S. Arpin et al. Res. Number Theory (2023) 9:43
https://doi.org/10.1007/540993-023-00449-7

® Research in Number Theory

RESEARCH

®

The scheme of monogenic generators Il L
local monogenicity and twists

Sarah Arpin', Sebastian Bozlee? ®, Leo Herr! and Hanson Smith?

“Correspondence:
sebastian.bozlee@tufts.edu
Tufts University, Medford, USA
Full list of author information is
available at the end of the article

@ Springer

Abstract

This is the second paper in a series of two studying monogenicity of number rings from
a moduli-theoretic perspective. By the results of the first paper in this series, a choice of
a generator 6 for an A-algebra B is a point of the scheme Mg ;4. In this paper, we study
and relate several notions of local monogenicity that emerge from this perspective. We
first consider the conditions under which the extension B/A admits monogenerators
locally in the Zariski and finer topologies, recovering a theorem of Pleasants as a special
case. We next consider the case in which B/A is étale, where the local structure of étale
maps allows us to construct a universal monogenicity space and relate it to an
unordered configuration space. Finally, we consider when B/A admits local
monogenerators that differ only by the action of some group (usually G, or Aff'),
giving rise to a notion of twisted monogenerators. In particular, we show a number ring
A has class number one if and only if each twisted monogenerator is in fact a global
monogenerator 6.
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1 Introduction
We begin by recalling the essential points of the previous paper of this series [4]. Given
an extension of commutative rings with identity (henceforth, rings) B/A, we say that that
B is monogenic over A if there is an element 6 € B so that B = A[f]. Such an element
is called a monogenerator. Similarly, B is said to be k-genic over A if there exists a tuple
01, ...,0) € BX so that B = A[6y, ..., 6]. Such a tuple is a generating k-tuple. We are
motivated by the case of an extension of number rings Z; /Z.

Such extensions of number rings are finite locally free over a Noetherian base. In fact
all we need for our results are maps of schemes that are Zariski locally of this form. We
gather these hypotheses into a common “Situation” for convenience.

Situation 1.1 Let w : S' — S be a finite locally free morphism of schemes of constant
degree n > 1 with S locally noetherian, and let X — S be a quasiprojective morphism
(almost always Aé or Aé ).

In the preceding paper we prove the following representability result, which implies in
particular that if B is finite locally free over a Noetherian ring A, then there is a scheme
that represents the monogenerators for B over A.

Theorem 1.2 ([4, Proposition 2.3, Corollary 3.8]) Let = : S’ — S be as in Situation 1.1.
Then

(1) There exists a smooth, quasiaffine S-scheme 1y, /s representing the contravariant
functor on S-schemes

SxsT —— 3 XxsT

(T — S)— \ / sis a closed immersion.

(2) IfX = AL, then My s /s is an affine S-scheme.

We write 11,5/ for the case in which X = Alg. We call the scheme 171y /s the scheme
of k-generators. If k = 1, we write 1lg/ s instead of 171y,5/;5 and call it the scheme of
monogenerators or monogenicity space. If S = Spec B and S = Spec A are affine, we may
write 1y g 4 or 11g/4 instead.

In the case that S = Spec A, S’ = Spec B, and T = Spec C, standard universal properties
imply that the T-points of /71; 55 are in natural bijection with the generating k-tuples of
B ®4 C over C. If we assume further that T > S, we find that the S-points of 171;p/4 are
in bijection with generating k-tuples for B over A.

By analogy with the affine case, we therefore say that the S-points of 171y 5 /5 are generat-
ing k-tuples and the S-points of 11ls/ /s are monogenerators for S’ — S. Such a morphism
is monogenic if a monogenerator exists.
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1.1 Equations in local coordinates

The scheme 1711,5//5 has a simple description in local coordinates on S which we recall
so that we may use it in computations. We start by noticing that 171} 5,5 is naturally a
subscheme of another moduli scheme, the Weil Restriction.

Definition 1.3 Let 7 : S’ — S be as in Situation 1.1. The Weil Restriction of X xg S’
to S, denoted Ry,s//s, is the scheme (unique up to isomorphism) which represents the
contravariant functor

SXST—>XX5T

(T — ) > L /

on S-schemes.

We abbreviate Ry s/ /s in a parallel fashion to 17lx,s/s. It is proven in [23, Theorem 1.3,
Proposition 2.10] that the Weil Restriction exists and is a quasiprojective S-scheme. We
prove in [4, Proposition 2.3] that the natural map Nly,s,s — Rx,s/s is a quasi-compact
open immersion.

In the case that B is a finite free Noetherian A-algebra with A-basis ey, . . ., e,, things are
simpler. It is easy to check that

AS = Rygs
via the isomorphism sending (x1, . . ., x,,) to the unique map S’ xg T — Al = Spec Or[t]
over T sending ¢ to x1e1 + - - - + xyey.

Definition 1.4 Suppose B is a finite free Noetherian A-algebra with A-basis ey, ..., ey,
Let a;; for 1 < j,j < n be the unique elements of A[xy, . .., x,] so that we have

i1
(x1e1+ - +x0en) " =ajie1+ -+ ainey

in the ring B[xy, ..., x4]. We call the matrix M(ey, ..., e,) = [aijli<ij<n the matrix of
coefficients with respect to the basis ey, . . ., e;,. Its determinant i(ey, . . ., e,) € A[x1, . . ., xy]
is the local index form with respect to the basis ey, . . ., ey.

Theorem 1.5 ([4, Theorem 3.1]) With notation as above, 1111,p, 4 is the distinguished open
subscheme of R1,51/s cut out by the non-vanishing of the local index form. In particular,

1My,B/a = SpecAlx1, ..., % i(e1, ..., e,,)fl].

Additionally, we recall from [4] that the local index forms give the complement of 171y /5
in Ry /s a closed subscheme structure:

Definition 1.6 (Non-monogenerators 7lg//s) Let g5 be the ideal sheaf on Rg/s gen-
erated locally by local index forms. We call this the index form ideal. Let 1ls 5 be the
closed subscheme of R cut out by the vanishing of Jg//5. We call this the scheme of
non-monogenerators, since its support is the complement of 7715 inside of Ry s.

Since My s/s is a scheme, it is a sheaf in the fpqc topology on (Sc//S). This invites a
local study of monogenicity! of S’ — S, the subject of this paper.

“Monogeneity’ is also common in the literature.
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Fig. 1 A guide to notions of monogenicity and their relationships. The vertical dashed implication holds
under additional hypotheses, see Cor. 2.11

1.2 Results
We identify and relate several “local” notions of monogenicity. To guide the reader, their
relationships are indicated in Figure 1.

A sheaf theoretic notion of local monogenicity immediately presents itself.?

Definition 1.7 Let 7 be a subcanonical Grothendieck topology on schemes, for example
the Zariski, Nisnevich, étale, fppf, or fpqc topologies. We say that S’ /S is t-locally k-genic if
the sheaf 171y 5/ /5 is locally non-empty in the topology . Le., there is a t-cover {U; — S}ies
of § such that My ¢/ /5(U;) is non-empty for all i € 1.

The notions of 7-local monogenicity are considered in Sect. 2, and we find that these
reduce to just two notions of “local monogenicity.”

Theorem 1.8 Let 7 : S" — S be as in Situation 1.1.
(1) (Theorem 2.1) The following are equivalent:

(a) m islocally monogenic in the Zariski topology;

(b) 7 is “monogenic at completions,” i.e. for all points x of S, we have that S’ xg
Spec 6"5 x IS monogenic;

(c) m is “monogenic at points,” i.e. for each point x of S with residue field k(x), we
have that S’ x s Spec k(x) — Spec k(x) is monogenic.

(2) (Theorem 2.10) The following are equivalent:

(a) m is locally monogenic in the étale topology;

(b) 7 is locally monogenic in the fpqc topology;

(c) 7 is “monogenic at geometric points,” i.e. for all algebraically closed fields k and
maps Speck — S, we have that S’ x s Speck — Spec k is monogenic.

We then use the structure of finite algebras over fields to classify monogenicity at
points. In particular, we recover Pleasants’s characterization [32, Theorems 1 and 2] of
monogenicity at completions as a corollary.

2\We remark that Zariski local monogenicity is equivalent to the condition of “local monogenicity” considered by
Bhargava et al. in [2] but strictly weaker than their condition of “no local obstruction to monogenicity.”
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Theorem 1.9 LetS' — S be induced by k — B where k is a field and B is a local Artinian
k-algebra with residue field £ and maximal ideal m. Then S’ — S is monogenic if and only

if

(1) Spect — Speck is monogenic;

(2) dimem/m? < 1; and

(3) Ifdimg m/m? = 1 and /k is inseparable, then

0— m/m?> > B/m?> > £ — 0
is a non-split extension.

Theorem 1.10 Suppose S’ — S is induced by k — A where k is a field and B is an
Artinian k-algebra. Write B = [[; B; where the B; are local artinian k-algebras with
respective residue fields £;. Then S’ — S is monogenic if and only if

(1) SpecB; — S is monogenic for each i;
(2) for each finite extension £ of k, S’ has fewer points with residue field isomorphic to £
than Ay,

In Sect. 3, we consider monogenicity spaces of étale S’ — S, a salient case since exten-
sions of number rings are generically étale and such étale maps share a common local
structure: Finite étale maps are étale-locally isomorphic to the trivial n-sheeted cover
Su---uS — S. The latter has 77155 equal to the configuration space of # distinct
points in A!. Therefore we may interpret monogenicity spaces as twisted generalizations
of configuration spaces, at least when S’ — S is étale.

Using the fact [38, 04HN] that every finite étale map of degree # is pulled back from the
morphism of stacks BX,,_1 — BX,, we then construct a monogenicity space lgs,_,/Bs,,

Theorem 1.11 There are isomorphisms

Ry, /s, = [A"/Z,],
Nps, /85, = [A/Z4],
and Mgs, /s, = [(A" — A)/Z,]

in which the action by ¥, is in each case the appropriate restriction of the permutation
action on coordinates of A", and A denotes the “fat diagonal” of A", the locus where some
pair of coordinates coincide.

In particular, the C-points of 77lgs, ,/ps, coincide with the points of the unordered
configuration space of # points in C. This monogenicity space is universal for étale maps
in the sense that the monogenicity space 171y of each étale S’ — S is pulled back from
Mgy, /B3,

We then consider several examples enabled by the structure of 771g/ /s in the étale case,
among them a connection to braid groups, a construction of the moduli space of genus
zero pointed curves from monogenicity spaces, the monogenicity space of a G-torsor, and
the monogenicity space of an isogeny of elliptic curves.

We remark that the monogenicity space 1lgs,_,/85, appears to be a scheme theoretic
enhancement of the universal spaces of [18, Sect. 3] and [16, Sect. 1] in the category of
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topological spaces. Meanwhile, the universal monogenicity space 171,,pc for G-torsors
appears to be a scheme theoretic enhancement of the space B; G considered in [11, The-
orem 1.3].

A local-to-global sequence is missing for r-local monogenicity. Yet there are natural
group actions on lg/s, in particular by G, and Aff'. In Sect. 4 we study “twisted”
versions of monogenicity in which S — S has local monogenerators that differ from each
other by the action of such groups. More precisely:

Definition 1.12 (Twisted monogenerators)
A (G,;,)-twisted monogenerator for B/A is:

(1) a Zariski open cover Spec A = | J; D(f;) for elements f; € A,
(2) asystem of “local” monogenerators ; € B [fi_l] for B[fi_l] over A[fi_l], and

(3) unitsa; € A [fi_l,j;_l]*
such that

« forallj j, we have a;;.0; = 6;,
« forall i j, k, the “cocycle condition” holds:

ajj.djk = Aik-

Two such systems {(a;), (6;)}, {(u;.j), (0)} are equivalent if, after passing to a common
refinement of their respective covers, there is a global unit # € A* such that u - a;; = a;j
andu-0; = 9; . Likewise B/A is A -twisted monogenic if there is a cover with 6;’s as above,

but with the units in item (3) replaced by pairs a;;, b; € A [fi_l, fj_l] such that each a;; is
a unit and a;;0; + b;; = 0;.

