non-identity finite map A → B of rings where A is an integrally closed domain with field

of fractions K . A stabilizer

a + bθ = θ ; a ∈ A, b ∈ A∗

implies (1 − b)θ = a. If b = 1, then a = 0 and the stabilizing affine transformation is

trivial. Otherwise, 1− b ∈ K ∗ and θ =
a

1 − b
∈ K . Elements θ ∈ B are all integral over A.

Since A is integrally closed, θ ∈ A. Hence B = A[θ ] = A, a contradiction. ��

Remark 4.10 Suppose given transition functions (aij , bij) and local monogenerators (θi)

as in an Aff1-twisted monogenerator that may not satisfy the cocycle condition a priori.

For normal S with n > 1 as in the lemma, the cocycle condition holds automatically, since

Aff1 acts without stabilizers.

Corollary 4.11 If S is normal, the stack quotient
[
M1,S′/S/Aff

1
]
is represented by the

ordinary sheaf quotientM/Aff1.

Proof IfG

�

X is a free action, the stack quotient [X/G] coincides with the sheaf quotient

X/G. ��

Remark 4.12 If S is normal, Corollary 4.11 tells us that an Aff1-twisted monogenerator

is the same as a global section �(S,M/Aff1). Equivalence classes of monogenerators are

given by the presheaf quotient �(S,M)/�(S,Aff1).

Affine equivalence classes of monogenerators thereby relate to twistedmonogenerators

in an exact sequence of pointed sets:

�(S,M)/�(S,Aff1) → �(S,M/Aff1) → H1(S,Aff1).
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As in sheaf cohomology, the second map takes θ to its torsor of lifts δ(θ ) inMS′/S :

δ(θ )(U ) = {f ∈ M(U ) : f + Aff1(U ) = θ |U }.

A section of the sheaf quotient

θ ∈ �(S,M/Aff1)

lifts to an affine equivalence class in the presheaf quotient θ ∈ �(S,M)/�(S,Aff1) if and

only if the induced Aff1-torsor is trivial.

The exact sequence is analogous to Cartier divisors. If X is an integral scheme with

rational function field K (X), the long exact sequence associated to

1 → O
∗
X → K (X)∗ → K (X)∗/O∗

X → 1

is analogous to the above.

Remark 4.13 One can do the same withGm, or any other group that acts freely. Compare

twisted monogenerators PM = [M/Gm] with ordinary monogenerators MS′/S up to

Gm-equivalence to obtain a sequence

�(S,M)/�(S,Gm) → �(S,M/Gm) → H1(S,Gm).

Freeness of the action is necessary to identify the stack quotient with the ordinary sheaf

quotient.

Sometimes, being Gm-twisted monogenic is the same as being Aff1-twisted monogenic:

Proposition 4.14 If S = SpecA is affine, all Aff1-torsors on S are induced by Gm-torsors:

H1(SpecA,Gm) � H1(SpecA,Aff1).

The corresponding twisted forms of A1 are the same, so we can furthermore identify Gm-

twisted monogenerators with Aff1-twisted monogenerators.

Proof The maps

A1 → Aff1

a �→ (x �→ x+ a)
and

Aff1 → Gm

(x �→ bx + a) �→ b

fit into a short exact sequence

0 → A1 → Aff1 → Gm → 1.

The sheaf Aff1 is not commutative. Cohomology sets H i(S,Aff1) are nevertheless defined

for i = 0, 1, 2. By Serre Vanishing [38, 01XB] we have H i(SpecA,A1) = 0 for i �= 0, and

therefore �(Aff1) → �(Gm) is surjective, yielding an identification in all nonzero degrees:

H i(SpecA,Aff1) � H i(SpecA,Gm), i = 1, 2.

The action Gm

�

A1 is the restriction of that of Aff1, factoring

Gm ⊆ Aff1 → Aut(A1).

The corresponding twisted forms of A1 are the same. ��
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4.3 Consequences of Aff1-twisted monogenicity

We conclude with several consequences of twisted monogenicity and our Theorem 4.19

that shows twisted monogenerators detect class number-one number rings.

