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Abstract

Devising a dynamic pricing policy with always valid online statistical learning procedures
is an important and as yet unresolved problem. Most existing dynamic pricing policies,
which focus on the faithfulness of adopted customer choice models, exhibit a limited
capability for adapting to the online uncertainty of learned statistical models during
the pricing process. In this paper, we propose a novel approach for designing a dynamic
pricing policy based on regularized online statistical learning with theoretical guarantees.
The new approach overcomes the challenge of continuous monitoring of the online Lasso
procedure and possesses several appealing properties. In particular, we make the decisive
observation that the always-validity of pricing decisions builds and thrives on the online

regularization scheme. Our proposed online regularization scheme equips the proposed
optimistic online regularized maximum likelihood pricing (OORMLP) pricing policy with
three major advantages: encode market noise knowledge into pricing process optimism;
empower online statistical learning with always-validity overall decision points; envelop
prediction error process with time-uniform non-asymptotic oracle inequalities. This type
of non-asymptotic inference results allows us to design more sample-efficient and robust
dynamic pricing algorithms in practice. In theory, the proposed OORMLP algorithm
exploits the sparsity structure of high-dimensional models and secures a logarithmic
regret in a decision horizon. These theoretical advances are made possible by proposing
an optimistic online Lasso procedure that resolves dynamic pricing problems at the
process level, based on a novel use of non-asymptotic martingale concentration. In
experiments, we evaluate OORMLP in different synthetic and real pricing problem settings
and demonstrate that OORMLP advances the state-of-the-art methods.
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1 Introduction

With the growing availability and differentiation of digital products, modern online mar-

ketplaces present a unique challenge for dynamic pricing algorithms: they must customize

pricing decisions for a diverse range of digital goods to the seller’s customer database in

an online environment. In response to such a unique challenge, online training in modern

dynamic pricing systems has increasingly included market knowledge and business insights,

such as product features, marketing environment, and customer purchasing behavior. Indeed,

dynamic pricing has been employed in a variety of services and businesses, including hospi-

tality, tourism, entertainment, retail, energy, and public transportation (den Boer, 2015), and

has evolved into an integral part of revenue management in modern online service industries.

A significant challenge of dynamic pricing in the modern digital economy is making

customized pricing decisions for products, services, and solutions on the basis of item-level

data. Besides, while most practical scenarios involve high-dimensional item-level data, only a

small number of the observed features are typically decisive in the pricing decision process.

In addition, high-dimensional dynamic pricing procedure has another layer of complexity:

the entire pricing decision-making process is trained and learned from binary feedback. That

is, pricing decision makers only observe and learn from the sale status for the price that was

delivered, rather than learning from the true market value of the current item. To generate

business insights on pricing mechanism, it is desirable to learn models that attributes to

small number of decisive pricing factors to enhance explainablity of online learned market

value model of products while maximizing the revenue.

Further, risk control of the online learned model on continuously monitor dynamic pricing

procedure is in emerging demand from industrial practice because the opportunity cost of

lengthy pricing experiments is high and regrettable (Johari et al. (2021)). Indeed, it is desirable

to detect the true product market value as quickly as possible or to abolish the running

pricing experiment if the revenue improvement appears unpromising so that the scientist may
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test other available actions. Besides, optimizing the running time in advance is unfortunately

impractical due to lacking knowledge on seeking revenue improvement and cost elasticity. In

modern dynamic pricing practice, deployment of online statistical learning methodology turns

out to be impeded by the such dynamic trade-off between maximum revenue improvement

detection and minimum running time. Resolving such trade-off is a crucial advancement in

statistical methodology for real-time data and persuades our investigation on the problem of

continuous monitoring high-dimensional dynamic pricing problems.

Continuous monitoring of high-dimensional dynamic pricing problem is a setting in

which decision-makers seek to recover a sparse product market value model and maximize

collected revenue (high-dimensional dynamic pricing), while the decision-makers are allowed to

terminate the pricing algorithm whenever they wish, and the result still maintains statistical

validity (continuous monitoring). Such a setting arises naturally in industrial practice

(Johari et al., 2021) but remains challenging in the literature, preventing practitioners from

effectively deploying high-dimensional statistical methodology effectively in modern online

service industries. Specifically, we consider a company that sells products to customers over a

randomly stopped time horizon. Each period, a new product is introduced, and the dynamic

pricing algorithm is responsible for deciding its price. The pricing decision is based on the

product feature and the historical pricing and sales data. Once the price is decided, the

market either accepts or rejects the product, depending on whether the price is less than or

more than the product’s market value. The company has no idea what the market value of

each product is, other than that it is a function in terms of the value of the product feature

(Broder and Rusmevichientong, 2012; Keskin and Zeevi, 2014; Javanmard and Nazerzadeh,

2019). Accordingly, the seller can utilize historical prices and sales data to infer market values

for various product features and use those estimations to drive future pricing decisions. In

general, one objective is to design a pricing algorithm that performs well in generating a

small amount of worst-case regret.
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Consequently, successful revenue management requires faithful product market value

models and valid online statistical learning. Existing dynamic pricing studies focus on the

faithfulness of adopted customer choice models (Myerson, 1981; Joskow and Wolfram, 2012;

den Boer, 2015; Javanmard and Nazerzadeh, 2019; Mueller et al., 2019; Nambiar et al.,

2019; Shah et al., 2019; Ban and Keskin, 2021; Javanmard et al., 2020), but, unfortunately,

this is insufficient: certain iterates within their online optimization process may violate

pre-specified optimization constraints (for example, sparsity constraint) and thus deny the

validity of ultimate pricing decisions. Such lack of validity haunts practitioners’ deployment

of dynamic pricing systems and challenges scientists’ craftsmanship: how can one design an

online regularization scheme to ensure the validity of online statistical learning uniformly

among all decision points and secure low regret at the same time? Specifically, we aim to

deliver a regularization automation scheme based on learned-online market knowledge.

1.1 Our contributions

In this work, we make the decisive observation that the always-validity of pricing decisions

builds on the online regularization scheme. This insight is drawn from an elegant interplay

between sparse online statistical learning and non-asymptotic martingale concentration, which

is desirable to establish the always-validity of pricing decisions. Such interplay leads us to

propose a novel online regularization scheme: we identify uncertainties surrounding learned

product demand parameters and regularize them to ensure the feasibility of iterating over

all decision points within the pre-specified confidence budget. In such a sense, a successful

always-valid high-dimensional dynamic pricing algorithm design will always return valid

pricing decisions with high probability. Hence, we regularize sparse online statistical learning

by quantifying and offsetting uncertainties evolving within the estimation process.

