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M, and , which can be determined by fitting the model to various experiments, including free swelling, fast stretching, and stress 
relaxation (Section 3). We demonstrate the marked difference in N and M using polyacrylamide hydrogels synthesized from precursors 
of various concentrations of monomer, crosslinker, and transfer agent (Section 4). In all samples studied, M is several times N, whereas 

is nearly constant. 

2. Modified Flory-Rehner model 

A polymer network is in contact with a reservoir of a solvent, in which the temperature and chemical potential of solvent molecules 
are held constant. The polymer network imbibes solvent molecules and forms a gel. The gel bears triaxial forces, represented by three 
hanging weights. The gel, the reservoir of solvent, and the weights constitute an isolated system. The isolated system has several 
internal variables, including the number of solvent molecules in the gel and the heights of the weights. The entropy of the isolated 
system is the sum of the entropies of the parts of the isolated system. As the internal variables change, the isolated system maximizes 
the entropy to attain equilibrium. The resulting equations of state determine the values of the internal variables in equilibrium. 

2.1. An isolated system of three independent internal variables 

A dry polymer network, a rectangular block of edges L1, L2, and L3, is taken to be the reference state (Fig. 2). In the current state, the 
polymer network is in contact with a reservoir of a solvent, in which the temperature is T and the chemical potential of solvent 
molecules is . The polymer network imbibes the solvent, resulting in a gel. The gel bears loads, represented by three hanging weights 
P1, P2, and P3. Under constant T, , P1, P2, and P3, the polymer network imbibes a certain number of solvent molecules, m, and the edges 
of the gel become l1, l2, and l3. 

Looped strand

Dangling strandLong strand

Fig. 1. A polymer network commonly has strands that do not bear loads. Examples include looped strands, dangling strands, and extremely long 
strands. Red dots represent crosslinks. 

l3 - L3

P2

P1P3

μ, T

l1
l3

m

l1 - L1

l2 - L2

Current state

L1
L2

L3

Reference state

l2

Fig. 2. In the reference state, a polymer network is dry, taken to be a rectangular block of edges L1, L2, and L3. In the current state, the polymer 
network is in contact with a reservoir of a solvent, in which the temperature is T and the chemical potential of solvent molecules is . The gel bears 
loads represented by weights P1, P2, and P3. In a current state, the edges of the block are l1, l2, and l3. The polymer network imbibes a number m of 
solvent molecules. 
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Following a commonly adopted approximation, we assume that the volume of the gel is the sum of the volume of the dry polymer 
and the volume of the solvent in the gel: 

(1)  

where is the volume per solvent molecule. 
We regard the gel, weights, and the environment together as an isolated system. Subject to a constant temperature, chemical 

potential, and weights, the gel imbibes solvent and deforms. Consequently, m, l1, l2, and l3 are the internal variables of the isolated 
system. The assumption (1) relates m to l1, l2, and l3, so that the system has only three independent internal variables, l1, l2, l3. We 
consider the macroscopic behavior of the gel, which is independent of the size of the isolated system. Define the stretches by 1 l1/L1, 

2 l2/L2, and 3 l3/L3. The three stretches are scale-free and independent internal variables of the isolated system. 

2.2. Four states of a gel 

We define four states of a gel. When there is no solvent in the gel, the polymer network is in a dry state. As noted above, we chose the 
dry state as the reference state, in which the stretches are 1 2 3 1 (Fig. 3a). In the dry state, many polymers are in a glassy or 
semicrystalline state. In such cases, the thermodynamic model developed in this paper is not applicable. As will be evident, the physics 
of the dry polymer does not enter the model. Rather, the dry state is only used here to define the block in which the stretches are 1 2 

3 1. The thermodynamic model developed here will only be used when the polymers are in a rubbery state. 
In preparing a gel, the polymer network is often formed in a mold with a certain amount of solvent. Let p be the stretch in the as- 

prepared state (Fig. 3b). For a polymer network cured from a monomer precursor, the monomers polymerize into polymer chains, and 
polymer chains crosslink in the polymer network. Each polymer strand takes approximately a configuration of random walk, which is 
relaxed. As another example, consider a polymer network cured from a solution of polymer chains. The polymer chains can be in either 
a relaxed state or an unrelaxed state, depending on the thermomechanical process of the solution before crosslink. After crosslink, the 
polymer strands in the network can be either relaxed or unrelaxed. To simplify the matter, in this paper we assume that the polymer 
strands are relaxed in the as-prepared state. 