The following theorem constrains the line bundles that may be used for twisted mono-

genicity. This result constrains the possible Steinitz classes of a twisted monogenic exten-

sion. This is an effective constraint in geometric situations: see Lemma 5.4. The structure

of the set of ideals corresponding to Steinitz classes of number rings is the subject of a

variety of open questions. This has traditionally been the domain of class field theory; two

notable papers are [8,28]. For n > 0, write d(n) = gcd
(
{ �−1

2 : � prime, � | n}
)
. Theorems

1 and 2 of [28] imply that if K contains a primitive nth root of unity, then the Steinitz

classes of Galois extensions L/K of degree n are precisely the d(n)th powers in the class

group of K . Compare this to the following:

Theorem 4.15 Suppose S′ → S is Gm-twisted monogenic, with an embedding into a line

bundle E. Let E be the sheaf of sections of E. Then

det(π∗OS′ ):= ∧top π∗OS′ � E
− n(n−1)

2

in Pic(S).

In particular, if an extension of number ringsZL/ZK is twistedmonogenic, then its Steinitz

class is an n(n−1)
2 th power in the class group.

Proof Write Sym∗
E:=

⊕
d Sym

d
E for the symmetric algebra. Recall that E � V(E∨):=

Spec
S
Sym∗(E∨). We have a surjection ofOS-modules

Sym∗
E

∨
� π∗OS′ ,

which we claim factors through the projection ofOS-modules Sym∗
E

∨ →
⊕n−1

i=0 Symi
E

∨.

Such a factorization is a local question and local factorizations automatically glue because

there is at most one. Locally, we may assume S′ → S is induced by a ring homorphism

A → B and E
∨ is trivialized. We have a factorization of A-modules

Sym∗
E

∨ ∼= A[t] B

⊕n−1
i=0 Symi

E
∨ �

⊕n−1
i=0 A · t i

due to the existence of a monic polynomial mθ (t) of degree n for the image θ of t in OS′

[4, Lemma 2.11]. The A-modules
⊕n−1

i=0 A · t i and B are abstractly isomorphic, and any

surjective endomorphism of a finitely generated module is an isomorphism [27, Theorem

2.4].

We conclude that globally

π∗OS′ �
n−1⊕

i=0

Symi
E

∨.

Since E is invertible, Symi
E

∨ = (E∨)i. Taking the determinant,

det(π∗OS′ ) = det

(
n−1⊕

i=0

(E∨)i
)

= E
−

∑n−1
i=0 i = E

− n(n−1)
2 .

��
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The literature aboundswith finiteness results on equivalence classes ofmonogenerators,

for example:

Theorem 4.16 ([14, Theorem 5.4.4]) Let A be an integrally closed integral domain of

characteristic zero and finitely generated over Z. Let K be the quotient field of A, � a finite

étale K-algebra with � �= K, and B the integral closure of A in �. Then there are finitely

many equivalence classes of monogenic generators of B over A.

We have an analogous finiteness result for equivalence classes of Aff1-twisted mono-

generators:

Corollary 4.17 Let A, K , �, B be as in Theorem 4.16, with S′ → S induced from A → B.

Assume Pic(A) is finitely generated. Then there are finitely many equivalence classes of

Aff1-twisted monogenerators for S′ → S.

Proof We essentially use the sequence

�(S,M)/�(S,Aff1) → �(S,M/Aff1) → H1(S,Aff1)

of Remark 4.12. If this were a short exact sequence of groups, the outer terms being finite

would force the middle term to be; our proof is similar in spirit.

Since S is quasicompact and there are finitely many elements of the Picard group which

are n(n−1)
2 th-roots of the Steinitz class

Pic(S):=H1(S,Gm) = H1(S,Aff1),

we can find an affine open cover S =
⋃

i Ui by finitely many open sets of S that simulta-

neously trivializes all n(n−1)
2 th-roots of the Steinitz class on S.

The above sequence of presheaves restricts to the Ui ’s in a commutative diagram

�(S,M)/�(S,Aff1) �(S,M/Aff1) H1(S,Aff1)

∏
�(Ui,M)/�(Ui,Aff

1)
∏

�(Ui,M/Aff1)
∏

H1(Ui,Aff
1).

ρ

The restrictionH1(S,Aff1) →
∏

H1(Ui,Aff
1) is zero on the n(n−1)

2 th-roots of the Steinitz

class by construction of theUi ’s. The restriction ρ : �(S,M/Aff1) ↪→
∏

�(Ui,M/Aff1) is

injective by the sheaf condition. A diagram chase reveals that the restriction ρ(θ ) of any

section θ ∈ �(S,M/Aff1) is in the image of
∏

�(Ui,M)/�(Ui,Aff
1). Theorem 4.16 asserts

that each set �(Ui,M)/�(Ui,Aff
1) is finite. ��

Lemma 4.18 Degree-two extensions are all Aff1-twisted monogenic. If S is affine, they are

also Gm-twisted monogenic.