We call this principle technical tool Optimistic Online LASSO (OOLASSO): a novel online

regularization scheme for online lasso. Based on it, we propose an optimistic online regularized
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maximum likelihood pricing (OORMLP) algorithm. The OORMLP enjoys three major advantages:

encode market noise knowledge into pricing process optimism; empower online statistical

learning with always-validity overall decision points; envelop estimation error process with

time-uniform non-asymptotic concentration bounds. These properties ensure the validity and

robustness of our algorithm in practical dynamic pricing problems. In theory, we establish

(OOLASSO) a non-asymptotic time-uniform oracle inequality of our estimator. Such inequality

is possible by our novel use of non-asymptotic martingale concentration inequalities (Maillard,

2019; Howard et al., 2020) to ensure the always-validity warranty under a user-specified

confidence budget. Built upon this time-uniform oracle inequality, we further show that

our OORMLP algorithm achieves a logarithm regret bound, which meets the information-

theoretical lower bound in the literature (Theorem 5.1, Javanmard and Nazerzadeh (2019)).

In the experiment, we evaluate the performance of OORMLP in both synthetic and real data

set. The results back up our theoretical superiority of OORMLP algorithm in its robustness

perspective against different demand uncertainties. Besides, we demonstrate how OORMLP

utilizes the user-specified confidence budget into an online regularization scheme to trade

off price exploration and exploitation to achieve a substantial regret reduction in finite time

performance compared to RMLP (Javanmard and Nazerzadeh (2019)).

In summary, our paper makes the following three major contributions.

1. Conceptually, we formulate the continuous monitoring of high-dimensional dynamic pricing

problems. Our formulation bridges the high-dimension statistics literature in the Statistics

community with continuous monitoring literature in the Operations Research community,

opening a new venue for future studies on practical online statistical learning frameworks.

2. Methodologically, we propose the OORMLP algorithm for continuous monitor high-dimensional

dynamic pricing to ensure the pricing strategy is valid at any time. To our knowledge, this

is the first high-dimensional dynamic pricing algorithm with an always-valid guarantee.

3. Theoretically, we establish time-uniform Lasso oracle inequalities on the estimation error
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process and further show a time-uniform logarithmic regret bound for our OORMLP algorithm.

As a technical by-product, we develop OOLASSO to manage the optimism of online LASSO

procedure via our novel use of non-asymptotic martingale concentration.

1.2 Related literature

Our work contributes to the learning-based dynamic pricing literature in problem formulation,

to regularized online statistical learning in methodology, and to the growing literature of

always valid online decision-making in theory.

Dynamic pricing with demand learning. Dynamic pricing with learning is a field

of research that investigates pricing algorithms for situations when the demand function is

unknown. Typically, the challenge is described as a form of the multiarmed bandit problem,

with the arms being priced and the payoffs from the different arms being correlated, due

to the measurements of demand assessed at different price points being correlated random

variables. This includes parametric approaches (Broder and Rusmevichientong, 2012; Keskin

and Zeevi, 2014; Broder and Rusmevichientong, 2012), semi-parametric ones (Shah et al.,

2019) as well as nonparametric ones (Fan et al., 2021; Liu et al., 2022; Keskin and Zeevi,

2014). Beyond these studies, our work advances the problem formulation from finite to

randomly stopped and possibly infinite horizon to meet the demand of continuous monitoring

dynamic pricing in modern online service industrial practice.

A more related line of work is contextual dynamic pricing, which can be categorized into

three groups, with different emphasis on how the context plays roles in the price and products

market demand or value. The first group of references (Qiang and Bayati, 2016; Nambiar

et al., 2019; Wang et al., 2021) uses context x as covariates of market demand. They assume

the demand is observable and has a relationship with the offered price and the product

context. In our work, we don’t observe the demand but only the sale status of a product.

The second group of references (Mao et al., 2018; Cohen et al., 2020) considers a noise-less
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contextual dynamic pricing, which captures the relationship between value and product

context in a deterministic way. The third group of references (Javanmard and Nazerzadeh,

2019; Luo et al., 2021; Fan et al., 2022) considers a noisy linear valuation model, which is

also the model used in our paper.

Regularized online statistical learning. In the past decade, regularized offline

statistical learning methodology, including Ridge regression (Hoerl and Kennard, 1970) and

Lasso regression (Tibshirani, 1996) and related high-dimensional literature (Bühlmann and

Van De Geer, 2011; Negahban et al., 2012; Wainwright, 2019), have found their applications

integral to the solution for various online machine learning task. The applications span across

several different tasks including bandit algorithms design (Wang et al., 2020a; Wu et al.,

2022), online decision making (Bastani and Bayati, 2020; Wang and Cheng, 2020; Chen

et al., 2021a,b; Wang and Li, 2022) and high-dimensional dynamic pricing (Javanmard and

Nazerzadeh, 2019; Fan et al., 2021). Indeed, these efforts inspired people to several proof

concepts and elegant statistical frameworks for online machine learning tasks. However, the

associated calibration scheme for regularization level in these prior efforts is typically designed

for offline uncertainty (where the dataset is assumed given) but not online uncertainty (where

the dataset is not given), leading to concerns about the validity of online-learned models and

the consequent inference result. Beyond these studies, our work advances the methodology of

regularized statistical learning from a constant level regularization for offline uncertainty to a

process level regularization for online uncertainty, which we term online regularization.

Such online regularization marks the key difference of our work compared to the RMLP in

Javanmard and Nazerzadeh (2019), which also considered sparse learning in high-dimensional

dynamic pricing. In practice, addressing the continuous monitoring high-dimensional dynamic

pricing problems requires rethinking on the art of RMLP in the following three respects: (1)

Rethink how to formulate the online uncertainty. In RMLP, the noise is assumed to be i.i.d,

which does not capture the dependency nature between observations in the online setting.
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In contrast, we consider a martingale difference noise distribution, which is more suitable

to quantify online uncertainty. (2) Rethink the product feature sequence distribution. In

RMLP, the product feature vectors are independently and identically sampled from a fixed

distribution. In contrast, our framework allows a non-i.i.d. or general feature distribution.

(3) Rethink the regularization level sequence. RMLP considers episode updates and requires

resetting the algorithm. In contrast, our design of regularization does not need to reset the

algorithm, hence is more sample efficient. Moreover, our regularization design mechanism also

includes product context uncertainty and confidence budget to better balance the tradeoff

between online uncertainty and online estimation error. See Remark 1 and Remark 5 for

more detailed comparisons of these two methods.

Always-valid online decision making. Always-valid online decision making is an

emerging field of studies in the last half decade (Johari et al., 2015; Zhao et al., 2016;

Johari et al., 2021). Such emergence is a response of surging demand from modern online

service industrial practice since the opportunity cost of lengthy online experiments is high

and regrettable (Johari et al., 2021). Indeed, it is preferable to determine the real impact

as fast as feasible or to terminate the ongoing experiment if the result looks unpromising,

allowing the scientist to try other activities. Additionally, adjusting the runtime length in

advance is unfeasible due to a lack of knowledge about the amount of the seeking impact

and cost elasticity. Consequently, in modern online service practice, such dynamic trade-offs

between greatest effect detection and shortest running time constrain the implementation of

online statistical learning methodologies. Our work makes a first advance on the theory of

always-valid online decision making into the high-dimensional dynamic pricing problems.

