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The log product formula
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Let V,W be a pair of smooth varieties. We want to compare curve counts on V ×W with those on V
and W . The product formula in Gromov±Witten theory compares the virtual fundamental classes of

stable maps to a product Mg,n(V ×W ) to the product of stable maps Mg,n(V )×Mg,n(W ). We prove the

analogous theorem for log stable maps to log smooth varieties V,W .

This extends results of Y.P. Lee and F. Qu, who introduced this formula after K. Behrend. We introduce

ªlog normal conesº and ªlog virtual fundamental classes,º as well as modified versions of standard

intersection-theoretic machinery adapted to log geometry.

0. Introduction

The log product formula. The purpose of the present paper is to prove the ªproduct formulaº for log

Gromov±Witten invariants. We assume the reader is familiar with log geometry at the level of [Ogus 2018].

Let V , W be log smooth, quasiprojective log schemes. The moduli stack of log stable maps [Gross and

Siebert 2013; Chen 2014; Abramovich and Chen 2014] M
ℓ
g,n(V ) parametrizes families of fs log smooth

curves C→ S with a stable map C→ V of log schemes. These coincide with ordinary stable maps if V

has trivial log structure MV ≃O∗V .

Let Q be the fiber product

M
ℓ
g,n(V )×

ℓ

Mg,n
M

ℓ
g,n(W )

in the category of fs (fine and saturated) log algebraic stacks [Ogus 2018, Corollary III.2.1.6], with maps

M
ℓ
g,n(V ×W )

h
−→ Q

1̃
−→M

ℓ
g,n(V )×M

ℓ
g,n(W ).

We define log virtual fundamental class in Definition 3.1. One can endow Q with a log virtual fundamental

class in two ways: pushing forward that of M
ℓ
g,n(V ×W ) or pulling back that of M

ℓ
g,n(V )×M

ℓ
g,n(W ).

The product formula equates these.

Theorem 0.1 (the ªlog Gromov±Witten product formulaº). The two log virtual fundamental classes are

equal in the Chow group A∗Q:

h∗[M
ℓ
g,n(V ×W )]ℓvir =1![M ℓ

g,n(V )×M
ℓ
g,n(W )]ℓvir .
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The symbol 1! refers to the log Gysin map of Definition 3.1.

The original, nonlog product formula was established by M. Kontsevich and Yu. Manin in genus zero

[Kontsevich and Manin 1996]. It was extended to arbitrary genus by Behrend [1999].

Theorem 0.1 was formulated using ordinary virtual fundamental classes by Lee and Qu [2018] and

proved under the assumption that one of V or W has trivial log structure. Like their work and the work

of Behrend [1999] before it, our proof centers on this cartesian diagram (Situation 5.5):

M
ℓ
g,n(V ×W ) Q M

ℓ
g,n(V )×M

ℓ
g,n(W )

D Q′ Mg,n ×Mg,n

Mg,n Mg,n ×Mg,n

h

c
⌜ℓ

⌜ℓ
a

l φ

⌜ℓ
s×s

1

One applies Costello’s formula [2006, Theorem 5.0.1] and commutativity of the Gysin map to this diagram

to compare virtual fundamental classes.

In the log setting, one requires this diagram to be cartesian in the 2-category of fs log algebraic stacks

in order to preserve modular interpretations. The assumption of [Lee and Qu 2018] that V or W have

trivial log structure ensures that these squares are also cartesian as underlying algebraic stacks.

These fs pullback squares in question likely aren’t cartesian on underlying algebraic stacks. Therefore,

none of the standard machinery of ordinary Gysin maps and normal cones is valid. This quandary forced

us to prove the log analogues of Costello’s formula and commutativity for our ªlog Gysin map.º With

these modifications, the original proof of K. Behrend essentially still works. We pause to comment on the

new technology.

Log normal cones. The log normal cone Cℓ
X/Y = CX/LY of a map f : X→ Y of log algebraic stacks is

the central object of the present paper. Every log map factors as the composition of a strict and an étale

map X→ LY → Y , so the cone is determined by two properties:

• It agrees with the ordinary normal cone for strict maps.

• If one can factor f as X→ Y ′→ Y with Y ′→ Y log étale, the cones are canonically isomorphic:

Cℓ
X/Y ≃ Cℓ

X/Y ′ .

This object becomes simpler in the presence of charts. Locally, we may assume the map X→ Y has a

chart given by a map of Artin cones AP → AQ . The map AP → AQ is log étale, so we can base change

across it to get a strict map without altering the log normal cone.

Because this method can lead to radical alterations of the target Y , we recall another strategy that we

learned from [Ito et al. 2020, Proposition 2.3.12]. For ordinary schemes, one locally factors a map as a

closed immersion composed with a smooth map to get a presentation for the normal cone [Behrend and



The log product formula 1283

Fantechi 1997]. We obtain a similar local factorization (Construction 1.1) into a strict closed immersion

composed with a log smooth map, and the same presentation exists for the log normal cone.

The above is made more precise in Remark 2.7. The charts and factorizations these techniques require

are only locally possible, so we need to know how log normal cones change after étale localization. We

encounter a well-known subtlety noticed by W. Bauer [Olsson 2005, Section 7]: The log normal cone isn’t

invariant under base-changes by log étale maps (Remark 2.13). Our workaround is somewhat different

from that of Olsson. These results are at the service of log intersection theory, and we outline a standard

package of log virtual fundamental classes and log Gysin maps.

Pushforward and Gysin pullback. The proof of the product formula needs two ingredients: commutativity

of Gysin maps and compatibility of pushforward with Gysin maps. The commutativity of Gysin maps

readily generalizes to the log setting in Theorem 3.12; on the other hand, compatibility with pushforward

simply fails!

Nevertheless, the original proof of the product formula depends on a weak form of this compatibility

first introduced by K. Costello [2006, Theorem 5.0.1]. This theorem is false as stated due to a missing

properness hypothesis. We fix and generalize the statement in [Herr and Wise 2022] and offer a log

generalization in Section 4.

We obtain another partial result towards compatibility of pushforward and Gysin pullback. For a log

blowup p : X̂→ X with a log smoothness assumption, we show p∗[X̂ ]ℓvir = [X ]ℓvir in Theorem 3.10.

The alternative approach of Barrott [2018] may extend our results by modifying the notions of dimension,

degree, pushforward, Chow groups, etc. in the log setting. See also [Ranganathan 2022] for an insightful

approach to log Chow groups.

D. Ranganathan obtained a version of the log product formula contemporaneously using an explicit

blowup instead of our log virtual fundamental class machinery [Ranganathan 2019]. We hope the

technology and the strategy of reducing statements about log normal cones to the strict, ordinary case

will be of interest.

Context and motivation. A pair (X, D) of a smooth divisor on a smooth variety is an example of a log

smooth target V . Jun Li [2001] defined relative stable maps to such a pair (X, D). We instead use the log

stable maps M
ℓ
g,n(V ) of Gross and Siebert [2013], and Chen [2014] and Abramovich and Chen [2014].1

Even if one starts with V and W smooth pairs, their product V ×W is a log smooth log scheme and

likely not a smooth pair.

Gross and Siebert define the virtual fundamental class of M
ℓ
g,n(V ) relative to a log variant LMg,n of

the stack of prestable curves Mg,n . We take this as a definition of the log virtual fundamental class and

related log normal cone. The log virtual fundamental class is then invariant under log modifications of

the target V . The classes defined in this paper live in ordinary Chow groups A∗( · ) but can be refined

[Herr et al. 2023] to both large and small log Chow groups [Holmes et al. 2019] or to K theory [Chou

et al. 2020].

1The forthcoming [Herr et al. 2023] compares relative and log stable maps.
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One might try to prove Theorem 0.1 using the ordinary Gysin map 1! instead of the log version. This

works if V or W has trivial log structure [Lee and Qu 2018] but is false in general. See [Chou et al. 2020]

for counterexamples to the ordinary Gysin map 1! version. Our log Gysin map is necessary to prove

Theorem 0.1 partially because it produces classes on the fs fiber product Q instead of the fiber product of

underlying schemes.

These log Gysin maps may be of interest wherever the fs fiber product arises in enumerative geometry.

For example, fs pullback squares abound in the punctured log stable maps of [Abramovich et al. 2020].

The fs fiber products in [Nabijou and Ranganathan 2022, Section 2.1] are reduced to ordinary fiber

products by weak semistable reduction to use ordinary intersection theory. The multiplicativity found in

[Holmes et al. 2019] is an example of a log intersection product.

Log Chow groups are still under construction. The log Chow group of X can be defined as a limit

or colimit over the Chow groups of log modifications of X [Holmes et al. 2019; Barrott 2018]. The log

virtual fundamental class can be refined to lie in log Chow [Chou et al. 2020; Herr et al. 2023]. Rather

than making sense of pairing with ψ classes, we simply prove the expected equality of virtual fundamental

classes in ordinary Chow here.

See [Molcho and Ranganathan 2021, Section 1.2] for a down-to-earth log intersection product related

to our 1!.

Our log product formula may compute the log Gromov±Witten invariants of toric varieties, as shown

to the author independently by J. Wise and D. Ranganathan. Any pair of toric varieties Y1, Y2 of the same

dimension are related by a third which is a log blowup of each: Y1← Ỹ → Y2. Log virtual fundamental

classes and Gromov±Witten invariants are invariant under log blowups [Abramovich and Wise 2018],

Theorem 3.10. The log Gromov±Witten invariants of all toric varieties of dimension n are essentially the

same, and one can compute just one example (P1)n .

Conventions. • We only consider fs log structures. We therefore use L,LY to refer to Olsson’s stacks

T or,T orY .

• We work over the complex numbers C.

• We adhere to the convention of [Olsson 2003] regarding the use of the term ªalgebraic stackº: we mean

a stack in the sense of [Laumon and Moret-Bailly 2000, 3.1] such that

− the diagonal is representable and of finite presentation, and

− there exists a surjective, smooth morphism to it from a scheme.

We do not require the diagonal morphism to be separated.

• By ªlog algebraic stack,º we mean an algebraic stack with a map to L. Maps between them need not lie

over L.

