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Abstract

Devising a dynamic pricing policy with always valid online statistical learning procedures
is an important and as yet unresolved problem. Most existing dynamic pricing policies,
which focus on the faithfulness of adopted customer choice models, exhibit a limited
capability for adapting to the online uncertainty of learned statistical models during
the pricing process. In this paper, we propose a novel approach for designing a dynamic
pricing policy based on regularized online statistical learning with theoretical guarantees.
The new approach overcomes the challenge of continuous monitoring of the online Lasso
procedure and possesses several appealing properties. In particular, we make the decisive
observation that the always-validity of pricing decisions builds and thrives on the online
reqularization scheme. Our proposed online regularization scheme equips the proposed
optimistic online regularized maximum likelihood pricing (OORMLP) pricing policy with
three major advantages: encode market noise knowledge into pricing process optimism;
empower online statistical learning with always-validity overall decision points; envelop
prediction error process with time-uniform non-asymptotic oracle inequalities. This type
of non-asymptotic inference results allows us to design more sample-efficient and robust
dynamic pricing algorithms in practice. In theory, the proposed 00RMLP algorithm
exploits the sparsity structure of high-dimensional models and secures a logarithmic
regret in a decision horizon. These theoretical advances are made possible by proposing
an optimistic online Lasso procedure that resolves dynamic pricing problems at the
process level, based on a novel use of non-asymptotic martingale concentration. In
experiments, we evaluate 00ORMLP in different synthetic and real pricing problem settings
and demonstrate that 0ORMLP advances the state-of-the-art methods.
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oracle inequality, regret analysis.
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1 Introduction

With the growing availability and differentiation of digital products, modern online mar-
ketplaces present a unique challenge for dynamic pricing algorithms: they must customize
pricing decisions for a diverse range of digital goods to the seller’s customer database in
an online environment. In response to such a unique challenge, online training in modern
dynamic pricing systems has increasingly included market knowledge and business insights,
such as product features, marketing environment, and customer purchasing behavior. Indeed,
dynamic pricing has been employed in a variety of services and businesses, including hospi-
tality, tourism, entertainment, retail, energy, and public transportation (den Boer, 2015), and
has evolved into an integral part of revenue management in modern online service industries.

A significant challenge of dynamic pricing in the modern digital economy is making
customized pricing decisions for products, services, and solutions on the basis of item-level
data. Besides, while most practical scenarios involve high-dimensional item-level data, only a
small number of the observed features are typically decisive in the pricing decision process.
In addition, high-dimensional dynamic pricing procedure has another layer of complexity:
the entire pricing decision-making process is trained and learned from binary feedback. That
is, pricing decision makers only observe and learn from the sale status for the price that was
delivered, rather than learning from the true market value of the current item. To generate
business insights on pricing mechanism, it is desirable to learn models that attributes to
small number of decisive pricing factors to enhance explainablity of online learned market
value model of products while maximizing the revenue.

Further, risk control of the online learned model on continuously monitor dynamic pricing
procedure is in emerging demand from industrial practice because the opportunity cost of
lengthy pricing experiments is high and regrettable (Johari et al. (2021)). Indeed, it is desirable
to detect the true product market value as quickly as possible or to abolish the running

pricing experiment if the revenue improvement appears unpromising so that the scientist may



test other available actions. Besides, optimizing the running time in advance is unfortunately
impractical due to lacking knowledge on seeking revenue improvement and cost elasticity. In
modern dynamic pricing practice, deployment of online statistical learning methodology turns
out to be impeded by the such dynamic trade-off between maximum revenue improvement
detection and minimum running time. Resolving such trade-off is a crucial advancement in
statistical methodology for real-time data and persuades our investigation on the problem of
continuous monitoring high-dimensional dynamic pricing problems.

Continuous monitoring of high-dimensional dynamic pricing problem is a setting in
which decision-makers seek to recover a sparse product market value model and maximize
collected revenue (high-dimensional dynamic pricing), while the decision-makers are allowed to
terminate the pricing algorithm whenever they wish, and the result still maintains statistical
validity (continuous monitoring). Such a setting arises naturally in industrial practice
(Johari et al., 2021) but remains challenging in the literature, preventing practitioners from
effectively deploying high-dimensional statistical methodology effectively in modern online
service industries. Specifically, we consider a company that sells products to customers over a
randomly stopped time horizon. Each period, a new product is introduced, and the dynamic
pricing algorithm is responsible for deciding its price. The pricing decision is based on the
product feature and the historical pricing and sales data. Once the price is decided, the
market either accepts or rejects the product, depending on whether the price is less than or
more than the product’s market value. The company has no idea what the market value of
each product is, other than that it is a function in terms of the value of the product feature
(Broder and Rusmevichientong, 2012; Keskin and Zeevi, 2014; Javanmard and Nazerzadeh,
2019). Accordingly, the seller can utilize historical prices and sales data to infer market values
for various product features and use those estimations to drive future pricing decisions. In
general, one objective is to design a pricing algorithm that performs well in generating a

small amount of worst-case regret.



Consequently, successful revenue management requires faithful product market value
models and valid online statistical learning. Existing dynamic pricing studies focus on the
faithfulness of adopted customer choice models (Myerson, 1981; Joskow and Wolfram, 2012;
den Boer, 2015; Javanmard and Nazerzadeh, 2019; Mueller et al., 2019; Nambiar et al.,
2019; Shah et al., 2019; Ban and Keskin, 2021; Javanmard et al., 2020), but, unfortunately,
this is insufficient: certain iterates within their online optimization process may violate
pre-specified optimization constraints (for example, sparsity constraint) and thus deny the
validity of ultimate pricing decisions. Such lack of validity haunts practitioners’ deployment
of dynamic pricing systems and challenges scientists’ craftsmanship: how can one design an
online reqularization scheme to ensure the validity of online statistical learning uniformly
among all decision points and secure low regret at the same time? Specifically, we aim to

deliver a regularization automation scheme based on learned-online market knowledge.

1.1 Our contributions

In this work, we make the decisive observation that the always-validity of pricing decisions
builds on the online regularization scheme. This insight is drawn from an elegant interplay
between sparse online statistical learning and non-asymptotic martingale concentration, which
is desirable to establish the always-validity of pricing decisions. Such interplay leads us to
propose a novel online regularization scheme: we identify uncertainties surrounding learned
product demand parameters and regularize them to ensure the feasibility of iterating over
all decision points within the pre-specified confidence budget. In such a sense, a successful
always-valid high-dimensional dynamic pricing algorithm design will always return valid
pricing decisions with high probability. Hence, we regularize sparse online statistical learning
by quantifying and offsetting uncertainties evolving within the estimation process.