Proof Localize and choose a basis containing 1 to write π∗OS′ � OS ⊕ OSθ1 for some

θ1 ∈ �(OS′ ). Given an element θ2 so that {1, θ2} is also a basis, we may write

θ1 = a + bθ2, θ2 = c + dθ1, a, b, c, d ∈ OS .

Hence bd = 1 are units, and the transition functions come from Aff1 = A1 � Gm. By

choosing such generators on a cover of S, one obtains a twisted monogenerator. Proposi-

tion 4.14 further refines our affine bundle to a line bundle. ��
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Theorem 4.19 Anumber ringZK has class number one if and only if all twistedmonogenic

extensions of ZK are in fact monogenic.

Proof If the class number of K is one, then all line bundles on SpecZK are trivial and

the equivalence is clear. Mann [26] has shown that K has quadratic extensions without

an integral basis if and only if the class number of K is not one: adjoin the square root

of α, where (α) = b2c with b non-principal and c square-free. By Lemma 4.18, such

an extension is necessarily Gm-twisted monogenic. As the monogenicity of quadratic

extensions is equivalent to the existence of an integral basis, the result follows. ��

Remark 4.20 Theorem 4.19 implies that the ring of integers of a number field is twisted

monogenic over Z if and only if it is monogenic over Z. Example 5.3 thus provides an

example of a number field which is not twisted monogenic.

Given that twisted monogenic extensions and monogenic extensions coincide over Z,

we should ask for an example where we have twisted monogenicity but not monogenicity.

All degree 2 extensions of number rings are twisted monogenic as Lemma 4.18 shows.

Thus every quadratic extension without an integral basis is twisted monogenic but not

monogenic, and [26] provides a construction of such extensions. The aim of the following

is the very explicit construction of a higher degree example of such an extension. Though

we are ultimately unable to prove non-monogenicity in the following example, we hope it

gives the reader a concrete sense of the concepts and methods employed in this section.

Example 4.21 (Properly twisted monogenic, not quadratic) Let K = Q( 3
√
5 · 23) and

let p3, p5, and p23 be the unique primes of K above 3, 5, and 23, respectively. One

can compute p3 = (ρ3:=1970( 3
√
5 · 23)2 + 9580( 3

√
5 · 23) + 46587). Consider ZL/ZK ,

where L = K ( 3
√
23ρ3). On D(p23), the local index form with respect to the local basis

{1, 3
√
23ρ3, ( 3

√
23ρ3)2} is b3 − 23ρ3c3. OnD(p5), we have the local index form B3 − 52ρ3C3

with respect to the local basis {1, 3
√
52ρ3, (

3
√
52ρ3)2}.We transition via

3
√
232 · 52/23, which

is not a global unit, so the extension ZL/ZK is twisted monogenic.

To see what is going on more explicitly, we investigate how the transitions affect the

local index forms. We have

b3 − 23ρ3c
3 =

52

23
B3 −

54

232
· 23ρ3C3 =

52

23
B3 −

54

23
ρ3C

3 = a unit inOD(p23).

If B and C could be chosen to be ZK -integral so that local index form represented a unit

of ZK , then
3
√
52ρ3 would be a global monogenerator. However, p5-adic valuations tell us

3
√
52ρ3 is not amonogenerator. One can also applyDedekind’s index criterion to x3−52ρ3.

Similarly, we have

B3 − 52ρ3C
3 =

23

52
b3 −

232

54
· 52ρ3c3 =

23

52
b3 −

232

52
ρ3c

3 = a unit inOD(p5).

If b and c could be chosen to be ZK -integral so that local index form represented a unit of

ZK , then 3
√
23ρ3 would be a global monogenerator. As above, the p23-adic valuations tell

us this cannot be the case. Again, we could also use polynomial-specific methods.

We have shown that ZL/ZK is twisted monogenic, but it remains to show that the

twisting is non-trivial. We need to show the ideal p5 = (5, 3
√
5 · 23) is not principal.

On D(p23) it can be generated by 3
√
5 · 23 and on D(p5) it can be generated by 5. We
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transition between these two generators via
3
√
52 · 232/23, exactly as above. Thus our

twisted monogenerators correspond to a non-trivial ideal class.