• The name ªDM stackº means Deligne±Mumford stack and a morphism f : X→ Y of algebraic stacks

is (of) ªDM-typeº or simply ªDMº if every Y -scheme T → Y pulls back to a DM stack T × f,Y X

[Manolache 2012].
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• The word ªconeº in ªlog normal coneº refers to a cone stack in the sense of [Behrend and Fantechi 1997].

• Let P be a sharp fs monoid. Write

AP = [Spec C[P]/Spec C[Pgp]]

for the stack quotient in the étale topology endowed with its natural log structure [Abramovich et al. 2017;

Cavalieri et al. 2020; Olsson 2003]. Beware that some of these sources first take the dual monoid. This

log stack has a notable functor of points for fs log schemes

Hom f s(T,AP)= Hommon(P, 0(MT )).

In particular,

Hom f s(AP ,AQ)= Hommon(Q, P).

We write A for AN = [A
1/Gm]. Log algebraic stacks of this form are called ªArtin cones.º ªArtin fansº

are log algebraic stacks which admit a strict étale cover by Artin cones. The 2-category of Artin fans is

equivalent to a category of ªcone stacksº [Cavalieri et al. 2020, Theorem 6.11].

• The present paper concerns analogues of normal cones and pullbacks in the logarithmic category. We

use the notation ⌜, ×, C for pullbacks and normal cones of ordinary stacks, and write ⌜ℓ, ×ℓ, Cℓ to

distinguish the fs pullbacks and log normal cones. When they happen to coincide, we write ℓ, ⌜ℓ, ×ℓ, Cℓ

to emphasize this coincidence.

• Many of our citations could be made to original sources, often written by K. Kato, but we have opted for

the book [Ogus 2018]. We have doubled references to Costello’s formula [Costello 2006, Theorem 5.0.1;

Herr and Wise 2022] where appropriate because the original formulation is incorrect.

1. Preliminaries and the log normal sheaf

The present paper originated with one central construction, which we learned from [Ito et al. 2020,

Lemma 2.3.12].

Construction 1.1. The normal cone of a morphism f : B→ A of finite type is constructed by choosing

a factorization B→ B[x1, . . . , xr ]↠ A inducing a closed immersion into affine r -space

Spec A ↪→ A
r
B→ Spec B.

The normal cone of f may then be expressed as the quotient of the ordinary normal cone of the closed

immersion by the action of the tangent bundle of Ar
B→ Spec B.

Let P→ A and Q→ B be morphisms from fs monoids to the multiplicative monoids of rings (ªprelog

ringsº). A commutative square

B A

Q P

f

θ
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is a chart of a map between affine log schemes. Assume f is of finite type; θ automatically is by the

fs assumption. We will obtain a factorization of the induced log schemes into a strict closed immersion

followed by a log smooth map.

Start with a similar factorization

B B[x1, . . . , xr , y1, . . . , ys] A

Q Qs P

with Qs = Q ⊕Ns mapping to B[x1, . . . xr , y1, . . . ys] by sending the generators of Ns to the algebra

generators y1, . . . ys and Qs→ P surjective. Define Qθ
s via the cartesian product:

Qs Qθ
s P

Qgp
s Qgp

s Pgp

⌜

By definition, Qθ
s → P is exact, and Qs→ Qθ

s is a ªlog modification:º an isomorphism on groupifications.

Witness also that Qθ
s → P is surjective, so the characteristic monoid map Qθ

s
∼−→ P is an isomorphism

[Ogus 2018, Proposition I.4.2.1(5)] and AP → AQθ
s

is strict. Take Spec and Artin cones of monoids to

obtain a diagram with strict vertical arrows:

X Xθ A
r+s
Y Y

AP AQθ
s

AQs AQ

⌜ℓ

We’ve written Y = Spec B, X = Spec A and introduced the fs pullback Xθ in the diagram. The top row

expresses our original map Spec f as the composition of a strict closed immersion, a log modification,

and a smooth and log smooth morphism. The log modification AQθ
s
→ AQs and hence Xθ → A

r+s
Y

may be expressed as a (strict) open immersion into a log blowup as in [Ogus 2018, Lemma II.1.8.2,

Remark II.1.8.5]. Hence X ⊆ Xθ is a strict closed immersion and Xθ → Y is log smooth.

Remark 1.2. Continue in the notation of Construction 1.1. If we began with a morphism of fs log rings

with f and θ both surjective, we could omit Qs → B[x1, . . . , xr , y1, . . . ys]. In that case, we obtain a

factorization

X ⊆ Xθ → Y

where Xθ → Y is not only log smooth but log étale.

As in [Behrend and Fantechi 1997], we will present the log normal cone locally as Cℓ
X/Y =[CX/Xθ/T

ℓ
Xθ/Y
]

using these factorizations. The difficulty is then piecing together the local descriptions and checking
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compatibility. In this sense, the heavy lifting has already been done for us by [Manolache 2012]. We

spend the rest of this section collecting relevant properties of the log normal sheaf N ℓ
X/Y . When we

define the log normal cone Cℓ
X/Y ⊆ N ℓ

X/Y , its important properties will be locally deduced from such

factorizations.

Remark 1.3. An algebraic stack X is DM if and only if the map X → Spec k to the base field is of

DM-type. If X→ Y is a morphism of DM type and Y admits a stratification by global quotients, then so

does X [Manolache 2012, Remark 3.2]. A morphism f : X→ Y of algebraic stacks is of DM type if and

only if its diagonal 1X/Y : X→ X ×Y X is unramified [Stacks 2005±, 06N3].

Lemma 1.4. Let f : X→ Y be a morphism of log algebraic stacks. If the map on underlying stacks is of

DM-type, then the induced maps LX→ LY and X→ LY are DM-type.

Proof. The inclusion X ⊆ LX representing strict maps is open, so it suffices to show that LX→ LY is

DM-type.

We will argue that the diagonal of LX→ LY is unramified [Stacks 2005±, 04YW]. The isomorphism

LX ×LY LX ≃ L(X ×ℓY X) identifies the diagonal 1LX/LY with the result of L applied to the fs diagonal

1ℓX/Y : X→ X ×ℓY X.

Any diagram

S0 LX

S′0 L(X ×ℓY X)

L1ℓX/Y

with S0 ⊆ S′0 a squarezero closed immersion of schemes is equivalent to a diagram

S X

S′ X ×ℓY X

1ℓX/Y

with S ⊆ S′ an exact closed immersion of log schemes. Composing with the fsification map X ×ℓY X→

X ×Y X sends this square to

S X

S′ X ×Y X

1ℓX/Y

in which case the two dashed arrows have the same underlying scheme map because X → X ×Y X is

unramified by hypothesis. Then the maps on log structure must be the same as well, because

(MX ⊕
ℓ
MY

MX )|S′→ (MX )|S′

is an epimorphism. □
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Recall the normal sheaf. If X ⊆ Y is a closed embedding with ideal I , the normal sheaf is simply

NX/Y = Spec Sym∗ I/I 2. If X → Y is smooth, then NX/Y = BTX/Y is the classifying space for the

tangent bundle. Behrend and Fantechi obtain a normal sheaf more generally by locally factoring X→ Y

into a closed immersion into affine space X ⊆ A
n
Y → Y . If X ⊆ A

n
Y can be chosen to be a regular closed

embedding, the map X→ Y is l.c.i. and the cotangent complex LX/Y is perfect of amplitude in [−1, 0].

Definition 1.5 (normal sheaf). Let f : X → Y be a DM type qcqs morphism of algebraic stacks with

cotangent complex LX/Y given by the system of truncations {τ≥−nπ
∗LX/Y }n [Olsson 2007, Theorem 8.1].

The normal sheaf is the associated Picard stack [SGA 41 1972, XVIII.1.4]

h1/h0((LX/Y, f l)
∨)

as in [Behrend and Fantechi 1997, Section 2]. An obstruction theory for f is a fully faithful functor

NX/Y ⊆ E into a vector bundle stack E over X .

Remark 1.6. The Picard stack h1/h0 only depends on the truncation τ≥−1, so we don’t need the entire

system {τ≥−nπ
∗LX/Y }n . Moreover, we can bypass π and pull back directly to the big fppf site

X f l→ Xlis− ét
π
−→ Xét.

Factor the map f locally as X ⊆ M→ Y as a closed immersion composed with a smooth map M→ Y .

Writing I = IX/M for the ideal sheaf, we obtain a map

LX/Y → [I/I 2→�M/Y ]

which induces isomorphisms on the first two cohomology groups h−1, h0. This identifies their Picard

stacks

NX/Y ≃ [NX/M/TM/Y |X ].

The functor of points of the normal sheaf on a X -scheme S is given by the category of algebra extensions

NX/Y (S)= Ext(LX/Y |S,OS)=

{
OY |S

0 OS A OX |S 0

a squarezero algebra

extension on ét(T )

}
.

Definition 1.7 (log normal sheaf). Let f : X→ Y be a DM type qcqs morphism between log algebraic

stacks. Define the log normal sheaf N ℓ
X/Y := NX/LY = h1/h0(LℓX/Y, f l

∨
).

We will also have cause to consider NLX/LY , and NLX/LY |X = N ℓ
X/Y .

Remark 1.8. Locally in X and Y , f factors as X ⊆ M→ Y with X ⊆ M a strict closed immersion and

M→ Y log smooth by Construction 1.1. We have a similar presentation

N ℓ
X/Y = [NX/M/T ℓ

M/Y |X ].
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One may alternately define N ℓ
X/Y by gluing together these local presentations as in [Behrend and Fantechi

1997, Corollary 3.9]. One checks for Y → Z étale that the map on normal sheaves N ℓ
X/Y ≃ N ℓ

X/Z is an

isomorphism.

One may alternately use Gabber’s notion of log cotangent complex L
G
X/Y because the two agree on

truncations τ≥−2L
ℓ
X/Y ≃ τ≥−2L

ℓ
X/Y [Olsson 2005, Theorem 8.27]. Gabber’s version has the advantage

that a distinguished triangle exists for all composable pairs of arrows X→ Y → Z .