Under certain hypotheses, we show:

Proposition 4.14: B/A is G,,-twisted monogenic if and only if it is Aff -twisted monogenic.
Theorem 4.19: The class number of a number ring Zg is one if and only if all twisted
monogenic extensions of number rings Z; /Zx are in fact monogenic.
Remark 4.12: There is a local-to-global sequence relating affine equivalence classes of
monogenerators with global monogenerators as above.
Theorem 4.2: There are moduli spaces of G, and Aff'-twisted monogenerators analo-
gous to Mg/s.
Theorem 4.17: There are finitely many twisted monogenerators up to equivalence.

We remark that a G,,-twisted monogenerator is equivalent to an embedding S’ over
S into a line bundle L on S. Such embeddings into line bundles were considered for
topological spaces in [25].

Section 5 concludes with ample examples of the scheme of monogenerators and the
various interactions between the forms of local monogenicity.

To avoid repetition, we invite the reader to consult the first paper in this series for a
more detailed survey of the relevant literature.
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2 Local monogenicity

2.1 Zariski-local monogenicity

This section shows Zariski-local monogenicity can be detected over points and comple-
tions as spelled out in Remark 2.3. We will make frequent use of the vocabulary and
notation of [4, Sect. 3].

Theorem 2.1 The following are equivalent:

(1) m:S" — Sis Zariski-locally monogenic.
(2) There exists a family of maps {f; : U; — S} such that

(a) thef; are jointly surjective;

(b) for each point p € S, there is an index i and point q, efi_l(p) so that f; induces
an isomorphism k(p) — k(q;);

(¢) §" xs U; — U; is monogenic for all i.

(3) 7 :S" — S is monogenic over points, i.e, S’ xs Speck(p) — Spec k(p) is monogenic
for each pointp € S.

Proof (1) = (2): Choose the U; to be a Zariski cover on which §' — S is monogenic.

(2) = (3): Suppose such a cover {f; : U; — S} is given. For each i, let 0, : Spec k(p) —
U; be the section through g,. monogenicity is preserved by pullback on the base, so pulling
back S’ x5 U; — U, along o, implies (3).

(3) = (1): Let p € S be a point with residue field k(p) and let 6 be a monogenerator
for S’ xs Speck(p) — Speck(p). We claim that 6 extends to a monogenerator over an
open subset I C S containing p, from which (1) follows. The claim is Zariski local,
so assume S = SpecA and 7,Og ~ !, Ose; is globally free. The Weil Restriction
Rss = Homg(S', X') is then isomorphic to affine space Ag.

We first extend 0 to a section of Rg,s. The monogenerator entails a point 6 :
Speck(p) — Mg s C Rgys = AY, ie. n elements x1,...,x%, € k(p). Choose arbi-
trary lifts x; € Awp) of x;. The n elements x; must have a common denominator, so we
have x1,...,x, € A [f’l] for some f. Thus our point 6 : Speck(p) — AY extends to
6 :D(f) - R /s for some distinguished open neighborhood D(f) C S containing p.

Finally, we restrict 6 to a section of Mg /s- The monogenicity space 1715 is an open
subscheme of the Weil Restriction Ry, R D(f) — Rg s restricts to a monogenerator
Oly : U — Mg ;s where U = 5_1(7715//5) C D(f). By hypothesis, p € U, so By is the
desired extension of 6. O

Remark 2.2 The same proof shows that S’ — S is Zariski-locally k-genic if and only if its
fibers S’ x s Speck(p) — Spec k(p) are k-genic.

Remark 2.3 Item (2) of Theorem 2.1 implies the following are also equivalent to Zariski-

local monogenicity:

(1) §" — S is “monogenic at local rings,” i.e, for each point p of S, S’ x5 Spec Og,, —
Spec O, is monogenic.

(2) S’ — Sis “monogenic at completions,” i.e., for each point p of S, S’ x s Spec @5)1, —
Spec (é)g,p is monogenic, where (é)g,p denotes the completion of O, with respect to
its maximal ideal.
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(3) S’ — S islocally monogenic in the Nisnevich topology as in Definition 1.7.

Corollary 2.4 ([36, Proposition I11.6.12]) Let S' — S be an extension of local rings induc-
ing a separable extension of residue fields. Then S’ is monogenic over S.

Proof Use the equivalence of item (1) in Remark 2.3 and (3) in Theorem 2.1. O

We now recall some ideas in order to compare with related results in the number ring

case.

Definition 2.5 Let Z;/Zx be an extension of number rings. Given 6 € Zj generating
L/K, we write Indexz, /7, (9) for the index [Z;, : Zg[0]]. A non-zero prime of p C Zg is
a common index divisor® for the extension Z; /Z if Indexz, /7, () € p for every 0 € Zy
generating L/K.

Common index divisors are exactly the primes p whose splitting in Z; cannot be mir-
rored by irreducible polynomials in k(p)[x]; see [19,32].

We recall [4, Remark 3.11] that if U is an open affine subscheme of S on which §’ is free
with basis ey, . . ., e, then Indexgz, /7, (x1e1 + - - - + x,e,) is a local index form on U.

Restating the property of being monogenic at points in terms of the index form, we
obtain a generalization of the notion of having no common index divisors:

Proposition 2.6 S’ — S is monogenic over points if and only if for each point p of S and
local index form ( around p, there is a tuple (x1, ..., x,) € k(p)" such that i(x1, . .., x,) is
nonzero in k(p).

Proof S’ x Speck(p) — Spec k(p) is monogenic precisely when Spec k(p)[x1, . . ., %y, ((x1,
.., %,) '] has a k(p) point. O

Immediately we recover an explicit corollary validating the generalization:

Corollary 2.7 Suppose S' — S is induced by an extension of number rings Z /Zk. Then
S" — S is Zariski-locally monogenic if and only if there are no common index divisors for
Zy]Zk.

Example 2.8 There are extensions of number rings that are locally monogenic but not
monogenic.

In [2], Alpoge, Bhargava, and Shnidman say that an extension Zg /Z has no local obstruc-
tion to monogenicity if a local index form represents 1 over Zj, for all primes p or —1 over
Zyp for all primes p. This is a stronger condition than Zariski-local monogenicity, and they
show in [2,3] that a positive proportion of quartic and cubic fields are not monogenic
despite having no local obstruction to monogenicity.

Narkiewicz [29, p. 65] gives the following concrete example of a locally monogenic but
not monogenic extension. Let L = Q(/m) with m = ab?, ab square-free, 3 { m, and
m # £1 mod 9. The number ring Z, is not monogenic over Z despite having no common
index divisors. We consider the case ab®> = 7-5% in Example 5.3. This also gives an example

3Common index divisors are also called essential discriminant divisors and inessential or nonessential discriminant
divisors. The shortcomings of the English nomenclature likely come from what Neukirch [30, page 207] calls “the
untranslatable German catch phrase [...] ‘aulerwesentliche Diskriminantenteile.” Our nomenclature is closer to Fricke’s
‘standiger Indexteiler.’
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of an extension which is Zariski locally monogenic but which has a local obstruction to
monogenicity.

2.2 Monogenicity over geometric points
Definition 2.9 Say that S’ over S is monogenic over geometric points if, for each morphism
Speck — S where k is an algebraically closed field, S’ x s Speck — Spec k is monogenic.

While it is a weaker condition than monogenicity over points in general, it is equivalent

to some conditions that might seem more natural.

Theorem 2.10 The following are equivalent:

(1) the local index forms for S'/S are nonzero on each fiber of Rg ;s — S;

(2) for each point p € S with residue field k(p), there is a finite Galois extension L/k(p)
such that S’ xs Spec L — Spec L is monogenic, and this extension may be chosen to
be trivial if k(p) is an infinite field;

(3) S’ — S is monogenic over geometric points;

(4) there is a jointly surjective collection of maps {U; — S} so that S' xs U; — Uj is
monogenic for each i;

(5) Mgrys — S is surjective;

(6) S" — S is étale-, smooth-, fppf-, or fpqc-locally monogenic.

If, in addition, Ng s is a Cartier divisor in R (i.e.,, the local index forms are non-zero
divisors), the above are also equivalent to:

(7) Ngys — S (Definition 1.6) is flat.

To see some of the subtleties one can compare item (1) above with Lemma 2.6 and item
(4) above with item (2) of Theorem 2.1.

Proof The assertions are Zariski-local, so we may choose local coordinates as usual (S =
Spec A, S’ = Spec B, coordinates x;).

(I) = (2): Suppose first that p € S is a point with k(p) an infinite field. Let p
be the corresponding prime of A and write ¢ for the restriction of the local index form
modulo p. Recall that since k(p) is infinite, polynomials in k(p)[x1, . . ., x,] are determined
by their values on (x;) € k(p)”". Since { is nonzero, i(a1, . . ., a,) must be nonzero for some
(a1,...,a,) € k(p)". This shows that S’ x5 Speck(p) — Speck(p) is monogenic, so we
have (2).

Next suppose k(p) is a finite field. Then, since ¢ is nonzero, there is a finite field extension
L (necessarily Galois) of k(p) such that there exists (ay, . . ., a,) € L” withi(ay, ..., a,) # 0.
This shows that S’ x5 Spec L — Spec L is monogenic, so we have (2) again.

(2) = (3): Let k be an algebraically closed field and Speck — S a map. Let p be
the image of Speck, and let L be the field extension given by (2). Then pullback along
Speck — Spec L implies that S’ xs Speck — Spec k is monogenic.

(3) = (4): Take {U; — S} to be {Speck(p) — S}yes.

(4) = (1): For each point p € S, choose an index i and a point g, € U; mapping to p.
Let ¢ be an index form around p. By pullback, ' x5 g, — ¢, is monogenic, so ¢ pulls back
to a nonzero function over k(g,). Therefore i is nonzero over k(p) as well.
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(2) = (5): For each point p € S, the Spec L point of 17lg/ /s witnessing monogenicity
of 8’ x5 Spec L — SpecL is a preimage of p.

(5) = (6): Note that Nlg//s — S is smooth, since NMlg/s — Rgys — S is the
composite of an open immersion and an affine bundle. Moreover, the identity function on
Mg s by definition yields a monogenerator for " xg 1Mg//s — Mg 5. Therefore, S'/S is
smooth-locally monogenic. Since the smooth topology is equivalent to the étale topology,
there is an étale cover I/ — S factoring through 11g ;s — S. Since S’ x5 Mg ;s — Mg
is already monogenic, S’ xs U — U is also monogenic. This étale cover is also a cover in
the fppf and fpqc topologies.

(6) = (4): Trivial.

(1) <= (7): The sequence

00— gS’/S — (C)[RLS’ — (C)ns,/s — 0

/s

may be written as
0 — Alx/] = Alx/] — Alx)/i — 0

where ¢ is a local index form for §’/S.

Recall that an A[x;]-module M is flat if and only if for each prime p of A and ideal q
of A[x;] lying over p, My is flat over Ay,. Therefore, by the local criterion for flatness [38,
00MK], Mg/ s is flat over S if and only if

Tor? (Ay /pAp, (Alx1]/0)q) = 0

for all such ideals p and g. Therefore, /g5 is flat if and only if

Alrglg /pAlxr)q "8 Alxg]q/pAlxi]q

is injective for all p and ¢ as above. All of these maps are injective if and only if the maps
of A[x;]-modules
i(

Aplrr) /oAy D] S A, (] /pAy L]

are all injective as p varies over the prime ideals of A. Since A [x7] /pA [x7] = (Ap/pAp)[x1]
is an integral domain for each p, injectivity fails if and only if ¢ reduces to 0 in the fiber
over some p. We conclude that (1) holds if and only if (7) holds. O

Corollary 2.11 If all of the points of S have infinite residue fields, then the following are
equivalent:

(1) S' — S is monogenic over geometric points;
(2) S§'/S is Zariski-locally monogenic.