When the as-prepared gel is submerged in the pure solvent, subject to no applied forces, the network imbibes the solvent. Upon 
equilibrating with the reservoir, the gel reaches a fully swollen state. Let 0 be the stretch in the fully swollen state in the absence of 
applied forces (Fig. 3c). 

In the current state, the gel is subject to applied forces P1, P2, and P3. Define the nominal stresses by s1 P1/(L2L3), s2 P2/(L1L3), 
and s3 P3/(L1L2). This paper defines nominal stress as the force in the current state divided by the area in the dry state. This definition 
can be modified if any other reference state is used. In a fast tensile test, in which the solvent molecules have no time to migrate, the 
volume of the gel remains unchanged. However, in a stress-relaxation test, in which the solvent molecules can migrate in or out of the 
gel, the volume of the gel changes over time. In both cases, denote the stretches in the current state by 1, 2, and 3 (Fig. 3d). 

2.3. Entropy of stretching 

The deformation of rubber-like materials is an entropic process. When the polymer network is stretched, the entropy of strands 
decreases, but the energy of strands changes negligibly. Here we limit ourselves to small to modest stretches, where the neo-Hookean 
model applies. In the as-prepared state, each strand is taken to be in a configuration of random walk and is fully relaxed. Relative to the 
reference state, the dry network (Fig. 3a), the as-prepared state has an equal-triaxial stretch of p (Fig. 3b). When the network un
dergoes a three-dimensional affine deformation, each strand is in a state of the triaxial stretch of 1, 2, and 3. The ratio of the end-to- 
end distance in the current state to that in the as-prepared state is 1/ p, 2/ p, and 3/ p (Tanaka, 1978). This deformation changes the 
entropy of the strand by 1/2k(( 1/ p)2 ( 2/ p)2 ( 3/ p)2 3), where k is the Boltzmann constant (Treloar, 1943). The change in 
the entropy of the network is the sum of the entropy of all load-bearing strands. Let N be the density of load-bearing strands (i.e., the 
number of load-bearing strands in the network divided by the volume of the network in the dry state). Consequently, the network has 

a

As-prepared state Fully swollen state Current state

1 1
1

λp
λp

λp

λ0
λ0

λ0

b c d

λ1
λ3s3

s3

s1
λ2

s1

s2

s2

Dry state
(Reference state)

Fig. 3. The stretches and stresses in four states of a gel.  
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the entropy of stretching 
 

(2)  

2.4. Entropy of mixing 

In the Flory-Rehner model, N is also used to calculate the entropy of mixing. As we will show, this practice leads to large errors for a 
real polymer network, in which many strands do not bear loads but participate in mixing with solvent molecules. Only load-bearing 
strands contribute to the entropy of stretching, but all strands contribute to the entropy of mixing. Let M be the total number of strands 
in the network divided by the volume of the network in the dry state. The ratio N/M is the fraction of load-bearing chains in the 
network. 

The entropy of mixing of a polymer solution is computed as follows (Brassart et al., 2016). The result reproduces that of a lattice 
model (Huggins, 1941). When the polymer chains and solvent molecules are separate, they occupy volumes npvp and nsvs, respectively 
(Fig. 4). Here np is the number of polymer chains, vp is the volume per polymer chain, ns is the number of solvent molecules, vs is the 
volume per solvent molecule. In the separated state, each polymer chain can explore the volume npvp, and each solvent molecule can 
explore the volume nsvs, so that the number of configurations is n v n n v n . When the polymer chains and solvent molecules mix, 
the volume of the solution is npvp nsvs. In the mixed state, each polymer chain can explore the volume npvp nsvs, and each solvent 
molecule can also explore the volume npvp nsvs, so that the number of configurations is n v n v n n v n v n . Consequently, 
the mixing of the polymer strands and solvent molecules changes the number of configurations by a factor of 

n v n v n v n n v n v n v n . Recall that the entropy is defined by Boltzmann constant times the logarithm of the 
number of configurations. Thus, the entropy of mixing is 

(3) 

Note that the absolute entropy of polymer strands will also include the contributions of internal motions of individual monomer 
units. Similarly, the absolute entropy of solvent molecules will also include contributions of the internal motions of individual solvent 
molecules. The Huggins model assumes that these internal motions do not change before and after mixing, so they do not contribute to 
the entropy of mixing. When its center of mass is fixed, each polymer chain has the same number of quantum states in the pure polymer 
and in the solution. A similar assumption is made about each solvent molecule. The entropy of mixing is entirely because the solution 
increases the volume accessible to each polymer chain and each solvent molecule. Furthermore, the model assumes that the volume of 
the solution is the sum of the volume of pure polymer and that of the pure solvent. 

