

Social antagonism facilitates supergene expansion in ants

Giulia Scarparo^{1,3*}, Marie Palanchon², Alan Brelsford², and Jessica Purcell^{1*}

¹Department of Entomology, University of California Riverside, 165 Entomology
Bldg. Citrus Drive, Riverside, CA 92521, USA

²Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, 2710 Life Science Bldg., Riverside, CA 92521 , USA

³ Lead contact

*Correspondence to Giulia Scarparo and Jessica Purcell.

Emails: giulias@ucr.edu; jpurcell@ucr.edu

Keywords: sex chromosome evolution; queen size dimorphism; queen number; genetic architecture; social parasites; colony social form; sex ratio; social insects.

14 **Summary**

15 Antagonistic selection has long been considered a major driver of the formation and
16 expansion of sex chromosomes. For example, sexually antagonistic variation on an
17 autosome can select for suppressed recombination between that autosome and the sex
18 chromosome, leading to a neo-sex chromosome. Autosomal supergenes, chromosomal
19 regions containing tightly linked variants affecting the same complex trait, share similarities
20 with sex chromosomes, raising the possibility that sex chromosome evolution models can
21 explain the evolution of genome structure and recombination in other contexts. We tested
22 this premise in a *Formica* ant species wherein we identified four supergene haplotypes on
23 chromosome 3 underlying colony social organization and sex ratio. We discovered a novel
24 rearranged supergene variant (9r) on chromosome 9 underlying queen miniaturization. The
25 9r is in strong linkage disequilibrium with one chromosome 3 haplotype (P₂) found in multi-
26 queen (polygyne) colonies. We suggest that queen miniaturization is strongly disfavored in
27 the single queen (monogyne) background, and thus socially antagonistic. As such, divergent
28 selection experienced by ants living in alternative social 'environments' (monogyne and
29 polygyne) may have contributed to the emergence of a genetic polymorphism on
30 chromosome 9 and associated queen-size dimorphism. Consequently, an ancestral
31 polygyne-associated haplotype may have expanded to include the polymorphism on
32 chromosome 9, resulting in a larger region of suppressed recombination spanning two
33 chromosomes. This process is analogous to the formation of neo-sex chromosomes and
34 consistent with models of expanding regions of suppressed recombination. We propose that
35 miniaturized queens, 16-20% smaller than queens without 9r, could be incipient intraspecific
36 social parasites.

37

38 **Introduction**

39 When only certain combinations of alleles at different genes yield positive fitness outcomes,
40 theory predicts the formation or expansion of regions of suppressed recombination to ensure
41 that beneficial combinations are co-transmitted. This idea is well established in the sex
42 chromosome evolution theory literature^{1,2}, where sexually antagonistic selection is an
43 integral part of the 'canonical' sex chromosome evolution scenario³. Specifically, the model
44 proposes that recombination is suppressed in incipient sex chromosomes when sex
45 determining genes are linked with alleles that are advantageous in one sex, but detrimental
46 in the other. Empirical evidence supporting sexually antagonistic selection can be found in
47 neo-sex chromosomes, where sex chromosomes recently expanded to include a previously

48 autosomal region^{4–6}. Extending the search for a role of antagonistic selection outside sex
49 chromosomes will help to reveal the broader prevalence of this mechanism in other regions
50 of suppressed recombination.

51

52 The importance of reduced or suppressed recombination has been widely recognized in
53 contexts beyond sex chromosome evolution, such as in the emergence of local adaptation
54 (e.g. Charlesworth and Charlesworth⁷; Kirkpatrick and Barton⁸; Yeaman⁹). Researchers
55 propose that selection should favor suppressed recombination between combinations of
56 alleles that work well together in specific environments (achieved through inversion⁸ or other
57 chromosomal rearrangement⁹). In parallel to the idea of sexually antagonistic selection,
58 mismatched alleles would be subject to strong negative selection in either environment.
59 Given the similarities between models of suppressed recombination around sex-determining
60 loci and locally adapted loci, both bodies of research are relevant to understanding
61 supergene evolution.

62

63 Some studies of autosomal supergenes have drawn inspiration from models of sex
64 chromosome evolution and inversion formation (e.g. Branco et al.¹⁰; Branco et al.¹¹;
65 Brelsford et al.¹²; Duhamel et al.¹³). Phenotypic traits controlled by supergenes include
66 alternative mating systems¹¹, migratory behavior¹⁴, mimetic coloration¹⁵, and social
67 organization^{16,17}. Here, we explore the possibility that supergenes form and expand through
68 a process that parallels the canonical model of sex chromosome evolution. Working with an
69 autosomal supergene that controls colony queen number in *Formica* ants^{12,17–19}, we propose
70 that alternative social contexts shaped by a supergene could favor the expansion of regions
71 of suppressed recombination to include “socially antagonistic” loci. We define socially
72 antagonistic loci as alleles that have beneficial fitness outcomes in one social environment,
73 but detrimental outcomes in the other social environment (see also Chapuisat¹⁹; Martinez-
74 Ruiz et al.²⁰). Because the *Formica* supergene is approximately 23 MY old, determining what
75 genetic polymorphisms were present during supergene formation would be difficult in this
76 system (see also Coughlan and Willis²¹). Instead, we focus on elaborations to the existing
77 supergene system.

78

79 The *Formica* social supergene was initially described in the Alpine silver ant *Formica*
80 *selysi*¹⁷. Alternative haplotypes of the supergene are associated with colony queen number,
81 thus determining whether a colony is monogyne (with only one queen) or polygyne (with two

82 or more queens). In *Formica* ants (and other socially polymorphic ants), a suite of other traits
83 is frequently associated with variation in colony queen number, including body size of
84 queens and workers^{22–24}, colony size²³, dispersal probability^{22,25}, and investment in sexual
85 offspring^{26,27}. Genes underlying extreme versions of these traits could be candidates in the
86 search for socially antagonistic loci. In *F. selysi*, monogyne colonies exclusively harbor
87 individuals carrying the monogyne-associated haplotype, M, whereas polygyne colonies
88 always contain individuals bearing at least one copy of the alternative polygyne-associated
89 haplotype, P^{17,28}. The P haplotype acts as a maternal-effect killer, causing the early death
90 of any offspring of heterozygous mothers that do not bear the P haplotype²⁹. Recently,
91 Tafreshi et al.³⁰ proposed that this polymorphism is only stable in the presence of both
92 assortative mating and large fitness differences between supergene genotypes, both of
93 which have recent empirical support^{28,31}.

94

95 Brelsford et al.¹² showed that our focal species, *Formica cinerea*, has (at least) three
96 supergene haplotypes. In the present study, we set out to characterize differences between
97 the supergene haplotypes in *F. cinerea*. Since our limited preliminary evidence suggested
98 that two of the three haplotypes are found in polygyne colonies, we hypothesized that the
99 two P haplotypes would contain different gene sets and control distinct phenotypic traits.
100 Certain phenotypes might be beneficial in the polygyne context, but detrimental in the
101 monogyne context. If so, one or both of the P haplotypes could harbor socially antagonistic
102 loci. We did not predict *a priori* the mechanism through which the gene sets would differ,
103 although we were open to the possibility of an expansion analogous to neo-sex chromosome
104 formation^{4–6} or of translocation of genes into the supergene region^{9,32}. To test these
105 predictions and detect signatures of socially antagonistic selection, we collected workers,
106 gynes, males, and queens from 172 *F. cinerea* colonies from northern Italy and
107 characterized the genetic architecture and phenotype associated with alternative supergene
108 haplotypes. We examined whether the two putative P haplotypes control alternative traits,
109 in addition to colony queen number.

