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Progress and potential

Engineers place a high premium

on unexpected rupture of a

material subjected to a small

stretch or a small number of

cycles. Under such conditions,

rupture is a rare event. Predicting

such a rare event requires tests of

many samples and is extremely

time-consuming. This paper

describes a high-throughput

experiment to obtain large

datasets for the conditions of

rupture. We load 1,000 samples of

a material simultaneously, either

monotonically or cyclically, and

identify the rupture of individual
SUMMARY

The conditions for rupture of a material commonly vary from sample
to sample. Of great importance to applications are the conditions
for rare-event rupture, but their measurements require many sam-
ples and consume much time. Here, the conditions for rare-event
rupture aremeasured by developing a high-throughput experiment.
For each run of the experiment, 1,000 samples are printed under the
same nominal conditions and pulled simultaneously to the same
stretch. Identifying the rupture of individual samples is automated
by processing the video of the experiment. Under monotonic load,
the rupture stretch for each sample is recorded. Under cyclic load,
the number of cycles to rupture for each sample is also recorded.
Rare-event rupture is studied by using the Weibull distribution and
the peak-over-threshold method. This work reaffirms that predict-
ing rare events requires large datasets. The high-throughput exper-
iments enable the prediction of rare events with high accuracy and
confidence.
samples by processing images

automatically to detect ruptures.

We analyze the data using

extreme-value statistics. It is

hoped that this work will motivate

further the development of high-

throughput experiments to

predict rare events.
INTRODUCTION

Predicting rupture of materials is of paramount importance. Rupture is a complex

process taking place over many time and length scales. Despite decades of intense

efforts, theory and computation alone can seldom predict the conditions for

rupture.1–5 Rather, the common practice is to measure the conditions for rupture

by experiments.6,7 For a given material, the measured conditions for rupture

commonly scatter widely from sample to sample. For example, when a brittle solid

(e.g., a ceramic or a glass) is subjected to a monotonic load, the magnitude of stress

to rupture scatters from multiple GPa to multiple MPa.8,9 As another example, when

a ductile solid (e.g., a metal or a plastic) is subjected to cyclic load of prescribed

amplitude, the number of cycles to rupture scatters by orders of magnitude.10,11

Consequently, conditions for low-probability rupture deviate greatly from those of

the mean.12 It is, however, the conditions of low-probability rupture that surprise

the public and command the attention of the engineer. To observe rare-event

rupture, the engineer must test a large number of samples under the same condi-

tions. Observing rare events is extremely time consuming. A potential solution is

to conduct high-throughput experiments.13 This solution poses challenges in devel-

oping methods to fabricate and test a large number of samples.

Here, we develop a high-throughput experiment to study rare-event rupture of ma-

terials (Figure 1). We print 1,000 samples under the same nominal conditions. We

program the printer to print the samples in five layers, along with six connective

bars. We design a kinematic mechanism of one degree of freedom to deform all
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Figure 1. Experimental method

(A) A kinematic mechanism of one degree of freedom pulls a large number of samples

simultaneously to the same stretch while a video camera records the experiment. Each sample has

the shape of a dog bone.

(B) A photo of the experimental setup.
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the samples by the same amount simultaneously. The length of a deformed sample

divided by that of the undeformed sample defines the stretch l. For such a large

number of samples, it is impractical to identify the rupture of individual samples

by the human eye. We record the video of each run of the experiment and write soft-

ware that processes the video to identify rupture of individual samples. We conduct

four runs of the experiment under monotonic load to a stretch of l= 2.2, observe that

3,596 out of 4,000 samples rupture, and we record the rupture stretch of each sam-

ple. We also run the experiment under cyclic load to four amplitudes of stretch l =

1.6, 1.7, 1.8, and 1.9, observe that 3,996 samples rupture, and record the number of

cycles to rupture of each individual sample. The large datasets enable us to analyze

rare-event rupture by using the Weibull distribution and peak-over-threshold

method from extreme-value statistics.

High-throughput experiments have long been developed. Such an experiment must

resolve two main challenges: fabricate a large number of samples, and test them.