Next, consider the entropy of mixing of a gel, i.e., the entropy of mixing of a polymer network and solvent molecules. In the gel, 
each polymer strand cannot explore the entire volume of the gel anymore, because the crosslinks inhibit the translational motion of the 
polymer strands. This inhibition decreases the absolute entropy. However, the entropy of mixing, by definition, is the relative entropy 
from the dry polymer to the gel. The volume of the gel is larger than that of the dry polymer, so that each polymer strand explores a 
larger volume in the gel than in the dry polymer. The ratio of the volume of the gel to that of the dry polymer is (npvp nsvs)/(npvp). We 
assume that this increase in volume is affine, and that by the same ratio each polymer strand explores a larger volume in the gel than in 
the dry polymer. Therefore, the mixing changes the number of configurations of all strands in the gel by a factor of 

n v n v n v n . This contribution to the entropy of mixing for a gel is the same as that for a polymer solution. Furthermore, 
each solvent molecule can still explore the volume of the entire gel. Consequently, the entropy of mixing of a gel is the same as that of a 
polymer solution. This result reproduces that derived using a lattice model by Flory (1953). We emphasize that np is the total number of 
polymer strands in the network, including both the strands that bear loads and the strands that do not. The two types of strands make 
the same contribution to mixing. 

Rewrite the entropy of mixing as follows: 

(4) 

Here we adopt the notation J (npvp nsvs)/(npvp), M vp
1, L1L2L3 npvp, and vs, where J is the swelling ratio J l1l2l3/ 

+

npvp npvp + n svsnsvs

=

Fig. 4. Mixing polymer and solvent.  
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(L1L2L3) 1 2 3. 

2.5. Energy of mixing 

When polymer chains and solvent molecules mix, the energy of mixing takes place at the level of individual monomer units and 
solvent molecules. Consequently, the energy of mixing of a polymer solution can be computed by modifying the Hilderbrand regular 
solution model of molecules of similar sizes (Hildebrand and Scott, 1962; Hildebrand and Wood, 1933). Following Flory (1941) and 
Huggins (1941), we assume that the volumes of each monomer unit and solvent molecule are similar, and that each monomer unit and 
solvent molecule have the same number of interaction sites z. Denote the total number of monomer units and solvent molecules by n, 
the number fraction of monomer units by ym, and the number fraction of solvent molecules by ys. Note that ym ys 1. The monomer 
units have znym interaction sites, and the solvent molecules have znys interaction sites. Denote the energy per monomer-to-monomer 
interaction by umm, the energy per solvent-to-solvent interaction by uss, and energy per monomer-to-solvent interaction by ums. Before 
mixing, the pure monomer units form znym/2 bonds, and have energy ummznym/2. Similarly, the pure solvent molecules form znys/2 
bonds, and have energy ussznys/2. After mixing, each monomer unit has zym monomer neighbors and zys solvent molecule neighbors. 
Similarly, each solvent molecule has zym monomer unit neighbors and zys solvent neighbors. In the solution, nym monomer units form 
znymym/2 monomer-to-monomer interactions, and nys solvent molecules form znysys/2 solvent-to-solvent interactions. Furthermore, 
the nym monomer units and nys solvent molecules form znysym monomer-to-solvent interactions. Consequently, the solution has energy 
znymymumm/2 znysymums znysysuss/2. The difference in the energy before and after mixing gives the energy of mixing: 

(5) 

Rewrite the energy of mixing as: 

(6) 

This model assumes that the volume per monomer unit is similar to the volume per solvent molecule, . Note that ym J 1, ys 1 - 
J 1, and n L1L2L3J. We adopt the notation z[ums - (umm uss)/2](kT) 1. 

2.6. Isolated system conserves energy 

We have adopted a reference state, in which the polymer and solvent are unmixed, m 0, and the weight has not moved 1 2 

3 1. Thus, the energy of the reference state is the sum of the energy of the pure polymer and the energy of the reservoir before losing 
any solvent molecule. The potential energy of the weights in the reference state is taken to be zero. 

In the current state, the energy of the isolated system is: 

(7) 

The first term comes from the mixing of the polymer and the solvent. The second term results from m molecules leaving the 
reservoir. The last three terms come from the potential energy of the hanging weights. The isolated system conserves energy, so that 
Uiso constant. 