A computer algebra system can compute a K -integral basis for ZL:

{
1,

(
−2

3
√
23 · 5 +

5

25

(
3
√
23 · 5

)2)
3
√
23ρ3 +

(
−3 +

3

23
3
√
23 · 5

)(
3
√
23ρ3

)2
,

(
120589 + 5243

3
√
23 · 5 +

5243

23

(
3
√
23 · 5

)2)
3
√
23ρ3

+
(
22850 +

57125

23
3
√
23 · 5 + 1828

(
3
√
23 · 5

)2)(
3
√
23ρ3

)2 }
,

with index form:

iZL/ZK = 13796817(
3
√
5 · 23)2b3 − 1367479703949(

3
√
5 · 23)2b2c

+ 45179341009193328(
3
√
5 · 23)2bc2 + 67103709

3
√
5 · 23b3

− 497537273719431009077(
3
√
5 · 23)2c3 − 6650125342740

3
√
5 · 23b2c

+ 219702478196413227
3
√
5 · 23bc2 − 2419492830176044167763

3
√
5 · 23c3

+ 326269891b3 − 32339923090800b2c + 1068411032584717260bc2

− 11765841517121285321908c3.

BecauseZL/ZK is twistedmonogenic, there are no common index divisors. Thuswewill

always find solutions to iZL/ZK when we reduce modulo a prime of ZK . We do not expect

ZL to be monogenic over ZK ; however, showing that there are no values of b, c ∈ ZK such

that iZL/ZK (b, c) ∈ Z∗
K appears to be rather difficult.

A clever way to get around this issuewould be to show that the different of L/K was non-

principal. This would preclude monogenicity by prohibiting an integral basis all together.

Unfortunately, one can compute that the different is principal, so the extension does have

a relative integral basis.

Remark 4.22 One can perform the same construction of Example 4.21 with radical cubic

number rings other than Q( 3
√
5 · 23). Specifically, take any radical cubic where (3) = p33 =

(α)3, �, and q are distinct primes with (�) = l3, (q) = q3, and neither l nor q principal. The

ideas behind this construction can be taken further by making appropriate modifications.

4.4 Twisting in general

Throughout this section, fix notation as in Situation 1.1 and work in the category (Sch/S)

of schemes over S equipped with the étale topology. In particular, we allow X to be any

quasiprojective S-scheme.

Definition 4.1 readily generalizes. Replace Gm by any étale sheaf of groups G with a left

action G

�

X . A G-twisted monogenerator for S′ → S (into X) is an étale cover Ui → S,

closed embeddings θi : S′
Ui

⊆ XUi , and elements gij ∈ G(Uij) such that

gij .θj = θi : S
′
Uij

→ XUij .

Say two G-twisted monogenerators (θi), (ηi) are equivalent if, after passing to a common

refinement of the associated covers, there is a global section g ∈ G(S) so that θi = g |Ui · ηi
for all i. Equivalently, the θi ’s glue to a global closed embedding S′ ⊆ X̂ into a twisted form

X̂ of X the same way theGm-twisted monogenerators give embeddings into a line bundle.
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The twisted form X̂ arises from transition functions in G, meaning there is a G-torsor

P such that X̂ is the contracted product:

X̂ = X ∧G P:=X × P/(G,�)

We have already seen the variant G = Aff1, X = A1. Other interesting cases include

G = PGL2

�

P1, GLn

�

An, an ellliptic curve E acting on itself E

�

E, etc.

Remark 4.23 Usually, contracted products are defined for a left action G
�

P and a right

action G

�

X by quotienting by the antidiagonal action

X ∧G P:=X × P/(−�, G)

defined by

G

�

X × P; g.(x, p):=(x.g−1, g.p).

We instead take two left actions and quotient by the diagonal action of G. The literature

often turns left actions Gm

�

A1 into right actions anyway, as in [7, Remark 1.7].

Group sheaves G beget stacks BG = BGS classifying G-torsors on S-schemes with

universal G-torsor S → BG.

Twisted forms X̂ of X are equivalent to torsors for Aut(X) ( [34, Theorem 4.5.2]), as fol-

lows: Given a twisted form X̂ → S, we obtain the torsor Isom(X̂ , X) of local isomorphisms.

Given a Aut(X)-torsor P, we define a twisted form via contracted product:

X̂P :=X ∧Aut(X) P

The stack BAut(X) is thereby a moduli space for twisted forms of X with universal family

X ∧Aut(X)
BAut(X) S = [X/Aut(X)]. An action G → Aut(X) lets one turn a G-torsor P into a

twisted form

X̂P :=X ∧G P

classified by the map BG → BAut(X).

The automorphism sheaf Aut(X) acts on the schemeMX via postcomposition with the

embeddings S′ → X , yielding a map of sheaves

γ : Aut(X) → Aut(MX )4.