Massive sample preparation is often achieved using methods such as printing and

photolithography.14–19 High-throughput experiments have been developed exten-

sively to measure chemical, thermal, electrical, and biological properties,20–24 but

seldom to measure mechanical properties. To measure mechanical properties,

one has to deform and rupture samples. Few such efforts have been reported. For

example, the moduli and hardnesses of over 1,700 printed materials were measured

one by one using nanoindentation; the measurements took about 24 h.25 The

strengths of 25 samples of printed stainless steel alloy were measured one by one

using an automated tensile machine within 1 h26 Such sequential methods are un-

suitable for processes that take a long time. Examples of prolonged processes

include rupture under cyclic load, creep, and slow crack growth. The time of tests

can be reduced by loading many samples simultaneously. For example, in 1930,

Cooper studied fatigue rupture of a rubber by cyclically loading eight samples simul-

taneously.27 In a previous paper, we studied fatigue rupture of a hydrogel by cycli-

cally loading six samples simultaneously.28 Sun et al. studied delamination and

cracking of many microfabricated inorganic islands on a plastic substrate.18
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RESULTS AND DISCUSSION

We first stretch 1,000 samples monotonically (Video S1), setting the stretch rate as

0.15/min. In each run of the experiment, we stretch 1,000 samples from l = 1 to

l = 2.2 and record the number of ruptured samples as a function of l. The experi-

ment is repeated four times. A representative experiment is illustrated with three

snapshots. In the unstretched state, l = 1, the 1,000 samples are intact (Figure 2A).
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Figure 2. Rupture of samples under monotonic stretch

(A) A photo of 1,000 samples in the unstretched state.

(B) 34 samples have ruptured at stretch 1.8.

(C) 947 samples have ruptured at stretch 2.2.
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At l = 1.8, 34 samples have ruptured (Figure 2B). At l = 2.2, 947 samples have

ruptured (Figure 2C).

At a given stretch l, let F be the number of ruptured samples divided by the total

number of samples (1,000). We plot the cumulative distribution function (cdf), F(l),

for each run of the experiment (Figure S1). The curves of four runs of the experiment

nearly coincide, indicating that the experiment is statistically reproducible. We then

aggregate the data of the four runs of the experiment. Of the 4,000 samples tested, a

total of 3,596 samples rupture. Each ruptured sample corresponds to a data point in

the F�l plane (Figure 3A). Following a common practice of statistics for rupture,29

we fit the measured cdf to the three-parameter Weibull distribution:30,31

FðlÞ = 1� expf � ½ðl� aÞ=b�gg (Equation 1)

where a, b, and g characterize the location, scale, and shape of the distribution. We

determine the fitting parameters as a = 1.6709, b = 0.4175, and g = 3.4404 using the

maximum-likelihood Weibull fitting method.32 The measured cdf approximately fol-

lows the Weibull distribution (solid curve) in the full range of data (Figure 3A). For a

given value of the cumulative probability F, we further calculate the 95% confidence

interval (CI) of the rupture stretch l and plot in the F-l plane as two dashed curves.

The 95% CI appears to be narrow in the full range of data. However, the experi-

mental data mostly lie outside the 95% CI. This indicates that the Weibull model is

not appropriate to approximate the whole range of the cdf. To discuss rare-event

rupture, we magnify the plots in Figure 3A in the range 0 % F(l) % 1% (Figure 3B).

Similar to the overall fitting, in the range of rare events, a large portion of the exper-

imental data, especially in the tail of interest, lies outside the 95% CI. That is, the

Weibull fit using the data of all 4,000 tested samples is unable to predict the exper-

imental data, including the rare events, with high confidence. The same conclusion is

reached in an alternative way of evaluating the fitting results (Figure S2).

To achieve a prediction for rare-event rupture with accuracy and confidence, we

adopt a procedure in the extreme-value statistics, called the peak-over-threshold

method.31 This method focuses on the statistics of the tail by imposing a threshold

stretch. We apply the method to our data, and find the threshold stretch to be 1.87

(Figure S3). Of the 4,000 tested samples, 255 samples rupture at stretches below the

threshold and are used to fit theWeibull distribution.With this method, all the exper-

imental data in the range 0 % F(l) % 1% fall within the 95% CI (Figure 3C). For
656 Matter 5, 654–665, February 2, 2022



Figure 3. Probability of rupture under monotonic load

(A) The measured rupture stretches of 3,596 ruptured samples among 4,000 tested samples are

used to calculate the cumulative distribution function (cdf), F(l). Each ruptured sample corresponds

to a red dot in the F-l plane. The measured cdf is fitted to the Weibull distribution (black solid line).