We claim the functor of points of N ℓ
X/Y on an X -scheme S is given by squarezero extensions of algebras

OY |S

0 OS A OX |S 0

together with a ªlog structureº MA→A making

A∗ O∗X |S

MA MX |S

a pushout. We avoid this perspective because it requires squarezero extensions and log structures on étale-

locally ringed topoi ( ét(T ),OX |T ), (ét(T ),A). The reader may notice a resemblance to ªdeformations of

log structuresº in [Illusie 1997] and to the classical notion of squarezero extensions along a map X→ Y

reprised in [Olsson 2005, Section 5].

Remark 1.9. The central object of this paper is a subcone stack Cℓ
X/Y ⊆ N ℓ

X/Y introduced in the next

section. This substack has no functor of points, as it is defined by a blowup; see [Khan and Rydh 2018]

for a derived workaround. Most of our arguments about Cℓ
X/Y go by way of the functor of points of N ℓ

X/Y ,

together with a pointwise argument to compare these substacks.

Functoriality of Nℓ
X/Y

. To write down the functoriality of the log normal sheaf, we need to recall some

of the machinery of log stacks found in [Olsson 2005].

We denote Li := L[i], the stack of i-simplices of fs log structures. The j-th face map d j sends

(M0→ M1→ · · · → Mi+1) 7→





(M1→ M2→ · · · → Mi+1) if j = 0,

(M0→ · · · → M j−1→ M j+1 · · · → Mi+1) if j ̸= 0, i + 1,

(M0→ · · · → Mi ) if j = i + 1.

We write s, t : L1 → L0 = L for the ªsourceº d1 and ªtargetº d0 maps, respectively. We have an

isomorphism Li = L1×t,L,s L
1×t,L,s · · · ×t,L,s L

1 (i factors).

Endow Li with the final tautological log structure, Mi+1 in the above. All the face maps d j are strict

except j = i + 1.
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We continue [Olsson 2005] to use ª□º to denote the category with these objects, arrows, and relations:

0 1

2 3

◦

◦

We adopt pictorial mnemonics for fully faithful morphisms of these finite diagrams: means the functor

[2] ⊆□ avoiding 2, etc.

A commutative square

X ′ X

Y ′ Y

should lead to a map N ℓ
X ′/Y ′→ N ℓ

X/Y . This square does not induce a commutative diagram

X ′ X

LY ′ LY

×

so the naive strategy to get a map N ℓ
X ′/Y ′→ N ℓ

X/Y doesn’t work. To get around this, Olsson introduces

another stack.

Definition 1.10 (compare [Olsson 2005, Lemma 3.12]). Define V := L1×ℓt,L,t L
1. Given a scheme T ,

the points of this stack are cocartesian squares of fs log structures:

V(T ) :=

{
M0 M1

M2 M3

ℓ⌟

}

This is the ªfsificationº of the ordinary pullback L1×t,L,tL
1, endowed with the non-fs pushout M1⊕

mon
M0

M2

of the universal log structures.

The natural embedding V→ L□ exhibits the squares which are cocartesian as an open substack, as

we’ll record in Lemma 1.12.

For a morphism q : Y ′→ Y of log algebraic stacks, we obtain relative variants

Vq := V × ,L1 Y ′, L
□

q := L
□× ,L1 Y ′.

The fs pullback here agrees with the ordinary one because Y ′→ L1 is strict. The points of these stacks

over some scheme T are squares

MY |T MY ′ |T

M0 M1

with those of Vq required to be cocartesian.
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Lemma 1.11. Let Larb f ine denote the stack of log structures which are fine but not necessarily saturated.

The natural monomorphism

L ↪→ L
arb f ine

is an open immersion.

Proof. Consider some scheme X and pullback diagram:

X f s L

X Larb f ine

⌜

Then X f s ↪→ X is a monomorphism, the locus where the stalks of MX are saturated. After passing to an

open cover of X , [Ogus 2018, Theorem II.2.5.4] provides us with a locally finite stratification X =
⊔
σ∈6

Xσ

where:

• For each σ ∈6, M X |σ is constant.

• The cospecialization maps for x ∈ {ξ} ⊆ X

M x → Mξ

are localizations at faces.

The localization of a saturated monoid remains saturated [Ogus 2018, Remark I.1.4.5] and a monoid

is saturated if and only if its characteristic monoid is [loc. cit., Proposition I.1.3.5]. We then have that

X f s ⊆ X is locally a constructible subset which is closed under generalization, and hence open [Stacks

2005±, Tag 0542]. □

We collect several results of [Olsson 2005] adapted to the fs setting.

Lemma 1.12 [Olsson 2005, Theorem 2.4, Proposition 2.11, Lemma 3.12]. These statements remain true

in the fs context:

(1) For any finite category 0, the fibered category L0 of diagrams of fs log structures indexed by 0 is an

algebraic stack.

(2) The simplicial face maps d j : L
i+1→ Li are strict, étale, and DM-type for j ≤ i .

(3) If [1] →□ avoids the initial object 0 ( or ), it induces a strict étale, DM-type morphism

L
□→ L

1.

(4) If [2] →□ omits either 1 or 2 ( or ), it induces an étale, DM-type morphism

L
□→ L

2.

(5) The map V ⊆ L□ is an open embedding.
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(6) Given an fs pullback square

X ′ X

Y ′ Y

⌜ℓ

q

the associated square of stacks

X ′ X

Vq LY

⌜

is a pullback.

Proof. Facts (1) through (4) are immediate by Lemma 1.11 and the analogous facts in [Olsson 2005]. The

last two follow by the same arguments applied in the fs category. □

Remark 1.13. Apply L once more to the map LY → Y , one gets

d1 : L
2Y → LY, (MY → M0→ M1) 7→ (MY → M1).

The result is étale, so the original d1 : LY → Y is log étale [Olsson 2003, Theorem 4.6(ii)]. The same

reasoning implies di+1 : L
i+1Y → Li Y is log étale in general. In summary, all the face maps are log étale

and all but j = i + 1 are furthermore strict étale.

Remark 1.14. Given q : Y ′→ Y DM, the natural maps

Vq ⊆ L
□

q → LY ′

are étale. The second map is the product of the étale map

∗
: L□→ L

2

over L1 (via ) with Y ′.

Definition 1.15. Use Lemma 1.12(6) to turn one commutative square of DM maps into another:

X ′ X

Y ′ Y.
q

⇝

X ′ X

L□q LY

Maps of normal sheaves

ϕ : N ℓ
X ′/Y ′ ≃ NX/L□

q
→ N ℓ

X/Y

arise from Remark 1.14 and the second square. This coincides with the ªnatural mapº

L
ℓ
X/Y |X ′→ L

ℓ
X ′/Y ′

of [Olsson 2005, (1.1.2)]. We call the composite ϕ Olsson’s morphism.
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Remark 1.16. In Definition 1.15, if the first square was an fs pullback square, the second factors:

X ′ X

Vq L□q LY

⌜

Since this square is a pullback, Olsson’s morphism

ϕ : N ℓ
X ′/Y ′ ≃ NX ′/L□

q
≃ NX ′/Vq ↪→ N ℓ

X/Y |X ′

is then a closed immersion. This may be checked locally in X, Y , so we assume there is a factorization

X ⊆ Xθ → Y as in Construction 1.1. Take the fs pullback

X ′ X

X ′θ Xθ

Y ′ Y

⌜ℓ

⌜ℓ

along q to obtain a factorization X ′ ⊆ X ′θ → Y ′. The strict case gives NX ′/X ′θ
⊆ NX/Xθ |X ′ and pullback

identifies the tangent spaces T ℓ
X ′θ/Y ′ ≃ T ℓ

Xθ/Y |X ′θ .

If X→ Y is also log flat, ϕ is an isomorphism [Olsson 2005, (1.1(iv))]. This is not true if q is log flat,

as seen in Remark 2.13. See Lemmas 2.14, 2.15 for the strict case.

Remark 1.17. A commutative square of DM maps may be factored:

X ′ X

Y ′ Y

f

q

⇝

X ′ X

L□q LY

Y ′ Y

(1)

This induces a commutative square of normal sheaves:

N ℓ
X ′/Y ′ ≃ NX ′/L□

q
N ℓ

X/Y

NX ′/Y ′ NX/Y

◦
(2)

The Olsson morphisms are thereby seen to be compatible with the ordinary functoriality of the normal

sheaf via the forgetful maps N ℓ
X/Y → NX/Y .
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Now suppose the original square (1) is an fs pullback:

• If q is strict, then (2) is cartesian. This is local in X, Y , so we assume we have a factorization as in

Construction 1.1

X ⊆ Xθ → A
r+s
Y → Y

and take the ordinary scheme-theoretic pull back to obtain a similar factorization of X ′ → Y ′ using

strictness of q. Since X ⊆ A
r+s
Y is a closed immersion, the statement reduces to the cartesian square of

ordinary normal sheaves

NX ′/X ′θ
NX/Xθ

NX ′/Ar+s
Y ′

NX/Ar+s
Y

⌜

which may be checked using the functor of points, for example.

• If instead f is strict, then X ′→ Vq factors through Y ′, and the factorization

X ′ X

Y ′ Y

Vq LY

⌜

⌜

shows that the vertical arrows of (2) are isomorphisms and the Olsson morphism is the same as the

ordinary functoriality of the normal sheaf.

Remark 1.18. Given a commutative square

X ′ X

Y ′ Y
q

of DM maps we can form two other commutative squares out of it:

X ′ X X ′ LX

L□q LY LY ′ LY

They induce morphisms

N ℓ
X ′/Y ′ ≃ N ℓ

X ′/L□
q
→ N ℓ

X/Y |X ′ and N ℓ
X ′/Y ′→ NLX/LY |X ′ .
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Form the diagram

X ′ LX X

L□q L2Y LY

LY ′

s

⌜

d0

to see that the two morphisms of normal sheaves are compatible:

N ℓ
X ′/Y ′ ≃ NX ′/L□

q
→ NLX/L2Y |X ′ ⊆ N ℓ

X/Y |X ′ .

L. Barrott pointed out to the author that ªCondition (T)º as phrased in [Olsson 2005, (1.5.1)] ensures

étale locally that the square

LX X

L2Y LY

⌜

above is Tor-independent.