2 High-dimensional dynamic pricing problems

This section defines the high-dimensional dynamic pricing problems. Section 2.1 provides a

five-step general design and essential elements of dynamic pricing algorithms. Section 2.2
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provides our statistical framework for the market value of the product. Section 2.3 provides

our presumption on the implemented pricing function.

2.1 A general design of dynamic pricing algorithms

xt+1 ̂»t
pt+1 = g (ïxt+1,

�» tð) yt+1 = {
+1    pt+1 ≤ vt+1

−1    pt+1 > vt+1

$[t+1] = $[t] ∪ {(xt+1, pt+1, yt+1)}

Figure 1: A general design of dynamic pricing algorithms

In a dynamic pricing problem with decision horizon T , the agent is required to determine

total T prices at decision points 1, 2, · · · , T . Here T is an unknown integer-valued random

variable and its realization is determined by an unknown terminating rule from a decision

maker. At a decision point t ∈ [T ], a customer in the market selects a product with context

xt from a d-dimensional unit sphere X = {x ∈ R
d : ∥x∥∞ f 1}. The agent receives a pricing

query for xt, and her goal is to choose a posted price pt ∈ R to maximize the revenue. The

market value vt of product xt is unknown. After posting a price pt, the customer decides

whether to purchase the product based on market value vt. The market value vt is not

observable to the agent, but only a binary-valued sale status variable yt ∈ {−1,+1}. If

pt f vt, a sale occurs and the seller collects a revenue pt and yt = +1; otherwise, no sale

occurs and no revenue is received and yt = −1. Formally,

yt =

{
+1 if pt f vt

−1 if pt > vt
(1)

The seller’s objective is to develop a pricing policy that maximizes revenue received.

Figure 1 briefly summarizes a general design of dynamic pricing algorithms for revenue
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maximization via illustration of the five steps in a single decision step. In particular, at each

decision point t+ 1, the agent

1. Query: The algorithm receives a query for pricing on the product with high-dimensional

context vector xt+1 ∈ X .

2. Learning: The algorithm learns a demand parameter estimate ¹̂t ∈ Ω based on up-to-time t

transaction records D[t] = {(xs, ps, ys)}
t
s=1 to predict market value vt+1 of product xt+1.

3. Pricing: The algorithm posts a revenue-maximizing price pt+1 = g(¹̂t; xt+1) with a user-

specified pricing function g.

4. Feedback: The algorithm receives a sale status yt+1, based on the product’s sale price pt+1.

5. Update: The algorithm updates the transaction records D[t+1] = D[t] ∪ {(xt+1, pt+1, yt+1)}.

Building upon the above general design of dynamic pricing algorithms, our goal is to provide

an online statistical learning framework that fulfills three desiderata–sparse learning, always-

validity, and revenue-maximization–that outlined in Section 3 to resolve high-dimensional

dynamic pricing problems in continuous monitoring setting. The resulting dynamic pricing

algorithms and the statistical learning framework are established in Section 4 and their formal

fulfillment to the three desiderata are elaborated in Section 5.

2.2 Product market value model

Our statistical framework for market value vt of product xt consists of three parts: the market

value model vt|xt, the target demand parameter ¹0 and the martingale difference noise process

{¸t}
T
t=1. First, we model market value vt of the product as a linear function of the observable

product covariate xt; formally

vt = ï¹0, xtð+ ¸t. (2)

Second, the unknown parameter ¹0 is the target demand parameter that characterizes

the demand profile of customers’ behaviors. Parallel to high-dimensional dynamic pricing

literature (Javanmard and Nazerzadeh, 2019), we consider a structured feasible parameters
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set Ω in which ¹0 is high-dimensional and sparse; formally, for user-specified constants s0 and

W , the feasible parameters set Ω is defined as

Ω = {¹ ∈ R
d : ∥¹∥0 f s0, ∥¹∥1 f W}. (3)

Third, the noise process {¸t}
T
t=1 in (2) accounts for unmeasured context and random

noises. Notably, we consider a more general and practical dependent noise process drawn

from a martingale difference sequence that is adapted to current transaction records. That

is, with respect to the Ã-field

Ht−1 = Ã(x1, p1, y1, · · · , xt−1, pt−1, yt−1, xt, pt) (4)

generated by all transaction records before yt is observed, the noise process ¸t satisfies

E[¸t|Ht−1] = 0 for all t ∈ [T ]. Our dependent noise process relaxes the i.i.d. assumption

considered in Javanmard and Nazerzadeh (2019). The conditional distribution of ¸t|Ht−1 is

assumed to be log-concave in this paper. Many common probability distributions such as

normal, logistic, uniform, exponential, Laplace, and bounded distributions are log-concave

(Wellner, 2012). In particular, we define the ‘steepness‘ of a function Fηt|Ht−1
(·) as

uW,t ≡ sup
|x|f3W

{
max

{
log′ Fηt|Ht−1

(x),− log′
(
1− Fηt|Ht−1

(x)
)}}

(5a)

and also define the ’flatness’ of function Fηt|Ht−1
(·) as

lW,t ≡ inf
|x|f3W

{
min

{
− log′′ Fηt|Ht−1

(x),− log′′
(
1− Fηt|Ht−1

(x)
)}}

. (5b)

In addition, we define the maximal steepness to be the constant uW = maxt∈[T ] uW,t and the

minimal flatness to be the constant lW = mint∈[T ] lW,t.

The above statistical framework of product market value induces a probabilistic model

for the sale status process {yt}
T
t=1. The sale status process denotes a trajectory of customer

transaction decisions with respect to the corresponding pricing sequence {pt}
T
t=1 and product
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sequence {xt}
T
t=1. In particular, given the definition of sale status (1) and the market value

model (2), the sale status process {yt}
T
t=1 is generated from the following probabilistic model:

Pθ0(yt|Ht−1) =

{
1− Fηt|Ht−1

(pt − ï¹0, xtð) if yt = +1,

Fηt|Ht−1
(pt − ï¹0, xtð) if yt = −1,

(6)

where Fηt|Ht−1
(·) denotes the conditional distribution of noise ¸t given Ht−1.

2.3 Pricing function

Our framework allows a flexible pricing function g used at Step 3 of the pricing algorithm

design (Figure 1). Such a feature is standard in industrial practice to provide flexible

deployment of dynamic pricing algorithms (Johari et al., 2021). We assume the pricing

function g is a L-Lipschitz continuous function for some Lipschitz constant L f 1, which is

satisfied by the common pricing function choice in the literature, given in Example 2.1.

Example 2.1. To maximize the expected revenue, it is shown in auction theory (My-

erson, 1981; Javanmard and Nazerzadeh, 2019), the revenue-maximizing price p∗(xt) =

argmaxp{p(1− Fηt|Ht−1
(p− ï¹0, xt))}. The first order conditions says that the optimal posted

price p∗t = p∗(xt) satisfy

p∗t =
1− Fηt|Ht−1

(p∗t − ï¹0, xtð)

fηt|Ht−1
(p∗t − ï¹0, xtð)

= p∗t − ï¹0, xtð − ϕt(p
∗
t − ï¹0, xtð)

by letting ϕt(v) ≡ v −
1−Fηt|Ht−1

(v)

fηt|Ht−1
(v)

. That is, ï¹0, xtð + ϕt(p
∗
t − ï¹0, xtð) = 0 and hence

p∗t = ï¹0, xtð+ (ϕt)
−1(−ï¹0, xtð) = gt(ï¹0, xtð). So the pricing function has the closed form

gt(v) ≡ v + (ϕt)
−1(−v), (7)

where ϕt(v) ≡ v − (1− Fηt|Ht−1
(v))/fηt|Ht−1

(v) is known as a virtual valuation function. By

Lemma S7.4, the pricing function gt is 1-Lipschitz continuous.