Also plotted is the 95% CI (two black dashed lines).

(B) Blowup of the previous plots up to F(l) = 1%.

(C) The measured cdf up to the first 255 ruptured samples is fitted to the Weibull distribution. Also

plotted are the 95% CI as well as the measured cdf of the first 40 ruptured samples.

(D) From the 4,000 tested samples, 200 samples are randomly selected. Of the 200 samples, 82

samples rupture at l < 2. The cdf of these samples is fitted to the Weibull distribution and is used to

calculate the 95% CI. Also included are the measured cdf of the first 40 ruptured samples among the

4,000 samples.

(E) 500 samples are randomly selected, and the data of l < 1.9 are fitted to the Weibull distribution.

(F) 1,000 samples are randomly selected, and the data of l < 1.87 are fitted to the Weibull

distribution.
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example, we specify a rare event by the cumulative probability F(l) = 0.1%, corre-

sponding to the first four ruptured samples among the 4,000 tested samples. For

the rare event of ‘‘0.1% rupture,’’ the measured rupture stretch is l = 1.7111, the

Weibull fit is l = 1.7166, and the 95% CI is 1.7056 < l < 1.7288. This high level of

confidence as well as the narrow range of stretch are likely to satisfy most applica-

tions. By use of the peak-over-thresholdmethod, theWeibull fit is reliable for predic-

tion of rare-event rupture.
Matter 5, 654–665, February 2, 2022 657
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Normally, such a large dataset of rupture of testing 4,000 samples is unavailable, and

the engineer needs to predict the rare-event rupture using whatever number of

tested samples. To represent a smaller dataset, from the 4,000 tested samples we

randomly select 200 samples. The peak-over-threshold method determines a

threshold stretch l = 2. Of the 200 samples, 82 samples rupture at stretches below

the threshold and are used to fit the Weibull distribution and calculate the 95% CI

(Figure 3D). Of the 200 samples, only one sample belongs to the range of 0 %

F(l) % 1%, and this sample falls within the 95% CI. However, the 95% interval is

perhaps too wide to satisfy some engineers.

We next test the prediction of rare-event rupture by using the 200 samples. We plot

the experimental data of all the 4,000 tested samples in the range of 0% F(l)% 1%.

All the first 40 ruptured samples of the 4,000 samples fall within the 95% CI, even

though only one of the 200 samples belongs to the range 0 % F(l) % 1%. Thus,

the dataset of the 200 samples can predict rare events with high confidence, but

with a wide interval.

To narrow the 95% CI, datasets with more samples are needed. From the 4,000

tested samples we randomly select 500 and 1,000 samples, and repeat the statistical

procedure (Figures 3E and 3F). As the number of selected samples increases, the

95% CI becomes narrower. The large dataset can predict rare events with both

high confidence and narrow interval.

We next conduct high-throughput experiments of rupture under cyclic load (Video

S2). The stretch rate is 0.2/s. In each run of the experiment, 1,000 samples are cycled

between the undeformed state and a prescribed amplitude of stretch, l. Such a test

is conducted with four prescribed amplitudes of stretch, l = 1.6, 1.7, 1.8, and 1.9.

Each test is terminated when the number of cycles reaches 30,000. For each run of

the experiment, snapshots are presented at four numbers of cycles (Figure 4). For

example, for the test with the prescribed amplitude of stretch l = 1.6, no sample rup-

tures after the first cycle, seven samples rupture after 500 cycles, 49 samples rupture

after 1,000 cycles, and only four samples survive after 30,000 cycles. The number of

cycles to rupture for individual samples, N, is obtained by processing the images

from the recorded video.

We characterize the probability of fatigue rupture by the cdf, Fl(N), defined as the

number of ruptured samples divided by the total number of samples at a given

amplitude of stretch l (Figure 5A). For each amplitude of stretch l, we fit the cdf,

Fl(N), to the three-parameter Weibull distribution function:

FlðNÞ = 1� expf � ½ðlnðNÞ � aÞ=b�gg (Equation 2)

where a, b, g are the location, scale, and shape parameters. The scatter in the num-

ber of cycles to ruptureN is large. Following a common practice, we use ln(N) instead

of N in the Weibull distribution (Figure 5A). Using the maximum likelihood Weibull

fitting method, we find that the parameters are a = 5.4835, b = 2.7763, g =

3.7668 for l = 1.6; a = 3.4563, b = 3.6866, g = 4.0735 for l = 1.7; a = 2.9149, b =

3.5968, g = 4.6706 for l = 1.8; and a = 1.6939, b = 3.5867, g = 6.4619 for l = 1.9.