2.7. Isolated system maximizes entropy 

The reservoir is a system that only exchanges with the rest of the world by energy and solvent molecules, so that the entropy of the 
reservoir is a function of its energy and its number of molecules, Sres(Ures, mres). Recall the definition of the temperature and chemical 
potential, dSres (1/T)dUres - ( /T)dmres. The reservoir has constant temperature T and chemical potential . Upon changing energy by 
Ures and the number of solvent molecules by mres m, the reservoir changes its entropy by Sres (Ures m)/T. Replacing Ures using 
(7), we obtain that 

(8) 

In the current state, the entropy of the isolated system is the sum of the entropies of the parts: Siso Sstretch Smix Sres. The first 
two terms come from the gel and the third term comes from the solvent reservoir. The weights themselves do not change entropy when 
they move up or down. The entropy of the isolated system is: 

(9) 

Substituted m using (1), the entropy of the isolated system Siso is a function of the independent internal variables 1, 2, and 3. 
As the internal variables 1, 2, and 3 change, the isolated system reaches equilibrium by maximizing its entropy, so that 

J. Kim et al.                                                                                                                                                                                                             
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(10)  

These conditions of equilibrium lead to the equations of state: 

(11)  

Here we write the equations of state in the form of nominal stress as a function of 1, 2, and 3. In deriving (11), both the tem
perature T and the chemical potential referred to those in the reservoir. In equilibrium, T is the temperature of the gel, and is the 
chemical potential of solvent molecules in the gel. 

The first term originates from the entropy of stretching (neo-Hookean model), the second and third terms originate from the en
tropy of mixing, and the forth term originates from the energy of mixing. The third term can also be calculated by using the 
compressible neo-Hookean model (Hong et al., 2008). However, the compressible neo-Hookean model uses one density of strands and 
does not distinguish the strands that bear loads and the strands that do not bear loads. Also, in this case, the entropy of mixing should 
only be calculated for the solvent to avoid double counting the entropy of mixing for the polymers. 

True stress is defined as the force divided by the area in the current state. Thus, the true stresses in the three directions are s1/( 2 3), 
s2/( 1 3), and s3/( 2 1). From (11), we obtain that 

(12a)  

(12b)  

3. Experiments 

The stretch of the as-prepared gel, p, is calculated from the composition of the precursor (Section 3.1). We then determine the three 
parameters, N, M, and , in three tests. First, we submerge the as-prepared hydrogel in pure water to swell to equilibrium and measure 

0 (Section 3.2). Second, we prepare a pure shear sample and measure the stress-stretch curve at a fast loading rate (Section 3.3). Third, 
for a sample submerged in pure water, we apply a constant stretch and measure the stress relaxation (Section 3.4). All tests are repeated 
three times to calculate statistical deviation. Since all mechanical experiments are conducted in series, the three parameters N, M, and 
are determined using one sample. 

3.1. Synthesis 

We use acrylamide (AAm, A8887), N,N -methylenebisacrylamide (MBAA, M7279), ammonium persulfate (APS, 215589), N,N,N , 
N -Tetramethylethylenediamine (TEMED, T22500), and 3-Mercaptopropionic acid (3-MPA, M5801) as a monomer, crosslinker, 
initiator, accelerator, and transfer agent, respectively. All chemicals are purchased from Sigma Aldrich and used as received. Deionized 
water (DI water) is purchased from Poland Spring. Rubber sheets are purchased from McMaster-Carr (3788T21) and are used as a 
spacer. We dissolve 14 g of AAm and 0.261 g of MBAA in 86 g of DI water. The amount of MBAA varies depending on the crosslinker 
density. We dissolve APS in DI water to prepare a 0.2 M solution. For every 1 mL solution of monomer and crosslinker, 30 L of APS 
solution and 0.5 L of TEMED are added. After vortexing the final solution for a few seconds, the precursor is poured immediately onto 
a 15 cm 15 cm acrylic sheet mold (8560K257) with a 0.5 cm-thick rubber spacer. The precursor is cured at room temperature for 24 
h. 

After cure, the mass of the sample is measured. Assuming that all monomers in the precursor polymerize during cure, the volume of 
the polymer network in the dry state, V, is taken to be the same as the volume of monomers in the precursor. Consequently, p is 
calculated by: 

(12)  
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where Vp is the volume of the precursor. When the densities of the monomer and the solvent are similar (e.g. acrylamide: 1.13 g/cm3, 
DI water: 1.00 g/cm3), Vp/V can be estimated by the mass ratio. 