Remark 2.12 The conclusion of Corollary 2.11 fails dramatically if S has finite residue
fields. For S’ — S coming from an extension of number rings condition (1) always holds
(see Corollary 2.16 below), yet there are extensions that are not locally monogenic. In this
sense, monogenicity is more subtle in the arithmetic context than the geometric one. For
an example of an extension that is monogenic over geometric points but is not monogenic
over points see Example 5.1.
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2.3 Monogenicity over points
Inlight of Theorems 2.1 and 2.10, it is particularly interesting to characterize monogenicity
of ’ — S in the case that S is the spectrum of a field . In this case S’ is the spectrum of an
n-dimensional k-algebra B. Such algebras are Artinian rings, and a well-known structure
theorem implies that B is a direct product of local Artinian rings B;. We will exploit this
to give a complete characterization of Zariski-local monogenicity.

The result in the case that both §” and S are spectra of fields is well-known.

Theorem 2.13 (Theorem of the primitive element) Let £/k be a finite field extension.
Then Spec{ — Speck is monogenic if and only if there are finitely many intermediate
subfields £/¢ /k.

In particular, a finite separable extension of fields is monogenic.

We next consider the monogenicity of S’ — S when §’ is a nilpotent thickening of
Spec ¢, leaving S = Spec k fixed. A key ingredient is a study of the square zero extensions
of Spec ¥.

We remark for comparison that the proof below does not consider a nilpotent thickening
of the base S — S.1In fact, if S — § is a nilpotent closed immersion with §' = S x; &,
any monogenerator 6 : S — 11lg/s extends to S locally in the étale topology. This results
from the smoothness of 171¢, 5 S.

Theorem 1.9. Let S’ — S be induced by k — B where k is a field and B is a local Artinian
k-algebra with residue field £ and maximal ideal m. Then &’ — S is monogenic if and only
if

(1) Spec? — Speck is monogenic;
(2) dimg m/m? < 1; and

(3) Ifdim, m/m? = 1 and £/k is inseparable, then
O—>m/m2—>B/m2—>£—>0

is a non-split extension.

Proof If the tangent space (m/m?)" has dimension greater than 1, then no map §’ — A}g
can be injective on tangent vectors as is required for a closed immersion.

On the other hand, if the tangent space of S" has dimension 0, we have B = ¢, and the
result is true by hypothesis.

Now suppose the tangent space of S’ has dimension 1. A morphism §’ — Aé is a closed
immersion if and only if it is universally closed, universally injective, and unramified [38,
Tag 04XV].

Choose a closed immersion Spec £ — A}(. Equivalently, write £ = k[t]/(f (t)) where f(¢)
is the monic minimal polynomial of some element 6 € £. Since Spec £ — S’ is a universal
homeomorphism [38, Tag 054M], any extension of Spec £ — A}( toS — A}( inherits the
properties of being universally injective and universally closed from Spec ¢ — A}(.

Whether such an extension &’ — A}( is ramified can be checked on the level of tangent
vectors [38, Tag 0B2G]. It follows that a morphism §" — Ai is a closed immersion if and
only if its restriction to the vanishing of m? is. On the other hand, any map V (m?) — A}(
extends to S’ — A}( (choose a lift of the image of ¢ arbitrarily). Therefore, it suffices to
consider the case that S’ is a square zero extension of Spec £.
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By hypothesis, we have a presentation of ¢ as k[t]/(f(t)). We conclude with some ele-
mentary deformation theory, see for example [35, §1.1]. We have a square zero extension
of £

0— (FO)/(f@®)) = klel/(f(£))* - ¢ — 0.
By assumption, B is also a square zero extension of £:
0—->m—>B—>{—0.

By [35, Proposition 1.1.7], there is a morphism of k-algebras ¢ : k[t]/(f(t))*> — Binducing
the identity on £. Since (f(£))/(f (t)?) = € as a k[t]/(f(t)*) module, ¢ either restricts to an
isomorphism f(¢)/(f(t))> — m or else the zero map. In the former case, the composite
k[t] — k[t]/(f(t))> — B is a surjection, and we are done. In the latter case, B is the
pushout of the extension k[¢]/(f(t))? along (f(£))/(f(t)?) S m, so B is the split extension
L[e]/€2.

If ¢/k is separable, then the extension k[t]/(f(t))? is itself split [35, Proposition B.1,
Theorem 1.1.10], i.e. there an isomorphism k[t]/(f(¢))> = ¢[e]/€>. Composing with
k[t] — k[t]/(f(t)?) gives the required monogenerator.

If ¢ /k is inseparable and B = {[e]/€2, we will show that S’ — S is not monogenic. Any
generator for £[€]/e* over k must also be a generator for £[€]/e? over the maximal sepa-
rable subextension k’ of £/k, so we may assume that ¢/k is purely inseparable. Moreover,
any generator 6 for £[€] /€2 over k must reduce modulo € to a generator 0 of £/k. Since £/k
is purely inseparable, the minimal polynomial f (¢) of  satisfies f'(t) = 0. Note § = 6 + ce
for some ¢ € £. Since 6 is assumed to be a monogenerator, there is a polynomial g(¢) € k[¢]

such that € = g(6). Reducing, g(6) = g(6) = 0, so g(¢) = q(¢)f (¢) for some q(t) € k[t].
Then

2(0) = g(6) + g'(6)ce
=044 0)fO)ce +q@)f' O)ce
= O,

a contradiction. We conclude that in this case S’ — § is not monogenic. |

Remark 2.14 Inthe case that k is perfect, the first and third conditions hold automatically.
If §’ is regular of dimension 1 the second condition is trivial.

Theorem 1.10. Suppose S’ — S is induced by k — A where & is a field and B is an
Artinian k-algebra. Write B = [[; B; where the B; are local artinian k-algebras with
respective residue fields ¢;. Then S’ — S is monogenic if and only if

(1) SpecB; — S is monogenic for each i;
(2) for each finite extension £ of k, S” has fewer points with residue field isomorphic to
£ than A}g.

Proof Note that a map | |, Spec B; — A% is a closed immersion if and only if each map
SpecB; — A}g is a closed immersion and the closed immersions are disjoint: Spec B; x Al
Spec B; = @ foralli # j. Thisis equivalent to the statement that A[t] — []; B; is surjective
if and only if A[£] — B; is surjective for each i and B; ® 4[] Bj = 0 whenever i # j, which
follows quickly in turn from the Chinese remainder theorem.
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The proof of Theorem 1.9 shows that a closed immersion Spec B; — A! can be chosen
with image any of the points of A}g with residue field £;. Then the condition on numbers
of points is exactly what we need for the images of the Spec B;s not to overlap without
running out of points. (Since topologically, the components are single points.) ]

Remark 2.15 Condition (2) is trivial in the case that the residue fields of S are infinite,
highlighting the relative simplicity of monogenicity in the geometric context.

If S’ — Sisinstead induced by an extension of number rings, then Remark 2.14 implies
condition (1) is trivial. In particular, an extension of 7Z has common index divisors if and
only if there is “too much prime splitting” in the sense of condition (2). This recovers the
theorem of [19] (also see [32, Cor. to Thm. 3]) that p is a common index divisor if and only
if there are more primes in Z; above p of residue class degree f than there are irreducible
polynomials of degree f in k(p)[x] for some positive integer f.

Corollary 2.16 IfS’ — S is induced by an extension of number rings Z1 /7, then S — S

is monogenic over geometric points.

Proof LetpbeapointofS.LetA = Z;®7, k(p) be the ring for the fiber of S’ over Spec k(p).
Note that k(p) is either of characteristic O or finite, so k(p) is perfect. Decompose A into a
direct product of local Artinian k(p) algebras A;. Since k(p) is perfect, conditions (1) and
(3) of Theorem 1.9 hold for Spec A; — Spec k(p). Condition (2) holds as well since S’ is
regular of dimension 1. Therefore Spec A; — Spec k(p) is monogenic for each i.

Now consider the base change of S’ to the algebraic closure k(p) of k(p). Write B for the
ring of functions Z; ®z, k(p) of this base change, and write B as a product of local Artinian
algebras B;. For each i we have that Spec A; ®jy) k(p) — Speck(p) is monogenic. Each
Spec B; is a closed subscheme of exactly one of the Spec A; ®(y) k(p)s, so by composition,
Spec Bj — Spec k(p) is monogenic for each j. This gives us condition (1) of Theorem 1.10
for S’ xs Speck(p) — Speck(p). Since k(p) is infinite, condition (2) holds triviallly. We
conclude that S’ x5 Speck(p) — Spec k(p) is monogenic, as required. O

3 Etale maps, configuration spaces, and monogenicity

This section concerns maps 7w : " — S that are étale, or unramified. Locally, the mono-
genicity space becomes a configuration space, classifying arrangements of # distinct points
on a given topological space. Philosophically, 171g' /s therefore regards S — S as a twisted
family of points to be configured in Al. We are led to interpret 11g/ s as an arithmetic
refinement of the configuration space of Al. In Remark 3.5, we see that an action of
the absolute Galois group Gal(Q/Q) on the étale fundamental group of 11y ,s has been
observed in anabelian geometry. We end Subsection 3.2 with a handful of exotic applica-
tions in other areas.

All extensions S’ — S sit somewhere between the étale case and jet spaces
SpecAle]/€” — SpecA (see [4, Example 2.7, 4.3, 4.16]), between being totally unram-
ified and totally ramified. In Sect. 3.4, we recall a general construction of the discriminant
which cuts out the locus of ramification. Specifically, [33, Sect. 6] says that our descrip-
tion in the étale case holds precisely away from the vanishing of the discriminant. The
discriminant plays a similar role in the classical case when investigating the monogenicity
of an extension defined by a polynomial. We end with some remarks on using stacks to
promote a ramified cover of curves to an étale cover of stacky curves as in [9].
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3.1 The trivial cover

We start with the simplest case of an étale cover: the trivial cover of S by several copies of
itself. We work rather concretely and revisit the general situation with more sophistication
in the next subsection. Write (n) = {1,2,...,n} and (n)s = | |,.;~, S — S for the trivial
degree # finite étale cover. o

Example 3.1 (Monogenicity of a trivial cover) Let S’ = (n)s and let 7 : (n)s — S be the
map induced by the identity on each copy of S. Given a commutative diagram

/

nys —=— S,

one expects that the map Li;f; will be a closed immersion if and only if f;(s) # f;(s) for all
1<i<j<mnands € S. A computation in coordinates will confirm this.

We will use the notation of Definition 1.4 and Theorem 1.5 to compute 11/ /g in local
coordinates. Working Zariski locally on S, we may assume that S’ = Spec A", S = Spec A,
and thatey, . . ., e, are the standard basis vectors for A”. Let x1, . . ., x,, be the corresponding

coordinates for Rg /s, so that
ms//s ; Ag-

This isomorphism identifies the T-point (xy, . . ., x,,) of Ag with the map Lijx; : (n)r — AlT
whose restriction to the ith copy of T in (n) 7 is «;.
Next, observe that in Og, s (S)

(101 + + dnenY = Hyer + -+ xhen

forall0 < j < n—1.Therefore, the matrix of coefficients M(ey, . . ., ;) is the Vandermonde

T
matrix with ith column given by [1 X &2 xl.”fl] . The index form is then the well-
known Vandermonde determinant:

iler, ..., en)x1, ..., x,) =detMley, ..., ey) = £ H(x,
i<j

The index form vanishes therefore on the so-called fat diagonal A C A", given by the
union of all loci V (x; — x;) where two coordinates are equal.
It follows that

~ -1
M /s = Spec, Os | X1, ..., Xn, H(xi %) |,
i<j
the complement in Ag of A. This space is otherwise known as the space of ordered

configurations of n points, Conf, (Aé) — S.