Lemma 1.19. Suppose given a pair of commutative squares

X ′ Y ′ Z ′

X Y Z
f g

of DM-type maps. The diagram

N ℓ
Y ′/Y

N ℓ
X ′/X N ℓ

Z ′/Z

commutes, where all the arrows are Olsson’s morphisms.

Proof. Introduce an algebraic X -stack W , with functor of points:

{
W

T X

}
:=

{
M2 M1 M0

MX |T MY |T MZ |T

commutative diagrams of

fs log structures on T

}

In other words, W := (L□×L1 L□)×L2 X .
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All the triangles in this diagram commute by inspection:

NX/L□
g◦ f

N ℓ
X ′/X NX/W N ℓ

Z ′/Z

NX ′/L□
f

NY/L□
g

N ℓ
Y ′/Y

∼

∼

∼

Restricting the diagram to N ℓ
X ′/X , N ℓ

Y ′/Y , and N ℓ
Z ′/Z , we get the result. □

Proposition 1.20. Given X
f
−→ Y

g
−→ Z DM-type maps of log algebraic stacks, the Olsson morphisms

yield a complex of stacks

N ℓ
X/Y → N ℓ

X/Z → N ℓ
Y/Z |X ,

in that the composite factors through the vertex.

If h is smooth, N ℓ
Y/Z = BT ℓ

Y/Z and rotating the triangle in the derived category yields an exact sequence

of cone stacks:

T ℓ
Y/Z |X → N ℓ

X/Y → N ℓ
X/Z .

Proof. The Olsson morphisms come about from the commutative diagram:

X X Y

Y Z Z

⇝

N ℓ
X/Y N ℓ

Y/Y |X = X

N ℓ
X/Z N ℓ

Y/Z |X

0

Use Gabber’s log cotangent complex as in Remark 1.8 and rotate to get a distinguished triangle

L
G
X/Z → L

G
X/Y → L

G
Y/Z |X [1]

+1
−→ .

Then L
ℓ
Y/Z =�

ℓ
Y/Z [0] and h1/h0(LG

Y/Z [1])|X = h1/h0(LℓY/Z [1])|X = T ℓ
Y/Z |X . □

Remark 1.21. Suppose given a (not necessarily commutative) finite diagram of cones. If the diagram

induced by taking abelian hulls is commutative, so was the original.
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2. Properties of the log normal cone

We are ready to define the log normal cone. We recall the essential properties of the ordinary normal

cone; the rest of the section establishes analogous properties in the log context.

Remark 2.1. Consider a DM-type morphism f : X→ Y of algebraic stacks. K. Behrend and B. Fantechi

defined the (intrinsic) normal cone [Behrend and Fantechi 1997, Definition 3.10]

C f = CX/Y ⊆ NX/Y ;

C. Manolache [2012, Definition 2.30] removed their assumptions of smooth Y and DM X . This cone has

the following basic properties:

(1) A commutative diagram

X ′ X

Y ′ Y

f

q

yields a morphism of cones ϕ : CX ′/Y ′→ CX/Y ×X X ′:

• If the square was cartesian, ϕ is a closed embedding.

• If the square was cartesian and also f or q was flat, ϕ is an isomorphism.

(2) For a composite

X
f
−→ Y

g
−→ Z :

• If g is l.c.i., CX/Y = NX/Y and the sequence

NX/Y → CX/Z → CY/Z |X

of cone stacks is exact.

• If h is smooth, the sequence

TY/Z |X → CX/Y → CX/Z

is exact.

(3) Obstruction theories and Gysin pullbacks are obtained by placing the cone in a vector bundle

stack CX/Y ⊆ E via an isomorphism A∗E ≃ A∗X called ªintersecting with the zero section;º see

[Manolache 2012, Section 3; Wise 2011, Proposition 3.6; Kresch 1999, Section 6.2].

Definition 2.2 (log intrinsic normal cone, Olsson morphisms). Let f : X→ Y be a DM-type morphism

of log algebraic stacks. We define the log (intrinsic) normal cone

Cℓ
X/Y := CX/LY ⊆ N ℓ

X/Y
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after [Gross and Siebert 2013]. Endow it with the log structure pulled back from X . Given a commutative

square of log algebraic stacks and its partner:

X ′ X

Y ′ Y
q

⇝

X ′ X

L□q LY

The latter induces

ϕ : Cℓ
X ′/Y ′ ≃ CX ′/L□

q
→ Cℓ

X/Y .

This is again called the Olsson morphism.

Remark 2.3. The map LY→ Y has a section Y ⊆LY which is an open immersion. This open immersion

represents strict log maps to Y .

As a result, if X → Y is DM and strict, Cℓ
X/Y = CX/Y and N ℓ

X/Y = NX/Y . In addition, the Olsson

morphisms are the same as the ordinary functoriality of the normal cone (Remarks 1.21 and 1.17).

The Olsson morphism of any fs pullback square is a closed immersion, because it fits into a commutative

square of closed immersions from Remark 1.16:

Cℓ
X ′/Y ′ Cℓ

X/Y |X ′

N ℓ
X ′/Y ′ N ℓ

X/Y |X ′

Remark 2.4 (short exact sequences of cone stacks). Recall [Behrend and Fantechi 1997, Definition 1.12].

Let E be a vector bundle stack and C, D cone stacks all on some base algebraic stack X . A composable

pair of morphisms of cone stacks

E→ C→ D

is called a short exact sequence if:

• C→ D is a smooth epimorphism.

• The square

E ×C C

C D

pr2

σ

where pr2 is the projection and σ the action, is cartesian.

These are equivalent to having C ≃ E ×X D locally in X .
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Note that this definition is fpqc-local in the base X [Stacks 2005±, 02VL]. Another reduction we will

need applies in case there is a commutative diagram of cone stacks

E C D

E ′ C ′ D′

s t

with E, E ′ vector bundles. If the top sequence is exact and the arrows labeled s, t are smooth and

surjective, then the bottom is exact. To see this, push out along E → E ′ so as to assume E = E ′ (s, t

remain smooth and surjective). The diagram on the left is the pullback along the smooth surjection

D′→ D of the one on the right:

E ×C ′ C ′ E ×C C

C ′ D′ C D

⌜

We can verify that E ×C is the pullback after smooth-localizing.

Proposition 2.5. Suppose X
f
−→ Y

g
−→ Z are DM maps between log algebraic stacks, and g is log

smooth. Then

T ℓ
Y/Z |X → Cℓ

X/Y → Cℓ
X/Z

is an exact sequence of cone stacks.

Proof. Encode the log structures on the maps via the top row of the diagram:

X LY L2 Z L2

Y LZ L1

⌜ ⌜

Since Y → LZ is smooth, LY → L2 Z is. Moreover, they have the same tangent bundle

T ℓ
Y/Z |LY = TY/LZ |LY = TLY/L2 Z

since the vertical maps are log étale [Ogus 2018, Corollary IV.3.2.4].

Together with the isomorphism Cℓ
X/Z ≃ CX/L2 Z , we obtain the exact sequence. □

Remark 2.6. In the proof, the composite

Cℓ
X/Y → CX/L2 Z ≃ Cℓ

X/Z
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is precisely the Olsson morphism. This is immediate from the diagram:

X X

L□q L2 Z

LY LZ

Remark 2.7. The introduction promised three characterizations of Cℓ
X/Y .

The log intrinsic normal cone is characterized by the strict case of Remark 2.3 and the log étale case

of Proposition 2.5. This is because any map X→ Y factors into the strict map X→ LY composed with

the log étale map LY → Y (Remark 1.13).

We can unpack this definition locally using charts. Suppose a morphism has a global fs chart by Artin

cones:

X Y

AP AQ

The morphism AP → AQ is log étale [Olsson 2003, Corollary 5.23]. Let W = AP ×
ℓ
AQ

Y denote the fs

pullback, so that X→ Y factors through a strict map to W and W is log étale over Y . We immediately get

Cℓ
X/Y = CX/W .

The reader may be reassured by working locally with this definition. If the reader wants instead to work

with charts Spec(P→ C[P]) in the traditional sense, then log étaleness is no longer immediate and we

must check Kato’s criteria [Ogus 2018, Corollary IV.3.1.10].

Recall Construction 1.1 Ð after localizing in the étale topology, we obtain a factorization of any map

X→ Y as a strict closed immersion followed by a log smooth map

X ⊆ Xθ → Y.

Proposition 2.5 therefore locally provides a presentation of the log normal cone:

Cℓ
X/Y = [CX/Xθ /T ℓ

Xθ/Y ].

Remark 2.8. We want to work with quasicompact, quasiseparated stacks, but L is not quasicompact. It

is quasiseparated in the sense of [Stacks 2005±, 04YW], but [Olsson 2003, Remark 3.17] points out it is

not quasiseparated in the sense of [Laumon and Moret-Bailly 2000]; see [Chou et al. 2020, Remark 1.1].

A map X → Y between algebraic stacks with X quasicompact factors through a quasicompact open

substack U ⊆ Y .
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This ensures that any DM map X→ Y of log stacks with X quasicompact and X, Y quasiseparated

factors through X→U → Y with X→U strict, U quasicompact and quasiseparated, and U → Y log

étale.

Example 2.9. We provide an example of Construction 1.1 and Remark 1.2.

Consider the diagonal morphism A1 1
−→ A2. The addition map N2 +

−→ N gives a chart for 1.

Denote by B the log blowup of A2 at the ideal I ⊆ MA2 generated by N2 \ {0} ⊆ N2. The pullback

1∗ I is generated by the image of the composite

N
2 \ {0} ⊆ N

2 +
−→ N.

The pullback is generated globally by a single element and so 1 factors through the log blowup B.

Name the generators N2 = Ne⊕N f . The log blowup B is covered by two affine opens D+(e) and

D+( f ), on which e and f are invertible.

On the chart D+(e), the morphism A1→ B looks like:

N Ne⊕N( f − e)

C[t] C

[
x,

y
x

]

The horizontal morphisms send f − e 7→ 0 and
y
x 7→ 1. Because ( f − e) maps to 1 ∈ C[t], the composite

Ne⊕N( f − e)→ N→ C[t]

is another chart for the same log structure on A1. This means that A1 → D+(e) is strict. The same

discussion applies to D+( f ). In the tropical picture [Cavalieri et al. 2020, Section 2], we subdivided A2

at the image of the ray corresponding to A1:

A1

A2

Proposition 2.10. Consider DM-type morphisms X
f
−→ Y

g
−→ Z between log algebraic stacks. If

Cℓ
X/Y = N ℓ

X/Y , then

N ℓ
X/Y → Cℓ

X/Z → CLY/LZ |X

is an exact sequence of cone stacks.