3 Evaluating dynamic pricing policy

In this section, we elaborate on what makes a good dynamic policy. Our goal is to design a

pricing policy Ã that offers the price pt(Ã) for the product xt in order to (i) learn the true
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demand parameter ¹0 to inform seller about the underlying product market value model

(2), (ii) continuously monitor the estimation error of the estimated demand parameter,

and (iii) optimize the posted price to maximize the expected revenue. In order for the

policy Ã to fulfill the learning and optimizing tasks, it must satisfy the following desiderata:

(A) it should return a sparse demand parameter estimate to enhance the explainability of

the pricing mechanism and product market value, (B) it should be able to adapt the online

uncertainty of product market value model (2) to obtain always-valid statistical error bounds,

and (C) it should be revenue-maximized, i.e., the difference between posted price pt(Ã) and

the oracle price Ã∗
t should be small. Consequently, it’s critical to establish an effective strategy

that strikes a balance between exploration (gathering data for learning parameters) and

exploitation (offering optimal pricing based on learned parameters).

Having outlined the desiderata for our sought-after pricing policy, we now propose three

properties of the online statistical learning framework that should be encoded in the adopted

pricing policy. These properties are:

(A) Sparse Learning: the learned demand parameter identifies the subset of decisive pricing

features to enhance the explainability of the learned market value model. (Section 3.1)

(B) Always-Validity: the estimation error of the online learned market value model remains

statistical validity even when the pricing algorithm is terminated randomly. (Section 3.2)

(C) Revenue-Maximization: the collective revenue is comparable to the revenue of the oracle

pricing policy which knows the true demand parameter. (Section 3.3)

3.1 Online Lasso procedure towards sparse learning

To achieve the first desiderata on learning sparse demand parameter estimate, we adopt the

online Lasso procedure, defined as follows.

Definition 1. We define the online Lasso procedure as follows:
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1. At a decision point t, the agent calculates the negative log-likelihood function L(¹;D[t]) of a

model parameter ¹ and up-to-time t transaction records D[t] as

Lt(¹) ≡ L(¹;D[t]) = t−1

t∑

s=1

log(1/Pθ(ys|Hs−1)). (8a)

The probability Pθ(ys|Hs−1) is from the Bernoulli model (6) of the sale status process {yt}
T
t=1;

that is, with ut(¹) ≡ pt−ï¹, xtð, log(1/Pθ(ys|Hs−1)) = I (yt = 1) log
(
1/(1− Fηt|Ht−1

(ut(¹)))
)
+

I (yt = −1) log
(
1/Fηt|Ht−1

(ut(¹))
)
.

2. The algorithm penalizes the loss Lt(¹) by the l1-norm penalty at regularization level ¼t > 0. In

particular, at decision point t, the algorithm learns an estimator ¹̂t by solving the ℓ1-regularized

quadratic program

¹̂t ≡ arg min
∥θ∥1fW

{
Lt(¹) + ¼t∥¹∥1

}
. (8b)

3. Repeating the above Lasso procedure at each decision point t = 1, 2, · · · , T , with a regulariza-

tion level sequence {¼t}
T
t=1, the agent thus learns at the decision horizon T an estimation

sequence: ¹̂1, ¹̂2, · · · , ¹̂T .

The online Lasso procedure (Definition 1) delivers a statistical learning framework for

online sparse learning. In practice, given a regularization level sequence {¼t}
T
t=1, the online

Lasso procedure returns a sequence of constrained estimators {¹̂1, ¹̂2, · · · , ¹̂T} towards learning

a sparse demand parameter estimate in the product market value model (2). Indeed, such

online Lasso procedures benefit the interpretability of the resulting product market value

model and the explainability of the pricing mechanism.

However, the benefit of the online Lasso procedure may be blocked by an improper

choice of regularization level sequences {¼t}
T
t=1. As well-recognized in the high-dimensional

statistics literature, different regularization level sequences {¼t}
T
t=1 lead to different properties

of resulting constrained estimators sequence {¹̂1, ¹̂2, · · · , ¹̂T}. As far as the continuous

monitoring dynamic pricing concerns, the fundamental challenge is how to choose the

regularization level ¼t in Lasso program (8b) at a process level, i.e. for every decision step t
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from 1 to the random decision horizon T . Section 5.1 contributes the key observation that the

online Lasso procedure builds and thrives on online regularization scheme design to calibrate

online uncertainty during the pricing process.

3.2 Always valid estimation error bound process

To achieve the second desiderata on always-valid online statistical learning, we introduce the

concept of always-valid estimation error bound process, defined as follows :

Definition 2. Given any (possible unbounded) stopping time T with respect to historical

filtration {Ht}
T
t=0 (defined at (4)). A sequence of constant real number {rt}

T
t=1 is an always

valid estimation error bound process of the estimator sequence {¹̂1, ¹̂2, · · · , ¹̂T} with

confidence budget ³ if it holds that

Pθ0

(
∃t ∈ [T ] : ∥¹̂t − ¹0∥2 > rt

)
f ³. (9)

The always valid estimation error bound process (Definition 2) serves as a principal

theoretical tool for online service industrial practice in the continuously monitoring risk control

of adopted online statistical learning procedures. For an online learned estimator sequence

{¹̂1, ¹̂2, · · · , ¹̂T}, the corresponding error bound process {r1, r2, · · · , rT} collectively gives a

time-uniform control on the estimation error sequence {∥¹̂1−¹0∥2, ∥¹̂2−¹0∥2, · · · , ∥¹̂T −¹0∥2}

such that the probability of out-of-control is at most at the level of user pre-specified confidence

budget ³. Such time-uniform risk control allows users to terminate the dynamic pricing

algorithm whenever they wish, and the result still maintains statistical validity.

Establishing such an always valid error-bound process, however, is technically challenging

and far from understood in the literature. The reason is that, while estimation error bound

result for fixed sample size Lasso regression had been systematically studied in the literature

and inspired people for an elegant theoretical framework, they focused on offline uncertainty

(the whole dataset is given) instead of online uncertainty (the dataset is not given and
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is observed on the fly). Consequently, the classical method of high-dimensional statistics

literature fails to meet the challenge of online statistical learning with continuous monitoring

demanded in the modern online service industry. Section 5.2 contributes a key theoretical

result on the always validity of online Lasso procedure (Definition 1).

3.3 Regret of a dynamic pricing policy

To achieve the third desiderata of revenue maximization, we define the notion of regret.