Slightly more abstract reasoning yields a similar result if X is any quasi-projective S
scheme.

Example 3.2 (Mg /s for a trivial cover) Let X — S be a quasiprojective map, S' = (n)s
and let w : (n)s — S be the map induced by the identity on each copy of S. Observe that
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if T — S is an S-scheme, we have natural identifications

Rx,s1/5(T) = { maps of T-schemes f : (n)7 — X Xg T}
= { n-tuples of maps of T'-schemes f; : T — X x5 T, wherei =1,. }
= { -tuples of maps of S-schemes f; : T — X, wherei =1,. }

2

= X x5 X xg--- x5 X(T) = X*S(T),

n-times

so we may identify Ry 5,5 with the n-fold fiber product of X over S.

For each 1 < i < j < n, we can construct a subscheme A;; of X %5 consisting of the
points whose ith and j coordinates are equal. We let the fat diagonal A be the scheme
theoretic union of the subschemes A;;. Since X — S is separated, this fat diagonal is a
closed subscheme of X*5.

Observe that any morphism of T-schemes f = | |, f; : (n)r — X x5 T in Ryx,s1/5(T)
will be proper and unramified as  : (n)7 — T is proper and unramifiedand X xg T — T
is separated. In addition, for each point x € (n)r, the induced field extension «(x) 2
Kk (f (x)) is an isomorphism, since the same is true of the map = : (n)r — T.

Now, by [38 Tag 0154, (2) <— (3) ] and [38, Tag 04XV, (1) <= (3)], f is a closed
tion[[,fi: T - X *5 factors through the complement of the fat diagonal. Therefore
My s = X*5 — A

3.2 Thecaseof étale S’ — S

Consider the category (Sch/x*) of schemes over a final scheme * equipped with the étale
topology. For example, take x = SpecZ or Spec C. Write ¥, for the symmetric group on
n letters and BY,, for the stack on (Sch/*) of étale X, -torsors.

Regard %,_; as the subgroup of ¥, of permutations fixing the nth letter, and let
BY,_1 — BX, be the map induced by the inclusion. The isomorphism class of the
resulting map of classifying spaces is unchanged if ¥,_; is taken as the subgroup fixing
some other letter, since resulting inclusion map only differs from this one by conjugation.
The morphism BXY,_; — BY, is the universal n-sheeted cover in the following sense.

Lemma 3.3 ([9, Lemma 2.2.1], [22, Lemma 3.2]) Let n be a positive integer. Let C be the
fibered category over (Sch/x*) with:

(1) objects the finite étale morphisms w : S’ — S of degree n;
(2) arrows the cartesion diagrams

T — 8

L

T — S;

(3) projection to (Sch/*) given by S' — S + 8.

Then there is an equivalence of fibered categories B¥,, — C given by takinga map f : S —
BY,, to the pullback of BY,_1 — BY, alongf.
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Recall that pullback squares of schemes

induce identifications
(RT’/T =~ (RS’/S XS T and mLT//T ~ ml,g//s XS T.

Reduce thereby to the universal n-sheeted finite étale cover S’ = BY,,_1, S = BX,,. Each
has an affine line A}gzn = [Al/%,] obtained via quotienting by the trivial action.

Theorem 1.11. There are isomorphisms

Rps, 1/B%, = [A"/%,],
Nps, 185, = [A/Z4),
and Mgy, /85, = [(A" — A)/2,]

in which the action by ¥, is in each case the appropriate restriction of the permutation
action on coordinates of A”.

Proof We observe that the n-sheeted cover associated to the trivial torsor * — BX, is

the trivial cover (n) — *. Therefore, by our work in the case of a trivial cover

RBS,_1/BE, XBE, * = Rinyx = A"
Ny, _\/Bx, XB%, * = Ny = A

Mgy, _1/Bs, XBx, * = My = "_ Az Conf,,(Al).

There is a X, action on Ry« so that Rps, ,/8x, is the stack quotient of R/« by
%, Pulling back R/« — * to * Xy, * in both ways shows that the action is given by
permuting the sheets of (#). Under the isomorphism of R/« with A” of Example 3.1,
the action is given by permuting the coordinates.

We conclude

RBx,_1/B%, = [A"/Z,]
Nps, /s, = [A/Z)]
Mps, /s, = (A" — A)/%,]

in which the action by ¥, is in each case the appropriate restriction of the permutation

action on coordinates of A”. O

The space gy, _, /Bs,, is also interpretable as the space of unordered configurations of

points:

Mgy, /s, = UConf,(A') = {(x1, ..., %) | %; # %}/ .
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Observe that the fat diagonal A is exactly the locus of A” where %, has stabilizers.
The coarse moduli space of [A”/%,] is A” by the fundamental theorem of symmetric
functions, with the composite

A" — [A"/Z,] > A% X= &1, %) > (51(X), s2(%), . . ., sn(X))

given by the elementary symmetric polynomials s;(x1, . . ., x,) [5, Sect. 16.1-2]. The com-
posite sends a list of n roots to the coefficients of the monic polynomial of degree #
vanishing at those roots, up to sign:

(t—x1) - (t —x0) = t" —s1 (@ + 5@ — - £ 5,().

The assignment is plainly invariant under relabeling the x; by X,,.

The map to the coarse moduli space [A”/X,] — A” is an isomorphism precisely over
My,ps,_,/8s,. The image of Mgy, /s, in A” is the closed subscheme cut out by the
discriminant of the above polynomial

Disc (1_[ (t — xi)) = D(s1(%), s2(%), . . ., 5,(¥))
i=1
= l_l(xl — x,*)z,
i<j

the square of the Vandermonde determinant. The resulting divisor is the pushforward of
Nps,_,/Bx, to the coarse moduli space A".
We summarize the above discussion for general targets X in the place of Al:

Theorem 3.4 Let X be a quasiprojective scheme, and let Xpy,:=[X/X,] = X x BX, be
the stack quotient by the trivial ¥, action.

o The Weil Restriction is the stacky symmetric product:
R /5,85, /B5, = [Sym"X] = [X"/ 2, ]

o The space of monogenerators for S' = BX,_1, S = B, is the nth unordered configu-
ration space:

Mx/5,1,85,_1/Bx, = UConf, X:={(x1, ..., %) | x; # xj for i # j}/Zp.

o The complementary space of non-monogenerators is the stack quotient by ¥, of the
“fat diagonal” of n points in X which are not pairwise distinct:

Nix 5,085, /85, = [Ax/Zn] = {1, . .., ) | some x; = %), i # j}/Zp.

3.3 Implications
The rest of the section gives sample applications, exotic examples, and directions based
on the correspondence with configuration spaces.

Remark 3.5 Classical work on the analogues of monogenicity in complex geometry, such
as [17], has recognized that embeddings into A!-bundles are closely related to the braid
group, essentially because the fundamental group of the configuration space of # points
in C is the braid group on # strands. In the scheme theoretic setting, our best analogue of
the fundamental group is the étale fundamental group.
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The computations above imply that
Ny,ps,_ /s, xz Q = UConf(A(b).
In [15], it is computed that this space has étale fundamental group a semi-direct product
lf,, X G,

where B,, is the profinite completion of the braid group on # strands and G is the absolute
Galois group of Q. As discussed in [15], the conjugation action of Gg on B, extends to an
action by the Grothendieck-Teichmiiller group GT'. Conjecturally, Gg = GT. Though all
varieties over QQ yield actions of the Galois group Gg, we were surprised to rediscover one

of its central representations used in number theory.

The following result is well-known, as the square of the Steinitz class is the discriminant,
and the discriminant isaunitwhen S’ — S is étale. However, we have a pleasant alternative

proof in terms of our universal étale cover.

Theorem 3.6 IfS' — S is étale, the Steinitz class is 2-torsion in Pic(S). If S has character-

istic 2, the Steinitz class vanishes.

Proof 1t is enough to show that the Steinitz class det 7,0y is 2-torsion for the universal

case 7w : BY,_1 — BY,. Consider the pullback square

(n) — = BY,_;

L

* — s BY,

The pushforward 7,.0ps,, | is trivialized on the étale cover i : x — BY,, as
i*(n*ﬁan_l) Z= .0 = o

We find that the descent datum for 7.0pgys, |, with respect to this cover has gluing
Olys, = Olys, on* Xpy, x = % X ¥, given by permuting the coordinates by o over
xx o foreacho € X,. Thisisrepresented by a permutation matrix, which has determinant
=£1. Therefore the gluing data for det 7. O3y, , is given locally by multiplying by £1. Since
=+1 is 2-torsion in &* and trivial if S has characteristic 2, the result follows. ]

Example 3.7 (Torsors for finite groups)

Let G be a finite group. A G-torsor S’ — S is, in particular, a finite étale map of degree
n = #G admitting the above description. Notice that the action of G on S’ induces an
action of G on Mg/s.

The map §' — S is classified by a map S — BG, the stack of G-torsors, and we may
regard 1l s as pulled back from either the monogenicity space of the universal G-torsor,
M, pg, or the monogenicity space of the universal n-fold cover gy, ,/35,. To compare
the two, observe that the left regular representation GCG gives an inclusion G C %, upon
ordering the set G. The induced representable map BG — BY,, is essentially independent
of the ordering since different orderings induce conjugate maps. The classifying map
S — BY, is the composite S — BG — BX, with the left regular representation. The
monogenicity space 171,56 is [AIGl — A/G] where G acts on A!%! by permuting the basis

vectors by the left regular representation.
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A similar description locally holds for other finite étale group schemes. For merely
finite flat group schemes G such as ay, 11, in characteristic p, the group action on the
monogenicity space of G-torsors §” — § still holds but the local decomposition S’ = | |, S
and X,, action do not.

Corollary 3.8 IfS' — S isa G-torsor for G a finite group, and either

(1) |G| isodd
(2) |G| is even and G has non-cyclic Sylow 2-subgroup

then the Steinitz class of S’ — § is trivial in Pic(S)

Proof Repeating the construction of Theorem 3.6, we see that if the left regular represen-
tation of G factors through A,, the Steinitz class is trivial. The conditions given identify

precisely when this happens. O

The stacks R1,5,_,/Bs, we study arise naturally in log geometry as “Artin fans” [1].

Example 3.9 (Moduli spaces of curves in genus 0)
Let My, be the moduli stack of smooth curves of genus 0 (i.e. P') with 7 marked points.
The evident [41] isomorphism with a quotient of configuration space gives:

[Mp1,cn . /PGLy | 2 [Conf, (P)/PGLy | ~ M.
One can always put the first point at oo and get equivalent descriptions:

Mo, =~ [m ALCr /C/Aﬁ’l] ~ [Confn((C) /Aﬁﬂ],

where Aff! is the group of affine transformations G,, x A!. The stack quotient classifies
local affine equivalence classes of monogenerators, as detailed in Sect. 4.

One can likewise obtain the other moduli spaces of curves by an ad hoc construction.
Consider {{ — 901 the universal connected, proper, genus-g nodal curve, its relative
smooth locus 4 C 4[, and the monogenicity space

M5m, 2y oy /9m

of the trivial cover (n) over the moduli space 1. The monogenicity stack is naturally
isomorphic to the space of nodal, #-marked curves Mg ,,. One can also obtain the open
substack of stable curves as the universal Deligne-Mumford locus %g n S Mgn.

3.4 When is a map étale?
We recall from [33, Sect. 6] that a map S’ — S is étale precisely when the discriminant of
the algebra does not vanish. We recall from [33] that there is an algebraic moduli stack 2,
of finite locally free algebras and the affine scheme of finite type 98, parametrizing such
algebras together with a choice of global basis Q@ >~ € O - e;.