Proof. Compare [Behrend and Fantechi 1997, Proposition 3.14].

By Proposition 1.20 and Remark 1.18, this sequence composes to zero. Remark 2.4 allows us to

repeatedly fpqc-localize in X to check exactness of such a sequence. Localizing along strict smooth

covers of Z and strict étale covers of X and Y ensures that the normal cones and sheaf pull back. Reduce
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to the case where X , Y , and Z are affine log schemes and the map Y → Z admits a global fs chart. We

are therefore in the situation of Construction 1.1.

Reduction to g : Y → Z strict: Factor Y → Z into a strict closed immersion composed with a log

smooth map

Y ⊆W ↠ Z .

We obtain a diagram:

T ℓ
W/Z |X TLW/LZ |X

NX/Y Cℓ
X/W CLY/LW |X

NX/Y Cℓ
X/Z CLY/LZ |X

⌜

Observe that the diagram commutes Ð the morphism T ℓ
W/Z |X → Cℓ

X/W in the proof of Proposition 2.5

factors through an identification T ℓ
W/Z |LW ≃ T ℓ

LW/L2 Z
. Because LW →W is log étale, the two tangent

spaces are isomorphic [Ogus 2018, IV.3.2.4]. Thus the right square is a pullback. The vertical maps of

cones are smooth surjections, so it suffices to show the middle row is exact as in Remark 2.4. We may

thereby assume W = Z and g : Y → Z is a strict closed immersion.

Reduction to f : X→ Y strict: Use Construction 1.1 again to factor X→ Z as a strict closed immersion

composed with a log smooth map X ⊆ W ↠ Z . The map X→ W ′ := W ×Z Y is again a strict closed

immersion:

X W ′ W

Y Z

⌜ℓ (3)

Because the top row is strict, X→ LW ′ factors through the open subset W ′ ⊆ LW ′ and

CLW ′/LW |X = CLW ′/LW |W ′ |X = Cℓ
W ′/W |X = CW ′/W |X .

The fs pullback square in (3) also induces a cartesian square of stacks

LW ′ LW

LY LZ

⌜

with LW → LZ smooth. This reveals that

CLY/LZ |LW ′ = CLW ′/LW .
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Putting this together with the above, we have computed

CLY/LZ |X = CW ′/W |X .

The factorization (3) gives a diagram:

T ℓ
W ′/Y |X T ℓ

W/Z |X

NX/W ′ Cℓ
X/W CW ′/W |X

NX/Y Cℓ
X/Z CLY/LZ |X

The composable vertical arrows are the quotients of Proposition 2.5, so the bottom row will be exact

if we show the middle row is. The middle row is exact by a relative form of the original [Behrend and

Fantechi 1997, Proposition 3.14]. □

Remark 2.11. The exact sequences of cone stacks in Propositions 2.5, 2.10 are natural in morphisms of

composable pairs of arrows.

There is a version of Proposition 2.10 for log cotangent complexes that we will use once later on. From

any composable pair X → Y → Z , we get X → LY → LZ and X → LY → L2 Z . Both result in the

same distinguished triangle

LLY/LZ |X → L
ℓ
X/Z → L

ℓ
X/Y →

of [Olsson 2007, 8.10].

In the next example, the log normal cone differs from the ordinary scheme-theoretic one.

Example 2.12. In Example 2.9, we considered the log blowup B of A2 at the origin and the diagonal

map. Pull back along the diagonal to get the identity log blowup of A1:

A1 B

A1 A2

⌜ℓ

Let ōN, ōN2 both be Spec C, with log structures coming from N and N2, respectively. Then the

inclusions of the origins ōN ∈ A1 and ōN2 ∈ A2 are strict.

Take the pullback of the above diagram along the inclusion ōN2 ∈ A2:

ōN D

ōN ōN2

⌜ℓ
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The map D → ōN2 is the exceptional divisor of B, which is P1 with log structure M x = N2 at the

intersections with the axes and M x = N elsewhere.

To see the log normal cone differ from the ordinary one, compute the normal cones of the arrows in

this square: Cℓ
ōN/ōN

= ō, Cℓ
ōN/ōN2

= Cℓ
ōN/D = A1, and Cℓ

D/ō
N2
= P1. Although ōN and ōN2 have the same

underlying scheme, the log normal cones of ōN over them are different.

Remark 2.13. A handy consequence of Proposition 2.10 is that, if Y → Z is a DM-type morphism

between log algebraic stacks and Y ′→ Y is a strict étale map, then

Cℓ
Y ′/Z ≃ Cℓ

Y/Z |Y ′ .

This is not true without the strictness assumption. This is the observation of W. Bauer precluding the

existence of a log cotangent complex with all its desiderata; see [Olsson 2005, Section 7].

In general, it need only be a closed immersion. This is because

Cℓ
Y ′/Z ≃ CLY/LZ |Y ′ ⊆ NLY/LZ |Y ′ ⊆ N ℓ

Y/Z |Y ′

is a closed immersion which factors through Cℓ
Y/Z |Y ′ , as in Remark 1.18.

For a single example, take the log blowup B→ A2 of the origin ō ∈ A2. The pullback defines a strict

pullback square:

D B

ō A2

⌜ℓ

Because the horizontal morphisms are strict, their log normal cones coincide with the ordinary ones.

Log blowups are log étale, so we would erroneously be led to conclude that

CD/B
?
= Cō/A2 |D.

The inclusion D ⊆ B is regular, and so is ō ∈ A2, so the normal cones and normal sheaves agree:

ND/B =OB(D)|D and Nō/A2 |D = A
2
D.

The dimensions are different, so they can’t be equal.

Lemma 2.14. Suppose given a strict pullback square

X ′ X

Y ′ Y

⌜ℓ

q

of DM-type morphisms between log algebraic stacks for which q is strict and smooth. Then the Olsson

morphism

Cℓ
X ′/Y ′

∼−→ Cℓ
X/Y |X ′

is an isomorphism.
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Proof. We first note that the Olsson morphism N ℓ
X ′/Y ′→ N ℓ

X/Y |X ′ on log normal sheaves is an isomorphism.

This is clear from the q strict pullback part of Remark 1.17 and the fact that the ordinary normal sheaves

are isomorphic.

Now we know that the morphism of cones Cℓ
X ′/Y ′→ Cℓ

X/Y |X ′ is a closed immersion, and it suffices to

show that it is moreover smooth and surjective. We express this map as a composite

Cℓ
X ′/Y ′→ Cℓ

X ′/Y → Cℓ
X/Y |X ′ .

Proposition 2.5 asserts that the first map is smooth and surjective and Proposition 2.10 says the same for

the second. □

Lemma 2.15. Suppose given a pair of fs pullback squares

X̃ ′ X̃

X ′ X

Y ′ Y

⌜ℓ
z

⌜ℓ

of DM-type morphisms between log algebraic stacks for which z is strict and smooth. Then the diagram of

log normal cones

Cℓ

X̃ ′/Y ′
Cℓ

X̃/Y

Cℓ
X ′/Y ′ Cℓ

X/Y

s′
⌜

s

is cartesian and the arrows s, s ′ are smooth epimorphisms.

Proof. Proposition 2.10 provides a map of short exact sequences of cone stacks:

BT ℓ

X̃ ′/X ′
Cℓ

X̃ ′/Y ′
Cℓ

X ′/Y ′ |X̃ ′

BT ℓ

X̃/X
|X̃ ′ Cℓ

X̃/Y
|X̃ ′ Cℓ

X/Y |X̃ ′

t ′

⌜

t̃

Witness that the right square is cartesian because [Olsson 2005]

T ℓ

X̃ ′/X ′
= T ℓ

X̃/X
|X̃ ′
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and that the arrows t ′, t̃ are clearly smooth epimorphisms. The arrow t̃ is pulled back from the smooth

epimorphism t : Cℓ

X̃/Y
→ Cℓ

X/Y |X̃ , so we have the top pullback square:

Cℓ

X̃ ′/Y ′
Cℓ

X̃/Y

Cℓ
X ′/Y ′ |X̃ ′ Cℓ

X/Y |X̃ X̃

Cℓ
X ′/Y ′ Cℓ

X/Y X

t ′
⌜

s′

t s

⌜ ⌜

The composite vertical rectangle of cones is the diagram we are after, and so the fact that this square is

cartesian is clear. It remains only to note the bent arrows s, s ′ are smooth epimorphisms because they are

the composites of t, t ′ with pullbacks of the smooth epimorphism X̃→ X . □

3. Log intersection theory

We develop a log intersection theory package using log cotangent complexes and log normal cones in

place of the ordinary ones, closely following [Manolache 2012, Sections 3 and 4].

Definition 3.1 (log perfect obstruction theory). Define a log perfect obstruction theory (hereafter ªLog

POTº) for a DM-type morphism f : X→ Y to be a closed immersion of cone stacks

Cℓ
X/Y ⊆ E (equiv. N ℓ

X/Y ⊆ E)

of the log normal cone into a vector bundle stack E .

Given an fs pullback square

X ′ X

Y ′ Y

f ′
⌜ℓ

f

and a Log POT Cℓ
X/Y ⊆ E for f , the Olsson morphism

Cℓ
X ′/Y ′

ϕ
↪−→ Cℓ

X/Y |X ′ ⊆ E |X ′

defines a pullback Log POT.

A related notion of pullback Log POT arises when X ′→ X is log étale and f : X→ Y any DM-type

map. Then Remark 2.13 shows the map

Cℓ
X ′/Y → Cℓ

X/Y |X ′

is a closed immersion, and we can compose with an obstruction theory for f to get one for the composite

X ′→ X→ Y .
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Given a Log POT Cℓ
X/Y ⊆ E for some f , suppose X has a stratification by global quotient stacks and

Y is log smooth and equidimensional. Then [Kresch 1999, Proposition 5.3.2] gives us a unique cycle

[X, E]ℓvir ∈ A∗X

which pulls back to the class [Cℓ
X/Y ] ∈ A∗E . This class is called the log virtual fundamental class

(hereafter ªLog VFCº).