We call this principle technical tool Optimistic Online LASSO (00LASS0): a novel online

reqularization scheme for online lasso. Based on it, we propose an optimistic online regularized



maximum likelihood pricing (OORMLP) algorithm. The 00RMLP enjoys three major advantages:
encode market noise knowledge into pricing process optimism; empower online statistical
learning with always-validity overall decision points; envelop estimation error process with
time-uniform non-asymptotic concentration bounds. These properties ensure the validity and
robustness of our algorithm in practical dynamic pricing problems. In theory, we establish
(OOLASSO) a non-asymptotic time-uniform oracle inequality of our estimator. Such inequality
is possible by our novel use of non-asymptotic martingale concentration inequalities (Maillard,
2019; Howard et al., 2020) to ensure the always-validity warranty under a user-specified
confidence budget. Built upon this time-uniform oracle inequality, we further show that
our OORMLP algorithm achieves a logarithm regret bound, which meets the information-
theoretical lower bound in the literature (Theorem 5.1, Javanmard and Nazerzadeh (2019)).
In the experiment, we evaluate the performance of 00RMLP in both synthetic and real data
set. The results back up our theoretical superiority of 00RMLP algorithm in its robustness
perspective against different demand uncertainties. Besides, we demonstrate how 00RMLP
utilizes the user-specified confidence budget into an online regularization scheme to trade
off price exploration and exploitation to achieve a substantial regret reduction in finite time
performance compared to RMLP (Javanmard and Nazerzadeh (2019)).

In summary, our paper makes the following three major contributions.

1. Conceptually, we formulate the continuous monitoring of high-dimensional dynamic pricing
problems. Our formulation bridges the high-dimension statistics literature in the Statistics
community with continuous monitoring literature in the Operations Research community,
opening a new venue for future studies on practical online statistical learning frameworks.

2. Methodologically, we propose the 00RMLP algorithm for continuous monitor high-dimensional
dynamic pricing to ensure the pricing strategy is valid at any time. To our knowledge, this
is the first high-dimensional dynamic pricing algorithm with an always-valid guarantee.

3. Theoretically, we establish time-uniform Lasso oracle inequalities on the estimation error



process and further show a time-uniform logarithmic regret bound for our 00ORMLP algorithm.
As a technical by-product, we develop 00LASSO to manage the optimism of online LASSO

procedure via our novel use of non-asymptotic martingale concentration.

1.2 Related literature

Our work contributes to the learning-based dynamic pricing literature in problem formulation,
to regularized online statistical learning in methodology, and to the growing literature of
always valid online decision-making in theory.

Dynamic pricing with demand learning. Dynamic pricing with learning is a field
of research that investigates pricing algorithms for situations when the demand function is
unknown. Typically, the challenge is described as a form of the multiarmed bandit problem,
with the arms being priced and the payoffs from the different arms being correlated, due
to the measurements of demand assessed at different price points being correlated random
variables. This includes parametric approaches (Broder and Rusmevichientong, 2012; Keskin
and Zeevi, 2014; Broder and Rusmevichientong, 2012), semi-parametric ones (Shah et al.,
2019) as well as nonparametric ones (Fan et al., 2021; Liu et al., 2022; Keskin and Zeevi,
2014). Beyond these studies, our work advances the problem formulation from finite to
randomly stopped and possibly infinite horizon to meet the demand of continuous monitoring
dynamic pricing in modern online service industrial practice.

A more related line of work is contextual dynamic pricing, which can be categorized into
three groups, with different emphasis on how the context plays roles in the price and products
market demand or value. The first group of references (Qiang and Bayati, 2016; Nambiar
et al., 2019; Wang et al., 2021) uses context x as covariates of market demand. They assume
the demand is observable and has a relationship with the offered price and the product
context. In our work, we don’t observe the demand but only the sale status of a product.

The second group of references (Mao et al., 2018; Cohen et al., 2020) considers a noise-less



contextual dynamic pricing, which captures the relationship between value and product
context in a deterministic way. The third group of references (Javanmard and Nazerzadeh,
2019; Luo et al., 2021; Fan et al., 2022) considers a noisy linear valuation model, which is
also the model used in our paper.

Regularized online statistical learning. In the past decade, regularized offline
statistical learning methodology, including Ridge regression (Hoerl and Kennard, 1970) and
Lasso regression (Tibshirani, 1996) and related high-dimensional literature (Bithlmann and
Van De Geer, 2011; Negahban et al., 2012; Wainwright, 2019), have found their applications
integral to the solution for various online machine learning task. The applications span across
several different tasks including bandit algorithms design (Wang et al., 2020a; Wu et al.,
2022), online decision making (Bastani and Bayati, 2020; Wang and Cheng, 2020; Chen
et al., 2021a,b; Wang and Li, 2022) and high-dimensional dynamic pricing (Javanmard and
Nazerzadeh, 2019; Fan et al., 2021). Indeed, these efforts inspired people to several proof
concepts and elegant statistical frameworks for online machine learning tasks. However, the
associated calibration scheme for regularization level in these prior efforts is typically designed
for offline uncertainty (where the dataset is assumed given) but not online uncertainty (where
the dataset is not given), leading to concerns about the validity of online-learned models and
the consequent inference result. Beyond these studies, our work advances the methodology of
regularized statistical learning from a constant level regularization for offline uncertainty to a
process level regularization for online uncertainty, which we term online reqularization.

Such online regularization marks the key difference of our work compared to the RMLP in
Javanmard and Nazerzadeh (2019), which also considered sparse learning in high-dimensional
dynamic pricing. In practice, addressing the continuous monitoring high-dimensional dynamic
pricing problems requires rethinking on the art of RMLP in the following three respects: (1)
Rethink how to formulate the online uncertainty. In RMLP, the noise is assumed to be i.i.d,

which does not capture the dependency nature between observations in the online setting.



In contrast, we consider a martingale difference noise distribution, which is more suitable
to quantify online uncertainty. (2) Rethink the product feature sequence distribution. In
RMLP, the product feature vectors are independently and identically sampled from a fixed
distribution. In contrast, our framework allows a non-i.i.d. or general feature distribution.
(3) Rethink the regularization level sequence. RMLP considers episode updates and requires
resetting the algorithm. In contrast, our design of regularization does not need to reset the
algorithm, hence is more sample efficient. Moreover, our regularization design mechanism also
includes product context uncertainty and confidence budget to better balance the tradeoff
between online uncertainty and online estimation error. See Remark 1 and Remark 5 for
more detailed comparisons of these two methods.