Similarly, the automorphism sheaf Aut(S′) acts onMX on the right via precomposition:

ξ : Aut(S′)op → Aut(MX ).

The induced mapH1(S,Aut(X)) → H1(S,Aut(MX )) sends a twisted form X̂ of X to the

twisted formMX̂ ofMX given by looking at closed embeddings into X̂ . We package these

twisted formsMX̂ into a universal version: TwistM.

Definition 4.24 (TwistM) Let TwistM → BAut(X) be the BAut(X)-stack whose T -

points are given by
⎧
⎪⎪⎪«
⎪⎪⎪¬

TwistM

T BAut(X)
X̂

«
⎪⎪⎪¬
⎪⎪⎪­
:=

⎧
⎪⎪⎪«
⎪⎪⎪¬

S′ ×S T X̂

T

s

∣∣∣∣∣∣∣∣∣
s is a closed immersion

«
⎪⎪⎪¬
⎪⎪⎪­
.

4The map γ need not be injective. Consider S = Spec k a geometric point, S′ =
⊔3 S the trivial 3-sheeted cover,

and X =
⊔2 S only 2-sheeted. There are no closed immersions S′ ⊆ X , so MX = ∅ has global automorphisms

Aut(∅) � {id}, but Aut(X) � Z/2Z is nontrivial. Similar examples abound for non-monogenic S′ → S.
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The map TwistM → BAut(X) is representable by schemes, since pullbacks are twisted

formsMX̂ ofMX itself:

MX̂ S

TwistM BAut(X).

�
X̂

The universal torsor over BAut(X) is S, but the universal twisted form is obtained by

the contracted product with X over BAut(X):

X ∧Aut(X)
BAut(X) S � [X/Aut(X)].

One can exhibit TwistM as an open substack of the Weil Restriction of [X/Aut(X)] →
BAut(X) as in [4, Proposition 2.3]. There is a universal closed embedding over TwistM

into the universal twisted form of X as in the definition ofMS′/S :

TwistM ×S S
′ [X/Aut(X)].

TwistM

u

The universal case is concise to describe but unwieldy because Aut(X) need not be finite,

smooth, or well-behaved in any sense.We simplify by specifying our twisted form X̂ → T

to get a scheme TwistMX̂ = T ×X̂ ,BAut(X)TwistM or by specifying the structure groupG.

Fixing the structure group G requires X̂ = X ∧G P for the specified sheaf of groups G

and some G-torsor P. These G-twisted forms are parameterized by the pullback

TwistMG TwistM

BG BAut(X).

�

The fibers of TwistMG → BG over maps T → BG are again twisted forms of MX . If

X = Ak and X̂ is a G-twisted form, we may refer to the existence of sections of TwistMX̂

by saying S′/S is G-twisted k-genic, etc.

Remark 4.25 Trivializing X̂ is not the same as trivializing the torsor P that induces X̂

unless the group G is Aut(X) itself. For example, take the trivial action G

�

X .

Theorem 4.26 The stack of twistedmonogeneratorsTwistM is isomorphic to [MX/Aut(X)]

over BAut(X). More generally, for any sheaf of groups G

�

X, we have an isomorphism

TwistMG � [MX/G] over BG.

Proof Address the second, more general assertion and let T be an S-scheme. Write

XT :=X ×S T , T ′:=T ×S S
′, etc. A T -point of TwistMG is a G-torsor P → T and a solid
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diagram

P′ XT ×T P

T ′ XT ∧G
T P,

T

�
/�,G

with T ′ → XT ∧G
T P a closed immersion. Form P′ by pullback: P′ is a left G-torsor

with an equivariant map to XT ×T P with the diagonal action. The map P′ → XT ×T P

entails a pair of equivariant maps P′ → P and P′ → XT . The map P′ → P over T forces

P′ � P ×T T ′. These data form an equivariant map P → MX over T , or T → [MX/G].

Reverse the process to finish the proof. ��

To see this theorem in practice, we have the following example.

Definition 4.27 The group sheaf Affk ⊆ Aut(Ak ) of affine transformations is the set of

functions

x �→ Mx + b

whereM ∈ GLk and b ∈ Ak , under composition. Note Affk ∼= Ak � GLk .

Example 4.28 Let S′ be the spectrum of a quadratic order such as Z[i], and take S =
SpecZ. The space of k-generators isMk,S′/S = Ak × (Ak \ 0) according to [4, Proposition
4.5]. Take the quotient by the groups of affine transformations:

[Mk,S′/S/Ak � Gm] = Pk−1, [Mk,S′/S/Aff
k ] = [Ak/GLk ] = [Pk−1/PGLk ].