110 **Results**

111 **Characterization of supergene haplotypes**

112 As expected based on a preliminary assessment of genetic variation on the *F. cinerea*
113 supergene¹², we detected more than two haplotypes. Overall, a principal component
114 analysis (PCA) of chromosome 3 revealed that *F. cinerea* populations in northern Italy have

115 four supergene haplotypes. Within these plots, we identified ten clusters, which is consistent
116 with the expected number of genotype combinations for a system with four distinct
117 haplotypes (four homozygous genotypes and six heterozygous combinations). PC axes 1
118 and 2 separate all individuals into six clear clusters (Figure 1A) and PC axis 3 further reveals
119 variation in the putative M haplotypes (Figure 1B). We examined F_{IS} in each of the clusters
120 to determine whether individuals are homozygous or heterozygous for the supergene;
121 heterozygous individuals exhibit negative F_{IS} across the supergene region (plotted as split
122 circles in the figure), while homozygous individuals exhibit positive F_{IS} (full circles). Haploid
123 males (half circles in the figure) cluster with homozygous females. We then examined the
124 frequency of reference and alternative alleles relative to the *F. selysi* reference genome,
125 which was constructed from a pool of M males¹², to make a preliminary determination about
126 whether haplotypes were M-like or P-like. Based on this analysis, two of the four haplotypes
127 are M (M_A and M_D) and two are P (P_1 and P_2). The M_D is mostly found in a heterozygous
128 state, with the exception of one newly-mated queen (M_DM_D) and seven males (M_D) out of
129 239 total individuals carrying M_D .

130 To investigate genetic differences between alternative haplotypes, we looked at the F_{ST}
131 between haplotype pairs, revealing that the M_D compared to the M_A spans only the first half
132 of chromosome 3, from ~2.0-7.5 Mbp (Figure 1C), while the genetic differentiation between
133 M haplotypes and P_1 spans the same supergene region discovered in *F. selysi*¹⁷, from ~2.0-
134 12.5 Mbp (Figures 1D-E). The F_{ST} plots show high differentiation that spans almost all of
135 chromosomes 3 and 9 when comparing P_2 with the other haplotypes (Figures 1F-H).

136 **Assessment of a newly discovered supergene region on chromosome 9**

137 Given the second region of high differentiation between the P_2 haplotype and all other
138 supergene haplotypes, we investigated variation on chromosome 9. Here, we detected two
139 alternative haplotypes. The PCA (Figure 2A) displays three distinct clusters of individuals
140 along PC 1. Individuals in the left and right clusters appear to be homozygous based on
141 positive F_{IS} values, while individuals in the central cluster are heterozygous. We named the
142 two alternative haplotypes as follows: "9a" referring to the ancestral chromosome structure,
143 and "9r" referring to the rearranged chromosome structure relative to the *F. selysi* genome,
144 as revealed by analysis of linkage disequilibrium (LD) within each homozygous genotype
145 (Figures S1A-B). A comparison of previously published linkage maps from *F. selysi* and the
146 distantly related *F. exsecta* confirms that the 9a chromosome structure and the lack of LD

147 between chromosomes 9 and 3 are ancestral¹⁸. This region of suppressed recombination
148 on chromosome 9 spans from ~2.4- 9.4 Mbp and contains hundreds of genes.

149 The P₂ haplotype on chromosome 3 and the 9r on chromosome 9 are almost always
150 transmitted together ($\chi^2 = 1273.8$, df = 1, p-value < 0.0001). No P₂P₂ individual has been
151 found to be 9a9a homozygous (Figure 2B). In contrast, individuals without the P₂ almost
152 always bear only the 9a haplotype. However, we noticed some mismatches in this pattern
153 showing an imperfect association between the P₂ and 9r (Figure 2B). The mismatches occur
154 disproportionately in workers (19 out of 20 observations, $\chi^2 = 14.3$, df = 1, p-value < 0.0001).

155 **Colony social form is associated with chromosome 3 haplotypes**

156 In other *Formica* species, colony social form is controlled by the social supergene on
157 chromosome 3¹². To verify that queen number is associated with variation on chromosome
158 3 in *F. cinerea*, we assessed colony social form and supergene genotype distribution
159 within colonies. Of the 120 analyzed colonies, half are monogyne (39 monogyne
160 monandrous, 21 monogyne polyandrous), and half polygyne (Figure 3A). We found a
161 significant association of the M haplotypes with the monogyne form, where 55 out of 60
162 colonies contain exclusively M_AM_A and/or M_DM_A individuals (Figures 3B-C; Figure S2A).
163 Similarly, we observed a strong association between P haplotypes and the polygyne form,
164 with 56 out of 60 polygyne colonies having members with at least one P haplotype (Figure
165 3D; Figure S2B). Despite several exceptions, the association of M haplotypes with the
166 monogyne form and the P haplotypes with the polygyne form is still significant ($Z_{115} = 2.4$,
167 p-value < 0.05, GLMM).

168 **The M_D influences colony sex ratio**

169 Some species of social insect show a pattern of split sex ratio at the population level, in
170 which some colonies specialize in the production of future queens and others in the
171 production of males³³⁻³⁶. This also occurs in *F. cinerea*, especially in monogyne colonies
172 (Figure S3). In contrast, polygyne colonies more often produce a mix of males and gynes or
173 exclusively males (Figure S3). Our data show that the M_D haplotype is associated with the
174 production of gynes ($Z_{32} = 2.3$, p < 0.05, GLMM). The M_D haplotype is rarely present in males
175 although we found some exceptions (7 M_D males).

176

177 **The effect of the two supergenes on body size: chromosome 9 harbors a miniaturizing
178 haplotype**

179 Based on field observations that *F. cinerea* alates vary substantially in size, we measured
180 the head width of gynes, queens and males. Our results revealed that alates with at least
181 one copy of the P₂ haplotype have significantly smaller heads than alates without the P₂
182 (gynes and queens: all Tukey post-hoc comparisons p< 0.0001; males: all Tukey post-hoc
183 comparisons p< 0.0001; linear mixed model) (Figures 4A, C). However, this size reduction
184 is caused by the 9r haplotype on chromosome 9 rather than the P₂, as demonstrated by a
185 genome-wide association study (GWAS) that identified numerous loci associated with alate
186 size, all on chromosome 9 (Figure 4E). The presence of a single small gyne without the P₂
187 but with the 9r is consistent with this pattern (Figure 4A). Overall, gynes and queens with at
188 least one 9r copy are significantly smaller than 9a9a gynes ($F_2=232.2$, p< 0.0001) (Figure
189 4B). On average, 9a9r gynes are 15.7% smaller than 9a9a gynes ($t_{146} = 16.1$, p < 0.0001,
190 linear mixed model). This size reduction is 20.3% in 9r homozygous gynes ($t_{256}= 17.3$, p<
191 0.0001; linear mixed model). 9r homozygous gynes are 5.42% smaller than 9r heterozygous
192 gynes ($t_{270}= 4.4$, p< 0.0001; linear mixed model). Males exhibit a similar pattern, although
193 male miniaturization appears to be less drastic, with 9r males being 8.6% smaller than 9a
194 males ($t_{89.9}= 12.7$, p< 0.0001; linear mixed model) (Figure 4D). We also observed a
195 significant reduction in body size of 4.9% in 9a9a gynes with at least one P₁ haplotype
196 compared to 9a9a gynes without a P haplotype (M_AM_A-M_AP₁, $t_{197.5}=6.7$, p< 0.0001; M_AM_D-
197 M_AP₁, $t_{202.4}=6.8$; p< 0.0001; M_AM_A-P₁P₁, $t_{140.6}=4.7$, p< 0.001; M_AM_D-P₁P₁, $t_{144.2}=5.4$, p<
198 0.0001; linear mixed model; we did not observe a significant difference between M_AM_D and
199 M_AM_A gynes and queens and M_DP₁ gynes and queens due to the small sample size of the
200 latter [n=6], although they are smaller on average). Interestingly, P₁ males are on average
201 2.6% bigger than M_A males ($t_{119.8}=-3.1$, p< 0.05; linear mixed model).