Always-valid online decision making. Always-valid online decision making is an
emerging field of studies in the last half decade (Johari et al., 2015; Zhao et al., 2016;
Johari et al., 2021). Such emergence is a response of surging demand from modern online
service industrial practice since the opportunity cost of lengthy online experiments is high
and regrettable (Johari et al., 2021). Indeed, it is preferable to determine the real impact
as fast as feasible or to terminate the ongoing experiment if the result looks unpromising,
allowing the scientist to try other activities. Additionally, adjusting the runtime length in
advance is unfeasible due to a lack of knowledge about the amount of the seeking impact
and cost elasticity. Consequently, in modern online service practice, such dynamic trade-offs
between greatest effect detection and shortest running time constrain the implementation of
online statistical learning methodologies. Our work makes a first advance on the theory of

always-valid online decision making into the high-dimensional dynamic pricing problems.

2 High-dimensional dynamic pricing problems

This section defines the high-dimensional dynamic pricing problems. Section 2.1 provides a

five-step general design and essential elements of dynamic pricing algorithms. Section 2.2



provides our statistical framework for the market value of the product. Section 2.3 provides

our presumption on the implemented pricing function.

2.1 A general design of dynamic pricing algorithms

Next pricing decision step

/\

Query Learning Pricing Feedback Update
A ~ +1 if <v _ f
xH'l 91‘ P11 =8 <<X’+1’ 0’)) Vi1 = 1 if‘”’“ H—l 9[”'1] - 9“] v {(x,+1,[7,+1,,\,+1)}
Product pricing context - Pri1 > Vit Transaction records

Demand parameter Feature-based pricing Sale status

Figure 1: A general design of dynamic pricing algorithms

In a dynamic pricing problem with decision horizon T', the agent is required to determine
total T prices at decision points 1,2,--- ,T. Here T is an unknown integer-valued random
variable and its realization is determined by an unknown terminating rule from a decision
maker. At a decision point ¢ € [T, a customer in the market selects a product with context
7y from a d-dimensional unit sphere X = {z € R%: ||x||,, < 1}. The agent receives a pricing
query for x;, and her goal is to choose a posted price p; € R to maximize the revenue. The
market value v; of product z; is unknown. After posting a price p;, the customer decides
whether to purchase the product based on market value v;. The market value v; is not
observable to the agent, but only a binary-valued sale status variable y, € {—1,+1}. If
p: < vy, a sale occurs and the seller collects a revenue p; and y; = +1; otherwise, no sale

occurs and no revenue is received and i, = —1. Formally,

+1 if py < vy
Y = .
—1 ifp > vy

The seller’s objective is to develop a pricing policy that maximizes revenue received.

Figure 1 briefly summarizes a general design of dynamic pricing algorithms for revenue



maximization via illustration of the five steps in a single decision step. In particular, at each

decision point ¢ + 1, the agent

. Query: The algorithm receives a query for pricing on the product with high-dimensional
context vector x;41 € X.

. Learning: The algorithm learns a demand parameter estimate 6A’t € Q) based on up-to-time ¢

t

<y to predict market value v;41 of product x;.

transaction records Dy = {(xs, ps, Ys) }
. Pricing: The algorithm posts a revenue-maximizing price p;11 = g(@t; T141) with a user-
specified pricing function g.

. Feedback: The algorithm receives a sale status y;.1, based on the product’s sale price p;i1.

. Update: The algorithm updates the transaction records Dy, 1) = Dy U {(Te41, Des1, Ye41) }-

Building upon the above general design of dynamic pricing algorithms, our goal is to provide
an online statistical learning framework that fulfills three desiderata—sparse learning, always-
validity, and revenue-maximization-that outlined in Section 3 to resolve high-dimensional
dynamic pricing problems in continuous monitoring setting. The resulting dynamic pricing
algorithms and the statistical learning framework are established in Section 4 and their formal

fulfillment to the three desiderata are elaborated in Section 5.

2.2 Product market value model

Our statistical framework for market value v; of product x; consists of three parts: the market
value model v;|z;, the target demand parameter 6y and the martingale difference noise process
{n:}L,. First, we model market value v; of the product as a linear function of the observable
product covariate x;; formally

vy = (0o, ) + 1. (2)

Second, the unknown parameter 6, is the target demand parameter that characterizes
the demand profile of customers’ behaviors. Parallel to high-dimensional dynamic pricing

literature (Javanmard and Nazerzadeh, 2019), we consider a structured feasible parameters
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set {2 in which 6, is high-dimensional and sparse; formally, for user-specified constants sg and

W, the feasible parameters set (2 is defined as
Q={0eR": |0l < so, 0], < W} (3)

Third, the noise process {n;}._, in (2) accounts for unmeasured context and random
noises. Notably, we consider a more general and practical dependent noise process drawn
from a martingale difference sequence that is adapted to current transaction records. That

is, with respect to the o-field

Hioy = 0($1,p1,y1, crt L1, Pe—1, yt—lyxtapt) (4)

generated by all transaction records before y; is observed, the noise process 7, satisfies
E[n:|H;—1] = 0 for all ¢ € [T]. Our dependent noise process relaxes the i.i.d. assumption
considered in Javanmard and Nazerzadeh (2019). The conditional distribution of n:|H;—; is
assumed to be log-concave in this paper. Many common probability distributions such as
normal, logistic, uniform, exponential, Laplace, and bounded distributions are log-concave

(Wellner, 2012). In particular, we define the ‘steepness® of a function F, 3, ,(-) as

Uw, = | Tgpw {max {log’ Fp, , (x), —log' (1 = Fypm, ,(2))}} (5a)
x|<3

and also define the 'flatness’ of function F,, 3, ,(-) as

lW,t = ‘xllggw {mln {_ log” Fm|7—lt—1 (:L’), - log” (1 - Fnt\Hz—l ($)>}} : (5b)

In addition, we define the mazimal steepness to be the constant uy = maxeir uw, and the
minimal flatness to be the constant Iy = minger) lwy.

The above statistical framework of product market value induces a probabilistic model
for the sale status process {y;}7_;. The sale status process denotes a trajectory of customer

transaction decisions with respect to the corresponding pricing sequence {p;}~_, and product
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sequence {z;}_,. In particular, given the definition of sale status (1) and the market value

model (2), the sale status process {y;}._, is generated from the following probabilistic model:

1- F”]t|Ht—1<pt - <Q07 xt)) if Yy = +17
F77t|7'lt—1(pt - <007$t>> if Yt = _17

where F,3;,_, () denotes the conditional distribution of noise 7; given H;_;.

Po, (| He-1) = { (6)

2.3 Pricing function

Our framework allows a flexible pricing function g used at Step 3 of the pricing algorithm
design (Figure 1). Such a feature is standard in industrial practice to provide flexible
deployment of dynamic pricing algorithms (Johari et al., 2021). We assume the pricing
function g is a L-Lipschitz continuous function for some Lipschitz constant L < 1, which is

satisfied by the common pricing function choice in the literature, given in Example 2.1.