These quotients represent twisted monogenerators according to Theorem 4.26. The

correspondingPGLk-torsorswere classically identifiedwithAzumaya algebras andSeveri-

Brauer varieties (see the exposition in [24]) or twisted forms of Pk−1. These yield classes

in the Brauer group H2(Gm) via the connecting homomorphism from

1 → Gm → GLk → PGLk → 1.

The same holds locally for any degree-two extension S′ → S with S integral using [4,

Proposition 4.5].

If G is an abelian variety over a number field S = SpecK , let P → S be a G-torsor

inducing a twisted form X̂ of X . Given a twisted monogenerator θ : S′ ⊆ X̂ , one can try

to promote θ to a global monogenerator by trivializing P and thus X .

Suppose one is given trivializations of P over the completionsKν at each place.Whether

these glue to a global trivialization of P over K and thus a monogenerator S′ ⊆ X is

governed by the Shafarevich-Tate group X(G/K ).

Given aG-twistedmonogenerator with local trivializations, the Shafarevich-Tate group

obstructs lifts of θ to a global monogenerator the same way classes of line bundles in Pic

obstruct Gm-twisted monogenerators from being global monogenerators. Theorem 4.19

showed a converse—nontrivial elements of Pic imply twisted monogenerators that are

not global monogenerators.
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Question 4.29 Is the same true for X? Does every element of the Shafarevich-Tate group

arise this way?

The Shafarevich-Tate group approach is useless forG = Gm orGLn because of Hilbert’s

Theorem 90 [38, 03P8]:

H1
et (SpecK,G) = H1

Zar(SpecK,G) = 0.

The same goes for any “special” group with étale and Zariski cohomology identified. The

strategy may work better for PGLn or elliptic curves E.

Remark 4.30 This section defined G-twisted monogenerators using covers in the étale

topology, whereas Definition 4.1 used the Zariski topology. For G = Gm or Aff1, either

topology gives the same notion of twistedmonogenerators. Observe thatGm has the same

Zariski and étale cohomology by Hilbert’s Theorem 90. The same is true for A1 by [38,

03P2] and so also Aff1 = Gm � A1.

5 Examples of the scheme of monogenerators

We conclude with several examples to further illustrate the interaction of the various

forms of monogenicity considered in this paper. We will make frequent reference to

computation of the index form using the techniques of the previous paper in this series.

Some of these examples were already considered in the previous paper, but are revisited

in order to add some commentary on their relationship to notions of local monogenicity.

5.1 Orders in number rings

Example 5.1 (Dedekind’s non-monogenic cubic field) Let η denote a root of the poly-

nomial X3 − X2 − 2X − 8 and consider the field extension L:=Q(η) over K :=Q. When

Dedekind constructed this example [10] it was the first example of a non-monogenic

extension of number rings. Indeed two generators are necessary to generate ZL/ZK : take

η2 and η+η2

2 , for example. In fact, {1, η+η2

2 , η2} is aZ-basis forZK . Thematrix of coefficients

with respect to the basis {1, η+η2

2 , η2} is

⎡
⎢£
1 a a2 + 6b2 + 16bc + 8c2

0 b 2ab + 7b2 + 24bc + 20c2

0 c −2b2 + 2ac − 8bc − 7c2

¤
⎥⎦ .

Taking its determinant, the index form associated to this basis is

−2b3 − 15b2c − 31bc2 − 20c3.

Were the extensionmonogenic, we would be able to find a, b, c ∈ Z so that the index form

above is equal to ±1.

In fact,ZQ(η)/Z is not even locallymonogenic. By Lemma 2.6, wemay check by reducing

at primes. Over the prime 2 the index form reduces to

b2c + bc2,

and iterating through the four possible values of (b, c) ∈ (Z/2Z)2 shows that the index

form always to reduces to 0. That is, 2 is a common index divisor.
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Dedekind showed that ZQ(η)/Z is non-monogenic, not by using an index form, but by

deriving a contradiction from the ZL-factorization of the ideal 2, which splits into three

primes. In our terms, SpecZQ(η) → SpecZ has three points over SpecF2, all with residue

field F2. Therefore, condition (2) of Theorem 1.10 for monogenicity at the prime (2) fails,

so S′ → S is not monogenic.