Remark 3.2. When LY is equidimensional, so is Cℓ
X/Y . The correct definition of the Log VFC requires

that the cone be equidimensional. If Y is log smooth, Y ⊆ LY is dense. If Y is also equidimensional, we

get that LY is. This explains our assumptions in Definition 3.1. We don’t include these assumptions in

the definition of a Log POT only because we may have log Gysin maps more generally.

Nonequidimensional log stacks arise naturally elsewhere in log Gromov±Witten theory. For example,

the stacks of punctured log curves M̆ and punctured maps M̆(X /B) to an Artin fan X are not equidi-

mensional. They are ªidealized log smoothº over the base [Abramovich et al. 2020, Proposition 3.3,

Theorem 3.24], which locally entails a composite of a log smooth map and a closed embedding coming

from a monoidal ideal.

Definition 3.3 (log Gysin map). Suppose a DM-type f : X → Y has a Log POT Cℓ
X/Y ⊆ E . Given a

DM-type log map k : V → Y with V log smooth and equidimensional, form the fs pullback:

W V

X Y

⌜ℓ
k

f

The embedding

Cℓ
W/V ⊆ Cℓ

X/Y |W ⊆ E |W

results in a class

[Cℓ
W/V , E] ∈ A∗W.

Mimicking [Manolache 2012], we call this ªmapº

f ! = f !E

the log Gysin map.

Remark 3.4. Consider a DM-type morphism f : X→ Y of log algebraic stacks. The cartesian square

LX X

L2Y LY

s

⌜

d0

from Remark 1.18 results in a closed embedding

CLX/LY ≃ CLX/L2Y ⊆ Cℓ
X/Y |LX
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which we use to canonically extend an obstruction theory Cℓ
X/Y ⊆ E to a closed embedding

CLX/LY ⊆ E |LX .

Now suppose given a composable pair X
f
−→ Y

g
−→ Z as above and equip f, g with Log POT’s

Cℓ
X/Y ⊆ F, Cℓ

Y/Z ⊆ G.

Define a compatibility datum or compatible triple for such a pair to be a traditional compatibility datum

[Manolache 2012, Definition 4.5] for

X
f
−→ LY

g
−→ L

2 Z ,

endowing LY → L2 Z with the extended obstruction theory

CLY/L2 Z ⊆ Cℓ
Y/Z |LY ⊆ G|LY .

This entails a commutative diagram in the derived category of X

G|X E F

LLY/L2 Z |X L
ℓ
X/Z L

ℓ
X/Y

+1

+1

where

• the rows are distinguished triangles,

• the objects E,F,G are of perfect amplitude in [−1, 0], inducing vector bundle stacks E, F,G,

• the vertical arrows are isomorphisms on h0 and epimorphisms on h−1, inducing obstruction theories

Cℓ
X/Z ⊆ E , Cℓ

X/Y ⊆ F , CLY/L2 Z ⊆ G|LY .

We offer a couple of basic remarks about our definitions before the examples and theorems.

Remark 3.5. The map f ! just defined takes in log smooth equidimensional stacks DM over Y and

produces classes in certain Chow Groups. The operations f ! are refined to log Chow in [Barrott 2018;

Herr et al. 2023].

Remark 3.6. Given an fs pullback square

X ′ X

Y ′ Y

f ′
⌜ℓ

f

of DM maps where f has a Log POT: Cℓ
X/Y ⊆ E , endow f ′ with the pullback Log POT. Then

f ! = f ′!

when applied to log smooth, equidimensional log schemes over Y ′.
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Remark 3.7. If Cℓ
X/Y = N ℓ

X/Y for a DM morphism f : X→ Y , then N ℓ
X/Y is a vector bundle stack. One

locally factors X ⊆ Xθ → Y as in Construction 1.1 and recognizes CX/Xθ ≃ NX/Xθ , implying X ⊆ Xθ is

regular and NX/Xθ is a vector bundle. We can then take E = N ℓ
X/Y as an obstruction theory. If X, Y are

equidimensional and Y is log smooth, unwinding definitions shows

f !(Y )= [X ],

where [X ] is the fundamental class of X .

Remark 3.8. Log Gysin maps don’t commute with pushforward. Let

X ′ X

Y ′ Y

p

f ′
⌜ℓ

f

q

be an fs pullback square. Endow f : X → Y with a Log POT Cℓ
X/Y ⊆ E and give f ′ the pullback

obstruction theory. Then the usual equality [Manolache 2012, Theorem 4.1(i)] can fail:

f !q∗ ̸= p∗ f ′!.

Take the square of Example 2.12

ōN D

ōN ōN2

⌜ℓ

and apply both operations to [ōN] for a counterexample.

This arises in [Holmes et al. 2019] because pushing forward along various blowups fails to preserves

intersection products of DR cycles. This phenomenon was also observed in [Ranganathan 2019].

Remark 3.9. Virtual fundamental classes don’t push forward along log blowups: Let X → F be the

morphism from a stack X to its Artin fan (the reader may take a traditional chart instead of F). Choose a

finite subdivision F̂→ F , and form the fs pullback:

X̂ F̂

X F

p ⌜ℓ

Suppose given a map f : X→ Y with a Log POT Cℓ
X/Y ⊆ E and equip f ◦ p : X̂→ Y with the pullback

obstruction theory

Cℓ

X̂/Y
⊆ Cℓ

X/Y |X̂ ⊆ E |X̂ .

Then possibly

p∗[X̂ , E]ℓvir ̸= [X, E]ℓvir .
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A counterexample is again given by p : D→ ōN2 , f : ōN2 = ōN2 as in Example 2.12: p∗[P1] = 0 for

dimension reasons.

This doesn’t contradict the main result of [Abramovich and Wise 2018]. We offer a version of their

statement in Theorem 3.10.

The rest of this section and the next should reassure the disheartened reader that commonsense formulas

of ordinary intersection theory do remain true in the log setting. We regard Remarks 3.8, 3.9 as defects of

the usual notion of pushforward p∗ in the log setting. The morphisms ōN→ D, D→ ōN2 of Example 2.12

are monomorphisms in the fs category, and ōN→ ōN2 should be a cycle of dimension one in the ªtwo

dimensionalº log point ōN2 .

Barrott [2018] introduced log chow groups to correct this defect, in particular via suitable notions of

dimension and degree. It also contains compatibility statements between the log notion of p∗ and the

Gysin map f ! introduced here. See also [Mochizuki 2015].

For now, we content ourselves to use the observation of [Nizioø 2006, Proposition 4.3] that log blowups

are birational if the target is log smooth. We will use it to prove that weaker forms of the naïve guesses of

Remarks 3.8, 3.9 do hold true, as well as straightforward commutativity of the Gysin maps.

We will need to use Costello’s notion [2006, before Theorem 5.0.1] of ªpure degree dº to make sense

of pushforward on the level of cycles, given by cones embedded in vector bundles. The next theorem

allows us to check statements about Log VFC’s after a log blowup if the target is log smooth. Its statement

and proof are similar to [Abramovich and Wise 2018].

Theorem 3.10. Suppose given a DM-type map f : X→ Y between locally noetherian algebraic stacks

locally of finite type over C where Y is log smooth and equidimensional. Endow f with a Log POT E and

let X→ F be any DM morphism to an Artin Fan. Take the fs pullback along a proper birational map of

Artin fans:

X̂ F̂

X F

p ⌜ℓ (4)

For example, F̂→ F could be a subdivision or a root stack.

Endow f ◦ p with the pullback Log POT

Cℓ

X̂/Y
⊆ Cℓ

X/Y |X̂ ⊆ E |X̂ .

Then

p∗[X̂ , E]ℓvir = [X, E]ℓvir

Proof. We will actually show that the map

t : Cℓ

X̂/Y
→ Cℓ

X/Y
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is of pure degree one. Then the pushforward A∗E |X̂ → A∗E sends the class of one cone to the other, and

ªintersecting with the zero sectionº gives the equality of VFC’s.

We will reduce to the case where X → F is strict. The statement ªt is of pure degree oneº may be

verified étale-locally in X , as we now argue.

Given a strict étale cover X ′→ X , write X̂ ′ := X̂ ×X X ′. We have a pullback diagram

Cℓ

X̂ ′/F
Cℓ

X ′/F X ′

Cℓ

X̂/F
Cℓ

X/F X

t ′

⌜ ⌜

t

as in Remark 2.13. Since X ′→ X is étale, the other vertical arrows are as well. The property ªpure

degree oneº is smooth-local in the target, so t has it if t ′ does.

Now étale-localize in X so that X → F factors through a chart X → FX → F for X . Take the fs

pullback along the subdivision F̂→ F :

X̂ F̂X F̂

X FX F

⌜ℓ ⌜ℓ

We can then replace F by FX in the proof of the theorem and assume X→ F is strict.

Apply the proof of Costello’s formula [2006, Theorem 5.0.1] to (4) to conclude

t : Cℓ

X̂/F̂
→ Cℓ

X/F

is of pure degree one, since F̂→ F is birational.

Expanding upon (4):

X̂ F̂ × Y F̂

X F × Y F

Y

⌜ℓ ⌜ℓ

We get a map of exact sequences of cone stacks:

T ℓ
Y |X̂ Cℓ

X̂/F̂×Y
Cℓ

X̂/F̂

T ℓ
Y |X Cℓ

X/F×Y Cℓ
X/F

⌜
t̂ t
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After pulling the bottom row back to X̂ , we get the identity on tangent bundles and see that the right

square is a pullback. Since the propertyªof pure degree oneº pulls back along smooth maps, the quotient

maps in exact sequences of cone stacks are smooth, and t is pure degree one, t̂ is also pure degree one.

Because F, F̂ are log étale over a point, Cℓ

X̂/F̂×Y
=Cℓ

X̂/Ŷ
and Cℓ

X/F×Y =Cℓ
X/Y , so the claim is proven. □

Example 3.11. One must be cautious, for Theorem 3.10 is false without the assumption that Y is log

smooth. Recall the exceptional divisor D → ō of the blowup of A2 at the origin ō = Spec C from

Example 2.12 and its normal cone Cℓ
D/ō = P1.