3.2. Free swelling 

The as-prepared sample is then submerged in a large amount of pure water. After more than 48 h, the sample swells to equilibrium, 
and the mass is measured. The stretch of the fully swollen state is calculated from: 

(13)  

where V0 is the volume of the gel in the fully swollen state. The chemical potential of water molecules in pure water is set to zero. The 
fully swollen state is stress-free. Consequently, the equations of state (11) reduce to a single equation: 

 

(14)  

3.3. Fast tension 

The fully swollen gel is cut into 8.9 cm 3.8 cm. The sample is weighed again to calculate the final thickness. The long edges of the 
gel are glued onto acrylic sheets using cyanoacrylate (Krazy glue), and then loaded at a tensile machine (Instron 5966). The deforming 
region of the sample takes the shape of a long rectangle, 8.9 cm 1.3 cm. All samples are tested in pure water, so that the next stress 
relaxation test can be done right after the fast tension. Instead, we set the loading rate to be 0.08 s 1 which is much faster than the rate 
of diffusion (Kalcioglu et al., 2012). 

We measure the stress-stretch curve of the fully swollen gel (Fig. 5). Let X1, X2, and X3 be the material coordinates in the width, 
loading, and thickness direction, respectively. Due to the rigid constraint of the acrylic sheets, the contraction in the width direction is 
negligible 1 0. The traction in the thickness direction is free, s3 0. Prior to loading, the gel is in the fully swollen state, and is in 
equilibrium with the reservoir of pure water. During loading, however, the polymer network is not in equilibrium with the reservoir of 
pure water, so that the chemical potential of solvent molecules in the gel is unknown. Because the loading is fast, the solvent molecules 
in the gel migrate negligibly. Consequently, the chemical potential of the solvent in the gel is uniform, and the volume of the gel does 
not change 1 2 3 0

3. (12b) gives: 

(15) 

The parameter N can be obtained from the initial slope of the stress-stretch curve as follows: 

(16) 

We plot one stress-stretch curve as an example (the circles in Fig. 5c). The measured force and the displacement are converted into 
nominal stress and stretch. The stretch at zero stress is 0. From the initial slope, we get N by using (16). We also put the value of N to 
(15) and plot the stress-stretch curve (the solid line in Fig. 5c). Whether Sstretch of the fully swollen sample is valid at the given stretch 
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Fig. 5. (a) Schematic of fast loading test under a pure shear condition in the solvent. The grippers fix 1 to be 0. As the sample is fully swollen and 
tested in the solvent, the chemical potential of solvent in the gel is zero before deformation, and becomes non-zero when the sample is stretched 
quickly because the sample has no time to reach equilibrium. (b) The loading profile of the fast loading test. (c) Example of the stress-stretch curve. 
The x-intercept is 0 and the initial slope gives N. We can check if the neo-Hookean model (solid line) works for fully swollen gel at a certain 
stretch range. 
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r a n g e c a n b e c o n fir m e d b y h o w t h e m e a s ur e d d at a fit w ell wit h ( 1 5). 

3. 4. Str ess r el a x ati o n 

W e s u b m er g e t h e f ull y s w oll e n g el i n p ur e w at er, a p pl y a c o n st a nt str et c h, a n d m e a s ur e t h e str e s s a s a f u n cti o n of ti m e Fi g. 6 ). T h e 

di s pl a c e m e nt i s e m piri c all y c h o s e n i n t h e r a n g e i n w hi c h t h e n e o- H o o k e a n m o d el w or k s w ell. I n t h e tr a n si e nt st at e, t h e p ol y m er 

n et w or k i s n ot i n e q uili bri u m wit h t h e p ur e s ol v e nt, s o t h at t h e e q u ati o n s of st at e ( ( 1 1) d o n ot a p pl y. H o w e v er, aft er b ei n g s u bj e ct e d t o 

a fi x e d str et c h f or a l o n g ti m e, t h e p ol y m er n et w or k a n d t h e r e s er v oir of p ur e w at er r e a c h a n e w st at e of e q uili bri u m, w h er e t h e g el 

e q uili br at e s wit h t h e r e s er v oir. C o n s e q u e ntl y, t h e c h e mi c al p ot e nti al of w at er m ol e c ul e s i n t h e g el b e c o m e s z er o. I n t h e n e w e q ui -

li bri u m st at e, t h e s a m pl e still s ati s fi e s t h e c o n diti o n s λ 1 = λ 0 a n d s3 = 0. T h u s, t h e t hir d e q u ati o n of ( 1 1) b e c o m e s 

N Ω

λ 2
p

λ 3 ,∞ +

[

l o g

(

1 −
1

λ 0 λ 2 λ 3 ,∞

)

+ ( 1 − M Ω )
1

λ 0 λ 2 λ 3 ,∞

+
χ

(
λ 0 λ 2 λ 3 ,∞

) 2

]

λ 0 λ 2 = 0 , ( 1 8)  

w h e r e λ 3, ∞ i s t h e st r et c h i n t h e t hi c k n e s s dir e cti o n i n t h e n e w st at e of e q uili bri u m. 