With base extension, one can eventually resolve the obstructions presented by common

index divisors. The following example illustrates a non-maximal order where we have a

slightly different obstruction to monogenicity.

Example 5.2 (An order that fails to be monogenic over geometric points)

Consider the extension Z[
√
2,

√
3] of Z. (This is not the maximal order of Q(

√
2,

√
3).)

We recall from [4, Example 4.13] that the index form with respect to the basis

{1,
√
2,

√
3,

√
6} is

= −4(2b2 − 3c2)(b2 − 3d2)(c2 − 2d2).

By Proposition 2.10, S′ → S fails to be monogenic, even over geometric points, since

the index form reduces to 0 in the fiber over 2. In terms of Theorem 1.9, S′ → S fails to be

monogenic since the fiber over 2 consists of a single point with a two dimensional tangent

space.

We can contrast the above examples with the following example where the obstruction

to monogenicity is global as opposed to local.

Example 5.3 (A Zariski-locally monogenic, but not twisted-monogenic extension) Here

we take a closer look at one member of the family in Example 2.8. Let K = Q, L =
K (

3
√
52 · 7). The ring of integers ZL = Z[

3
√
52 · 7, 3

√
5 · 72] is not monogenic over Z. Let

α = 3
√
52 · 7, β = 3

√
5 · 72. We recall from [4, Example 4.14] that {1,α,β} is a Z-basis for

ZL and the associated index form is 5b3 − 7c3. Thus, for a given choice of a, b, c ∈ Z, the

primes which divide the value 5b3 − 7c3 are precisely the primes at which a + bα + cβ

will fail to generate the extension.

The values obtained by this index form are {0,±5} modulo 7. Since 5 is a unit in Z/7Z,

we do have local monogenerators over D(7). Similarly, we have local monogenerators

over D(5). Together, D(5) and D(7) form an open cover, and we see that this extension is

Zariski-locally monogenic. However, as we can see by reducing modulo 7, the index form

cannot be equal to ±1. Therefore there are no global monogenerators and ZL/Z is not

monogenic: in the language of [2], ZL/Z has a local obstruction to monogenicity, despite

being locally monogenic.

This is not a Gm-twisted monogenic extension by Theorem 4.19, because h(Z) = 1 and

this extension is not globally monogenic. See Example 4.21 for a properly Gm-twisted

monogenic extension and a comparison to the example presented here.

5.2 Maps of curves

One benefit of our more geometric notion of monogenicity is it allows us readily ask

questions about monogenicity in classical geometric situations with the same language

that we use in the arithmetic context. Our next examples concern the case that S′ → S is

a finite map of algebraic curves, which is essentially never monogenic. On the other hand,
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we find explicit examples ofGm-twistedmonogenic S′ → S. Theorem 4.15 constrains the

possible line bundles that we may use to show Gm-twisted monogenicity. We make this

precise in the lemma below.

Lemma 5.4 Let π : C → D be a finite map of smooth projective curves of degree n and let

g denote the genus.

(1) π is only monogenic if it is the identity map;

(2) If π is Gm-twisted monogenic, then 1− g(C)−n(1− g(D)) is divisible by 1
2n(n− 1) in

Z. Moreover, if π factors through a closed embedding into a line bundle E with sheaf

of sections E, then

deg(E) = −
1 − g(C) − n(1 − g(D))

1
2n(n − 1)

.

Proof To see (1), note that a map f : C → A1
D is determined by a global section of OC .

Since C is a proper variety, the global sections of OC are constant functions. It follows

that a map f : C → A1
D is constant on fibers of π . Therefore f cannot be an immersion

unless π has degree 1, i.e., is the identity.

Suppose π : C → D is Gm-twisted monogenic with an embedding into a line bundle E.

By [38, 0AYQ] and Riemann-Roch,

deg(det(π∗OC )) = 1 − g(C) − n(1 − g(D)).

By Theorem 4.15,

det(π∗OS′ ) � E
− n(n−1)

2

where E is the sheaf of sections of E. Taking degrees of both sides,

1 − g(C) − n(1 − g(D)) = − deg(E) ·
n(n − 1)

2
.

This shows (2). ��

First, we will investigate one of the most basic families of maps of curves.

Example 5.5 (Maps P1 → P1) Let k be an algebraically closed field and let π : P1
k

→ P1
k

be a finite map of degree n. If n = 1, then π is trivially monogenic. When n = 2, Lemma

5.4 tells us that π cannot be monogenic, while Lemma 4.18 tells us that π is Aff1-twisted

monogenic. Lemma 5.4 tells us that for degrees n > 2 themap π is neithermonogenic nor

Gm-twisted monogenic, although Theorems 2.1 and 1.10 tell us that π is Zariski-locally

monogenic.