202 **Discussion**

203 Most ant species harboring a social supergene have only two alternative haplotypes, one
204 associated with monogyny and the other associated with polygyny³⁷. Here we describe for
205 the first time a species, *Formica cinerea*, that bears four supergene haplotypes on
206 chromosome 3, all co-occurring in a single population. As found in several congeneric
207 species so far^{17,36,38,39}, the social form in *F. cinerea* is genetically controlled. Two M
208 haplotypes (M_A and M_D) are strongly associated with single-queen colonies, while two P
209 haplotypes (P₁ and P₂) are almost exclusively present in multi-queen colonies. We

210 discovered a novel rearranged supergene variant (9r) on chromosome 9 underlying queen
211 miniaturization, in strong LD with the P₂ polygyne-associated haplotype.

212 **Socially antagonistic alleles and supergene expansion**

213 Alternative social forms in ants generally conform to the "polygyny syndrome" in which gynes
214 of polygyne colonies are about 10% smaller and have lower relative fat content than those
215 produced by monogyne colonies⁴⁰. In *F. cinerea* polygyne colonies, we observed two distinct
216 gyne sizes: 9a9a gynes are relatively large (though still 5% smaller on average than
217 monogyne-produced gynes); in contrast, gynes with a 9r haplotype are 16-20% smaller than
218 9a9a gynes (Figures 4A-B). This aligns with other cases of extreme queen-size dimorphism
219 (microgynes and macrogynes)⁴¹. No 9r *F. cinerea* gynes or queens have been observed in
220 monogyne colonies. Polygyny, therefore, appears to be a precondition for microgyny in this
221 species.

222 We suggest that fitness epistasis initially emerged between an ancestral P haplotype and
223 an incipient mutation on chromosome 9 that caused reduced body size in queens. In the
224 process of establishing a new colony, macrogynes rely solely on their body reserves (wing
225 muscles and fat bodies) to raise their first brood^{42,43}. In order to be successful it is essential
226 that they produce a worker caste in a short time, before depleting all their body reserves.
227 The independent colony founding strategy is highly risky, and founding queens often suffer
228 high mortality⁴⁹. Microgynes lack large fat reserves necessary to establish new nests^{40,41,44},
229 and thus, would be severely disadvantaged in an independent founding monogyne context.
230 Conversely, in the polygyne background, colony foundation risks are reduced because
231 queens can join existing colonies. Based on studies of microgynes in other species^{41,44}, we
232 hypothesize that *F. cinerea* microgynes are less costly to produce. Although they are
233 expected to lay fewer eggs than macrogynes^{41,44} their lower fecundity could be buffered by
234 coexistence with other reproductive queens.

235 Genetic mismatches between body size and colony social form would have a high cost,
236 leading to strong selection for LD between alleles on P2 and 9r (Figure S1C). This expanded
237 region of suppressed recombination spanning two chromosomes would include socially
238 antagonistic alleles, beneficial in polygyne colonies but detrimental in monogyne colonies.

239 We also observed miniaturization in males (Figures 4C-D), where 9r males are 8.6% smaller
240 than 9a males. Miniaturization of males may be a byproduct of selection on queen body size,
241 or small males may be favored in some contexts. For example, body size reduction in both

242 sexes may lead to assortative mating between morphotypes. Incomplete assortative mating
243 with respect to social form has been documented in *F. selysi*, where 80% of queens of
244 monogyne origin mated with males from monogyne colonies, while the remaining 20%
245 mated with males from polygyne colonies^{25,28}. Here we speculate that small 9r males from
246 polygyne colonies are disadvantaged during mating flights, where they must compete with
247 large 9a males (M_A and P₁). If true, they may adopt alternative strategies by mating close to
248 nests, with small 9r gynes.

249 Ultimately, our results are consistent with predictions of the canonical model of sex
250 chromosome evolution in which antagonistic selection leads to the expansion of regions of
251 suppressed recombination between advantageous combinations of alleles. Two novel
252 features are present in our system. First, the expansion of LD is occurring in an autosomal
253 supergene instead of in a sex chromosome^{1,2}. Second, the environment that shapes
254 alternative traits is the social context determined by colony queen number as opposed to
255 sex¹ or the extrinsic environment⁹. We note that we cannot rule out the possibility that the
256 initial mutation leading to an association between chromosome 9 and the P₂ haplotype was
257 selectively neutral, and that this association enabled the invasion of a queen miniaturizing
258 mutation on chromosome 9⁴⁵.

259 Although they exhibit high levels of LD, P₂ and 9r are not perfectly correlated (Figure 2B).
260 The occasional decoupling of alleles suggests that recombination occasionally happens
261 between chromosomes 3 and 9, raising questions about how these two supergene regions
262 are associated. Several alternative mechanisms could mediate the incomplete association
263 between P₂ and 9r. We speculate that P₂ and 9r may be physically linked by the fusion of
264 chromosomes 3 and 9 or, alternatively, that they are linked through a reciprocal
265 translocation. Neo-sex chromosomes shaped by suppression of recombination between an
266 autosome and an ancestral sex chromosome have been documented in a variety of
267 eukaryotic organisms [e.g., reptiles⁵; fish^{4,5}; birds⁴⁶; insects⁴⁷; and plants⁶]. These neo-sex
268 chromosomes often arise from Robertsonian fusion of acrocentric chromosomes^{48,49} or the
269 reciprocal translocation of genetic material between non-homologous chromosomes^{6,50}. We
270 suggest that our system may be analogous to the formation of neo-sex chromosomes.
271 Suppression of recombination between 9r and P₂ could initially be achieved through
272 chromosomal fusion, reciprocal translocation, or very strong epistasis. Strong epistasis
273 without physical linkage can occur if individuals with mismatched genotypes (e.g. P₂ without
274 9r or 9r without P₂) experience a high mortality rate during development. We observed 20

275 cases where the 9r and P_2 were not co-transmitted to offspring. These genotypic
276 mismatches occurred in both directions (9r without P_2 and P_2 without 9r). If the strong
277 association between the two is derived from physical changes in the chromosome structure,
278 these exceptions could result from rare double-recombination events. Alternatively, if
279 selection against mismatches is present, the exceptions reveal that such a system is not
280 100% lethal. In either scenario, the observation that recombinant individuals were
281 significantly more likely to be workers suggests that decoupling P_2 and 9r could bias the
282 development of immature offspring toward workers instead of gynes. Further research is
283 needed to identify the mechanism that locked these two regions of suppressed
284 recombination together.