The measured cdf under cyclic loads approximately follows the Weibull distribution

in the full range of the data, but a large portion of the data lies outside the 95% CI

(Figure 5A). Figure 5B magnifies the plots in Figure 5A to show the cdf for l = 1.6

up to Fl(N) = 1%. Similar to the fitting results under monotonic loads, using all the

experimental data under cyclic loads, the Weibull fit is unable to predict fatigue
658 Matter 5, 654–665, February 2, 2022



Figure 4. Rupture of samples under cyclic stretch

Samples are cyclically loaded to an amplitude of stretch, l, to various numbers of cycles N. For each amplitude of stretch, l, the test is terminated when

the number of cycles reaches 30,000.
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rupture with high confidence. We next use the data of the first 200 ruptured samples

to fit the Weibull distribution and find that all the ruptured samples of the 1,000

tested samples fall within the 95% CI (Figure 5C). The large dataset gives a remark-

ably narrow interval of high confidence (Figure 5C). For example, for the rare event of

‘‘1% fatigue rupture,’’ that is, the first 10 ruptured samples among the 1,000 tested

samples, the measured number of cycles to rupture is N = 517, the Weibull fit is N =

566, and the 95% CI is 480 < N < 701.

Obtaining a large dataset of fatigue rupture is much more time consuming than

monotonic rupture. It is very often seen in the literature that only a few dozen sam-

ples are tested.10 To mimic this common practice, we randomly select 50 samples

from the 1,000 tested samples, and use the first 10 ruptured samples of the 50 sam-

ples to fit the Weibull distribution and calculate the 95% CI. To test the prediction of

rare events, we plot the ruptured samples among all the 1,000 tested samples in the

range of 0% F(l)% 1%. Selecting 50 samples from the 1,000 samples is random, so

we repeat this procedure by selecting 50 samples from the 1,000 samples three

times (Figures 5D–5F). The three fitting results show clear inconsistency: sometimes

the experimental data fall outside the 95% CI (Figure 5E), and sometimes the 95% CI

is very wide (Figure 5F). As far as theWeibull statistics is concerned, a small dataset is
Matter 5, 654–665, February 2, 2022 659



Figure 5. Probability of rupture under cyclic load

(A) The measured cdf Fl(N) is plotted as a function of N for several amplitudes of stretch l. The data

are fitted using the Weibull distribution and used to calculate the 95% CI.

(B) Blowup of the previous plots up to Fl(N) = 1%.

(C) The measured cdf of the first 200 ruptured samples are fitted to the Weibull distribution. Also

plotted are the 95% CI, as well as the measured cdf of the first 10 ruptured samples.

(D–F) 50 samples are randomly selected, and the data of the first ruptured 10 samples are fitted to

the Weibull distribution. The procedure is repeated three times.
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unable to predict rare events with high confidence and narrow interval. Our exper-

iments invalidate this common practice in the literature.

We also plot the prescribed amplitude of stretch, l, against the number of cycles to

rupture of each individual sample, N, in the l�N plane (Figure S4). This practice has

been widely used to report fatigue data for small numbers of samples. For example,

if each run of the test consists of only six samples, only six data points appear in the

l�N plane.28 These few data points visually display the mean and the scatter of fa-

tigue life. However, when each run of the test has 1,000 samples, such a l�N plot

becomes less meaningful (Figure S4). The large number of data points appear as a

continuous line, which no longer visually displays the mean and the scatter of fatigue

life.
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In one run of the above experiments, either monotonic or cyclic, the distribution of

ruptured samples may not be uniform. For example, more samples fail in the top and

left parts in Figure 2C. Such nonuniformity makes testing 1,000 samples together in a

high-throughput experiment different from testing 1,000 samples one by one in a

conventional experiment. Both types of experiments introduce variations from sam-

ple to sample, but the causes for the variations can be different. The causes for var-

iations in the high-throughput experiment deserve a careful study. The video of an

experiment can be inspected by human eyes and analyzed by a combination of im-

age processing and statistics to identify nonuniform distribution in ruptured sam-

ples. The identified nonuniformity can be used to pinpoint its cause. For example,

the observation that more samples fail in the top and left parts suggests insufficient

rigidity of the polymer brackets and aluminum plates. Other possible causes for

nonuniformity include friction and vibration. Once identified, a cause for nonunifor-

mity may be minimized by improving the experimental design. This iterative

approach is fundamental to the design of the high-throughput experiment and

will be reported in a subsequent work.