W e c all t h e i niti al n o mi n al str e s s s2, 0 a n d t h e e q uili bri u m n o mi n al str e s s s2, ∞ . I n t h e i niti al st at e, t h e g el i s n ot i n e q uili bri u m wit h 

t h e r e s er v oir, b ut t h e ti m e i s t o o s h ort f or t h e s ol v e nt m ol e c ul e s t o mi gr at e i nt o t h e g el. C o n s e q u e ntl y, t h e c h e mi c al p ot e nti al of t h e 

s ol v e nt i n t h e g el i s n o n z er o, b ut u nif or m. F or t h e i niti al st at e, ( 1 2 b ) b e c o m e s: 

s 2 ,0 =
N k T

λ 2
p

(

λ 2 −
λ 2

3

λ 2

)

, ( 1 9)  
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Fi g. 6. ( a) S c h e m ati c of str e s s r el a x ati o n t e st u n d er a p ur e s h e ar c o n diti o n i n p ur e w at er. B y a cr yli c gri p p er s, t h e λ 1 i s fi x e d t o b e λ 0 . Aft e r e q ui-

li bri u m, t h e c h e mi c al p ot e nti al of t h e s ol v e nt i s z er o. ( b) T h e l o a di n g pr o fil e of t h e str e s s r el a x ati o n t e st. ( c) E x a m pl e of str e s s r el a x ati o n. T h e i niti al 

str e s s s2, 0 d e c r e a s e s o v e r ti m e a n d b e c o m e s t h e fi n al str e s s s2, ∞ . 
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w h er e λ 1 λ 2 λ 3 = λ 0
3 . F o r t h e e q uili bri u m st at e, (1 2 b ) b e c o m e s 

s 2 ,∞ =
N k T

λ 2
p

(

λ 2 −
λ 2

3 ,∞

λ 2

)

. ( 2 0) 

T h e c o m bi n ati o n of ( 1 9) a n d ( 2 0) gi v e s: 

λ 3 ,∞ =

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
λ 4

0

λ 2
2

+ R

(

λ 2
2 −

λ 4
0

λ 2
2

)√

, ( 2 1)  

w h e r e R = (s2, 0 – s2, ∞ ) /s2, 0 . W h e n w e m e a s ur e t h e v al u e of R , w e c a n c al c ul at e λ 3, ∞ f r o m ( 2 1). Pl u g gi n g λ 3, ∞ i n ( 1 8), w e g et o n e 

e q u ati o n t h at r el at e s N, M , a n d χ . 

4.  R e s ult s 

4. 1. Eff e ct of cr ossli n k er 

W e s y nt h e si z e p ol y a cr yl a mi d e h y dr o g el s wit h v ari o u s cr o s sli n k er d e n siti e s (i. e., t h e m ol ar r ati o of t h e cr o s sli n k er s t o t h e m o n o m er s 

i n t h e pr e c ur s or), a n d st u d y h o w cr o s sli n k er d e n siti e s aff e ct t h e t hr e e p ar a m et er s i n t h e m o d el. T h e str e s s- str et c h c ur v e s of t h e f a st 

l o a di n g t e st s ar e pl ott e d i n Fi g. 7 a. A s t h e cr o s sli n k er d e n sit y i n cr e a s e s, λ 0 d e c r e a s e s, a n d t h e i niti al sl o p e i n cr e a s e s. T h e m e a s ur e d d at a 

fit w ell wit h t h e pr e di cti o n s of t h e n e o- H o o k e a n m o d el. T h e str e s s r el a x ati o n d at a ar e pl ott e d i n Fi g. 7 b. 1 0 – 2 0 % of str e s s r el a x ati o n 

r ati o s ar e o b s er v e d. F oll o wi n g t h e pr o c e d ur e s d e s cri b e d i n S e cti o n 3 , w e d et er mi n e all t h e p ar a m et er s. 