For the sake of contradiction, let X̂ = P1 and X = Y = ō as in the theorem. Endow Cℓ
ō/ō = ō with the

initial Log POT, E = ō. Then

[X̂ , E]ℓvir = [D, E]ℓvir = [P1] and [X, E]ℓvir = [ō, E]ℓvir = [ō],

but again p∗[P1] = 0 for dimension reasons.

Theorem 3.12 (commutativity of log Gysin map). Given a composable pair of DM-type maps between

log algebraic stacks

X
f
−→ Y

g
−→ Z ,

outfit f , g, and g ◦ f with log obstruction theories F , G, E and a compatibility datum (Remark 3.4).

Require X to admit stratifications by global quotients.

If k : V → Z is a log smooth and equidimensional Z-stack and k is DM-type, take fs pullbacks:

T U V

X Y Z

⌜ℓ ⌜ℓ

Then the equality

[Cℓ
g◦ f ⊆ E] = [Cℓ

Cℓ
g |X/C

ℓ
g
⊆ F ⊕G|X ] (5)

holds on X.

Proof. Pullback via k all obstruction theories and their compatibility datum to reduce to showing the

theorem for k : V = Z . We essentially apply [Manolache 2012, Theorem 4.8] to X → LY → L2 Z ,

endowed with the compatible triple F,G, E by composing with an isomorphism of distinguished triangles:

G|X F E

LLY/LZ |X L
ℓ
X/Z L

ℓ
X/Y

LLY/L2 Z |X LX/LZ LX/L2 Z

∼ ∼



The log product formula 1313

Use Remark 2.8 repeatedly to obtain a strict diagram with U, V quasicompact and étale over the stacks

LY,L2 Z :

X U V

LY L2 Z

Endow the cone CLY/LZ with the pullback log structure from LY and pull it back along the part of the

diagram above LY :

CLY/LZ |X = CU/V |X CU/V

CLY/LZ

The triangle is strict and the map CU/V → CLY/LZ is pulled back from the étale U → LY , so

Cℓ
CLY/LZ |X/CLY/LZ

= CCU/V |X/CU/V .

Write i : X→U j :U → V for the maps. Then the compatibility datum pulls back and [Manolache

2012, Theorem 4.8] gives us

( j ◦ i)!E([V ])= i !F ◦ j !G([V ]).

Unwinding definitions, this becomes

[CX/V ⊆ E] = [CCU/V |X/CU/V ⊆ F ⊕G|X ]. (6)

This may be rewritten as

[Cℓ
X/Z ⊆ E] = [Cℓ

CLY/LZ |X/CLY/LZ
⊆ F ⊕G|X ],

the claimed equality of classes. □

Remark 3.13. Theorem 3.12 says that

(g ◦ f )! = f !g!

in the sense that any log smooth, equidimensional log stack over Z has rationally equivalent images under

these two operations.

Remark 3.14. Consider an fs pullback of DM-type morphisms between log algebraic stacks:

X ′ X

Y ′ Y

p

f ′
⌜ℓ

f

q

Write r : X ′→ Y for the composite f ◦ p = q ◦ f ′. If f, q are endowed with Log POT’s Cℓ
X/Y ⊆ F ,

Cℓ
Y ′/Y ⊆ E , how should we give r a Log POT?
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The fs pullback square induces a pullback of stacks, which may be reexpressed as a ªmagic square:º

LX ′ LX LX ′ LX ×LY ′

LY ′ LY LY LY ×LY.

⌜
⇝

⌜

The magic square induces a closed immersion

CLX ′/LY ⊆ CLX/LY |LX ′ ×LX ′ CLY ′/LY |LX ′

which pulls back to a closed immersion

Cℓ
X ′/Y ⊆ CLX/LY |X ′ ×X ′ CLY ′/LY |X ′

on X ′. As in Remark 3.4, we have closed embeddings CLX/LY ⊆ Cℓ
X/Y |LX , CLY ′/LY ⊆ Cℓ

Y ′/Y |LY ′ . We

endow r with the Log POT given by the composite

Cℓ
X ′/Y ⊆ CLX/LY |X ′ ×X ′ CLY ′/LY |X ′ ⊆ Cℓ

X/Y |X ′ ×X ′ C
ℓ
Y ′/Y |X ′ ⊆ F |X ′ ×X ′ E |X ′ .

We now construct a compatibility datum for the triangle r = q ◦ f ′, leaving the reader to apply the same

argument to the other triangle r = f ◦ p. By the definitions of the Log POT’s, we have a commutative

diagram:

Cℓ
X ′/Y ′ Cℓ

X ′/Y CLY ′/LY |X ′

F |X ′ E |X ′ ×X ′ F |X ′ E |X ′
(0×id)

To be clear, the morphism F |X ′→ E |X ′×X ′ F |X ′ is the vertex map times the identity. It’s clear the bottom

row comes from a distinguished triangle in the derived category and the top row comes from Remark 2.11.

Corollary 3.15. Suppose given an fs pullback square

X ′ X

Y ′ Y

p

f ′
⌜ℓ

f

q

of DM-type morphisms between log algebraic stacks which admit stratifications by quotient stacks. Outfit

q with a Log POT E and f with a Log POT F ; give p, f ′ the pullback obstruction theories. Then

f ′! ◦ q ! = p! ◦ f !

in the sense that the operations send any log smooth equidimensional input stack to the same class in A∗X ′.

Proof. Denote by r : X ′→ Y the map f ◦ p = q ◦ f ′. Apply Theorem 3.12 to both commutative triangles

using the compatibility datum constructed in Remark 3.14 to see that

p! ◦ f ! = r ! = f ′! ◦ q !. □
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4. The log Costello formula

This section proves a log analogue of the Costello formula [2006, Theorem 5.0.1]. The original Costello

formula is wrong as stated due to a missing properness hypothesis; this is corrected in [Herr and Wise 2022].

Theorem 4.1. Consider an fs pullback square of DM-type maps between algebraic stacks:

X ′ X

Y ′ Y

p

f ′
⌜ℓ

f

q

Assume

• Y ′→ Y is of some pure degree d ∈Q as in [Herr and Wise 2022, Definition 2.3],

• Y ′, Y are both log smooth and equidimensional,

• all arrows are DM-type and all stacks are locally noetherian and locally finite type over C,

• X ′, X admit stratifications by global quotient stacks [Kresch 1999] and

• q is proper.

Endow f with a log perfect obstruction theory E and give f ′ the pullback obstruction theory. Then

p∗[X
′, E |X ′]

ℓvir = d · [X, E]ℓvir

in the Chow ring of X.

Remark 4.2. Let Y ′→ Y be a map between log smooth, equidimensional stacks which is of pure degree

d. Let W → Y be a smooth, log smooth, integral, and saturated morphism and W̃ →W a log blowup.

Form the fs pullback diagram:

W̃ ′ W̃

W ′ W

Y ′ Y

⌜ℓ

⌜ℓ

The property ªof pure degree dº pulls back along smooth morphisms, so it applies to W ′→ W . Then

[Nizioø 2006, Proposition 4.3] shows that W̃ →W is birational, so W̃ ′→ W̃ is also of pure degree d.

Proof of Theorem 4.1. Consider the morphism

s : Cℓ
X ′/Y ′→ Cℓ

X/Y .

We will prove that s is of pure degree d . Both ªof pure degreeº and the specific degree d can be checked

after pulling back s along a strict, smooth cover of Cℓ
X/Y . Lemmas 2.14, 2.15 show that replacing Y or X

by a smooth cover results in such a smooth cover of cones.
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We may thereby assume X and Y are log schemes and the map f globally factors as in Construction 1.1

X→ Xθ → A
r+s
Y → Y.

Note A
r+s
Y → Y is smooth, log smooth, integral, and saturated, and Xθ → A

r+s
Y is a log blowup. We

are in the situation of Remark 4.2, so pulling back

X ′ X

X ′θ Xθ

Y ′ Y

⌜ℓ

⌜ℓ

results in a map X ′θ → Xθ which is pure of degree d along X → Xθ . The proof of Costello’s formula

[2006, Theorem 5.0.1] then asserts that

Cℓ
X ′/X ′θ

→ Cℓ
X/Xθ

is of pure degree d. The short exact sequences of Proposition 2.5

T ℓ
X ′θ/Y ′ Cℓ

X ′/X ′θ
Cℓ

X ′/Y ′

T ℓ
Xθ/Y Cℓ

X/Xθ
Cℓ

X/Y

t s

let us conclude that s is as well. □

Remark 4.3. The original statement of Costello’s formula did not require q to be proper. In fact, one

can allow q to be simply ªpureº in the sense of [Herr and Wise 2022, Definition 2.3]. Without any such

assumption, one has counterexamples:

• Let Y = A1, Y ′ = Gm , X the origin, and f, q natural inclusions.

• Let Y = A1 and Y ′ be the bug-eyed line, A1 with doubled origin. Let X again be the origin and f, q

the natural maps.

Remark 4.4. We prove a K theoretic version of Costello’s formula in degree d = 1 and the corresponding

Hironaka pushforward theorem in [Chou et al. 2020, Theorem 2.7]. That proof is necessarily global,

because K theory is sensitive to higher-codimension phenomena. The same proof can be used in Chow.

5. The product formula

Let V , W be log smooth, quasiprojective schemes throughout this section. We denote the stacks of

prestable curves and stable curves which have n-markings and genus g by Mg,n,Mg,n , respectively
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[Stacks 2005±, 0DMG]. They are endowed with divisorial log structures coming from the locus of singular

curves [Gross and Siebert 2013, 1.5, Appendix A; Kato 2000].

Definition 5.1 (log stable maps). The stack of log stable maps M
ℓ
g,n(V ) has fiber over an fs log scheme

T the category of diagrams of fs log schemes

C V

T

with C→ T a log smooth curve [Kato 2000, Definition 1.2] of genus g and n marked points, such that

the underlying diagram of schemes is a stable map of curves.