Example 2.1. To mazimize the expected revenue, it is shown in auction theory (My-
erson, 1981; Javanmard and Nazerzadeh, 2019), the revenue-mazximizing price p*(x;) =
argmax,{p(1 — Fypu,_, (0 — (6o, x¢))}. The first order conditions says that the optimal posted
price p; = p*(x;) satisfy

11— F”]t‘,Htfl (p; - <907 xl‘>)
fnt|7-lt—1 (p;; - <907 zt))

I=Foy 11y (v)
fntIHt—l (v) -

P = = p; — (0o, zt) — Ge(p; — (o, 71))

by letting ¢ (v) = v — That is, (6o, x:) + &e(pf — (6o, 2:)) = 0 and hence

pr = (0o, z) + (dr) (=00, 2¢)) = 9: ({60, 1)). So the pricing function has the closed form
9:(v) = v+ () (), (7)

where ¢,(v) = v — (1 — Fy (V) / fime. (v) is known as a virtual valuation function. By

Lemma S7.4, the pricing function g; is 1-Lipschitz continuous.
3 Evaluating dynamic pricing policy

In this section, we elaborate on what makes a good dynamic policy. Our goal is to design a

pricing policy 7 that offers the price p;(7) for the product x; in order to (i) learn the true
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demand parameter 6, to inform seller about the underlying product market value model
(2), (ii) continuously monitor the estimation error of the estimated demand parameter,
and (iii) optimize the posted price to maximize the expected revenue. In order for the
policy 7 to fulfill the learning and optimizing tasks, it must satisfy the following desiderata:
(A) it should return a sparse demand parameter estimate to enhance the explainability of
the pricing mechanism and product market value, (B) it should be able to adapt the online
uncertainty of product market value model (2) to obtain always-valid statistical error bounds,
and (C) it should be revenue-mazimized, i.e., the difference between posted price p;(7) and
the oracle price 7} should be small. Consequently, it’s critical to establish an effective strategy
that strikes a balance between exploration (gathering data for learning parameters) and
exploitation (offering optimal pricing based on learned parameters).

Having outlined the desiderata for our sought-after pricing policy, we now propose three
properties of the online statistical learning framework that should be encoded in the adopted

pricing policy. These properties are:

(A) Sparse Learning: the learned demand parameter identifies the subset of decisive pricing
features to enhance the explainability of the learned market value model. (Section 3.1)

(B) Always-Validity: the estimation error of the online learned market value model remains
statistical validity even when the pricing algorithm is terminated randomly. (Section 3.2)

(C) Revenue-Maximization: the collective revenue is comparable to the revenue of the oracle

pricing policy which knows the true demand parameter. (Section 3.3)

3.1 Online Lasso procedure towards sparse learning

To achieve the first desiderata on learning sparse demand parameter estimate, we adopt the

online Lasso procedure, defined as follows.

Definition 1. We define the online Lasso procedure as follows:
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1. At a decision point t, the agent calculates the negative log-likelihood function L(0;Dy)) of a
model parameter 6 and up-to-time t transaction records Dy as

Ly(0) = L(0;Dyg) = 71 log(1/Py(ys|Hs-1))- (8a)

s=1
The probability Py(ys|Hs_1) is from the Bernoulli model (6) of the sale status process {y;}1_;;
that is, with uy(0) = p,—(0, ), log(1/Py(ys|He1)) =T (ye = 1) log (1/(1 = Fpa,_, (we(6))))+
I(y: = —1)1og (1/Fypjpe, o (wi(9))) -

2. The algorithm penalizes the loss Li(0) by the l1-norm penalty at reqularization level Ay > 0. In
particular, at decision point t, the algorithm learns an estimator @ by solving the {1-reqularized

quadratic program

6, = in 3 L,(6) + \|0]]1 ¢ 8b
=g uin, {06) + 01011} (3h)
3. Repeating the above Lasso procedure at each decision point t = 1,2,--- T, with a regulariza-

tion level sequence {\:}I_,, the agent thus learns at the decision horizon T an estimation

sequence: 01,09, -+ 0.

The online Lasso procedure (Definition 1) delivers a statistical learning framework for
online sparse learning. In practice, given a regularization level sequence {\;}_;, the online
Lasso procedure returns a sequence of constrained estimators {51, 79\2, R @\T} towards learning
a sparse demand parameter estimate in the product market value model (2). Indeed, such
online Lasso procedures benefit the interpretability of the resulting product market value
model and the explainability of the pricing mechanism.

However, the benefit of the online Lasso procedure may be blocked by an improper
choice of regularization level sequences {\;}1_;. As well-recognized in the high-dimensional
statistics literature, different regularization level sequences {\;}L_, lead to different properties
of resulting constrained estimators sequence {@\1,52, e ,@\T}. As far as the continuous
monitoring dynamic pricing concerns, the fundamental challenge is how to choose the

regularization level \; in Lasso program (8b) at a process level, i.e. for every decision step ¢
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from 1 to the random decision horizon 7. Section 5.1 contributes the key observation that the
online Lasso procedure builds and thrives on online regularization scheme design to calibrate

online uncertainty during the pricing process.

3.2 Always valid estimation error bound process

To achieve the second desiderata on always-valid online statistical learning, we introduce the

concept of always-valid estimation error bound process, defined as follows :

Definition 2. Given any (possible unbounded) stopping time T with respect to historical
filtration {H,}L_, (defined at (4)). A sequence of constant real number {r;}1_, is an always
valid estimation error bound process of the estimator sequence {51,52, e ,§T} with

confidence budget « if it holds that
Py, (Elt € [T] : |16 — 6ol|2 > Tt> < a. (9)

The always valid estimation error bound process (Definition 2) serves as a principal
theoretical tool for online service industrial practice in the continuously monitoring risk control
of adopted online statistical learning procedures. For an online learned estimator sequence
{51, 52, e ,§T}, the corresponding error bound process {ry,ry, -+ , 77} collectively gives a
time-uniform control on the estimation error sequence {HdZ —6ol|2, ||§2 —6ll2, -, H@T —6l|2}
such that the probability of out-of-control is at most at the level of user pre-specified confidence
budget a. Such time-uniform risk control allows users to terminate the dynamic pricing
algorithm whenever they wish, and the result still maintains statistical validity.