Definition 3. The regret of a dynamic pricing policy Ã up to decision T is defined as

Regretπ(T ) ≡ max
θ0∈Ω

E

[ T∑

t=1

(
rt(p

∗
t )− rt(pt(Ã))

)]
, (10)

where rt(p) ≡ pI(vt g p) is the expected revenue of the product xt with the posted price p.

The expectation is taken with respect to the noise ¸t and product context xt, and pt(Ã) denotes

the price offered at decision step t by following policy Ã.

Definition 3 benchmarks the performance of a dynamic pricing policy Ã that determines

posted prices {pt}
T
t=1 to the corresponding ’oracle pricing policy’, which exploits knowledge

of the true demand parameter ¹0 and proposes the price p∗t = g(ï¹0, xtð) for the product

of context xt, where g(·) is a user-specified pricing function. In Example 2.1, the optimal

price p∗t is the price that maximizes the expected revenue. Formally, we consider the goal of

maximizing revenue as minimizing the maximum regret at Definition 3. As pursued as the

third desiderata of pricing policy, the goal is to design an online statistical learning procedure

such that the regret (10) is small.

4 The OORMLP algorithm and OOLASSO procedure

This section establishes our pricing policy design that achieves the three desiderata discussed

in Section 3. We first propose the Optimistic Online Regularized Maximum Likelihood

Pricing (OORMLP) algorithm (Algorithm 1) as the desirable dynamic pricing policy at Section
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4.1. Then we elaborate our novel Optimistic Online Lasso procedure (OOLASSO) towards

always valid online statistical learning at Section 4.2.

4.1 OORMLP algorithm

In this section, we present the proposed dynamic pricing policy at Algorithm 1. The

presentation follows the general design of dynamic pricing algorithms in Figure 1. In

particular, at decision point t + 1, the agent learns the demand parameter estimator ¹̂t

based on the current transaction records D[t] via Lasso regression in (8b) at regularization

level ¼t specified in the optimistic online regularization scheme (13). In addition, both the

sample covariance matrix Σ̂[t] and the online regularization sequence {¼t}
T
t=1 in (13) can be

incrementally updated: at each decision point t,

Σ̂[t] ← t−1
[
(t− 1)Σ̂[t−1] + xtx

¦
t

]
; ¼t ← ¼t−1

√
(1− t−1)∥Σ̂[t]∥∞/∥Σ̂[t−1]∥∞.

Such property allows an efficient online implementation in the experiments.

4.2 Optimistic online lasso procedure

Here, we elaborate our novel approach to construct a learning process ¹̂1, ¹̂2, · · · , ¹̂T for

the target demand parameter ¹0 based on transaction records D[t] = {(xs, ps, ys)}
t
s=1 with

optimism in the face of online uncertainty during the pricing process.

Definition 4. An online Lasso procedure (Definition 1) is optimistic if the regularization

sequence {¼t}
T
t=1 is specified by the following optimistic online regularization scheme:

¼t(³) ≡ 4uW

√
2 · t−1∥diag(Σ̂[t])∥∞ ln(2d/³). (13)

Definition 4 presents our novel regularization scheme for regulating online uncertainty

during the dynamic pricing process. The reason we call (13) optimistic is that it regularizes

the online LASSO procedure with optimism in the face of both demand uncertainty and

product feature uncertainty during the dynamic pricing process, given a specified confidence
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Algorithm 1 Optimistic Online Regularized Maximum Likelihood Pricing (OORMLP)

Require: Steepness of market noise uW , pricing function g(·) and confidence budget ³.
1: Initialization: Receive product context x1. Post price p1. Receive sale status y1.

2: D[1] ← {(x1, p1, y1)}; Σ̂[1] ← x1x
¦
1 ; ¼1 ← 4uW

√
2∥diag(Σ̂[1])∥∞ ln(2d/³).

3: for t = 2, . . . , [T ] do
4: 1.Query: Receive product context xt.
5: 2.Learning: Update the sample covariance matrix and regularization level:

Σ̂[t] ← t−1
[
(t− 1)Σ̂[t−1] + xtx

¦
t

]
, (11a)

¼t ← ¼t−1

√
(1− t−1)∥Σ̂[t]∥∞/∥Σ̂[t−1]∥∞; (11b)

6: Update the estimate

¹̂t−1 ← arg min
∥θ∥1fW

{Lt−1(¹) + ¼t−1∥¹∥1} . (12)

7: 3.Pricing: Post price pt ← g
(〈

¹̂t−1, xt

〉)
.

8: 4.Feedback: Receive sale status yt.
9: 5.Update: D[t] ← D[t−1] ∪ {(xt, pt, yt)}.
10: end for

budget ³. Three factors contribute to the regularization level ¼t(³). First, the constant uW

is the maximal steepness of noise process (5a) and represents our prior knowledge of demand

uncertainty. Second, the empirical covariance matrix Σ̂[t] = t−1
∑t

s=1 xsx
¦
s characterizes the

uncertainty of up-to-now product context sequence. Third, the constant ³ stands for the

user-pre-specified confidence budget for the always-validity of implemented online LASSO

procedure. These factors collectively express optimism in the face of online uncertainty

during the dynamic pricing process and are the foundation to fulfill the three desiderata we

pursued in Section 3. Consequently, we adopt the optimistic online regularization scheme

(13) to design OORMLP algorithm (Algorithm 1) to enjoy three desiderata-sparse learning,

always-validity and revenue-maximization-on resulting dynamic pricing policy.

Remark 1. (Regularization comparison to RMLP in Javanmard and Nazerzadeh (2019)) The
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relation between our regularization scheme and the one in RMLP is

¼t,OORMLP(³) = ¼t,RMLP

√
2
log2(t)

t

√
log(2d/³)

log(d)

√
∥diag(Σ̂[t])∥∞.

The relation above indicates that, while RMLP do not, OORMLP includes in the regularization

level the uncertainty arising from context sequence (∥diag(Σ̂[t])∥∞). The root reason why RMLP

does not take ∥diag(Σ̂[t])∥∞ into their regularization design is due to their assumption on the

independent identical distributed property on the product sequence. When the distribution

of product sequence deviates from such i.i.d. assumption, the regularization level in RMLP is

improper to account for the effective noise process in the LASSO procedure. Our regularization

design takes the context sequence uncertainty into account, which leads to the robustness of

OORMLP in the experiments.

5 Always-validity and regret analysis

This section elaborates on formal guarantees of three qualities of our OORMLP algorithm and

OOLASSO procedure. Section 5.1 demystifies the design principle behind our optimistic online

regularization scheme, formally achieving the first desiderata: sparse learning. Section 5.2

establishes the time-uniform Lasso oracle inequality (Theorem 1), formally achieving the

second desiderata: always-validity. Section 5.3 present regret analysis (Theorem 2) of our

OORMLP pricing policy, formally achieving the third desiderata: revenue-maximizing.

5.1 Optimistic online regularization scheme

This section demystifies the optimistic online regularization scheme (13) as a formal guarantee

of the sparse learning of our online statistical learning framework.