The current experiment uses 3D printed samples, but the high-throughput experi-

ment can be modified to accommodate samples prepared by other methods,

such as cutting and molding. Consider the case where a large piece of a material ex-

ists, such as a polyethylene film. The piece can be cut into a pattern of many dog-

bone-shaped samples connected at their ends and then mounted simultaneously

to the test frame. The high-throughput experiment can generate large datasets

for fatigue of polyethylene. Next, consider the case where a large piece of a material

does not exist, such as a type of biological tissue. A high-throughput experiment will

require mounting individual samples to the test frame. The experiment will still save

time in characterizing fatigue of the tissue. As noted before, multiple samples have

long been tested simultaneously in fatigue experiments, although the number of

samples has been small.27 The method of image processing described here will

allow such an experiment to be conducted for a large number of samples. The cur-

rent high-throughput experiment is displacement controlled, whereas conventional

mechanical tests sometimes are force controlled. We will report on force-controlled

high-throughput experiments in a subsequent work.
Conclusions

In summary, we have developed a high-throughput experiment to study rare-event

rupture of materials. We print a large number of samples under the same nominal

conditions, design a kinematic mechanism of one degree of freedom to pull the sam-

ples simultaneously to the same stretch, and write software that analyzes the videos

of the experiment to identify the rupture of individual samples. The large datasets

are used to study the rare events of rupture at small stretches and small numbers

of cycles. Our work reaffirms a truism: predicting the statistics of rare events with a

narrow interval of high confidence requires large datasets. It is hoped that further

studies will soon take place to advance high-throughput experiments and statistical

methods to predict rare events.
EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources and reagents should be directed

to and will be fulfilled by the lead contact, Tongqing Lu (tongqinglu@mail.xjtu.

edu.cn).
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Materials availability

The materials generated in this study are available from the corresponding author

upon request.

Data and code availability

The data used to support the findings of this study are available from the corre-

sponding author upon request.

Sample preparation

The 1,000 samples are evenly distributed in five layers (Figure 1). Each sample has a

dumbbell shape, with the size of the central part being 15 3 0.5 3 0.5 mm. The five

layers of samples are connected with six rectangular bars of dimension 300 3 10 3

0.5 mm. A 3D geometric description of the 1,000 samples and six rectangular bars is

created in a CAD package, which is turned into .stl files for the Objet 350 printer

(Connex3, Stratasys). The printer operates in the digital printing mode, with a reso-

lution of height 30 mm. The 1,000 samples are printed with a mixture of three acrylic

resins, Agilus30Clear, VeroYellow, and VeroCyan, with a weight proportion of

99.98%, 0.01% and 0.01%. The six rectangular bars are printed with VeroCyan. After

the samples are printed, we use a spatula to gently remove the support material

‘‘support 706’’ from the samples, and use water to wash the samples. Minor damage

is inevitable during the removal of the support material. We regard the random dam-

age induced by removing the support material of each sample as an uncontrollable

variable. This variable, together with other uncontrollable variables in the material

preparation, causes the scatter in the conditions of rupture.

Experimental setup

The experimental setup includes a kinematic mechanism, an electric displacement

table with a control box, a camera, and a computer (Figure 1B). The kinematic mech-

anism consists of diamond-shaped brackets connecting six aluminum plates. Each

aluminum plate is bonded to a printed rectangular bar by using a cyanoacrylate

glue. The two ends of the kinematic mechanism are fixed to two rigid grippers of

the electric displacement table, which is powered and controlled by the control

box. The connecting rods and the aluminum plates are connected through the

screws, nuts, and bearings. Upon stretching, the samples elongate in the direction

of stretch, the aluminum plates undergo rigid-body translation in the same direction,

and the connecting rods rotate around the hinges. The kinematic mechanism moves

with the two grippers with one degree of freedom and pulls all the 1,000 samples

simultaneously to the same stretch. Guide rails are introduced to avoid rotation of

the kinematic mechanism. The experiment is conducted in a black background

and videotaped by a camera fixed above. The recorded video is transmitted to

the computer by an acquisition card in real time.