Establishing such an always valid error-bound process, however, is technically challenging
and far from understood in the literature. The reason is that, while estimation error bound
result for fixed sample size Lasso regression had been systematically studied in the literature
and inspired people for an elegant theoretical framework, they focused on offline uncertainty

(the whole dataset is given) instead of online uncertainty (the dataset is not given and
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is observed on the fly). Consequently, the classical method of high-dimensional statistics
literature fails to meet the challenge of online statistical learning with continuous monitoring
demanded in the modern online service industry. Section 5.2 contributes a key theoretical

result on the always validity of online Lasso procedure (Definition 1).

3.3 Regret of a dynamic pricing policy

To achieve the third desiderata of revenue maximization, we define the notion of regret.

Definition 3. The regret of a dynamic pricing policy © up to decision T is defined as

Regret (T) = maXIE{Z (re(pf) — re(pe(m))) |, (10)

o0
0 =1

where r(p) = pI(vy > p) is the expected revenue of the product x, with the posted price p.
The expectation is taken with respect to the noise n, and product context x4, and p,(mw) denotes

the price offered at decision step t by following policy 7.

Definition 3 benchmarks the performance of a dynamic pricing policy 7 that determines
posted prices {p;}7_, to the corresponding ’oracle pricing policy’, which exploits knowledge
of the true demand parameter 6, and proposes the price pi = g({6y, x;)) for the product
of context z;, where g(-) is a user-specified pricing function. In Example 2.1, the optimal
price p; is the price that maximizes the expected revenue. Formally, we consider the goal of
maximizing revenue as minimizing the maximum regret at Definition 3. As pursued as the
third desiderata of pricing policy, the goal is to design an online statistical learning procedure

such that the regret (10) is small.

4 The 00RMLP algorithm and 00LASSO procedure

This section establishes our pricing policy design that achieves the three desiderata discussed
in Section 3. We first propose the Optimistic Online Regularized Maximum Likelihood

Pricing (00RMLP) algorithm (Algorithm 1) as the desirable dynamic pricing policy at Section
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4.1. Then we elaborate our novel Optimistic Online Lasso procedure (00LASSO) towards

always valid online statistical learning at Section 4.2.

4.1 O0ORMLP algorithm

In this section, we present the proposed dynamic pricing policy at Algorithm 1. The
presentation follows the general design of dynamic pricing algorithms in Figure 1. In
particular, at decision point ¢t + 1, the agent learns the demand parameter estimator é\t
based on the current transaction records Dy via Lasso regression in (8b) at regularization
level \; specified in the optimistic online regularization scheme (13). In addition, both the
sample covariance matrix i[t] and the online regularization sequence {\;}7_, in (13) can be

incrementally updated: at each decision point ¢,

Z[t] — t_l (t — 1)2[,5,1] + l‘tZL‘;r ; /\t — )\t—l \/(1 — t_l)HE[t}Hoo/HZ[tfl}||c>o-
Such property allows an efficient online implementation in the experiments.

4.2 Optimistic online lasso procedure

Here, we elaborate our novel approach to construct a learning process 51,52, e ,§T for
the target demand parameter 6, based on transaction records Dy = {(zs, ps, ys) }o—q with

optimism in the face of online uncertainty during the pricing process.

Definition 4. An online Lasso procedure (Definition 1) is optimistic if the regularization

sequence { )\ }1_, is specified by the following optimistic online regularization scheme:

M (@) = duy /2 - £ diag(Sy) [ In(2d/a). (13)

Definition 4 presents our novel regularization scheme for regulating online uncertainty
during the dynamic pricing process. The reason we call (13) optimistic is that it regularizes
the online LASSO procedure with optimism in the face of both demand uncertainty and

product feature uncertainty during the dynamic pricing process, given a specified confidence
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Algorithm 1 Optimistic Online Regularized Maximum Likelihood Pricing (OORMLP)

Require: Steepness of market noise uyy, pricing function g(-) and confidence budget a.
1: Initialization: Receive product context x;. Post price p;. Receive sale status y.

2 Dy {(xnpryn)}: Sy e @aal; M dug /2] ding(Epy) [l In(2d/a).
3: fort=2,...,[T] do
4:  1.Query: Receive product context x;.
5:  2.Learning: Update the sample covariance matrix and regularization level:
i[t} — t71 [(t — 1)i[t_1] + l’t$;r:| R (11&)
A= A (= DS o/l (11b)
6:  Update the estimate
B,1 < arg min {L1(0) + N_1l0]1}. 12
o1 ang min {£,2(0) + dalO]} (12)

7. 3.Pricing: Post price p; < g <<§t,1,xt>).
8: 4.Feedback: Receive sale status ;.
5.Update: D[t] — D[t—l] U {(.It,pt, yt)}

10: end for

©

budget «. Three factors contribute to the regularization level A\;(«). First, the constant uy
is the maximal steepness of noise process (5a) and represents our prior knowledge of demand
uncertainty. Second, the empirical covariance matrix i[t] =113 w.2] characterizes the
uncertainty of up-to-now product context sequence. Third, the constant « stands for the
user-pre-specified confidence budget for the always-validity of implemented online LASSO
procedure. These factors collectively express optimism in the face of online uncertainty
during the dynamic pricing process and are the foundation to fulfill the three desiderata we
pursued in Section 3. Consequently, we adopt the optimistic online regularization scheme
(13) to design O0RMLP algorithm (Algorithm 1) to enjoy three desiderata-sparse learning,

always-validity and revenue-maximization-on resulting dynamic pricing policy.

Remark 1. (Regularization comparison to RMLP in Javanmard and Nazerzadeh (2019)) The
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relation between our reqularization scheme and the one in RMLP is

/ lo log(2d/ o =~
At DURMLP = \t.urp g2 igog / Hdm9<2[t]>”oo-

The relation above indicates that, while RMLP do not, OORMLP includes in the reqularization

level the uncertainty arising from context sequence (||diag(§][ﬂ) |loo)- The root reason why RMLP
does not take ||diag(§[ﬂ)||oo into their reqularization design is due to their assumption on the
independent identical distributed property on the product sequence. When the distribution
of product sequence deviates from such i.i.d. assumption, the reqularization level in RMLP is
improper to account for the effective noise process in the LASSO procedure. Our regularization
design takes the context sequence uncertainty into account, which leads to the robustness of

OORMLP in the experiments.

5 Always-validity and regret analysis

This section elaborates on formal guarantees of three qualities of our 00RMLP algorithm and
0O0LASSO procedure. Section 5.1 demystifies the design principle behind our optimistic online
regularization scheme, formally achieving the first desiderata: sparse learning. Section 5.2
establishes the time-uniform Lasso oracle inequality (Theorem 1), formally achieving the
second desiderata: always-validity. Section 5.3 present regret analysis (Theorem 2) of our

00RMLP pricing policy, formally achieving the third desiderata: revenue-maximizing.