Remarkably, the log algebraic stack M
ℓ
g,n(Spec C) of log curves without a map is isomorphic to

the ordinary stack of stable curves Mg,n with log structure induced by the boundary of degenerate

curves [Kato 2000, Theorem 4.5]. The log structures of M
ℓ
g,n(V ) for a general fs target may be more

complicated, as they have to do with the ªtropical deformation spaceº of the curve [Gross and Siebert

2013, Example 1.17(1)].

Construction 5.2 [Gross and Siebert 2013, Section 5]. We recall the construction [loc. cit., Section 5] of

the natural Log POT for M
ℓ
g,n(V )→Mg,n to clarify differences in notation.

Write U →Mg,n for the universal curve. Define UV as the fs pullback, naturally equipped with a

tautological map to V :

V UV M
ℓ
g,n(V )

U Mg,n

πV

⌜ℓ

This diagram induces maps between log cotangent complexes

L
ℓ
V |UV−→L

ℓ
UV /U

t
←− L

ℓ
M ℓ

g,n(V )/Mg,n
|UV .

The map U → Mg,n is integral, saturated, and log smooth according to its functor of points, so its

underlying map of stacks is flat and the fs pullback square is also an ordinary pullback.

Then t is an isomorphism [Olsson 2005, 1.1(iv)], and the log cotangent complex of V is [loc. cit., 1.1(iii)]

L
ℓ
V =�

ℓ
V [0].

We’ve written [0] to consider a coherent sheaf as a chain complex concentrated in degree 0. Via the

isomorphism t and this identification, we have obtained a map

�ℓV [0]|UV → L
ℓ
U/Mg,n

|UV . (7)
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We need the ordinary relative dualizing sheaf ωπ◦V and the identification

Lπ !V ( · )= ωπ◦V
L
⊗ Lπ∗V ( · ).

Tensor (7) by ωπ◦V and use the adjunction

�ℓV [0] |UV

L
⊗ ωπ◦V −→ Lπ !V L

ℓ
M ℓ

g,n(V )/Mg,n
and E(V ) := RπV∗(�

ℓ
V [0] |UV

L
⊗ ωπ◦V )−→ L

ℓ
M ℓ

g,n(V )/Mg,n
.

We won’t repeat the verification [Gross and Siebert 2013, Proposition 5.1] that E(V ) is a Log POT.

Remark 5.3. The map (7) comes from the map on normal cones

Cℓ
M ℓ

g,n(V )/Mg,n
|UV

∼−→ Cℓ
UV /U
−→ BT ℓ

V |UV .

We needed duality, so we opted for the other perspective.

Remark 5.4 (variants). The reader may choose to work in the relative setting of a log smooth and

quasiprojective map V → S. Obstruction Theories are obtained in the same way.

The contact order of a log stable map is locally constant and amounts to another piece of discrete data

like the genus or number of marked points. We only fix genus and number of markings to be consistent

with [Lee and Qu 2018]. The reader may readily vary the numerical type conditions in our formulas.

We need one more stack, D: Points of D over T are diagrams (C ′← C→ C ′′) of genus g, n-pointed

prestable curves over T whose maps are partial stabilizations (they lie over the identities in Mg,n) that

don’t both contract any component. In other words, C→ C ′×C ′′ itself is a stable map. This stack is

only necessary to form an fs pullback square:

Situation 5.5 [Lee and Qu 2018, Section 2]. Recall the fs pullback square:

M
ℓ
g,n(V ×W ) M

ℓ
g,n(V )×M

ℓ
g,n(W )

D Mg,n ×Mg,n

c
⌜ℓ

a

1̃

(8)

Let C→ V ×W be a log stable map over a base T . The maps (C→ V ), (C→W ) needn’t be stable;

denote their stabilizations by (C ′→ V ), (C ′′→W ), respectively.

The top horizontal arrow in (8) sends (C→ V×W ) to the induced log stable maps (C ′→ V,C ′′→W ).

The vertical arrow c sends (C→ V ×W ) to the partial stabilizations (C ′← C→ C ′′). The map 1̃ sends

a diagram (C ′← C→ C ′′) to the pair of prestable curves C ′,C ′′. Finally, a sends a pair of log stable

maps (C ′→ V,C ′′→W ) to the prestable curves (C ′,C ′′).
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This square has a factorization:

M
ℓ
g,n(V ×W ) Q M

ℓ
g,n(V )×M

ℓ
g,n(W )

D Q′ Mg,n ×Mg,n

Mg,n Mg,n ×Mg,n

h

c
⌜ℓ

⌜ℓ
a

l φ

⌜ℓ
s×s

1

(9)

Where s :Mg,n→ Mg,n stabilizes a prestable curve.

To be clear, Q =M
ℓ
g,n(V )×

ℓ

Mg,n
M

ℓ
g,n(W ) and Q′ =Mg,n ×

ℓ

Mg,n
Mg,n are the analogues of Lee and

Qu’s [2018] P , P, etc.

Theorem 5.6 (the ªlog Gromov±Witten product formulaº). With V , W log smooth, quasiprojective

schemes,

h∗[M
ℓ
g,n(V ×W ), E(V ×W )]ℓvir =1!([M ℓ

g,n(V ), E(V )]ℓvir ×[M ℓ
g,n(W ), E(W )]ℓvir ).

Our proof will be the same as K. Behrend’s [1999]: we compute the log normal cone of the map

Q→ Q′ in two different ways.

Remark 5.7 (on diagram (9)). We equip a with the product E(V )⊞ E(W ) of the natural Log POT’s of

Construction 5.2, adopting the notation

E ⊞ E ′ := E |V×W ⊕ E ′|V×W .

The cotangent complex L
ℓ
1 is of perfect amplitude in [-1, 0] because its source and target are log

smooth. Therefore Cℓ
1 = N ℓ

1 serves as a natural Log POT for itself. We equip φ with the pullback

obstruction theory, resulting in

1! = φ!

by Remark 3.6. We endow the square bounded by φ and a with the natural compatibility datum afforded

all such squares as in Remark 3.14.

All of the arrows in diagrams (8) and (9) are of DM-type.

Lemma 5.8. The stabilization map s :Mg,n→ Mg,n is log smooth.

Proof. The cover
⊔

m Mg,n+m →Mg,n given by forgetting marked points and not stabilizing is strict

smooth [Lee and Qu 2018, 1.2.1]. This map is in particular Kummer and surjective, and [Illusie et al. 2013,

Theorem 0.2] applies with P= ªlog smoothº once we argue that the composite
⊔

m Mg,n+m→ Mg,n is

log smooth.

The forgetful map Mg,n+1→ Mg,n is the universal curve, so it is tautologically log smooth and flat.

We see the map Mg,n+m → Mg,n is log smooth by iterating this forgetfulness, and this completes the

argument. □
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Remark 5.9. The map D→Mg,n which records the initial curve is log étale since the original map was

étale [Behrend 1999, Lemma 4] and ours is the fsification thereof. The stack Q′ is log smooth because

the map Q′→ Mg,n is pulled back from s× s.

Given a log étale map X ′→ X of log smooth log algebraic stacks with X equidimensional, we claim

X ′ must be as well. The maps X ′ ⊆ LX ′, X ⊆ LX are dense because of the log smoothness assumption

and the map LX ′→ LX is étale. Thus LX and LX ′ are equidimensional, as well as X ′ ⊆ LX ′. This

argument shows that fsification preserves equidimensionality of log smooth stacks, so our fs versions of

D, Q′ are equidimensional because the original versions [Behrend 1999] were.

Lemma 5.10. The obstruction theories E(V ), E(W ), E(V ×W ) are compatible in the sense that

1̃∗(E(V )⊞ E(W ))≃ E(V ×W ).

Proof. We completely echo the proof of [Behrend 1999, Proposition 6].

Consider the diagram of universal log curves and tautological maps with the notation:

V V ×W

UV ŨV UV×W

M
ℓ
g,n(V ) M

ℓ
g,n(V ×W )

fV

πV

sV

π̃V

ℓ⌝

qV

fV×W

πV×W

rV

We claim F→ RqV∗q∗V F is an isomorphism for any vector bundle F on UV . The map qV represents

partial stabilization. We make the argument for contracting one P1 at a time.

We first compute that R pqV∗q∗V F = 0 for p ̸= 0. This claim is local in UV , so assume F is trivial.

The fiber of R pqV∗q∗V F at a point x is H p(q−1
V (x), q∗V F). Hence the fibers q−1

V (x) are either a point

or P1. On each fiber, the cohomology of the trivial vector bundle is concentrated in degree 0 [Stacks

2005±, 01XS]. Not only are F and qV∗q∗V F abstractly isomorphic in that case, but the natural map is an

isomorphism [Fantechi et al. 2005, Exercise 9.3.11].

The universal curve πV is tautologically flat, integral, and saturated. The fs pullback square it belongs

to is therefore also an ordinary flat pullback, subject to cohomology and base change [Stacks 2005±,

Tag 08IB]. This gives

Lr∗V RπV∗L f ∗V�V = Rπ̃V∗Ls∗V L f ∗V�V = Rπ̃V∗RqV∗q
∗
V Ls∗V L f ∗V�V = RπV×W∗L f ∗V×W (�V |V×W ).

All the same goes for W . Add the two together to get

Lr∗V RπV∗L f ∗V�V ⊞ Lr∗W RπW∗L f ∗W�W = RπV×W∗L f ∗V×W (�V ⊞�W ).

This is dual to the compatibility we set out to prove, so we are through. □
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Proof of Theorem 5.6. Compute the log virtual fundamental class [Q, E(V )⊞ E(W )]vir in two different

ways:

[Q, E(V )⊞ E(W )]vir := [Cℓ
Q/Q′ ⊆ E(V )⊞ E(W )]

= a!(Q′)

= a!φ!(Mg,n ×Mg,n)

= φ!a!(Mg,n ×Mg,n)

=1![M ℓ
g,n(V )×M

ℓ
g,n(W ), E(V )⊞ E(W )]vir .

On the other hand,

[Q, E(V )⊞ E(W )]vir = h∗[M
ℓ
g,n(V ×W ), E(V ×W )]vir

by the log Costello formula, Theorem 4.1. □
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