Image processing

The recorded videos are processed using the software PotPlayer, which automati-

cally outputs an image at a fixed time interval. The interval is 100 ms for the test un-

der monotonic load and is 1 s for the test under cyclic load. Each image is then pro-

cessed into a 1,920 3 1,080 matrix using MATLAB. Each element in the matrix

represents the grayscale of a pixel. The samples are white and the background is

black. The elements of the matrix are then binarized: 0 for a pixel of a grayscale

nearly white, and 255 for a pixel of a grayscale nearly black. For each layer of sam-

ples, we sum over each column of the matrix. When a sample is unbroken, the

sum is zero. When a sample is broken, the sum is a large number (Figure S5). See

Supplemental information Appendix for the codes (Data S1).
662 Matter 5, 654–665, February 2, 2022



ll
Article
Weibull distribution fitting

We use the software R-studio to fit the cdf of the measured rupture stretches under

monotonic load to the Weibull distribution (Equation 1), and fit the cdf of the

measured number of cycles to rupture under cyclic load to the Weibull distribution

(Equation 2) (Data S2).
Maximum-likelihood Weibull fitting method

We use the maximum-likelihood estimation method to determine the parameters

in Equation 1 and Equation 2. The likelihood function is defined by the Weibull

density:

Ln
�
Xð1Þ;/XðnÞ

�
=
Ynr
i = 1

f
�
XðiÞ
�½1� FðXmaxÞ�n�nr (Equation 3)

where Ln is the likelihood function based on n iid observations, X(i) is the rupture

stretch or the logarithm of the number of cycles to rupture for the i-th ruptured sam-

ple, Xmax is the right-censoring limit, nr is the total number of uncensored observa-

tions, and f(X(i)) is the probability density function ofWeibull distribution evaluated at

X(i). We carry out the maximum-likelihood fitting with the default numerical-optimi-

zation method using the function ‘‘optim’’ in R-studio.
Peak-over-threshold method

To fit the Weibull distribution with the data near the rare event under monotonic

load, we use the likelihood function informed by the Poisson point process model:

Ln
�
Xð1Þ;/XðnÞ

�
f ð1� FðXmaxÞÞn$

Ynr
i = 1

ðg = bÞ$��XðiÞ � a
��

b
�g�1

(Equation 4)

The ‘‘f’’ indicates a proportionality constant independent of the paramters. To

select the threshold stretch Xmax used in the Poisson point process modeling,31

we plot the empirical mean residual life plots (Figure S3), defined as:

E =
1

nu

 Xnu
i = 1

�
u�XðiÞ

�
: u%Xmax

!
(Equation 5)

where E is the empirical mean excess residual, u is any given threshold, nu is the num-

ber of observations, which is smaller than u. We choose Xmax so that for u% Xmax the

pairs (u,E) are approximately linear. We carry out the maximum-likelihood fitting us-

ing the function ‘‘fitpp’’ and the function ‘‘mrlplot’’ from the package ‘‘POT’’ in R-stu-

dio. Notice that the package ‘‘POT’’ is intended for the extreme-maxima modeling,

whereas our interest is the modeling of the extreme minima. We therefore modify

the stretch values to their negative values before passing the dataset into these func-

tions to transform our original problem to an equivalent extreme-maxima modeling

problem.
Estimated parameters and CI

After the above fitting procedures 3.4.1 and 3.4.2, we obtain both the fitted param-

eters bq and the observed Fisher information matrix I .31 The sampling distribution of

the fitted parameters bq approximately obey the normal distributionNðq;I�1Þ, where
q are the underlying true parameters (a, b, g). We then construct the sampling distri-

bution of the fitted stretches (as in the experiments with monotonic loads) or the

number of cycles to rupture (as in the experiments with cyclic loads) by the inverse

function of Equations 1 and 2. The CI is obtained by truncating the sample distribu-

tion. For example, to plot the 95% CI, the confidence limits are the lower and upper

2.5% quantiles of the sampling distribution.
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