5.1 Optimistic online regularization scheme

This section demystifies the optimistic online regularization scheme (13) as a formal guarantee

of the sparse learning of our online statistical learning framework.
5.1.1 Basic design principle

We now explain the design principle of the regularization sequence {\;}-_, for the optimistic

online regularization scheme at (13). In principle, our goal is to design a regularization
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sequence {\;}L_; that warrants the online LASSO procedure (Definition 1) with always-validity
by constructing an always valid estimation error bound process (Definition 2). Intuitively, the
optimal choice of the sequence is an outcome of the bias-and-variance trade-off. Bias arises as
a shrinkage effect from [;-regularizer and grows as \; increases. Besides, [-regularizer offsets
fluctuations in the score function process {V.L;(6)}_,. Hence, an optimal choice of {\;}L,
is the smallest envelop that is large enough and always controls score fluctuations during the
whole pricing process.

To obtain an always valid estimation error bound process of the online LASSO procedure
(8b), we generalize standard guidance from high-dimensional statistics literature to the process

level by considering the event
S({A}imy) = {Vt € [T] : 47|V Lo(0o)l|c < Ac} - (14)

Given the above event, Theorem 1 in Section 5.2 shows that it is possible to build an always

valid estimation error bound on the proposed online LASSO procedure. Therefore, an optimal

design of {\;}1_; should be the one to ensure that &({\;}X_,) holds with high probability.
Toward finding such an optimal selection, for a given confidence budget o € (0, 1), our

goal is to find a regularization level sequence {\;(a)} | that satisfies
Py, (B({Mi(@)}1)) > 1~ a. (15)

As supported by Lemma 1 in Section 5.1.2, the proposed optimistic online regularization
scheme (Definition 4) satisfies the property (15). Therefore, when the agent learns the target
demand parameter y by solving the LASSO problem in (8b) with the specified optimistic
online regularization scheme in (13), the resulting estimator process {51, é\g, e ,/H\T} enjoys
an always-validity, i.e., the implemented online statistical learning procedure is theoretically
valid at each decision point with a time-uniform estimation error bound (Theorem 1). Such
always-validity serves as a warranty on the robustness and safety of dynamic pricing algorithm

design and fulfills the second desiderata pursued in Section 3.
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5.1.2 Formal design

Here, we give a formal derivation of the online regularization scheme design to implement
the principle outlined in Section 5.1.1. To analyze the event of valid Lasso procedure (14),
we first show a consequence of optimistic online regularization scheme (13) on the infinity

norm of score function process:

Lemma 1. (Always Valid Score Function Process Bound) Under the optimistic online

reqularization scheme (13), it holds with probability at least 1 — « that

V€ T] VL)oo < /26 diag(Sig) oo In(2d/ ). (16)

Lemma 1 provides a time-uniform control on the score function process {V.L;(6y)}L, of
their infinity norm process. Concretely, the result bounds the fluctuation of score function
process {||VL:(0) |l }1-; at the true demand parameter 6y by carefully designing the online
regularization sequence {\;}7_, to adaptive realized online uncertainty at each decision point.
As remarked in Section 5.1, the online regularization scheme (13) warrants always-validity of
the OOLASSO procedure. Consequently, the design of optimistic online regularization scheme

(13) follows from Lemma 1 and the event of valid Lasso procedure (14).

Remark 2. An advantage of the always-valid type result in Lemma 1 is that it holds for not
only a constant decision horizon T (independent from the pricing process) but also a random
decision horizon T(w) (dependent on the pricing process). This property enables us to do

valid inferences at randomly stopped times.

5.1.3 Exploration-exploitation trade-off

We briefly discuss how the proposed optimistic online regularization scheme (13) balances
the explore-exploit trade-off during the pricing process. As we will show in Theorems 1 and
2, the revenue loss of the 00RMLP in each decision point ¢ is of the same order as the squared

estimation error bound ||§t — 6|3 which is bounded by A?. Thus, the regularization level \;
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determines the pricing optimism of 00RMLP. Price with larger revenue loss can be viewed as
“price exploration” since larger price uncertainty helps the learning of 6. On the other hand,
a price with a smaller revenue loss can be viewed as “price exploitation”, indicating that the
agent exploits the learned demand parameter to maximize the collected revenue.

In general, the proposed optimistic online regularization scheme (13) delivers a pricing
policy that gradually shifts from price exploration to price exploitation. There are three main
factors that contributed to pricing optimism: market noise knowledge wuy,, product context
process i[t], and confidence budge . Each of them captures different uncertainties happening
in dynamic pricing, where uy, measures demand uncertainty, i[t] measures product feature
uncertainty and « measures online procedure uncertainty. Section 5.1 explains how these
factors contribute to the regularization level in the face of online uncertainty. Section 6

investigates how these factors contribute to pricing optimism in the numerical experiments.

5.2 Time-uniform lasso oracle inequality

This section establishes the time-uniform lasso oracle inequality (Theorem 1) as a formal
guarantee of the always-validity (the second desiderata; Section 3.2) of our framework.

To derive an error envelop for the estimates {@\t}tT:l produced from 00LASSO, we first define
a restricted eigenvalue process condition as a process analogue of a standard requirement in

high-dimensional statistical estimation (Wainwright, 2019).

Definition 5. For a product context process {x;}_,, we say it satisfies a restricted eigen-

value process condition if there exists a sequence of positive number {¢p?}_, such that

Vte[T]: min min (Ji[tw) JIlvlI2 > 2, (17)

JC[d];|J|<s0 v#£0s|lvsell1<3[lvsl1
where vy is the vector obtained by setting the elements of v that are not in J to zero.
Remark 3. (On the requirement of product context sequence {x;}l_,) Here, we only present

the widely adopted restricted eigenvalue condition on the product context sequence {x;}l_, to
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prove the time-uniform oracle inequality. Such conditions on the product context sequence can
be relazed by adapting arguments in high-dimensional inference literature (See, for example,

Chichignoud et al. (2016)).

Remark 4. (On the lower bound sequence {$?}1_,) Let 3g be the population covariance
matriz of product context x; and denote its restricted eigenvalue as ¢*(Xg,s9). Based on
matriz martingale concentration arguments, it can be shown that a choice of the lower bound

sequence {¢2 YL, under confidence budget o is

¢2 = ¢%(Zo, 50) — 3250 [\/275—1 In(d(d+ 1)/2a) + ¢~ In(d(d + 1) /za)] .

Theorem 1. (Always valid estimation error bound process) Suppose the product contexts
process {x;}L_, satisfies the restricted eigenvalue condition (17) with a non-random sequence

{¢?}L_,. Then, under the online reqularization scheme (13), it holds that:

2 16s0A?(a)
> — | < qa.
et )51 .