5.1.1 Basic design principle

We now explain the design principle of the regularization sequence {¼t}
T
t=1 for the optimistic

online regularization scheme at (13). In principle, our goal is to design a regularization

19



sequence {¼t}
T
t=1 that warrants the online LASSO procedure (Definition 1) with always-validity

by constructing an always valid estimation error bound process (Definition 2). Intuitively, the

optimal choice of the sequence is an outcome of the bias-and-variance trade-off. Bias arises as

a shrinkage effect from l1-regularizer and grows as ¼t increases. Besides, l1-regularizer offsets

fluctuations in the score function process {∇Lt(¹)}
T
t=1. Hence, an optimal choice of {¼t}

T
t=1

is the smallest envelop that is large enough and always controls score fluctuations during the

whole pricing process.

To obtain an always valid estimation error bound process of the online LASSO procedure

(8b), we generalize standard guidance from high-dimensional statistics literature to the process

level by considering the event

G({¼t}
T
t=1) =

{
∀t ∈ [T ] : 4t−1∥∇Lt(¹0)∥∞ f ¼t

}
. (14)

Given the above event, Theorem 1 in Section 5.2 shows that it is possible to build an always

valid estimation error bound on the proposed online LASSO procedure. Therefore, an optimal

design of {¼t}
T
t=1 should be the one to ensure that G({¼t}

T
t=1) holds with high probability.

Toward finding such an optimal selection, for a given confidence budget ³ ∈ (0, 1), our

goal is to find a regularization level sequence {¼t(³)}
T
t=1 that satisfies

Pθ0

(
G({¼t(³)}

T
t=1)

)
g 1− ³. (15)

As supported by Lemma 1 in Section 5.1.2, the proposed optimistic online regularization

scheme (Definition 4) satisfies the property (15). Therefore, when the agent learns the target

demand parameter ¹0 by solving the LASSO problem in (8b) with the specified optimistic

online regularization scheme in (13), the resulting estimator process {¹̂1, ¹̂2, · · · , ¹̂T} enjoys

an always-validity, i.e., the implemented online statistical learning procedure is theoretically

valid at each decision point with a time-uniform estimation error bound (Theorem 1). Such

always-validity serves as a warranty on the robustness and safety of dynamic pricing algorithm

design and fulfills the second desiderata pursued in Section 3.
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5.1.2 Formal design

Here, we give a formal derivation of the online regularization scheme design to implement

the principle outlined in Section 5.1.1. To analyze the event of valid Lasso procedure (14),

we first show a consequence of optimistic online regularization scheme (13) on the infinity

norm of score function process:

Lemma 1. (Always Valid Score Function Process Bound) Under the optimistic online

regularization scheme (13), it holds with probability at least 1− ³ that

∀t ∈ [T ] : ∥∇Lt(¹0)∥∞ f uW

√
2t−1∥diag(Σ̂[t])∥∞ ln(2d/³). (16)

Lemma 1 provides a time-uniform control on the score function process {∇Lt(¹0)}
T
t=1 of

their infinity norm process. Concretely, the result bounds the fluctuation of score function

process {∥∇Lt(¹0)∥∞}
T
t=1 at the true demand parameter ¹0 by carefully designing the online

regularization sequence {¼t}
T
t=1 to adaptive realized online uncertainty at each decision point.

As remarked in Section 5.1, the online regularization scheme (13) warrants always-validity of

the OOLASSO procedure. Consequently, the design of optimistic online regularization scheme

(13) follows from Lemma 1 and the event of valid Lasso procedure (14).

Remark 2. An advantage of the always-valid type result in Lemma 1 is that it holds for not

only a constant decision horizon T (independent from the pricing process) but also a random

decision horizon T (w) (dependent on the pricing process). This property enables us to do

valid inferences at randomly stopped times.

5.1.3 Exploration-exploitation trade-off

We briefly discuss how the proposed optimistic online regularization scheme (13) balances

the explore-exploit trade-off during the pricing process. As we will show in Theorems 1 and

2, the revenue loss of the OORMLP in each decision point t is of the same order as the squared

estimation error bound ∥¹̂t − ¹0∥
2
2 which is bounded by ¼2

t . Thus, the regularization level ¼t
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determines the pricing optimism of OORMLP. Price with larger revenue loss can be viewed as

“price exploration” since larger price uncertainty helps the learning of ¹0. On the other hand,

a price with a smaller revenue loss can be viewed as “price exploitation”, indicating that the

agent exploits the learned demand parameter to maximize the collected revenue.

In general, the proposed optimistic online regularization scheme (13) delivers a pricing

policy that gradually shifts from price exploration to price exploitation. There are three main

factors that contributed to pricing optimism: market noise knowledge uW , product context

process Σ̂[t], and confidence budge ³. Each of them captures different uncertainties happening

in dynamic pricing, where uW measures demand uncertainty, Σ̂[t] measures product feature

uncertainty and ³ measures online procedure uncertainty. Section 5.1 explains how these

factors contribute to the regularization level in the face of online uncertainty. Section 6

investigates how these factors contribute to pricing optimism in the numerical experiments.

5.2 Time-uniform lasso oracle inequality

This section establishes the time-uniform lasso oracle inequality (Theorem 1) as a formal

guarantee of the always-validity (the second desiderata; Section 3.2) of our framework.

To derive an error envelop for the estimates {¹̂t}
T
t=1 produced from OOLASSO, we first define

a restricted eigenvalue process condition as a process analogue of a standard requirement in

high-dimensional statistical estimation (Wainwright, 2019).

Definition 5. For a product context process {xt}
T
t=1, we say it satisfies a restricted eigen-

value process condition if there exists a sequence of positive number {ϕ2
t}

T
t=1 such that

∀t ∈ [T ] : min
J¦[d];|J |fs0

min
v ̸=0;∥vJc∥1f3∥vJ∥1

(
v¦Σ̂[t]v

)
/∥v∥22 g ϕ2

t , (17)

where vJ is the vector obtained by setting the elements of v that are not in J to zero.

Remark 3. (On the requirement of product context sequence {xt}
T
t=1) Here, we only present

the widely adopted restricted eigenvalue condition on the product context sequence {xt}
T
t=1 to
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prove the time-uniform oracle inequality. Such conditions on the product context sequence can

be relaxed by adapting arguments in high-dimensional inference literature (See, for example,

Chichignoud et al. (2016)).

Remark 4. (On the lower bound sequence {ϕ2
t}

T
t=1) Let Σ0 be the population covariance

matrix of product context xt and denote its restricted eigenvalue as ϕ2(Σ0, s0). Based on

matrix martingale concentration arguments, it can be shown that a choice of the lower bound

sequence {ϕ2
t}

T
t=1 under confidence budget ³ is

ϕ2
t = ϕ2(Σ0, s0)− 32s0

[√
2t−1 ln(d(d+ 1)/2³) + t−1 ln(d(d+ 1)/2³)

]
.