285 **Microgyny as an incipient form of intraspecific social parasitism?**

286 Queen-size dimorphism associated with polygyny may lead to intraspecific parasitism,
287 where the microgynes take advantage of the macrogynes by specializing in sexual offspring
288 production⁵¹. Researchers are generally interested in the origins of social parasitism (e.g.
289 Trible et al.⁵²), and Linksvayer et al.⁵³ predicted that a supergene might underlie the
290 transition from a free-living to a socially parasitic lifestyle in ants. In *Formica*, queen
291 miniaturization was previously described only in species that parasitize other *Formica*
292 species (*difficilis*, *dakotensis*, and *exsecta* clades)⁵⁴, although it has not been linked with
293 colony social organization. Here we describe microgyny in a non-parasitic *Formica* species
294 for the first time and speculate that 9r microgynes could be incipient intraspecific social
295 parasites. The best-known case of intraspecific parasitism occurs in *Myrmica rubra*: when
296 microgynes and macrogynes coexist in the same nest, microgynes produce very few worker
297 offspring, focusing their reproductive effort mostly on sexuals^{51,55}. During our field
298 collections, we tried to minimize damage to nests, so we did not observe mature microgynes
299 and macrogynes occurring together in the same nest. However, we found four colonies
300 where all the workers were 9a9a homozygotes while alates were 9a9r and 9r9r microgynes.
301 We also noticed that virgin microgynes and macrogynes were never produced by the same
302 colony. Although preliminary, these findings could represent the first hint that *F. cinerea*
303 microgynes are intraspecific social parasites.

304
305 **Supergene variation associated with three complex traits**

306 Our results reveal that four haplotypes on chromosome 3 detected in *F. cinerea* are
307 associated with at least three complex traits: social structure, alate size, and sex ratio. We

308 show that microgyny is controlled by a newly discovered supergene region on chromosome
309 9. As already studied in other *Formica* species, we confirm that M haplotypes are associated
310 with monogyne colonies, while P haplotypes are associated with polygyny. However, we
311 found a few exceptions to this pattern: several apparently monogyne colonies include
312 individuals with a P haplotype, and several apparently polygyne colonies lack P haplotypes
313 (Figures S2A-B). We suggest that these exceptions could be an expression of the natural
314 decline of the colony. Polygyne colonies may be functionally monogyne at the end of their
315 lifespan if only one queen is effectively reproductive or has survived⁵⁶. On the other hand,
316 declining monogyne colonies may be more inclined to accept a new, most likely related,
317 queen if their queen stops producing enough eggs⁵⁷.

318 A third complex phenotypic trait, colony sex ratio, is associated with the M_D haplotype,
319 aligning with recent discoveries in *F. glacialis* and *F. podzolica*³⁶. We find that *F. cinerea*
320 monogyne colonies, regardless of the number of matings, specialize in the production of
321 gynes or males. We show that split sex ratio is mediated by M_D and M_A haplotypes. Based
322 on inferences from offspring genotypes, queens heterozygous for M_D tend to produce gynes,
323 while queens homozygous for M_A tend to produce males. In contrast, polygyne colonies are
324 mostly male-producing or produce both males and gynes. Structurally, the M_D haplotype in
325 *F. cinerea* spans the first half of chromosome 3 as in *F. glacialis* and *F. podzolica*. In a further
326 parallel, we mainly found the M_D haplotype in heterozygous females, and observed a very
327 low frequency of M_D homozygotes and haploids. We do not yet have enough information to
328 determine whether these M_D haplotypes share a common origin or originated
329 independently.

330 **Conclusions**

331 A novel supergene variant (9r) on chromosome 9 underlying a 16-20% reduction of queen
332 body size (microgyny) is highly associated with the polygyne-associated P₂ haplotype on
333 chromosome 3. Microgynes are absent from *F. cinerea* monogyne colonies, consistent with
334 previous hypotheses that polygyny is a precondition for microgyny^{41,43}. Here we propose
335 that socially antagonistic selection favored the suppression of recombination between a P
336 haplotype and a miniaturizing allele on chromosome 9, consistent with the canonical model
337 of sex chromosome evolution². While models of sex chromosome evolution have been used
338 as a source of inspiration for supergene research for more than a decade, many studies
339 have applied these models to try to understand degeneration of a non-recombinating
340 supergene haplotype (e.g. Wang et al.¹⁶; Tuttle et al.⁵⁸; Stolle et al.⁵⁹). Here, we add

341 empirical support to the idea that such models can also provide a useful starting point for
342 understanding the origin and expansion of autosomal supergenes (reviewed by Gutierrez-
343 Valencia et al.⁶⁰). In recent years, new models from both the sex chromosome and local
344 adaptation research fields describe additional hypotheses for the emergence of regions of
345 suppressed recombination^{9,61,62}. The hypotheses developed in these models should also be
346 tested in autosomal supergene systems, as this may lead to new breakthroughs in our
347 understanding of the evolution of recombination.

348 **Acknowledgments**

349 This material is based upon work supported by the US National Science Foundation DEB
350 Grant No. 1754834 to A.B. and J.P. and DEB Grant No. 1631776 to J.P. Computations
351 were performed using the computer clusters and data storage resources of the UCR
352 HPCC, which were funded by grants from NSF (MRI-2215705, MRI-1429826) and NIH
353 (1S10OD016290-01A1). This publication includes data generated at the UC San Diego
354 IGM Genomics Center utilizing an Illumina NovaSeq 6000 that was purchased with funding
355 from a NIH SIG grant #S10 OD026929. We thank D. Zarate, G. Lagunas- Robles, Z. Alam,
356 D. Pierce, N. Najar, and the FoG discussion group (Campbell, Samuk, and Ostevik labs)
357 for providing helpful feedback on an earlier version of the manuscript and M. Molfini and B.
358 Purcell for assistance in the field.

359 **Author contribution**

360 Conceptualization, G.S, A.B., and J.P.; Methodology, G.S, A.B., and J.P.; Formal Analysis,
361 G.S.; Investigation, G.S., M.P., A.B., and J.P.; Resources, A.B. and J.P.; Writing – Original
362 Draft, G.S. and J.P.; Writing – Review & Editing, G.S., M.P., A.B., and J.P.; Visualization,
363 G.S. and J.P.; Supervision, A.B. and J.P.; Funding Acquisition, A.B. and J.P.

364

365 **Declaration of interests**

366 The authors declare no competing interests.

367

368 **Figure legends**

369 **Figure 1. Principal component analysis and genetic differentiation identify four**
370 **supergene haplotypes, including one encompassing variation on both chromosome**
371 **3 and chromosome 9.**

372 Principal component axes 1 and 2 (A) distinguish six groups of individuals. The solid colored
373 circles show homozygous individuals (based on positive F_{IS} values). Dual-colored circles
374 show heterozygous individuals (based on negative F_{IS} values). Each half circle represents
375 a haplotype on chromosome 3, and haploid males are represented by half circles. PC axis
376 3 reveals a fourth haplotype (M_D) that is distinct from M_A over a smaller region of
377 chromosome 3 (B). Individuals with at least one copy of M_D exhibited relatively high PC3
378 values. The M_D compared to M_A spans only the first half of chromosome 3 (C). Elevated
379 differentiation (F_{ST}) occurred between the M and P haplotypes across most of chromosome
380 3 when comparing haploid males (D, E). High differentiation was also evident on
381 chromosome 9 (F–H), when comparing the P_2 haplotype to the other three haplotypes. PC1
382 explains 51% of the total variance, while PC2 and PC3 explain respectively 29% and 3.8%.

383

384 **Figure 2. PCA of variants on chromosome 9 identified three clusters corresponding**
385 **to three supergene genotypes.**

386 The left cluster contains 9a9a individuals, while middle and right clusters show respectively
387 9a9r and 9r9r individuals (A). The colors of half circles in the PCA indicate chromosome 3
388 haplotypes to reveal mismatches between chromosomes 3 and 9. PC1 explains 75% of the
389 total variance, and PC2 2.1%. Individuals with the 9r haplotype on chromosome 9 almost
390 always have the P_2 haplotype on chromosome 3, although we found some mismatches (13
391 out of 1151 9a9a individuals, all workers, harbor at least one copy of the P_2 ; 7 out of 130
392 9a9r individuals, one gyne and six workers, do not carry the P_2 haplotype). The chord
393 diagram (B) shows associations between genotypes on chromosome 9 (left segments) and
394 genotypes on chromosome 3 (right segments). Note that the ribbons connect chromosome
395 9 with chromosome 3 genotypes in the same individuals. Related to Figure S1.