WorkingwithZ instead of an algebraically closed field, consider themapπ : S′ = P1
Z

→
S = P1

Z
given by [a : b] �→ [a2 : b2]. We will show by direct computation that this map is

Gm-twisted monogenic. Write U = SpecZ[x] and V = SpecZ[y] for the standard affine

charts of the target P1. The map π is then given on charts by

Z[x] →Z[a]

x �→ a2
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and

Z[y] →Z[b]

y �→ b2.

Let us computeM1,S′/S . OverU ,π∗OP1 hasZ[x]-basis {1, a}. Let c1, c2 be the coordinates
ofR|U = A2, with universal map

Z[c1, c2, t] → Z[c1, c2, a], t �→ c1 + c2a.

The index form associated to this basis is

i(c1, c2) = c2.

Similarly, π∗OP1 has Z[y]-basis {1, b}, R|V analogous coordinates d1, d2, and the index

form associated to this basis is

i(d1, d2) = d2.

An element of Z[x] (resp. Z[y]) is a unit if and only if it is ±1, so

MS′/S(U ) = {c1 ± a | c1 ∈ Z[x]}

MS′/S(V ) = {d1 ± b | d1 ∈ Z[y]}.

We can see directly that π is not monogenic: the condition that a monogenerator c1 ± a

on U glue with a monogenerator d1 ± b on V is that

(c1 ± a)|U∩V = (d1 ± b)|U∩V .

But this is impossible to satisfy since a|U∩V = b|−1
U∩V .

Lemma 5.4 tells us that if S′ → S is twisted monogenic, the line bundle into which S′

embeds must have degree 1. Let us therefore attempt to embed S′ into the line bundle

with sheaf of sectionsOP1 (1). The sheafOP1 (1) restricts to the trivial line bundle on both

U and V , and a section f ∈ OU glues to a section g ∈ OV if

y · f |U∩V = g |U∩V .

Embedding S′ into this line bundle is therefore equivalent to finding a monogenerator

c1 ± a on U , and a monogenerator d1 ± b on V such that

y
(
(c1 ± a)|U∩V

)
= (d1 ± b)|U∩V .

Bearing in mind that y = b2 = a−2 on U ∩ V , we find a solution by taking positive signs,

c1 = 0, and d1 = 0. Therefore π : P1
Z

→ P1
Z
is twisted monogenic.

Lemma 5.4 tells us that we must pass to higher genus to find a Gm-twisted monogenic

cover of P1 of degree greater than 2. Here is an example where the source is an elliptic

curve.

Example 5.6 (Twisted monogenic cover of degree 3) Let E be the Fermat elliptic curve

V (x3 + y3 − z3) ⊂ P2
Z
. Consider the projection from [0 : 0 : 1], i.e., the map π : E → P1

defined by [x : y : z] �→ [x : y]. Write U = SpecZ[x] and V = SpecZ[y] for the standard

affine charts of P1. The map is given on charts by Z[x] → Z[x, z]/(x3 + 1 − z3) and
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Z[y] → Z[y, yz]/(1 + y3 − (yz)3). The gluing on overlaps is given by x �→ y−1 on P1 and

by x �→ y−1, z �→ z on E.

We now compute ME/P1 . Note that over U , OE has the Z[x]-basis 1, z, z2. The index

form associated to 1, z, z2 is

i(c1, c2, c3) = c32 − c33(x
3 + 1).

Over V ,OE has the Z[x]-basis 1, yz, y2z2. The index form associated to this basis is

i(d1, d2, d3) = d32 − d33 (y
3 + 1).

An element of Z[x] or Z[y] is a unit if and only if it is ±1. This implies that

MS′/S(U ) = {c1 ± z | c1 ∈ Z[x]}

MS′/S(V ) = {d1 ± yz | d1 ∈ Z[y]}.

We see that there are no global sections ofMS′/S , since coefficients of z cannot match on

overlaps.

However, if we twist so that we are considering embeddings of E into OP1 (1), then the

condition for a monogenerator c1 ± z on U to glue with a monogenerator d1 ± yz on V

is that

y
(
(c1 ± z)|U∩V

)
= (d1 ± yz)|U∩V .

This is satisfied, for example by taking the positive sign for both generators and c1 = d1 =
0. Therefore E → P1 is twisted monogenic with class 1 ∈ Pic(P1

Z
).
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