W e pl ot di m e n si o nl e s s n u m b er s, N Ω a n d M Ω , a s f u n cti o n s of t h e cr o s sli n k er d e n sit y (Fi g. 8 a). N a n d M i n cr e a s e a s t h e cr o s sli n k er 

d e n sit y i n cr e a s e s b e c a u s e a d diti o n al cr o s sli n k er s g e n er at e m or e c h ai n s p er u nit v ol u m e. Al s o, M > N at all cr o s sli n k er d e n siti e s w e 

st u d y, i n di c ati n g t h e e xi st e n c e of str a n d s t h at d o n ot b e ar l o a d s. It i s p er h a p s s ur pri si n g t h at s u c h hi g h fr a cti o n s of p ol y m er c h ai n s 
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1 1

c o ntri b ut e t o s w elli n g b ut n ot t o b e ari n g l o a d. At t hi s writi n g, w e d o n ot h a v e ot h er i n d e p e n d e nt m e a n s t o a s c ert ai n t hi s c o n cl u si o n. 

O b s er v e t h at M / N = 3. 3 at a l o w cr o s sli n k er d e n sit y, a n d pl at e a u s at M / N = 1. 7 a s t h e cr o s sli n k er d e n sit y i n cr e a s e s ( Fi g. 8 b). I n t hi s 

e x p eri m e nt, t h e m ol ar r ati o of t h e i niti at or t o m o n o m er i s k e pt c o n st a nt ( ~ 1 0 − 3 ) f o r all c r o s sli n k er d e n siti e s, s o t h at t h e a v er a g e l e n gt h 

of p ol y m er c h ai n s i s c o n st a nt. At l o w cr o s sli n k er d e n sit y, t h e M / N r ati o i s hi g h, p o s si bl y b e c a u s e t h e fr a cti o n of d a n gli n g str a n d s at t h e 

e n d s of p ol y m er c h ai n s i s hi g h. At hi g h cr o s sli n k er d e n siti e s, t h e fr a cti o n of d a n gli n g str a n d s at t h e e n d of t h e p ol y m er c h ai n s i s 

n e gli gi bl e, b ut o ur d at a still s h o w t h at M / N = 1. 7, i n di c ati n g t h at a p orti o n of str a n d s t h at d o n ot b e ar l o a d c o m e s fr o m str a n d s s u c h a s 

l o o p e d str a n d s, e x c e s si v el y l o n g str a n d s, a n d d a n gli n g str a n d s m a d e b y r o ut e s ot h er t h a n t h e i niti at or s. 

T h e i nt er a cti o n p ar a m et er χ d o e s n ot c h a n g e wit h cr o s sli n k er d e n sit y ( Fi g. 8 c). T hi s r e s ult i s u n s ur pri si n g, b e c a u s e χ m e a s ur e s t h e 

e n er g y of mi xi n g of m o n o m er u nit s a n d w at er m ol e c ul e s, a n d b e c a u s e t h e a m o u nt of t h e cr o s sli n k er s i s n e gli gi bl e c o m p ar e d t o t h at of 

m o n o m er u nit s a n d w at er m ol e c ul e s. 

4. 2. Eff e ct of m o n o m er c o n c e ntr ati o n 

I n a p ol y m er n et w or k, p ol y m er c h ai n s e nt a n gl e (Fi g. 1 ). D uri n g s w elli n g a n d d ef or mi n g, t h e cr o s sli n k s k e e p t h e p ol y m er c h ai n s 

fr o m d et a n gli n g. F oll o wi n g c o m m o n pr a cti c e, w e writ e N = N c + N e , w h e r e N c a n d N e a r e c o nt ri b uti o n s fr o m cr o s sli n k s a n d e nt a n -

gl e m e nt s. T o v ar y t h e d e n sit y of e nt a n gl e m e nt s, w e s y nt h e si z e p ol y a cr yl a mi d e h y dr o g el s wit h v ari o u s m o n o m er c o n c e ntr ati o n s i n t h e 

pr e c ur s or, w hil e fi xi n g t h e cr o s sli n k er d e n sit y ( Ki m et al., 2 0 2 1 ). W h e n t h e m o n o m er s p ol y m eri z e at a hi g h c o n c e ntr ati o n, t h e cr o w d e d 

m o n o m er s p ol y m eri z e i nt o d e n s el y e nt a n gl e d p ol y m er c h ai n s. W h e n t h e m o n o m er s p ol y m eri z e at a l o w c o n c e ntr ati o n, t h e s p ar s e 

p ol y m er c h ai n s b ar el y e nt a n gl e. T h e str e s s- str et c h c ur v e s of t h e f a st t e n sil e t e st s ar e pl ott e d i n Fi g. 9 a. A s t h e m o n o m er c o n c e ntr ati o n 

i n cr e a s e s, λ 0 d e c r e a s e s, a n d t h e i niti al sl o p e i n cr e a s e s. T h e str et c h r a n g e i s s m all e n o u g h t o u s e t h e n e o- H o o k e a n m o d el. T h e str e s s 

r el a x ati o n i s ~ 1 0 % ( Fi g. 9 b). 