396

397 **Figure 3. Association of the haplotypes on chromosome 3 with colony social form.**

398 Ridgeline plots of the distribution of pairwise relatedness among nestmates reveal variation
399 in colony social structure. Of the 120 colonies analyzed, half were monogyne (39
400 monandrous monogynous, 21 polyandrous monogynous) and half were polygyne (A). In
401 monogyne monandrous (B) and polyandrous (C) colonies, most colonies contained either
402 exclusively $M_A M_A$ workers or a mix of $M_A M_A$ and $M_A M_D$ workers. In contrast, most polygyne

403 colonies (D) contained individuals with at least one copy of one of the P haplotypes (P₁ and
404 P₂). A few exceptions to this general pattern are observed in both monogyne and polygyne
405 colonies (Related to Figure. S2). Vertical lines at 0.7 and 0.2 show approximately where we
406 expect peaks of full- and half-siblings, respectively, considering the downward bias typical
407 of relatedness estimates based on RADseq markers.

408

409 **Figure 4. The 9r haplotype is strongly associated with reduced head width in gynes
410 and males.**

411 Individual gynes and males with the P₂ haplotype are significantly smaller than those without
412 (A, C). Likewise, gynes and males with at least one copy of the 9r haplotype are significantly
413 smaller than those without a 9r haplotype (B, D). GWAS analysis (E) confirms that a large
414 region on chromosome 9 is most strongly associated with body size miniaturization in *F.*
415 *cinerea*. The blue line shows the significance threshold adjusted for Bonferroni correction.

416

417 **STAR Methods**

418 **LEAD CONTACT AND MATERIALS AVAILABILITY**

419 Further information and requests for resources and reagents should be directed to and will
420 be fulfilled by the Lead Contact, Jessica Purcell (jpurcell@ucr.edu).

421 **Materials availability**

422 This study did not generate new unique reagents. There are restrictions to the availability of
423 tissue and DNA samples due to the lack of an external centralized repository for their
424 distribution and our need to maintain the stock. We are glad to share oligonucleotides with
425 reasonable compensation by requestor for processing and shipping.

426 **Data and code availability**

- 427 • Raw Illumina sequencing reads are available at the National Center for Biotechnology
428 Information Short Reads Archive, BioProject PRJNA966702.
- 429 • Phenotypic data and supergene genotypes for each individual ant are available in
430 Dryad, <https://doi.org/doi:10.5061/dryad.02v6wwq8s>.
- 431 • Any additional information required to reanalyze the data reported in this paper is
432 available from the lead contact upon request.

433

434 **EXPERIMENTAL MODEL AND SUBJECT DETAILS**

435 *Formica cinerea* is a socially polymorphic species with a wide distribution across Europe⁶³.
436 This species nests preferentially along sand and gravel banks of rivers and open sand
437 dunes. We collected *F. cinerea* workers and alates (gynes and males) from colonies in
438 northern Italy (Aosta Valley and Piedmont) in June-July across several years, 2014, 2018-
439 2021 (Table S1). Whenever possible, we sampled up to 10 gynes and males, and about 15
440 workers from each colony, and noted the observed sex-ratio. When multiple mature queens
441 were found within colonies, we also sampled a subset of them. During 2019-2021, we
442 collected newly mated wingless queens that were either looking for suitable locations to start
443 new colonies or were under stones in self-dug chambers with no workers. We stored
444 samples in 96-100% ethanol.

445 **METHOD DETAILS**

446 **Library preparation**

447 We extracted DNA from the head and thorax of workers, and only the head of gynes, queens
448 and males. For the 2014 and 2018-2020 samples, we used the QIAGEN DNeasy Blood &
449 Tissue Kit with modifications described in McGuire et al.³⁸. Specifically, we manually ground
450 the tissue with sterile pestles in a 1.7 mL tube while immersed in liquid nitrogen, and left the
451 pulverized samples overnight in a solution of 180 µL of buffer ATL and 20 µL of proteinase
452 K at 56°C. The day after we added 200 µL of buffer AL and 200 µL of 100% ethanol. We
453 then transferred the supernatant into alternatively sourced spin columns (BPI-tech.com),
454 added 70% ethanol for DNA wash, and eluted the DNA in 30 µL of buffer EB. We extracted
455 individuals collected in 2021 using the QiaAmp 96 DNA QiaCube HT kit. We manually
456 ground the ant tissues as described above, and, following the overnight digestion in 180 µL
457 of buffer ATL and 20 µL of proteinase K, we transferred the supernatant to the QIAcube
458 HT/QIAxtractor robot to complete the extraction. We followed the automatized protocol
459 QiaAmp 96 DNA. We eluted the DNA in 100 µL of buffer EB.

460 We sequenced all samples using a double-digest restriction site-associated DNA
461 sequencing (RADseq) approach (protocol from Brelsford et al.⁶⁴). We digested 6 µL DNA
462 per sample using restriction enzymes MseI and PstI and incubated the samples at 37°C for
463 3 hours on a thermal cycler with a heated lid. We then ligated a universal MseI adapter and
464 uniquely barcoded PstI adapter to each sample. After an incubation of 3 hours at 16°C on
465 a thermal cycler, we diluted the product adding 40 µL of water. We then removed small DNA

466 fragments using Serapure magnetic beads⁶⁵ or Omega magnetic beads (Omega Bio-tek,
467 2021) in a 0.8:1 ratio (beads: sample solution) and removed impurities with two consecutive
468 70% ethanol washes. We air-dried the magnetic beads for 10-15 minutes to remove all
469 traces of ethanol. Finally, we resuspend the DNA adding 40 μ L of water. We amplified each
470 sample in four separate PCR reactions with indexed Illumina primers and then pooled the
471 replicate PCR products for each sample for a final PCR cycle, with added primers and dNTP.
472 We ran each PCR product on a 1.5% agarose gel for 20 minutes. Finally, we pooled the
473 samples that were successfully amplified in a tube and did a final round of small fragment
474 removal using the magnetic beads. We sequenced all libraries using 150 bp paired-end
475 reads on Illumina Novaseq 6000 or HiSeq X sequencers. Sample sizes and sequencing
476 details for each batch are provided (Table S2).

477 **Bioinformatics**

478 We used *Stacks* 2.60 to demultiplex our data with default parameters⁶⁶, *PEAR* v0.9.10⁶⁷ to
479 merge paired-end reads and remove adaptor sequences, and *BWA-mem2*⁶⁸ to align reads
480 to the *Formica selysi* genome¹². We called SNPs using *BCFtools mpileup*⁶⁹ and filtered the
481 genotypes for a minimum read depth of 7 (--minDP), a minor allele frequency of 5% (--maf)
482 and excluded indels (--remove-indels) and sites with over 80% missing data (--max-missing)
483 using *VCFtools* 0.1.16-18⁷⁰.

484 *Excluding duplicated regions*

485 Ant males are haploid, and this feature provides an opportunity to identify and omit
486 duplicated genomic regions. Males were treated as diploid in our initial pipeline, and loci that
487 appeared heterozygous in at least 5% of males were flagged for removal from the complete
488 dataset, because these reflect variable sequences in duplicated regions instead of
489 alternative alleles in a single region of the genome.