Theorem 1. (Always valid estimation error bound process) Suppose the product contexts

process {xt}
T
t=1 satisfies the restricted eigenvalue condition (17) with a non-random sequence

{ϕ2
t}

T
t=1. Then, under the online regularization scheme (13), it holds that:

Pθ0

(
∃t ∈ [T ] :

∥∥∥¹̂t − ¹0

∥∥∥
2

2
g

16s0¼
2
t (³)

l2Wϕ2
t

)
f ³. (18)

Theorem 1 provides a formal guarantee of the always-validity of our online statistical

learning framework. With a such guarantee, the user is allowed to terminate the dynamic

pricing algorithm whenever they wish, and the result of estimation error bound maintains

statistical validity. In particular, Theorem 1 indicates that the convergence rate of learn-

ing demand parameter ¹0 is determined by three primary factors: (1) Non-smoothness of

martingale difference noise conditional distribution function Fηt|Ht−1
. This is captured by

the minimal flatness defined by (5b). It controls the amount of information about the mean

market value ïxt, ¹0ð of product xt at each time step t. (2) The rate at which the product

context xt explores the parameter space. This is governed by the restricted eigenvalue process

condition (Definition 5). If the lower bound sequence {ϕ2
t}

T
t=1 is small, the product context is

relatively aligned and one requires a larger sample size to estimate the demand parameter

within a specified accuracy. (3) The complexity of demand parameter ¹0. This is captured

through the sparsity measure s0 in the feasible parameter space (3).
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5.3 Regret analysis of the OORMLP algorithm

This section establishes the regret analysis (Theorem 2) of the proposed OORMLP dynamic

pricing algorithm (Algorithm 1) as a formal guarantee of the revenue-maximization quality

(the third desiderata; Section 3.3) of our online statistical learning framework. The following

theorem bounds the regret of the proposed OORMLP dynamic pricing algorithm.

Theorem 2. (Regret guarantee for OORMLP algorithm) Suppose the product context sequence

{xt}
T
t=1 satisfies the restricted eigenvalue condition (17) with a non-random sequence {ϕ2

t}
T
t=1.

Then, under the online regularization scheme (13), with probability at least 1− ³,

Regret
OORMLP

(T ) f
256Cs0u

2
W

l2W mint∈[T ] ϕ2
t

ln(
2d

³
) log T. (19)

To read the regret bound (19), we break it into three elements of dynamic pricing problems.

First, the regret bound depends on the product market value model (Sec. 2.2) in terms of

s0, the sparsity level of demand coefficient, and d, the dimension of product context, at the

rate s0 log d. Second, the regret bound depends on the martingale difference noise process

{¸t}
T
t=1 at (2) in terms of uW , the maximal steepness and lW , the minimal flatness, at the

rate (uW/lW )2. Third, the regret bound depends on the product context sequence {xt}
T
t=1 via

the restricted eigenvalue sequence {ϕ2
t}

T
t=1 (Definition 17) at the rate 1/mint∈[T ] ϕ

2
t . Under

additional assumptions on the boundedness of these parameters, we achieve an O(log T )

regret bound of OORMLP, which meets the information-theoretical lower bound shown in

Javanmard and Nazerzadeh (2019).

Remark 5. (Comparison to RMLP algorithm proposed in Javanmard and Nazerzadeh (2019))

We emphasize that our regret bound (Theorem 2) is always valid in the sense that the result

holds for a random decision horizon T . In contrast, the regret bound of RMLP only holds for a

fixed constant decision horizon T . This is because the RMLP algorithm used the doubling trick

to apply batch-type concentration result based on i.i.d. noise assumption in dynamic pricing

algorithm design, while our result is based on martingale concentration. First, RMLP is not as
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sample efficient as OORMLP. This is because RMLP needs to reset the algorithm several times

during the pricing process to achieve logarithm regret. On the other hand, our OORMLP uses a

novel non-asymptotic martingale concentration to avoid resetting the algorithm during the

whole pricing process and still achieves logarithm regret. Second, RMLP relies on an i.i.d. noise

assumption, while OORMLP allows for a more flexible martingale difference noise. As shown in

experiments in Section 6, OORMLP is more sample efficient and robust to noise assumptions.

6 Experiments

We evaluate the performance of the proposed OORMLP algorithm on both synthetic and

real-world data. Additional simulations with dependent context sequence, sensitivity tests

are provided in the supplement.

6.1 Simulations with independent context sequence

We compare OORMLP with RMLP under four representative demand uncertainty settings: (i)

Gaussian (¸t ∼ N(0, 1)) (ii) Laplace (¸t ∼ Laplace(0, 1)) (iii) Periodic (¸t = sin(0.01t)) and

(iv) Cauchy (¸t ∼ Cauchy(0, 1)). Settings (i) and (ii) stand for instances of log-concave

distributions, where (ii) has a heavier tail than (i). Setting (iii) stands for an instance of

time-series noise, where the noises between two adjacent time points are strongly dependent.

Setting (iv) stands for distribution beyond the log-concave distribution assumed in our

theoretical analysis. This setting investigates our algorithm under model misspecification.

We set ¹0 = (1, 1, 1, 0, 0, 0, 0, 0, 0, 0) with d = 10. Each entry in the product context vector

xt ∈ R
10 is generated from N(0, 1) and truncated to [−1, 1] (Similar synthetic data generation

procedure is implemented by Bastani and Bayati (2020)). Therefore, ∥xt∥∞ f 1.

We implement our OORMLP algorithm at two confidence budgets (³ = 0.05 and 0.1) which

refer to different levels of pricing optimism, and compare our results with RMLP in Javanmard

and Nazerzadeh (2019). In real scenarios, we do not know the exact distribution of demand
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Figure 2: Comparison between RMLP and OORMLP when d = 10. First row: ¸t ∼ N(0, 1). Sec-
ond row: ¸t ∼ Laplace(0, 1). Third row: ¸t = sin(0.01t). Fourth row: ¸t ∼ Cauchy(0, 1).
Two columns on the left: different choices of confidence budget ³. Rightmost column:

¼t for the experiments. Small figures in each subfigure: Estimation error ∥¹̂t − ¹0∥2.
Each transparent line represents one experiment. The solid lines and error bars represent the
sample mean and its standard deviation.

uncertainty in advance, and hence we design the pricing function g(·) by assuming the

uncertainty is standard normal (¸t ∼ N(0, 1)). Such consideration tests the robustness of our

algorithm when the demand uncertainty is unknown. Since ∥¹0∥1 = 3, we set W = 10 for
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both OORMLP and RMLP. In practice, the theoretical online regularization choice in (13) might

be conservative. To compare the finite-time performance of OORMLP and RMLP, we scale the

regularization sequence {¼t}
T
t=1 of both methods by the same scaling parameter cλ = 0.001

(except for the Cauchy noise setting where we use cλ = 10−6 for both methods). We compute

the mean and confidence interval of regrets over 32 replications. Figure 2 reports the results

for the regret, the estimation error, and the regularization sequence used, which show the

superiority and robustness of our algorithm (See Remark 1).

Below we give general remarks and rationales of our OORMLP from the perspectives of

variance control, sample efficiency, and regret reduction.