W e pl ot N a n d M a s f u n cti o n s of t h e m o n o m er c o n c e ntr ati o n i n t h e pr e c ur s or ( Fi g. 1 0 a). W e v ar y t h e m o n o m er c o n c e ntr ati o n fr o m 

1 0. 2 t o 4 5. 7 wt %. W h e n t h e m o n o m er c o n c e ntr ati o n i s l o w er t h a n 7 wt %, g el ati o n d o e s n ot o c c ur. W h e n t h e m o n o m er c o n c e ntr ati o n i s 

hi g h er t h a n 5 0 wt %, t h e pr e c ur s or pr e ci pit at e s at r o o m t e m p er at ur e. A s t h e m o n o m er c o n c e ntr ati o n i n cr e a s e s, t h e d e n sit y of e n -

t a n gl e m e nt s i n cr e a s e s, a n d t h e eff e cti v e l e n gt h of t h e str a n d s d e cr e a s e s. C o n s e q u e ntl y, b ot h N a n d M i n cr e a s e. I n all m o n o m er c o n-

c e ntr ati o n s w e st u d y, M i s 2– 4 ti m e s hi g h er t h a n N , s u g g e sti n g t h at a l ar g e fr a cti o n of t h e eff e cti v e str a n d s f or m e d b y e nt a n gl e m e nt s d o 

n ot b e ar l o a d b ut c o ntri b ut e t o s w elli n g ( Fi g. 1 0 b). T h e i nt er a cti o n p ar a m et er d o e s n ot c h a n g e i n m o n o m er c o n c e ntr ati o n ( Fi g. 1 0 c). 

4. 3. Eff e ct of tr a nsf er a g e nt 

W e i n cr e a s e t h e fr a cti o n of d a n gli n g str a n d s b y u si n g a tr a n sf er a g e nt, 3- M er c a pt o pr o pi o ni c a ci d ( 3- M P A). T h e tr a n sf er a g e nt h a s 

b e e n u s e d t o c o ntr ol t h e l e n gt h of p ol y m er c h ai n s b y tr a n sf erri n g t h e r a di c al fr o m o n e p ol y m er c h ai n t o a n ot h er, t er mi n ati n g t h e 
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Fig. 12. The effects of the transfer agent on the three parameters of the model. (a) The density of load-bearing strands, N, and the density of all strands, M. (b) The ratio M/N. (c) The interaction 
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polymerization (Liu et al., 2018; Yao et al., 2019). To be specific, when a free radical on a polyacrylamide chain reacts with a 3-MPA, 
the radical moves to the agent, and the chain is terminated with the carboxylic functional group of 3-MPA, forming a dangling strand 
(Fig. 11a). We synthesize polyacrylamide hydrogels by varying the transfer agent density, the molar ratio of the 3-MPA to the 
monomers, and determine the parameters by following the procedure described in Section 3. 

We plot N and M as a function of the transfer agent density (Fig. 12a). N decreases faster than M, and the ratio of M to N increases 
from 1.7 to 4.0, indicating that the fraction of strands that do not bear load increases by the dangling strands (Fig. 12b). The interaction 
parameter does not change as the amount of the transfer agent is still negligible compared to that of the polymer and water (Fig. 12c). 

5. Conclusion 

When a polymer network is submerged in a solvent and bears loads, all polymer strands contribute to swelling, but only a fraction of 
polymer strands contribute to load-bearing. This difference has motivated us to modify the Flory-Rehner model. We use the density of 
all strands, M, for the entropy of mixing, and use the density of load-bearing strands, N, for the entropy of stretching. The modified 
model has three parameters: M, N, and the interaction parameter, . We prepare polyacrylamide hydrogels with various amounts of 
crosslinker, monomer, and transfer agent. We determine the three parameters for the polyacrylamide hydrogels by fitting the modified 
model to several experiments, including free swelling, fast tension, and stress relaxation. In all cases, M N and is a constant. Our 
work shows the significance of differentiating strands that bear load and strands to not. Also, this model may provide a measure of 
strands that do not bear loads, which is important to understanding network topologies. 
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