490 *Mitigating the batch effect*

491 In order to have an adequate sample size for all supergene genotypes in all castes
492 (particularly gynes and males, which are sampled opportunistically), we added data
493 incrementally across years. Differences in extraction protocols and variation among
494 sequencing lanes caused a batch effect (Figure S4A). To mitigate this issue, we calculated
495 the Weir and Cockerham's F_{ST} between batch pairs at each locus. We then removed all

496 SNPs showing F_{ST} values ≥ 0.3 in the comparison of at least one pair of batches (because
497 the geographic scope of sampling was similar across years, we would not expect to find true
498 changes in allele frequency of this magnitude) (Figure S4B). Our final dataset resulted in
499 15129 SNPs and 1415 individuals. Workers, gynes, males and mature queens were
500 collected from 172 colonies, and 95 newly mated queens were collected as they sought a
501 suitable place to start their colony.

502 **Population structure**

503 *Formica cinerea* samples were collected from 13 localities in northern Italy (Table S1),
504 ranging from 1 km to 82 km apart. To assess the genetic structure of the sampled individuals,
505 we randomly selected 1 worker per colony and filtered the genotypes for a minimum read
506 depth of 7 (--minDP), a minor allele count of 2 (--mac) and excluded indels (--remove-indels)
507 and sites with over 80% missing data (--max-missing) using VCFtools⁷⁰. We removed all the
508 loci suspected to be responsible for the batch effect (see ‘Mitigating the batch effect’
509 paragraph) and misaligned due to duplicated regions (see ‘Excluding duplicated regions’
510 paragraph). Finally, we excluded markers on chromosomes 3 and 9. This dataset resulted
511 in 139 workers and 27398 SNPs.

512 We performed a PCA in PLINK v1.90b6.25⁷¹ and plotted the first two principal components
513 in R v3.4.0⁷² using the function *ggplot*⁷³. Using the same dataset, we ran ADMIXTURE
514 v1.3.0⁷⁴ to infer genetic clusters in our dataset for K values from 1 to 13 and assessed the
515 best K value using the cross-validation error. The PCA and ADMIXTURE result (K=1)
516 suggested the absence of population structure and that the samples analyzed in this study
517 belong to a panmictic population (Figures S4C-D).

518 **Determination of colony social form**

519 We used COANCESTRY 1.0.1.10⁷⁵ to determine pairwise relatedness using workers and
520 gynes (using Wang⁷⁶ estimator) and infer colony social form. To ensure that these analyses
521 were independent of our assessments of supergene variation, we created a dataset that
522 excluded chromosome 3 and chromosome 9. To have a robust assignment, we kept only
523 colonies with at least 5 diploid individuals and excluded haploid males. The final dataset
524 resulted in 761 individuals from 120 colonies. A recent literature review and simulation study
525 confirmed that relatedness estimates tend to be downward biased, yet more precise, in
526 SNP-based datasets with hundreds or thousands of loci compared to microsatellite-based

527 datasets with fewer loci⁷⁷. Given the known biases in datasets like ours, we called colonies
528 with all pairwise relatedness estimates ≥ 0.6 as monogyne monandrous, colonies with
529 bimodal distribution of pairwise relationships with at least 40% ≥ 0.6 , but none <0.2 as
530 monogyne polyandrous, and colonies with at least one pairwise relationship ≤ 0.1 as
531 polygyne. We visualized the distribution of within-colony relatedness estimates with a
532 ridgeline plot produced in R⁷² using the function *ggplot* (package *ggplot2*⁷³).

533 To investigate the association of the colony social organization with the supergene, we first
534 performed a principal component analysis (PCA) for all individuals (workers, males, gynes
535 and queens) using only the 1235 SNPs on chromosome 3, which contains the known
536 *Formica* social supergene^{12,18}. We then assigned the genotypes to each individual based on
537 clusters in PCA and F_{IS} value (heterozygous individuals have negative F_{IS} values across the
538 supergene, while homozygotes have positive values). To further investigate the genetic
539 differentiation between each haplotype, we selected haploid males and calculated Weir and
540 Cockerham's F_{ST} for all pairwise combinations of supergene haplotypes. The PCA was
541 calculated in PLINK⁷¹ with the --pca flag, while the F statistics were calculated in VCFtools⁷⁰,
542 using the --het flag (F_{IS}) and the --weir-fst-pop flag. Finally, we examined haplotype
543 distribution in monogyne and polygyne colonies.

544 From the F_{ST} plot we noticed a second supergene on chromosome 9 visible when comparing
545 the P₂ haplotype (see Results section) on chromosome 3 with the other haplotypes. For
546 chromosome 9, we performed a PCA and analysis of F_{IS} using only the 983 loci on that
547 chromosome to assign genotypes to each individual. To identify which of the variants is
548 rearranged relative to the *F. selysi* reference genome, we built two within-haplotype
549 heatmaps of linkage disequilibrium using only homozygous individuals at each haplotype on
550 chromosome 9. We also constructed a third heatmap of linkage disequilibrium between P₂
551 and 9r using only those individuals that were P₂P₂ on chromosome 3 and 9r9r on
552 chromosome 9. For this analysis, we used the LDheatmap package⁸⁰ from R.

553 Morphometrics

554 To assess whether polygyne *Formica cinerea* alates (gynes, queens and males) exhibit the
555 reduction in size typical of polygyny syndrome⁴⁰, we measured the maximum width across
556 the eyes in 281 gynes and queens and 374 males using a Leica DMC2900 camera mounted
557 on a Leica S8APO at 25 \times magnification. We used head width because it is known to have

558 a strong positive correlation with several body segment dimensions in *Formica* species^{23,81},
559 and thus serves as a good proxy for body size within caste.

560 **Sex ratio**

561 While inspecting *F. cinerea* colonies during sampling, we took note of whether they exhibited
562 a strongly skewed sex ratio, i.e. whether the colony preferentially produced gynes or males,
563 or both sexes. We attributed the sex ratio to colonies observed with at least seven alates.
564 Gyne producing colonies had at least seven gynes and no more than two males, male
565 producing colonies had at least seven males and no more than two gynes, and mixed
566 colonies were intermediate between the two. In total, 23 *F. cinerea* colonies were male-
567 producing, 13 gyne-producing, and 6 were mixed. For each of these colonies, we looked at
568 the haplotype counts on chromosome 3.

569 **QUANTIFICATION AND STATISTICAL ANALYSIS**

570 **Determination of colony social form**

571 We tested the significance of the association between haplotypes on chromosome 3 and
572 colony social form by fitting a generalized linear mixed model (GLMM) with binomial
573 distribution⁷⁸, where monogyny is 0 and polygyny is 1. The "presence of P haplotypes" was
574 defined as 0 if no individual in the colony carries a P haplotype, and 1 if at least one individual
575 in the colony harbors a P haplotype (regardless if P₁ or P₂). The variable "presence of P
576 haplotypes" was included as a fixed factor; year, and locality as random factors. Since not
577 all colonies produced alates, we considered only workers. For this analysis, we used the
578 glmer function in R (package lme4⁷⁹). The analysis included 59 monogynous colonies and 60
579 polygynous colonies.

580 **Testing the association between P₂ and 9r**

581 We verified the association between P₂ and 9r by performing a chi-squared test (levels: P₂
582 present or absent, 9r present or absent). In total our dataset counted 1134 individuals (605
583 workers, 257 gynes/queens and 272 males) without P₂ and 9r; 254 individuals (88 workers,
584 54 gynes/queens and 112 males) with both P₂ and 9r; 7 individuals (1 gyne and 6 workers)
585 with 9r but not P₂; 13 individuals (all workers) with P₂ but not 9r. Since we found some
586 mismatches in the co-transmission of P₂ and 9r, we checked whether these mismatches
587 were mainly present in the workers rather than in the reproductive individuals (queens,

588 gynes, and males) by performing a second chi-squared test (levels: workers or alates,
589 presence or absence of P₂-9r mismatches). Nineteen out of 712 workers and 1 out of 696
590 alates showed mismatches. Both chi-squared tests were performed in R⁷².