Suppose 7 : § — S comes from a finite flat algebra Q with a global basis ¢ : Q ~
P’ Os - e;, corresponding to a map S — B,,. There is a trace pairing Tr : Q — Og [38,
0BSY] which we can use to define the discriminant:

Disc(Q, ¢):= det [Tr(e,'ej)] e I'(Og)

Changing ¢ changes the function Disc by a unit. The function Disc does not descend
to 2, but the vanishing locus V(Disc) € B, does. Writing %Zt, Qlff for the open com-
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plements of the vanishing locus V' (Disc), amap 7 : S’ — S is étale if and only if § — 2,
factors through the open substack Qlff C 2, [33, Proposition 6.1].

Remark 3.10 Most finite flat algebras are not étale, nor are they degenerations of étale
algebras. B. Poonen shows the moduli of étale algebras inside of all finite flat algebras
2% C A, cannot be dense by computing dimensions [33, Remark 6.11]. The closure ﬁff
is nevertheless an irreducible component.

What if S’ — S is not étale? Readers familiar with [9] know one can sometimes endow
a ramified map S’ — S with stack structure § and §’ at the ramification to make §' — §
étale. Then all ' — S are X,-torsors, and not just ramified covers S’ — S. The ideas in
Sect. 3.2, in particular an analogue of Theorem 3.4, apply in this level of generality. We
sketch these ideas over C.

Consider

¥ =x(x — 1)(x — 1),

forsome i € C.IfC ::IP’(IC and C’ is the projective closure of the above affine equation, the
projection (x, y) — x extends to a finite locally free map 7 : C" — C. This is in Situation
1.1 so our definitions make sense for it. However 7 is ramified at four points, preventing
us from interpreting its monogenicity space using the perspective of this section. Never-
theless, we may observe that the function y gives a section of 171;,¢//c over C \ oo. The
section naturally extends to a section of Rp1, ¢ /¢ over all of C.

Let X:=P{.. If we work over C and endow C’ and C with stack structure to obtain a finite
étale cover of stacky curves C’ — C as in [9], the stacky finite étale cover together with
the map C' — X is parameterized by a representable map C — [Sym”X] to the stack
quotient

[Sym"X]:=[X"/Z,].

We can similarly allow C” and C to be nodal families of curves over some base S. Maps
from nodal curves C over S entail an S-point of the moduli stack M([Sym"X]) of prestable
maps to the symmetric product. As in [4, Proposition 2.3], there is an open substack for
which the map from the coarse space C’ to X is a closed immersion. The stack 9([Sym” X])
splits into components indexed by the ramification profiles of the cover of coarse spaces
C' - C.

There are some subtleties in characteristic p—one cannot treat all ramification as a
torsor because some ramification is a Z/pZ-torsor in characteristic p. The formalism of
tuning stacks [13] is a substitute in arbitrary characteristic.

4 Twisted monogenicity
The Hasse local-to-global principle is the idea that “local” solutions to a polynomial equa-
tion over all the p-adic fields Q, and the real field R can piece together to a single “global”
solution over Q. We ask the same for monogenicity: given local monogenerators, say over
completions or local in the Zariski or étale topologies, do they piece together to a single
global monogenerator?

The Hasse principle fails for elliptic curves. Let E be an elliptic curve over a number
field K and consider all its places v. The Shafarevich-Tate group III(E/K) of an elliptic

curve sits in an exact sequence
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0 — II(E/K) — HY(K E) — [ [ Hpy (K., E).
%

Elements of I11 are genus-one curves with rational points over each completion K, that do
not have a point over K. Similarly, we want sequences of cohomology groups to control
when local monogenerators do or do not come from a global monogenerator.

For such a sequence, one needs to know how a pair of local monogenerators can differ.
One would like a group G or sheaf of groups transitively acting on the set of local monogen-
erators so that cohomology groups can record the struggle to patch local monogenerators
together into a global monogenerator.

Suppose B/A is an algebra extension inducing S’ — S and 60y, 0, € B are both mono-
generators. Then

61 € B = A[6s], th € B = A[01],
so each monogenerator is a polynomial in the other:
61 =p1(62) and 60y =p(01), with pix), pa(x) € Alx].

We can think of the p;(x) as transition functions or endomorphisms of the affine line Al.
Even though p1(p2(61)) = 01, it is doubtful that p; o p» = id,1 or even that p;(x) are
automorphisms of Al

One might attempt to find a group G containing all possible polynomials p; (x), p2(x).
We would then have a homomorphism (of non-commutative monoids) E — G where
E is some sub-monoid of End(A!), the monoid of endomorphisms of A! (equivalently,
the monoid of one-variable polynomials under composition). Even if we only insist that
E contains x, —x, and x2, we find that the images of x and —x coincide in G since both
compose with x? to the same polynomial. This is not acceptable as x and —x act in distinct
ways on monogenerators.

Instead of working with the group of all possible polynomial transition functions as
above, we require our transition functions p;(x) to lie in a group G Al acting on Al. Two
particularly natural options for G present themeselves, namely the group sheaves:

Gm(A) = A%, u-u:=uu
Aff'(A) = A" x 4, (w,v) - (U, V)=(utd, uv’ +v).

Affine transformations Aff® are essentially polynomials ux + v of degree one under com-
position. These act on monogenerators:

GmCA': a € A0 e M(A), ab:=a -0,
At AL ac A5 be A0 eMA), (a, b).0:=ab + b.
Definition 4.1 (Twisted monogenerators)
A (G,y,)-twisted monogenerator for B/A is:
(1) a Zariski open cover Spec A = | J; D(f;) for elements f; € A,
(2) asystem of “local” monogenerators 6; € B [fi_l] for B [fi_l] over A[fi_l], and
*
(3) unitsa; € A [ffl,];fl]

such that
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« forallj j, we have a;;.0; = 6;,
« forall i j k, the “cocycle condition” holds:

aij.djk = Aik-

Two such systems {(a;), (6;)}, {(a;j), (0))} are equivalent if they differ by further refining
the cover Spec A = | J D(f;) or global units u € A*: u - a;; = a;j, u-60; =0,

Likewise B/A is Aff'-twisted monogenic if there is a cover with 6;s as above, but with
units (3) replaced by pairs a;;, b;j € A [%, %] such that each a;; is a unit and a;;6; + b;; = 6;.

The elements 6; may or may not come from a single global monogenerator 6 € A.
Nevertheless, the transition functions (a;) or (a;, b;) define an affine bundle L on Spec A
with global section 6 induced by the 6;’s. We say S’/S is “twisted monogenic” to mean there
exists a G,,-twisted monogenerator and similarly say “Aff* -twisted” monogenic. Both are
clearly Zariski-locally monogenic.

Compare with Cartier divisors:

twisted monogenerator | Cartier divisor
global monogenerator | rational function
G/ Afftaction differing by units.

We recall the notions of “multiply monogenic orders” and “affine equivalence” in the
literature. Two monogenerators 01, 6> € I'(SpecA, 111/4) are said to be “affine equiva-
lent” if there are u € A*, v € A such that u6; 4+ v = 0,. In other words, affine equivalence
classes are elements of the quotient I'(Spec A4, 11p/4) JAffL(A). Under certain hypothe-
ses in Remark 4.12, Aff'-twisted monogenicity is parameterized by the sheaf quotient
Mpa/ Aff'. There is almost an “exact sequence”

AffH(A) — T(Mpja) — T(Mpja/AF) — HY(AFF)

that dictates whether a twisted monogenerator comes from an affine equivalence class of
global monogenerators.

We warm up with a classical approach to G,,-quotients, namely taking Proj. Then we
study Aff' -twisted monogenerators before finally introducing G-twisted monogenerators
for arbitrary groups G.

There is a moduli space for each notion of twisted monogenicity. We use these moduli
spaces now and defer the proof until Theorem 4.26:

Theorem 4.2 (=Theorem 4.26) Let G,,, Aff* act on A' on the left in the natural way,
inducing a left action on g ;5. The stack quotients [111/G,,] and [m/Aﬁi] represent G-

and Aff -twisted monogenerators up to equivalence, respectively.

4.1 Gp-twisted monogenerators and proj of the weil restriction

Writing S’ = Spec Band § = Spec A4, a twisted monogenerator amounts to a Zariski cover
S = Spec A = |J U, a system of closed embeddings 6; : S/ui c Abi over U;, and elements
a;j € Gy, (U;) such that

Y A 1
a5 = 6;: Sy, — Al

Equivalently, a twisted monogenerator is a line bundle L on S defined by the above cocycle
a;; and a global embedding 6 : S" C L over S. Twisted monogenerators (6;);ecz, (Qj/ )jes with
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respect to covers covers {U;}c1, UJ'/je] are identified if they differ by global units u € G,,(S)

on a common refinement of the covers {U;};cs, L[] {je]
L, L are isomorphic in a way that identifies the closed embeddings 6, 6’.
For number fields L/K with 6 € Z; and a € Zg, one has af € Z;. If a € Z, then

0 is a monogenerator if and only if a6 is. The multiplication action G,,(Zx) C R(Zx)

,i.e., if the corresponding line bundles

corresponds to the global G,, action on the vector bundle R over S.

An action of G, corresponds to a Z-grading on the sheaf of algebras [38, 0EK]]. Locally
in S, 71,0y ~ @, Os - e and R =~ Ag. The Gy, action is the diagonal action and
corresponds to the total degree of polynomials in (C)Ag = Og[x1, ..., %]

The associated projective bundle to the vector bundle (R is given by the relative Proj [38,
0INS]

PRy js:=Proj, Og,
with the total-degree grading. The ideal Jg/s cutting out the complement g /s of
My,s/s € R is graded by [4, Remark 3.10], defining a closed subscheme P11g /s C PR.

Definition 4.3 Define the scheme of projective monogenerators
PMg /s € PR /5:=Proj @(Rs,/s

to be the open complement of the closed subscheme P71g /s cut out by the graded homo-
geneous ideal Jg/ /.

The reader may define projective polygenerators in the same fashion.

Lemma 4.4 The vanishing of the irrelevant ideal V(Og, ) of Rs /s is contained inside of
the non-monogenicity locus 1 /s for S’ # S.

Proof Locally, the lemma states that 6 = 0 is not a monogenerator. ]

Remark 4.5 We relate the Proj construction to stack quotients by G,, according to
[31, Example 10.2.8]. The ring (Qggs,/s
Rsys ~ Ag and Og,, - Og[x1, ..., x,] is generated by the degree one elements x;.

is generated by elements of degree one. Locally,

Write Spec_ Og for the relative spectrum [38, 01LQ]. The map

—-/G .
Spec,. Og \ V(Og ) —= Proj_Og

is therefore a stack quotient or G,-torsor.
We have a pullback square

Mg g —— S © V(O
S's pec, Ox \ V(Og,+)

| !

]P)mS//S EE—— Proj @gg

of Gy,-torsors and a stack quotient P111g/ /g = [mS//S/Gm].

Theorem 4.2 states that [171/G,,] represents twisted monogenerators, and now we know
the quotient stack is wondrously a scheme:

43
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Corollary 4.6 Thescheme Pl ;s = [111/G,,] represents the G,,-twisted monogenerators
of Definition 4.1. That is, P1lg: ;s is a moduli space for twisted monogenerators. The action
G CMygys is free.

Warning 4.7 Given a monogenerator 6 € Zy and a pair a € Zy, B € Z, write

B=bo+b10+--+b,_10"L.
One may try to define a second action
! 202 1gn—1
a.f:=bo + br1ab + bya“0“ + --- + by_1a" 0"~

encoding the degree with respect to 6, but this action does not define a grading as it is
almost never multiplicative. For example, take Z; = Z[+/2] with monogenerator +/2 over
ZK = 7Z. Then

a2=2# a2 a~.