Theorem 1 provides a formal guarantee of the always-validity of our online statistical

-~

0y — 6o

Py, (Elt e [1]: ‘

learning framework. With a such guarantee, the user is allowed to terminate the dynamic
pricing algorithm whenever they wish, and the result of estimation error bound maintains
statistical validity. In particular, Theorem 1 indicates that the convergence rate of learn-
ing demand parameter 6, is determined by three primary factors: (1) Non-smoothness of
martingale difference noise conditional distribution function F,y, ,. This is captured by
the minimal flatness defined by (5b). It controls the amount of information about the mean
market value (x¢, 6p) of product x; at each time step ¢. (2) The rate at which the product
context x; explores the parameter space. This is governed by the restricted eigenvalue process
condition (Definition 5). If the lower bound sequence {¢?}1_; is small, the product context is
relatively aligned and one requires a larger sample size to estimate the demand parameter
within a specified accuracy. (3) The complexity of demand parameter ¢,. This is captured

through the sparsity measure sq in the feasible parameter space (3).
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5.3 Regret analysis of the 00RMLP algorithm

This section establishes the regret analysis (Theorem 2) of the proposed 00RMLP dynamic
pricing algorithm (Algorithm 1) as a formal guarantee of the revenue-maximization quality
(the third desiderata; Section 3.3) of our online statistical learning framework. The following

theorem bounds the regret of the proposed 00RMLP dynamic pricing algorithm.

Theorem 2. (Regret guarantee for OORMLP algorithm) Suppose the product context sequence
{x:}I_, satisfies the restricted eigenvalue condition (17) with a non-random sequence {¢?}1_;.

Then, under the online regularization scheme (13), with probability at least 1 — «,

2 2 9
56050ty 1 24y 1007 (19)

Regretyp (1) < m o

To read the regret bound (19), we break it into three elements of dynamic pricing problems.
First, the regret bound depends on the product market value model (Sec. 2.2) in terms of
sg, the sparsity level of demand coefficient, and d, the dimension of product context, at the
rate sglogd. Second, the regret bound depends on the martingale difference noise process
{n:}L, at (2) in terms of uy, the maximal steepness and Iy, the minimal flatness, at the
rate (uy /Iy )?. Third, the regret bound depends on the product context sequence {z;}._, via
the restricted eigenvalue sequence {¢7}]_; (Definition 17) at the rate 1/ minefr] ¢7. Under
additional assumptions on the boundedness of these parameters, we achieve an O(logT)

regret bound of O0RMLP, which meets the information-theoretical lower bound shown in

Javanmard and Nazerzadeh (2019).

Remark 5. (Comparison to RMLP algorithm proposed in Javanmard and Nazerzadeh (2019))
We emphasize that our regret bound (Theorem 2) is always valid in the sense that the result
holds for a random decision horizon T'. In contrast, the regret bound of RMLP only holds for a
fized constant decision horizon T'. This is because the RMLP algorithm used the doubling trick
to apply batch-type concentration result based on i.i.d. noise assumption in dynamic pricing

algorithm design, while our result is based on martingale concentration. First, RMLP is not as
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sample efficient as OORMLP. This is because RMLP needs to reset the algorithm several times
during the pricing process to achieve logarithm regret. On the other hand, our OORMLP uses a
novel non-asymptotic martingale concentration to avoid resetting the algorithm during the
whole pricing process and still achieves logarithm regret. Second, RMLP relies on an i.i.d. noise
assumption, while OORMLP allows for a more flexible martingale difference noise. As shown in

experiments in Section 6, OORMLP is more sample efficient and robust to noise assumptions.

6 Experiments

We evaluate the performance of the proposed 00RMLP algorithm on both synthetic and
real-world data. Additional simulations with dependent context sequence, sensitivity tests

are provided in the supplement.

6.1 Simulations with independent context sequence

We compare 00RMLP with RMLP under four representative demand uncertainty settings: (i)
Gaussian (n; ~ N(0,1)) (ii) Laplace (1, ~ Laplace(0, 1)) (iii) Periodic (1 = sin(0.01¢)) and
(iv) Cauchy (n; ~ Cauchy(0,1)). Settings (i) and (ii) stand for instances of log-concave
distributions, where (ii) has a heavier tail than (i). Setting (iii) stands for an instance of
time-series noise, where the noises between two adjacent time points are strongly dependent.
Setting (iv) stands for distribution beyond the log-concave distribution assumed in our
theoretical analysis. This setting investigates our algorithm under model misspecification.
We set 6, = (1,1,1,0,0,0,0,0,0,0) with d = 10. Each entry in the product context vector
z; € R1% is generated from N (0, 1) and truncated to [—1,1] (Similar synthetic data generation
procedure is implemented by Bastani and Bayati (2020)). Therefore, ||zl < 1.

We implement our 00RMLP algorithm at two confidence budgets (v = 0.05 and 0.1) which
refer to different levels of pricing optimism, and compare our results with RMLP in Javanmard

and Nazerzadeh (2019). In real scenarios, we do not know the exact distribution of demand
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Figure 2: Comparison between RMLP and 00RMLP when d = 10. First row: 7, ~ N(0,1). Sec-
ond row: 7; ~ Laplace(0,1). Third row: 7, = sin(0.01¢). Fourth row: 7, ~ Cauchy(0, 1).
Two columns on the left: different choices of confidence budget a. Rightmost column:
A¢ for the experiments. Small figures in each subfigure: Estimation error ||6; — o||2.
Each transparent line represents one experiment. The solid lines and error bars represent the
sample mean and its standard deviation.

uncertainty in advance, and hence we design the pricing function g¢(-) by assuming the
uncertainty is standard normal (7, ~ N(0,1)). Such consideration tests the robustness of our

algorithm when the demand uncertainty is unknown. Since ||6y]|; = 3, we set W = 10 for
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both O0ORMLP and RMLP. In practice, the theoretical online regularization choice in (13) might
be conservative. To compare the finite-time performance of 0ORMLP and RMLP, we scale the
regularization sequence {\;}_, of both methods by the same scaling parameter cy = 0.001
(except for the Cauchy noise setting where we use ¢y = 107° for both methods). We compute
the mean and confidence interval of regrets over 32 replications. Figure 2 reports the results
for the regret, the estimation error, and the regularization sequence used, which show the
superiority and robustness of our algorithm (See Remark 1).

Below we give general remarks and rationales of our 00RMLP from the perspectives of

variance control, sample efficiency, and regret reduction.