591 Body size association with chromosome 9

592 To test whether gynes and queens (n= 281) with different supergene genotypes have
593 significantly different sizes, we fit two independent linear mixed models for chromosome 3
594 and chromosome 9 using colony as a random effect and genotype as a fixed effect. We
595 repeated the same analyses for males (n= 373). For these analyses, we used the R package
596 lme4⁷⁹. Pairwise p-values were obtained after performing Tukey post hoc tests using the
597 emmeans function⁸² in R.

598 To identify genomic regions associated with body size, we performed a Genome Wide
599 Association Study (GWAS) using a univariate linear mixed model implemented in *Gemma*
600 v0.94⁸³. Males were excluded from this analysis. Since *Gemma* requires that no missing
601 genotypes are present in the data, we imputed missing genotypes with *Beagle* v4.1⁸⁴ using
602 the full dataset of SNPs that passed previously mentioned filters. *Gemma* uses a
603 relatedness matrix generated from the sample genetic data to correct for non-independence
604 of the samples due to population structure. We applied a Bonferroni correction to calculate
605 the significance threshold.

606 Sex ratio

607 We tested the significance of the association between M_D and gyne production by fitting a
608 generalized linear mixed model (GLMM) with binomial distribution⁷⁸, where male-producing
609 colonies (n= 23) are 0 and gyne-producing colonies (n= 13) are 1. Mixed colonies were
610 excluded from this analysis. We also transformed "presence of M_D haplotype" into a binomial
611 variable, where colonies without M_D haplotype were coded as 0, and colonies with at least
612 one individual with a M_D haplotype were coded as 1. The variable "presence of M_D
613 haplotype" was included as a fixed factor; year, and locality as random factors. We
614 considered only workers for this analysis. We used the R package lme4⁷⁹ and the glmer
615 function.

616

617

618

619 **References**

620

1. Charlesworth, B., and Charlesworth, D. (1978). A model for the evolution of dioecy and gynodioecy. *Am. Nat.* **112**, 975–997.
2. Charlesworth, D., Charlesworth, B., and Marais, G. (2005). Steps in the evolution of heteromorphic sex chromosomes. *Heredity* **95**, 118–128 (2005).
3. Kratochvíl, L., Stöck, M., Rovatsos, M., Bullejos, M., Herpin, A., Jeffries, D. L., Peichel, C. L., Perrin, N., Valenzuela, N. and Pokorná, M. J. (2021). Expanding the classical paradigm: what we have learnt from vertebrates about sex chromosome evolution. *Philos. Trans. R. Soc. Lond., B, Biol. Sci.* **376**(1833), 20200097.
4. Kitano J., et al. (2009) A role for a neo-sex chromosome in stickleback speciation. *Nature* **461**(7267), 1079-1083. [10.1038/nature08441](https://doi.org/10.1038/nature08441)
5. Pennell, M. W., Kirkpatrick, M., Otto, S. P., Vamosi, J. C., Peichel, C. L., Valenzuela, N., and Kitano, J. (2015). Y fuse? Sex chromosome fusions in fishes and reptiles. *PLoS genet.* **11**(5), e1005237.
6. Rifkin, J. L., Beaudry, F. E., Humphries, Z., Choudhury, B. I., Barrett, S. C., and Wright, S. I. (2021). Widespread recombination suppression facilitates plant sex chromosome evolution. *MBE* **38**(3), 1018-1030.
7. Charlesworth, D., and Charlesworth, B. (1979). Selection on recombination in clines. *Genetics* **91**(3), 581-589. [10.1093/genetics/91.3.581](https://doi.org/10.1093/genetics/91.3.581)
8. Kirkpatrick, M., and Barton, N. (2006). Chromosome inversions, local adaptation and speciation. *Genetics* **173**, 419–434. [10.1534/genetics.105.047985](https://doi.org/10.1534/genetics.105.047985)
9. Yeaman, S. (2013). Genomic rearrangements and the evolution of clusters of locally adaptive loci. *PNAS* **110**, E1743–E1751. [10.1073/pnas.1219381110](https://doi.org/10.1073/pnas.1219381110)
10. Branco, S., et al., (2017) Evolutionary strata on young mating-type chromosomes despite the lack of sexual antagonism. *PNAS* **114**, 7067–7072. [10.1073/pnas.1701658114](https://doi.org/10.1073/pnas.1701658114)
11. Branco, S., et al. (2018). Multiple convergent supergene evolution events in mating-type chromosomes. *Nat. Commun.* **9**, 1–13. [10.1038/s41467-018-04380-9](https://doi.org/10.1038/s41467-018-04380-9)
12. Brelsford, A., Purcell, J., Avril, A., Van, P.T., Zhang, J., Brütsch, T., Sundström, L., Helanterä, H. and Chapuisat, M. (2020). An ancient and eroded social supergene is widespread across *Formica* ants. *Curr. Biol.* **30**, 304–311. [10.1016/j.cub.2019.11.032](https://doi.org/10.1016/j.cub.2019.11.032)
13. Duhamel, M., Carpentier, F., Begerow, D., Hood, M. E., Rodríguez de la Vega, R. C., and Giraud, T. (2022). Onset and stepwise extensions of recombination suppression are common in mating-type chromosomes of *Microbotryum* anther-smut fungi. *J. Evol. Biol.* **35**, 1619–1634. [10.1111/jeb.13991](https://doi.org/10.1111/jeb.13991)

656 14. Kess, T., et al. (2019). A migration–associated supergene reveals loss of
657 biocomplexity in Atlantic cod. *Sci. Adv.* 5, eaav2461. [10.1126/sciadv.aav2461](https://doi.org/10.1126/sciadv.aav2461)

658 15. Joron, M., et al. (2011). Chromosomal rearrangements maintain a polymorphic
659 supergene controlling butterfly mimicry. *Nature* 477, 203–206. [10.1038/nature10341](https://doi.org/10.1038/nature10341)

660 16. Wang, J., Wurm, Y., Nipitwattanaphon, M., Riba-Grognuz, O., Huang, Y. C.,
661 Shoemaker, D., & Keller, L. (2013). A Y–like social chromosome causes alternative
662 colony organization in fire ants. *Nature* 493, 664–668. [10.1038/nature11832](https://doi.org/10.1038/nature11832)

663 17. Purcell, J., Brelsford, A., Wurm, Y., Perrin, N., and Chapuisat, M. (2014). Convergent
664 genetic architecture underlies social organization in ants. *Curr. Biol.* 24, 2728–2732.
665 [10.1016/j.cub.2014.09.071](https://doi.org/10.1016/j.cub.2014.09.071)

666 18. Purcell, J., Lagunas-Robles, G., Rabeling, C., Borowiec, M. L., and Brelsford, A.
667 (2021). The maintenance of polymorphism in an ancient social supergene. *Mol. Ecol.*
668 30, 6246–6258. [10.1111/mec.16196](https://doi.org/10.1111/mec.16196)

669 19. Chapuisat, M. (2023). Supergenes as drivers of ant evolution. *Myrmecol. News* 33,
670 1–1

671 20. Martinez-Ruiz, C., Pracana, R., Stolle, E., Paris, C. I., Nichols, R. A., and Wurm, Y.
672 (2020). Genomic architecture and evolutionary antagonism drive allelic expression
673 bias in the social supergene of red fire ants. *eLife* 9, e64678. [10.7554/eLife.55862](https://doi.org/10.7554/eLife.55862)

674 21. Coughlan, J. M., and Willis, J. H. (2019). Dissecting the role of a large chromosomal
675 inversion in life history divergence throughout the *Mimulus guttatus* species complex.
676 *Mol. Ecol.* 28(6), 1343–1357.