In the case that S’ = SpecA[e]/e”*! and S = Spec A, we recall that Rerys = ]A/lym
is the jet space of A}‘. Here, the action a.x is multiplicative and induces a second action
Gm CRsys = Jp1 - The two actions of A € G, on a jet

fle) =ao+are+ -+ ame™

on Al are A.f(€) = A-f(€) and A.f(€) = f(Ae). The Proj of Jx,, with respect to this second
Gy, action is known as a “Demailly-Semple jet” or a “Green-Griffiths jet” in the literature
[40, Definition 6.1]. For certain S’ — S, there may be a distinguished one-parameter
subgroup, i.e., the image of G,, — Autg(S’), that results in a second action G, C' Rg//s
and allows an analogous construction.

4.2 Aff'-twisted monogenerators and affine equivalence

We enlarge our study to representing spaces of Aff!-twisted monogenerators and the
related study of affine equivalence classes of ordinary monogenerators. We delay twist-
ing by general sheaves of groups other than G,, and Aff' until the next section. For
an S-scheme X, the automorphism sheaf Aut(X) is the subsheaf of automorphisms in

Homg (X, X).

Remark 4.8 The automorphism sheaf Auts(A') has a subgroup of affine transformations
Aff' under composition. These are identified in turn with Al x G,, via

(@, b) = (x = bx + a).
The automorphism sheaf can be much larger for other A’g. For example,
®y) = (x+%y)

is an automorphism of A2.
The automorphism sheaf Aut(Al) is not the same as Aff!, though they have the same
points over reduced rings. See [12] for some discussion over nonreduced rings.

Recall that two monogenerators 61, 62 of an A-algebra B are said to be equivalent if

601 = uby +v,
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where u € A* and v € A. Likewise, say that two embeddings 6y, 65 : S’ — L of §’ into an
Aff! bundle £ over S are equivalent if there is in f € Aff'(S) such that §; = f65. The set
of monogenerators up to equivalence is then

(S, 1M)/T(S, Affh).

If § = S is an isomorphism and # = 1, the action of Aff' is trivial. Otherwise, the
Affl-action is often free:

Lemma 4.9 The action Aut(S") CMx has trivial stabilizers, for any quasiprojective X. If S
is normal and S’ — S is not an isomorphism, the action Aﬁ‘1 CMyg s has trivial stabilizers
as well.

Proof A stabilizer of the action Autg(S") C 1My entails a diagram

Qe
Qe >

The fact that S’ C X is a monomorphism forces S’ >~ S’ to be the identity.

Normality of S means S is a finite disjoint union of integral schemes [38, 033N]; we
assume S is integral without loss of generality.

Computing stabilizers of Afft 1M /s islocal, so we may assume S" — S is induced by a
non-identity finite map A — B of rings where A is an integrally closed domain with field
of fractions K. A stabilizer

a-+bo =0; acAbeA*

implies (1 — b)0 = a.If b = 1, then a = 0 and the stabilizing affine transformation is
a
trivial. Otherwise, 1 —b € K* and 60 = 1

€ K. Elements 6 € B are all integral over A.
Since A is integrally closed, 0 € A. Hence B = A[0] = A, a contradiction. ]

Remark 4.10 Suppose given transition functions (a;;, b;;) and local monogenerators (6;)
as in an Aff'-twisted monogenerator that may not satisfy the cocycle condition a priori.
For normal S with # > 1 as in the lemma, the cocycle condition holds automatically, since
Aff! acts without stabilizers.

Corollary 4.11 If S is normal, the stack quotient [7711,5/ /S /Aﬁi] is represented by the
ordinary sheaf quotient M /AfF.

Proof 1f GCX is a free action, the stack quotient [ X /G] coincides with the sheaf quotient
X/G. o

Remark 4.12 1f S is normal, Corollary 4.11 tells us that an Aff'-twisted monogenerator
is the same as a global section I'(S, 171 /Aff'). Equivalence classes of monogenerators are
given by the presheaf quotient I'(S, 177)/T(S, Aff}).

Affine equivalence classes of monogenerators thereby relate to twisted monogenerators
in an exact sequence of pointed sets:

['(S, M) /T (S, AffY) — T'(S, M/AfF") — HY(S, Aff).
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As in sheaf cohomology, the second map takes @ to its torsor of lifts §(9) in 11g/ /st
3@WU) = {f € MU) : f + A (U) = 6lu).

A section of the sheaf quotient
8 € I'(S, M /AR

lifts to an affine equivalence class in the presheaf quotient # € T'(S, 171)/T'(S, Aff') if and
only if the induced Aff!-torsor is trivial.

The exact sequence is analogous to Cartier divisors. If X is an integral scheme with
rational function field K (X), the long exact sequence associated to

1— Of - KX)" > K(X)*/Oy — 1

is analogous to the above.

Remark 4.13 One can do the same with G,,, or any other group that acts freely. Compare
twisted monogenerators P11l = [111/G,,] with ordinary monogenerators /7lg/ /s up to
G-equivalence to obtain a sequence

(S, M)/T(S, G) — (S, M/Gp) — HYS, Gyo).

Freeness of the action is necessary to identify the stack quotient with the ordinary sheaf
quotient.

Sometimes, being G,,-twisted monogenic is the same as being Aff' -twisted monogenic:
Proposition 4.14 IfS = Spec A is affine, all Aff*-torsors on S are induced by G,,-torsors:
HY(SpecA, G,,) ~ H'(Spec 4, Aﬁi).

The corresponding twisted forms of A! are the same, so we can furthermore identify G-
twisted monogenerators with Aff: -twisted monogenerators.

Proof The maps

Al > Aff! and Aff = Gy,
a— (x+— x+a) x> bx+a)—b

fit into a short exact sequence
0—>A1—>Aﬂd—>Gm—>1.

The sheaf Aff! is not commutative. Cohomology sets H:(S, Aff') are nevertheless defined
for i = 0,1, 2. By Serre Vanishing [38, 01XB] we have H/(Spec A, A!) = 0 for i # 0, and
therefore I'(Aff') — I'(G,,) is surjective, yielding an identification in all nonzero degrees:

Hi(Spec A, Aff') ~ Hi(Spec A, Gy), i=12
The action G,,, & Al is the restriction of that of Aff!, factoring
Gm C Aff' —> Aut(A').

The corresponding twisted forms of A! are the same. ]
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4.3 Consequences of Aff'-twisted monogenicity
We conclude with several consequences of twisted monogenicity and our Theorem 4.19
that shows twisted monogenerators detect class number-one number rings.

The following theorem constrains the line bundles that may be used for twisted mono-
genicity. This result constrains the possible Steinitz classes of a twisted monogenic exten-
sion. This is an effective constraint in geometric situations: see Lemma 5.4. The structure
of the set of ideals corresponding to Steinitz classes of number rings is the subject of a
variety of open questions. This has traditionally been the domain of class field theory; two
notable papers are [8,28]. For n > 0, write d(n) = gcd ({e%1 : £ prime, ¢ | n}). Theorems
1 and 2 of [28] imply that if K contains a primitive nth root of unity, then the Steinitz
classes of Galois extensions L/K of degree # are precisely the d(n)™™ powers in the class
group of K. Compare this to the following:

Theorem 4.15 Suppose S’ — S is G,,-twisted monogenic, with an embedding into a line
bundle E. Let & be the sheaf of sections of E. Then

n(n—1)
det(, Qg )= AP 7,0¢ ~ & "5

in Pic(S).
In particular, if an extension of number rings 21,/ L is twisted monogenic, then its Steinitz

class is an @th power in the class group.

Proof Write Sym*&:= @, Sym?¢& for the symmetric algebra. Recall that E ~ V(§):=
Spec_ Sym*(€Y). We have a surjection of Og-modules

Sym*8Y — 7, Oy,

which we claim factors through the projection of Og-modules Sym*8¥ — @;:01 Sym‘8.
Such a factorization is a local question and local factorizations automatically glue because
there is at most one. Locally, we may assume S’ — S is induced by a ring homorphism
A — Band 8 is trivialized. We have a factorization of A-modules

Sym*&Y = A[t] . B

\ /////

D) Sym'€Y ~ Py A -t

due to the existence of a monic polynomial 14 (¢) of degree u for the image 6 of ¢ in Og/
[4, Lemma 2.11]. The A-modules @;'Z_OIA - ' and B are abstractly isomorphic, and any
surjective endomorphism of a finitely generated module is an isomorphism [27, Theorem
2.4].
We conclude that globally
n—1
74Oy >~ @ Sym‘gY.
i=0
Since & is invertible, Sym‘€" = (&")’. Taking the determinant,

n—1

det(7.Og) = det (@(é’v)i) —g i =g,

i=0
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The literature abounds with finiteness results on equivalence classes of monogenerators,

for example:

Theorem 4.16 ([14, Theorem 5.4.4]) Let A be an integrally closed integral domain of
characteristic zero and finitely generated over 7. Let K be the quotient field of A, Q2 a finite
étale K-algebra with Q # K, and B the integral closure of A in Q2. Then there are finitely
many equivalence classes of monogenic generators of B over A.

We have an analogous finiteness result for equivalence classes of Aff'-twisted mono-

generators:

Corollary 4.17 Let A, K, 2, B be as in Theorem 4.16, with S’ — S induced from A — B.
Assume Pic(A) is finitely generated. Then there are finitely many equivalence classes of

AP -twisted monogenerators for S' — 8.

Proof We essentially use the sequence
['(S,M)/T(S, AffY) — T'(S, M/AfFY) — HY(S, AffY)

of Remark 4.12. If this were a short exact sequence of groups, the outer terms being finite
would force the middle term to be; our proof is similar in spirit.
Since S is quasicompact and there are finitely many elements of the Picard group which

are @th—roots of the Steinitz class

Pic(S):=H!(S, G,,) = H'(S, Aff)),

we can find an affine open cover S = | J; U; by finitely many open sets of S that simulta-

neously trivializes all @th-roots of the Steinitz class on S.

The above sequence of presheaves restricts to the U/;’s in a commutative diagram

(S, M)/T(S, AffY) ——— (S, M/AfF) ——— HI(S, AffY)

l I l

[1T W, my/TU;, Afft) —— [ 0(U;, M/ARY) —— [THNU;, AR,

The restriction H(S, Aff') — [TH (U, Aff!) is zero on the @th—roots of the Steinitz
class by construction of the U;’s. The restriction p : I'(S, 171 /Affl) — [[T(W;m /Affl) is
injective by the sheaf condition. A diagram chase reveals that the restriction p(f) of any
section8 € I'(S, M /Aﬁ”l) isin the image of [ [ I'(U;, M) /T (U, Aff'). Theorem 4.16 asserts

that each set I'(U;, M) /T (U;, Aff!) is finite. m|

Lemma 4.18 Degree-two extensions are all Aff -twisted monogenic. If S is affine, they are

also G,-twisted monogenic.

Proof Localize and choose a basis containing 1 to write 7,.Qg ~ Os @ Og0; for some
01 € I'(Og). Given an element 6, so that {1, 6,} is also a basis, we may write

61 = a + bb,, 6y =c+dby, a,b,c,de Og.

Hence bd = 1 are units, and the transition functions come from Afft = A! x G,,. By
choosing such generators on a cover of S, one obtains a twisted monogenerator. Proposi-
tion 4.14 further refines our affine bundle to a line bundle. O
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Theorem 4.19 A number ring Zx has class number one if and only if all twisted monogenic
extensions of Zy are in fact monogenic.