1. Sample efficiency on estimation error process. Small figures in each subfigure at Figure

2 visualize the estimator error process of RMLP and OORMLP. In the first three uncertainty

settings, OORMLP achieves smaller estimation errors than RMLP. This aligns with Remark 5 that

OORMLP is more sample efficient than RMLP since it avoids resetting the algorithm. Remarkably,

the estimator accuracy of RMLP is especially fragile in the setting (iii) of periodic noise. This

is because RMLP uses samples only from previous episodes and updates geometrically, and its

estimation accuracy and pricing performance are impeded in a scenario where noises between

two adjacent time points are strongly dependent. In contrast to RMLP, our OORMLP enjoys a

superior design in terms of sample efficiency and robustness in such periodic noise settings.

Finally, in setting (iv) of Cauchy noise which violates our log-concave noise assumption,

OORMLP performs similarly to RMLP.

2. Confidence budget and regret reduction. Similar to the performance in the estimation

error process, OORMLP achieves much smaller regrets than RMLP in the first three uncertainty

settings. The first two columns in the first row of Figure 2 show an interesting phenomenon

that a larger confidence budget ³ leads to a more substantial regret reduction of our OORMLP,

while the performance of RMLP is not adaptive to ³. This aligns with our discussion in

Section 5.1 on how OORMLP balances the explore-exploit trade-off during the pricing process.
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3. Shape of online regularization scheme. The rightmost column of Figure 2 visualizes

how non-asymptotic martingale concentration arguments authorize a process-level online

regularization scheme. Compared to RMLP which resets itself geometrically (when t =

2k, k ∈ N) without considering product feature uncertainty, our OORMLP delivers a smooth

regularization process against both product context uncertainty and demand uncertainty.

Figure 3: Comparison between RMLP and OORMLP when d = 1000. ¸t ∼ N(0, 1). We use ¹S to
denote the values in the support (the only non-zero entries) of ¹0. First row: ¹S = (1, 1, 1).
Second row: ¹S = (1,−2, 3). Details for subfigures are the same as in Figure 2.

For high-dimensional experiments, we set d = 1000 and use the Gaussian noise setting

(¸t ∼ N(0, 1)) again. We consider two settings of the true demand parameter: ¹0 =

(1, 1, 1, 0, 0, · · · , 0) and ¹0 = (1,−2, 3, 0, 0, · · · , 0). We use cλ = 0.001 and set W = 10. Here

to save computation resources, in both this high-dimensional setting and the real data setting

below, we update the estimation of OORMLP only at t = 2k, k ∈ N as in RMLP. Figure 3 shows

the results of t ∈ [0, 10000] over 32 replicates. OORMLP performs better than RMLP even with

the same number of estimation updates. This regret reduction mainly comes from the larger

sample size used by OORMLP. As mentioned in Remark 5, RMLP used a doubling trick to
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apply batch-type concentration results, while our result for OORMLP is based on a martingale

concentration. Therefore, RMLP only updates its estimate using the most recent batch while

OORMLP updates its estimate using all historical information. This means the sample size used

by OORMLP is twice larger than that used in RMLP, and hence OORMLP is more sample efficient.

6.2 Real data analysis on auto loan applications

We demonstrate the efficiency of OORMLP in setting personalized lending rates for an online

auto loan company in the United States. Personalization of prices in the lending industry is

widely used and well-accepted. Our experiments are based on a real-life data set CPRM-12-

001: On-Line Auto Lending provided by the Center for Pricing and Revenue Management

at Columbia University. This database contains data on all 208,805 auto loan applications

received by a major online lender in the United States between July 2002 and November

2004. The data collection contains the date on which prospective borrowers submitted

an application, the sort of loan they requested (term and amount), and some personal

information. Additionally, the data collection includes whether the online lender authorized

the application, the annual percentage rate (APR) given and whether a contract was executed.

In this context, clients’ demand responses are binary, indicating whether or not a loan was

agreed upon. This dataset was studied in many dynamic pricing literatures, e.g., Phillips

et al. (2015), Ban and Keskin (2021), Bastani et al. (2021).

A summary of the data set (with descriptive statistics on the demand and available

features) is shown in the Table 3 in Ban and Keskin (2021). The column “apply” is the binary

demand indicator for eventual contract and is the response variable with value in {0, 1} for

the market value model. There are 18 feature variables, both discrete categorical (e.g., type

of financing, type of car, customer state) and continuous (e.g., FICO score, customer rate,

competitor’s rate). We prepossess the categorical variable to dummy variables and normalize

the continuous variable to values with mean 0 and maximum absolute value 1.
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This pricing problem is a special instance of the problem formulation in Section 2.2,

with demand being a binary variable. In this situation, the price of a loan is determined by

subtracting the loan amount from the net present value of future payments. Formally, we can

calculate the price from the other variables in the dataset through p = Monthly Payment×

∑Term
τ=1 (1 + Rate)−τ − Loan Amount. Here, we use one thousand dollars as a basic unit for

the price p. Also, note that the dimension of the variables in this dataset is d = 71 since we

construct dummy variables from the categorical variables.

In practice, it is hard to retrieve real-time feedback from clients on any dynamic pricing

strategy until the pricing policy has been implemented in the data collection system. Thus,

we apply off-policy learning used in Ban and Keskin (2021) to estimate the customer choice

model using ¹̂ ≡ argminL(¹) where L(¹) is defined by (8a) but across the entire dataset

with the assumption ¸t being i.i.d. following N(0, 1). This optimization problem is the same

as (8b) with ¼t = 0 and W = ∞. We use (6) with ¹0 = ¹̂ as the ground truth model for

generating the response of each consumer given any price. More specifically, to generate data

from this model, we sample the covariates xt from the original dataset and ¸t from N(0, 1),

then we calculate the market value vt and the response yt using (2) and (6).

Similar to the simulation study in Section 6.1, we design the pricing function g(·) by

assuming the uncertainty is standard normal (¸t ∼ N(0, 1)). Since the ground truth model

has ∥¹0∥1 = 33.68, we use W = 100 as the upper bound for ∥¹∥1 in the online estimation

of ¹ for both OORMLP and RMLP. The scaling parameter is cλ = 0.00001 and we update the

estimation of ¹̂t at t = 2k, k ∈ N. We compare OORMLP to RMLP using experiment with

t ∈ [0, 5000] over 32 replicates. Figure 4 reports the results for the regret, the estimation

error, and the regularization sequence used.

While both OORMLP and RMLP enjoy sublinear growth of regret, OORMLP obtains more

accurate and stable estimation of ¹ and much less regret than RMLP at T = 5000 time periods

across all confidence budgets under similar regularization sequence {¼t}
5000
t=1 . This is consistent
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Figure 4: Comparison between RMLP and OORMLP on the On-Line Auto Lending dataset.
Details for subfigures are the same as in Figure 2.

to our observation on the comparison results with synthetic data. These results support

that OORMLP enjoys substantial further regret reduction compared to RMLP and supports the

claimed superiority of the proposed online regularization scheme.
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