1. Sample efficiency on estimation error process. Small figures in each subfigure at Figure
2 visualize the estimator error process of RMLP and O0ORMLP. In the first three uncertainty
settings, OORMLP achieves smaller estimation errors than RMLP. This aligns with Remark 5 that
OO0RMLP is more sample efficient than RMLP since it avoids resetting the algorithm. Remarkably,
the estimator accuracy of RMLP is especially fragile in the setting (iii) of periodic noise. This
is because RMLP uses samples only from previous episodes and updates geometrically, and its
estimation accuracy and pricing performance are impeded in a scenario where noises between
two adjacent time points are strongly dependent. In contrast to RMLP, our OORMLP enjoys a
superior design in terms of sample efficiency and robustness in such periodic noise settings.
Finally, in setting (iv) of Cauchy noise which violates our log-concave noise assumption,

O0RMLP performs similarly to RMLP.

2. Confidence budget and regret reduction. Similar to the performance in the estimation
error process, 0ORMLP achieves much smaller regrets than RMLP in the first three uncertainty
settings. The first two columns in the first row of Figure 2 show an interesting phenomenon
that a larger confidence budget « leads to a more substantial regret reduction of our OORMLP,
while the performance of RMLP is not adaptive to a. This aligns with our discussion in

Section 5.1 on how 00RMLP balances the explore-exploit trade-off during the pricing process.
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. Shape of online regularization scheme. The rightmost column of Figure 2 visualizes
how non-asymptotic martingale concentration arguments authorize a process-level online
regularization scheme. Compared to RMLP which resets itself geometrically (when ¢ =
2% k € N) without considering product feature uncertainty, our 00RMLP delivers a smooth

regularization process against both product context uncertainty and demand uncertainty.
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Figure 3: Comparison between RMLP and 00RMLP when d = 1000. 7; ~ N(0,1). We use 05 to
denote the values in the support (the only non-zero entries) of 6. First row: 6 = (1,1,1).
Second row: g = (1,—2,3). Details for subfigures are the same as in Figure 2.

For high-dimensional experiments, we set d = 1000 and use the Gaussian noise setting
(e ~ N(0,1)) again. We consider two settings of the true demand parameter: 6, =
(1,1,1,0,0,--- ,0) and 6y = (1,-2,3,0,0,---,0). We use ¢, = 0.001 and set W = 10. Here
to save computation resources, in both this high-dimensional setting and the real data setting
below, we update the estimation of 00RMLP only at ¢t = 2¥, k € N as in RMLP. Figure 3 shows
the results of ¢ € [0, 10000] over 32 replicates. 00RMLP performs better than RMLP even with
the same number of estimation updates. This regret reduction mainly comes from the larger

sample size used by O0RMLP. As mentioned in Remark 5, RMLP used a doubling trick to
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apply batch-type concentration results, while our result for OORMLP is based on a martingale
concentration. Therefore, RMLP only updates its estimate using the most recent batch while
OORMLP updates its estimate using all historical information. This means the sample size used

by OORMLP is twice larger than that used in RMLP, and hence 00RMLP is more sample efficient.

6.2 Real data analysis on auto loan applications

We demonstrate the efficiency of 00RMLP in setting personalized lending rates for an online
auto loan company in the United States. Personalization of prices in the lending industry is
widely used and well-accepted. Our experiments are based on a real-life data set CPRM-12-
001: On-Line Auto Lending provided by the Center for Pricing and Revenue Management
at Columbia University. This database contains data on all 208,805 auto loan applications
received by a major online lender in the United States between July 2002 and November
2004. The data collection contains the date on which prospective borrowers submitted
an application, the sort of loan they requested (term and amount), and some personal
information. Additionally, the data collection includes whether the online lender authorized
the application, the annual percentage rate (APR) given and whether a contract was executed.
In this context, clients’ demand responses are binary, indicating whether or not a loan was
agreed upon. This dataset was studied in many dynamic pricing literatures, e.g., Phillips
et al. (2015), Ban and Keskin (2021), Bastani et al. (2021).

A summary of the data set (with descriptive statistics on the demand and available
features) is shown in the Table 3 in Ban and Keskin (2021). The column “apply” is the binary
demand indicator for eventual contract and is the response variable with value in {0, 1} for
the market value model. There are 18 feature variables, both discrete categorical (e.g., type
of financing, type of car, customer state) and continuous (e.g., FICO score, customer rate,
competitor’s rate). We prepossess the categorical variable to dummy variables and normalize

the continuous variable to values with mean 0 and maximum absolute value 1.
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This pricing problem is a special instance of the problem formulation in Section 2.2,
with demand being a binary variable. In this situation, the price of a loan is determined by
subtracting the loan amount from the net present value of future payments. Formally, we can
calculate the price from the other variables in the dataset through p = Monthly Payment x
Zzirlm (1 + Rate)™™ — Loan Amount. Here, we use one thousand dollars as a basic unit for
the price p. Also, note that the dimension of the variables in this dataset is d = 71 since we
construct dummy variables from the categorical variables.

In practice, it is hard to retrieve real-time feedback from clients on any dynamic pricing
strategy until the pricing policy has been implemented in the data collection system. Thus,
we apply off-policy learning used in Ban and Keskin (2021) to estimate the customer choice
model using § = arg min L(6) where £(0) is defined by (8a) but across the entire dataset
with the assumption 7, being i.i.d. following N(0,1). This optimization problem is the same
as (8b) with Ay = 0 and W = oo. We use (6) with 6y = f as the ground truth model for
generating the response of each consumer given any price. More specifically, to generate data
from this model, we sample the covariates x; from the original dataset and 7, from N(0, 1),
then we calculate the market value v; and the response y; using (2) and (6).

Similar to the simulation study in Section 6.1, we design the pricing function g(-) by
assuming the uncertainty is standard normal (7, ~ N(0,1)). Since the ground truth model
has ||6]|1 = 33.68, we use W = 100 as the upper bound for ||f||; in the online estimation
of 6 for both 00RMLP and RMLP. The scaling parameter is ¢, = 0.00001 and we update the
estimation of @ at t = 2.k € N. We compare 00RMLP to RMLP using experiment with
t € [0,5000] over 32 replicates. Figure 4 reports the results for the regret, the estimation
error, and the regularization sequence used.

While both 00RMLP and RMLP enjoy sublinear growth of regret, 0ORMLP obtains more
accurate and stable estimation of # and much less regret than RMLP at T" = 5000 time periods

across all confidence budgets under similar regularization sequence {\; };°}°. This is consistent
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Figure 4: Comparison between RMLP and OORMLP on the On-Line Auto Lending dataset.
Details for subfigures are the same as in Figure 2.
to our observation on the comparison results with synthetic data. These results support
that OORMLP enjoys substantial further regret reduction compared to RMLP and supports the

claimed superiority of the proposed online regularization scheme.
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