Proof 1f the class number of K is one, then all line bundles on Spec Zg are trivial and
the equivalence is clear. Mann [26] has shown that K has quadratic extensions without
an integral basis if and only if the class number of K is not one: adjoin the square root
of a, where («) = b%c with b non-principal and ¢ square-free. By Lemma 4.18, such
an extension is necessarily G,,-twisted monogenic. As the monogenicity of quadratic
extensions is equivalent to the existence of an integral basis, the result follows. ]

Remark 4.20 Theorem 4.19 implies that the ring of integers of a number field is twisted
monogenic over Z if and only if it is monogenic over Z. Example 5.3 thus provides an
example of a number field which is not twisted monogenic.

Given that twisted monogenic extensions and monogenic extensions coincide over Z,
we should ask for an example where we have twisted monogenicity but not monogenicity.
All degree 2 extensions of number rings are twisted monogenic as Lemma 4.18 shows.
Thus every quadratic extension without an integral basis is twisted monogenic but not
monogenic, and [26] provides a construction of such extensions. The aim of the following
is the very explicit construction of a higher degree example of such an extension. Though
we are ultimately unable to prove non-monogenicity in the following example, we hope it
gives the reader a concrete sense of the concepts and methods employed in this section.

Example 4.21 (Properly twisted monogenic, not quadratic) Let K = Q(+/5 - 23) and
let p3, ps, and pa3 be the unique primes of K above 3, 5, and 23, respectively. One
can compute p3 = (03:=1970(3/5 - 23)2 + 9580(~/5 - 23) + 46587). Consider 71 |7k,
where L = K(¥/23p3). On D(py3), the local index form with respect to the local basis
{1, ¥/23p3, (23 p3)?} is b> — 23p3c®. On D(ps), we have the local index form B3 — 52p3C3
with respect to the local basis {1, \3/%, (/52 p3)}. We transition via ¥/232 - 52/23, which
is not a global unit, so the extension Z; /Z is twisted monogenic.

To see what is going on more explicitly, we investigate how the transitions affect the
local index forms. We have

2 4

2
b® — 23p3c® = 5—33 — 5— - 23p3C3 = 5—33 — i,03(]3 = aunit in Op(p,,).
23 232 23 23 »

If B and C could be chosen to be Z-integral so that local index form represented a unit
of Zx, then /52 p3 would be a global monogenerator. However, ps-adic valuations tell us
/52 p3 is not a monogenerator. One can also apply Dedekind’s index criterion to x> —52 p3.
Similarly, we have
B —5%p3C3 = gbg — 25—342 52p3¢% = ébs — 2—32/)303 = aunit in Op,).
If b and c could be chosen to be Zx-integral so that local index form represented a unit of
Zx, then &/23p3 would be a global monogenerator. As above, the py3-adic valuations tell
us this cannot be the case. Again, we could also use polynomial-specific methods.
We have shown that 7 /Zk is twisted monogenic, but it remains to show that the
twisting is non-trivial. We need to show the ideal p5 = (5, +/5 - 23) is not principal.
On D(py3) it can be generated by +/5 - 23 and on D(ps) it can be generated by 5. We
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transition between these two generators via V/52.232/23, exactly as above. Thus our
twisted monogenerators correspond to a non-trivial ideal class.
A computer algebra system can compute a K -integral basis for Z; :

5 2 3 2
{1, <—2¢3 B 5+ («/3 23 5) ) 233 + <—3 + g«? 23 5) (3/23p3) ,
, 5243 / 2\ |
120589 + 524325 5 + = (vza : 5) 23p3
57125 , , 2\ /, 2
+ (22850 + 22-22.3/23 5 + 1828 («/23 : 5) (,/23p3) ,

23

with index form:

(7,7, = 13796817(¥/5 - 23)2b% — 1367479703949(V/5 - 23)*b%c
+ 45179341009193328(v/5 - 23)%bc® + 67103709+/5 - 235>
— 497537273719431009077(+/5 - 23)%c® — 6650125342740+/5 - 23b%¢
+ 219702478196413227/5 - 23bc* — 2419492830176044167763/5 - 23¢°
+ 326269891h° — 323399230908005%¢ + 1068411032584717260bc>
— 11765841517121285321908¢°,

Because Zj / Z is twisted monogenic, there are no common index divisors. Thus we will
always find solutions to iz, /7, when we reduce modulo a prime of Zx. We do not expect
71 to be monogenic over Zg; however, showing that there are no values of b, ¢ € Zg such
that iz, ;z, (b, ¢) € Zy appears to be rather difficult.

A clever way to get around this issue would be to show that the different of L/K was non-
principal. This would preclude monogenicity by prohibiting an integral basis all together.
Unfortunately, one can compute that the different is principal, so the extension does have
a relative integral basis.

Remark 4.22 One can perform the same construction of Example 4.21 with radical cubic
number rings other than Q(</5 - 23). Specifically, take any radical cubic where (3) = pg =
()3, £, and g are distinct primes with (¢£) = [3, (g) = ¢°, and neither [ nor q principal. The
ideas behind this construction can be taken further by making appropriate modifications.

4.4 Twisting in general
Throughout this section, fix notation as in Situation 1.1 and work in the category (Sc//S)
of schemes over S equipped with the étale topology. In particular, we allow X to be any
quasiprojective S-scheme.

Definition 4.1 readily generalizes. Replace G, by any étale sheaf of groups G with a left
action G C X. A G-twisted monogenerator for S’ — S (into X) is an étale cover U; — S,
closed embeddings 6; : S/u,- C Xy;, and elements g;; € G(U;;) such that

80 =0;: S/Ut/ — XUtj'

Say two G-twisted monogenerators (6;), (1;) are equivalent if, after passing to a common
refinement of the associated covers, there is a global section g € G(S) so that6; = gl - m;
for all i. Equivalently, the 6;’s glue to a global closed embedding S’ C X into a twisted form
X of X the same way the G,,-twisted monogenerators give embeddings into a line bundle.
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The twisted form X arises from transition functions in G, meaning there is a G-torsor
P such that X is the contracted product:

X =X A P:i=X x P/(G, A)
We have already seen the variant G = Aff', X = Al. Other interesting cases include
G = PGL, C'P}, GL, C A", an ellliptic curve E acting on itself E C'E, etc.

Remark 4.23 Usually, contracted products are defined for a left action G C P and a right
action G C X by quotienting by the antidiagonal action

X A P:i=X x P/(—A, G)
defined by
GCX x P; 2 p)=@g L gp).

We instead take two left actions and quotient by the diagonal action of G. The literature
often turns left actions G,, C A into right actions anyway, as in [7, Remark 1.7].

Group sheaves G beget stacks BG = BGs classifying G-torsors on S-schemes with
universal G-torsor S — BG.

Twisted forms X of X are equivalent to torsors for Aut(X) ( [34, Theorem 4.5.2]), as fol-
lows: Given a twisted form X — S, we obtain the torsor Isom(X, X) of local isomorphisms.
Given a Aut(X)-torsor P, we define a twisted form via contracted product:

XPZZX AAutX) p
The stack BAut(X) is thereby a moduli space for twisted forms of X with universal family

X A?Xtﬁ&) S = [X/Aut(X)]. An action G — Aut(X) lets one turn a G-torsor P into a
twisted form
XPZZX AG P

classified by the map BG — BAut(X).
The automorphism sheaf Aut(X) acts on the scheme 771y via postcomposition with the
embeddings S’ — X, yielding a map of sheaves
Y Aut(X) - Aut(Mx)~
Similarly, the automorphism sheaf Aut(S’) acts on 771 on the right via precomposition:
& Aut(S")? — Aut(My).
The induced map H(S, Aut(X)) — H(S, Aut(11x)) sends a twisted form X of X to the
twisted form 7713 of 171y given by looking at closed embeddings into X. We package these
twisted forms 7715, into a universal version: Twist!71.

Definition 4.24 (Twist!?1) Let Twist?7l — BAut(X) be the BAut(X)-stack whose T'-
points are given by

Twist!l S’ XST S » X
7 l = \ / s is a closed immersion
T T> BAut(X) T

“The map y need not be injective. Consider S = Spec k a geometric point, S’ = | |* S the trivial 3-sheeted cover,
and X = | |*S only 2-sheeted. There are no closed immersions S’ € X, so MMy = & has global automorphisms
Aut(@) =~ {id}, but Aut(X) =~ Z/2Z is nontrivial. Similar examples abound for non-monogenic &’ — S.
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The map Twistl7l — BAut(X) is representable by schemes, since pullbacks are twisted
forms 1My of My itself:

mj(’_—>5
! Jx

Twist/ll —— BAut(X).

The universal torsor over BAut(X) is S, but the universal twisted form is obtained by
the contracted product with X over BAut(X):

Aut(X
X A S 2 [X/Aut(X)]

One can exhibit Twist!]l as an open substack of the Weil Restriction of [X/Aut(X)] —
BAut(X) as in [4, Proposition 2.3]. There is a universal closed embedding over Twist/7
into the universal twisted form of X as in the definition of 77l s:

Twistl x5 § <------- L > [X/Aut(X)).

\ /

Twist?71

The universal case is concise to describe but unwieldy because Aut(X) need not be finite,
smooth, or well-behaved in any sense. We simplify by specifying our twisted form X>T
to get a scheme Twist!lly = T X3 pa,x) TWist!1l or by specifying the structure group G.

Fixing the structure group G requires X = X AC P for the specified sheaf of groups G
and some G-torsor P. These G-twisted forms are parameterized by the pullback

Twistmcl’; — Twist
! l

BG —— BAut(X).

The fibers of Twist!1® — BG over maps T — BG are again twisted forms of 17y. If
X = A¥ and X is a G-twisted form, we may refer to the existence of sections of Twist?15
by saying S'/S is G-twisted k-genic, etc.

Remark 4.25 Trivializing X is not the same as trivializing the torsor P that induces X
unless the group G is Aut(X) itself. For example, take the trivial action G C' X.

Theorem 4.26 The stack of twisted monogenerators Twist11 is isomorphicto [Nlx / Aut(X)]
over BAut(X). More generally, for any sheaf of groups G C X, we have an isomorphism
TwistiNC ~ [Ny /G] over BG.

Proof Address the second, more general assertion and let 7' be an S-scheme. Write
X7:=X x5 T, T"=T xg §', etc. A T-point of Twist!C is a G-torsor P — T and a solid
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diagram
P oo > X7 X1 P
[
|
B /a6
G

with 7" — X7 A§ P a closed immersion. Form P’ by pullback: P’ is a left G-torsor
with an equivariant map to X7 x P with the diagonal action. The map P’ — X1 x7 P
entails a pair of equivariant maps P* — P and P’ — Xr. The map P’ — P over T forces
P’ >~ P x T'. These data form an equivariant map P — N1y over T, or T — [Nx/G].
Reverse the process to finish the proof. ]

To see this theorem in practice, we have the following example.

Definition 4.27 The group sheaf AFF C Aut(AK) of affine transformations is the set of

functions
X Mx+Db

where M € GL; and b € A*, under composition. Note AfFF = Ak x GL.

Example 4.28 Let S’ be the spectrum of a quadratic order such as Z[i], and take S =
SpecZ. The space of k-generators is 11y 5//s = AK x (A% 0) according to [4, Proposition
4.5]. Take the quotient by the groups of affine transformations:

[Mys/s/AK % Gyn] = PFL, [My,s/5/A] = [AK/GLi] = [PK71/PGLy .

These quotients represent twisted monogenerators according to Theorem 4.26. The
corresponding PGLg -torsors were classically identified with Azumaya algebras and Severi-
Brauer varieties (see the exposition in [24]) or twisted forms of PX~1, These yield classes
in the Brauer group H2(G,,) via the connecting homomorphism from

1—> G, — GLy - PGL; — 1.

The same holds locally for any degree-two extension S’ — S with S integral using [4,
Proposition 4.5].

If G is an abelian variety over a number field S = SpecK, let P — S be a G-torsor
inducing a twisted form X of X. Given a twisted monogenerator 6 : S’ C X, one can try
to promote 6 to a global monogenerator by trivializing P and thus X.

Suppose one is given trivializations of P over the completions K, at each place. Whether
these glue to a global trivialization of P over K and thus a monogenerator 8’ C X is
governed by the Shafarevich-Tate group I1I(G/K).

Given a G-twisted monogenerator with local trivializations, the Shafarevich-Tate group
obstructs lifts of 0 to a global monogenerator the same way classes of line bundles in Pic
obstruct G, -twisted monogenerators from being global monogenerators. Theorem 4.19
showed a converse—nontrivial elements of Pic imply twisted monogenerators that are
not global monogenerators.
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Question 4.29 s the same true for I11? Does every element of the Shafarevich-Tate group
arise this way?

The Shafarevich-Tate group approach is useless for G = G, or GL,, because of Hilbert’s
Theorem 90 [38, 03P8]:

H),(SpecK, G) = H}, (SpecK, G) = 0.

The same goes for any “special” group with étale and Zariski cohomology identified. The
strategy may work better for PGL,, or elliptic curves E.

Remark 4.30 This section defined G-twisted monogenerators using covers in the étale
topology, whereas Definition 4.1 used the Zariski topology. For G = G,, or Aff', either
topology gives the same notion of twisted monogenerators. Observe that G, has the same
Zariski and étale cohomology by Hilbert’s Theorem 90. The same is true for A! by [38,
03P2] and so also Aff' = G,,, x Al

5 Examples of the scheme of monogenerators

We conclude with several examples to further illustrate the interaction of the various
forms of monogenicity considered in this paper. We will make frequent reference to
computation of the index form using the techniques of the previous paper in this series.
Some of these examples were already considered in the previous paper, but are revisited
in order to add some commentary on their relationship to notions of local monogenicity.

5.1 Orders in number rings

Example 5.1 (Dedekind’s non-monogenic cubic field) Let 1 denote a root of the poly-
nomial X3 — X2 — 2X — 8 and consider the field extension L:=Q() over K:=Q. When
Dedekind constructed this example [10] it was the first example of a non-monogenic
extension of number rings. Indeed two generators are necessary to generate Z; /Zx: take
n* and LGz’ for example. In fact, {1, #, %} is a Z-basis for Zx . The matrix of coefficients

2
with respect to the basis {1, @, n%}is

1 a a’ + 6b% + 16bc + 8¢>
0 b 2ab+ 7b*+ 24bc + 20c2
0 ¢ —2b*+2ac— 8bc—7c>

Taking its determinant, the index form associated to this basis is
—2b% — 15b%c — 31bc* — 20c°.

Were the extension monogenic, we would be able to find 4, b, ¢ € Z so that the index form
above is equal to £1.

In fact, Zg;)/Z is not even locally monogenic. By Lemma 2.6, we may check by reducing
at primes. Over the prime 2 the index form reduces to

b*c + bc?,

and iterating through the four possible values of (b, ¢) € (Z/27Z)? shows that the index
form always to reduces to 0. That is, 2 is a common index divisor.
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Dedekind showed that Zg;)/Z is non-monogenic, not by using an index form, but by
deriving a contradiction from the Z -factorization of the ideal 2, which splits into three
primes. In our terms, Spec Zg(,) — Spec Z has three points over Spec Iy, all with residue
field Fy. Therefore, condition (2) of Theorem 1.10 for monogenicity at the prime (2) fails,
so 8’ — § is not monogenic.

With base extension, one can eventually resolve the obstructions presented by common
index divisors. The following example illustrates a non-maximal order where we have a
slightly different obstruction to monogenicity.

Example 5.2 (An order that fails to be monogenic over geometric points)
Consider the extension Z[v/2, +/3] of Z. (This is not the maximal order of Q(+/2, v/3).)
We recall from [4, Example 4.13] that the index form with respect to the basis

(1, V2, 43,6} is
= —4(2b* — 3¢*)(b* — 3d%)(c* — 2d?).

By Proposition 2.10, S’ — S fails to be monogenic, even over geometric points, since
the index form reduces to 0 in the fiber over 2. In terms of Theorem 1.9, " — S fails to be
monogenic since the fiber over 2 consists of a single point with a two dimensional tangent

space.

We can contrast the above examples with the following example where the obstruction
to monogenicity is global as opposed to local.

Example 5.3 (A Zariski-locally monogenic, but not twisted-monogenic extension) Here
we take a closer look at one member of the family in Example 2.8. Let K = Q, L =
K(¥/52-7). The ring of integers Z; = Z[v/52 . 7,3/5 - 72] is not monogenic over Z. Let
a=+527, B = V5 - 72. We recall from [4, Example 4.14] that {1, «, B} is a Z-basis for
7, and the associated index form is 56> — 7¢3. Thus, for a given choice of @, b, ¢ € Z, the
primes which divide the value 5b3 — 7¢? are precisely the primes at which a + ba + cf
will fail to generate the extension.

The values obtained by this index form are {0, £5} modulo 7. Since 5 is a unit in Z/77Z,
we do have local monogenerators over D(7). Similarly, we have local monogenerators
over D(5). Together, D(5) and D(7) form an open cover, and we see that this extension is
Zariski-locally monogenic. However, as we can see by reducing modulo 7, the index form
cannot be equal to +1. Therefore there are no global monogenerators and Z; /Z is not
monogenic: in the language of [2], Z /Z has a local obstruction to monogenicity, despite
being locally monogenic.

This is not a G, -twisted monogenic extension by Theorem 4.19, because #(Z) = 1 and
this extension is not globally monogenic. See Example 4.21 for a properly G,,-twisted
monogenic extension and a comparison to the example presented here.

5.2 Maps of curves

One benefit of our more geometric notion of monogenicity is it allows us readily ask
questions about monogenicity in classical geometric situations with the same language
that we use in the arithmetic context. Our next examples concern the case that S’ — S'is
a finite map of algebraic curves, which is essentially never monogenic. On the other hand,
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we find explicit examples of G,,-twisted monogenic S’ — S. Theorem 4.15 constrains the
possible line bundles that we may use to show G,,-twisted monogenicity. We make this
precise in the lemma below.

Lemma 5.4 Letw : C — D be a finite map of smooth projective curves of degree n and let
g denote the genus.

(1) 7 is only monogenic if it is the identity map;

(2) Ifm is Gy,-twisted monogenic, then 1 — g(C) — n(1 — g(D)) is divisible by %n(n —1)in
Z. Moreover, if T factors through a closed embedding into a line bundle E with sheaf
of sections &, then

1—g(C) —n(1 —g(D))

1

deg(é) = — in(n -1)

Proof To see (1), note thatamap f : C — Ab is determined by a global section of Oc¢.
Since C is a proper variety, the global sections of O¢ are constant functions. It follows
thatamapf : C — A}) is constant on fibers of 7. Therefore f cannot be an immersion
unless 7 has degree 1, i.e., is the identity.

Suppose 7 : C — D is G,,-twisted monogenic with an embedding into a line bundle E.
By [38, 0AYQ] and Riemann-Roch,

deg(det(.Oc¢)) = 1 — g(C) — n(1 — g(D)).

By Theorem 4.15,

n(n—1)
det(r,Og) ~ "7

where § is the sheaf of sections of E. Taking degrees of both sides,

1 ¢(0) — n(1 — g(D) = —deg(®) "1,

This shows (2). |
First, we will investigate one of the most basic families of maps of curves.

Example 5.5 (Maps P! — P1) Let k be an algebraically closed field and let 7 : ]P’,l( — IP’,1<
be a finite map of degree n. If n = 1, then 7 is trivially monogenic. When n = 2, Lemma
5.4 tells us that 77 cannot be monogenic, while Lemma 4.18 tells us that 7 is Aff*-twisted
monogenic. Lemma 5.4 tells us that for degrees n > 2 the map 7 is neither monogenic nor
G, -twisted monogenic, although Theorems 2.1 and 1.10 tell us that 7 is Zariski-locally
monogenic.

Working with Z instead of an algebraically closed field, consider the map  : §' = IP’% —
S= IP’% given by [a : b] > [a? : b*]. We will show by direct computation that this map is
G -twisted monogenic. Write U = Spec Z[x] and V' = Spec Z[y] for the standard affine
charts of the target P'. The map 7 is then given on charts by

Zx] —Z]a]

xr—>a2
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and

Zly] —Z[b]
y > b,

Let us compute 171 5/s. Over U, .. Op1 has Z[x]-basis {1, a}. Let ¢1, ¢ be the coordinates
of R|y; = A2, with universal map

Zlcy, e, t] — Zlcy, 2, al, t— ¢+ oa
The index form associated to this basis is
i(cr, ¢2) = ¢

Similarly, 7,.Op1 has Z[y]-basis {1, b}, R|y analogous coordinates d1, da, and the index
form associated to this basis is

i(dy, do) = d».

An element of Z[x] (resp. Z[y]) is a unit if and only if it is £1, so

Mg s(U) ={cy £a|c € Zlx]}
Mg s(V) = {d1 £ b | d1 € Z]y]}

We can see directly that  is not monogenic: the condition that a monogenerator ¢; + a
on U glue with a monogenerator d1 £ b on V is that

(c1 £ @)lunv = (d1 £ D)lunv.

But this is impossible to satisfy since a|yny = b|z[%W.

Lemma 5.4 tells us that if S’ — S is twisted monogenic, the line bundle into which S’
embeds must have degree 1. Let us therefore attempt to embed S’ into the line bundle
with sheaf of sections Op1(1). The sheaf Op1(1) restricts to the trivial line bundle on both
U and V, and a section f € Oy glues to a section g € Oy if

v - flunv = glunv.

Embedding S’ into this line bundle is therefore equivalent to finding a monogenerator
¢1 £ aon U, and a monogenerator d; = b on V such that

y((e1 £ @)lunv) = (d1 £ b)lunv.

Bearing in mind that y = b> = a=2 on U N V, we find a solution by taking positive signs,
¢1 = 0,and d; = 0. Therefore 7 : IP% — ]P’% is twisted monogenic.

Lemma 5.4 tells us that we must pass to higher genus to find a G,,,-twisted monogenic
cover of P! of degree greater than 2. Here is an example where the source is an elliptic

curve.

Example 5.6 (Twisted monogenic cover of degree 3) Let E be the Fermat elliptic curve
Vi +y3 —2%) C IP’%. Consider the projection from [0: 0 : 1], i.e., the map 7 : E — P!
defined by [x : ¥ : z] — [x : y]. Write U = SpecZ[x] and V = Spec Z[y] for the standard
affine charts of P1. The map is given on charts by Z[x] — Z[x, z]/ (x3 4+ 1 — 2% and
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Zly) — Zly, yz]/(1 + y* — (y2)°). The gluing on overlaps is given by x > y~! on P! and
byx > y L,z zonE.

We now compute /7lg p1. Note that over U, Of has the Z[x]-basis 1, z, z2. The index
form associated to 1, z, z2 is

i(c1, ¢, ¢3) = cg - cg(x3 + 1).

Over V, O has the Z[x]-basis 1, yz, y2z>. The index form associated to this basis is
i(dy, dy, d3) = d5 — d3(y® +1).

An element of Z[x] or Z[y] is a unit if and only if it is +1. This implies that

Mg s(U) ={c1 £z | c1 € Z[x]}
Mg s(V) = {d1 £yz | di € Z]y]}.

We see that there are no global sections of 17lg/s, since coefficients of z cannot match on
overlaps.

However, if we twist so that we are considering embeddings of E into Op1(1), then the
condition for a monogenerator c; £ z on U to glue with a monogenerator d; + yz on V
is that

y((e1 £ 2)lunv) = (d1 £ y2)lunv.

This is satisfied, for example by taking the positive sign for both generatorsand ¢c; = d; =
0. Therefore E — P! is twisted monogenic with class 1 € Pic(IP’%).
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