677 22. Sundström, L. (1995a). Dispersal polymorphism and physiological condition of males
678 and females in the ant, *Formica truncorum*. *Behav. Ecol.* 6, 132–139.
679 [10.1093/beheco/6.2.132](https://doi.org/10.1093/beheco/6.2.132)

680 23. Schwander, T., Rosset, H., and Chapuisat, M. (2005). Division of labour and worker
681 size polymorphism in ant colonies: the impact of social and genetic factors. *Behav. Ecol.*
682 *Sociobiol.* 59, 215–221. [10.1007/s00265-005-0027-6](https://doi.org/10.1007/s00265-005-0027-6)

683 24. Rosset, H., and Chapuisat, M. (2007). Alternative life–histories in a socially
684 polymorphic ant. *Evol. Ecol.* 21, 577–588. [10.1007/s10682-006-9139-3](https://doi.org/10.1007/s10682-006-9139-3)

685 25. Fontcuberta, A., De Gasperin, O., Avril, A., Dind, S., and Chapuisat, M. (2021).
686 Disentangling the mechanisms linking dispersal and sociality in supergene-mediated
687 ant social forms. *Proc. R. Soc. B* 288(1949), 20210118.

688 26. Sundström, L. (1995b). Sex allocation and colony maintenance in monogyne and
689 polygyne colonies of *Formica truncorum* (Hymenoptera: Formicidae): the impact of
690 kinship and mating structure. *Am. Nat.* 146, 182–201.

691 27. Rosset, H., and Chapuisat, M. (2006). Sex allocation conflict in ants: when the queen
692 rules. *Curr. Biol.* 16, 328–331. [10.1016/j.cub.2005.12.036](https://doi.org/10.1016/j.cub.2005.12.036)

693 28. Avril, A., Purcell, J., Brelsford, A., and Chapuisat, M. (2019). Asymmetric assortative
694 mating and queen polyandry are linked to a supergene controlling ant social
695 organization. *Mol. Ecol.* 28, 1428–1438. [10.1111/mec.14793](https://doi.org/10.1111/mec.14793)

696 29. Avril, A., Purcell, J., Béniguel, S., and Chapuisat, M. (2020). Maternal effect killing

697 by a supergene controlling ant social organization. PNAS 117, 17130–17134.

698 30. Tafreshi, A. G., Otto, S. P., and Chapuisat, M. (2022). Unbalanced selection: the
699 challenge of maintaining a social polymorphism when a supergene is selfish. Philos.
700 Trans. R. Soc. B: Biol. Sci. 377, 20210197. [10.1098/rstb.2021.0197](https://doi.org/10.1098/rstb.2021.0197)

701 31. Blacher, P., De Gasperin, O., Grasso, G., Sarton-Lohéac, S., Allemand, R., and
702 Chapuisat, M. (2023). Cryptic recessive lethality of a supergene controlling social
703 organization in ants. Mol. Ecol. 32, 1062–1072. [10.1111/mec.16821](https://doi.org/10.1111/mec.16821)

704 32. Li, Q., et al. (2022). Local adaptation and the evolution of genome architecture in
705 threespine stickleback. Genome Biol. Evol. 14, evac075. [10.1093/gbe/evac075](https://doi.org/10.1093/gbe/evac075)

706 33. Trivers, R. L., and Hare, H. (1976). Haplodiploidy and the Evolution of the Social
707 Insect: The unusual traits of the social insects are uniquely explained by Hamilton's
708 kinship theory. Science 191(4224), 249–263.

709 34. Pamilo, P., and Rosengren, R. (1984). Evolution of nesting strategies of ants: genetic
710 evidence from different population types of *Formica* ants. Biol. J. Linn. Soc. 21(3),
711 331–348 (1984). [10.1111/j.1095-8312.1984.tb00370.x](https://doi.org/10.1111/j.1095-8312.1984.tb00370.x)

712 35. Boomsma, J. J., and Grafen, A. (1990). Intraspecific variation in ant sex ratios and
713 the Trivers-Hare hypothesis. Evol. 44(4), 1026–1034. [10.1111/j.1558-5646.1990.tb03823.x](https://doi.org/10.1111/j.1558-5646.1990.tb03823.x)

715 36. Lagunas-Robles, G., Purcell, J., and Brelsford, A. (2021). Linked supergenes
716 underlie split sex ratio and social organization in an ant. PNAS 118, e2101427118
717 (2021). [10.1073/pnas.2101427118](https://doi.org/10.1073/pnas.2101427118)

718 37. Kay, T., Helleu, Q., and Keller, L. (2022). Iterative evolution of supergene–based
719 social polymorphism in ants. Philos. Trans. R. Soc. B: Biol. Sci. 377, 20210196.
720 [10.1098/rstb.2021.0196](https://doi.org/10.1098/rstb.2021.0196)

721 38. McGuire, D., Sankovitz, M., and Purcell, J. (2022). Purcell, A novel distribution of
722 supergene genotypes is present in the socially polymorphic ant *Formica neoclara*.
723 BMC Ecol. Evol. 22, 1–12. [10.1186/s12862-022-02001-0](https://doi.org/10.1186/s12862-022-02001-0)

724 39. Pierce, D., Sun, P., Purcell, J., and Brelsford, A. (2022). Brelsford, A socially
725 polymorphic *Formica* ant species exhibits a novel distribution of social supergene
726 genotypes. J. Evol. Biol. 35(8), 1031–1044 (2022). [10.1111/jeb.14038](https://doi.org/10.1111/jeb.14038)

727 40. Keller, L. (1993). The assessment of reproductive success of queens in ants and
728 other social insects. Oikos 177–180. [10.2307/3545107](https://doi.org/10.2307/3545107)

729 41. Wolf, J. I., and Seppä, P. (2016). Queen size dimorphism in social insects. Insectes
730 Soc. 63(1), 25–38. [10.1007/s00040-015-0445-z](https://doi.org/10.1007/s00040-015-0445-z)

731 42. Wheeler, D. E., and Buck, N. A. (1996). Depletion of reserves in ant queens during
732 claustral colony founding. Insectes Soc. 43, 297–302. [10.1007/BF01242930](https://doi.org/10.1007/BF01242930)

733 43. Peeters, C., and Ito, F. (2001). Colony dispersal and the evolution of queen
734 morphology in social Hymenoptera. Annu. Rev. Entomol. 46(1), 601–630.

735 44. Lachaud, J. P., Cadena, A., Schatz, B., Pérez-Lachaud, G., and Ibarra-Núñez, G.
736 (1999). Queen dimorphism and reproductive capacity in the ponerine ant,
737 *Ectatomma ruidum* Roger. Oecologia 120(4), 515–523. [10.1007/s004420050885](https://doi.org/10.1007/s004420050885)

738 45. Ponnikas, S., Sigeman, H., Abbott, J. K., and Hansson, B. (2018). Why do sex
739 chromosomes stop recombining?. *Trends Genet.* 34(7), 492-503.
740 [10.1016/j.tig.2018.04.001](https://doi.org/10.1016/j.tig.2018.04.001)

741 46. Sigeman, H., et al. (2021). Avian neo-sex chromosomes reveal dynamics of
742 recombination suppression and W degeneration. *MBE* 38(12), 5275-5291.

743 47. Nguyen, P., Sýkorová, M., Šíchová, J., Kůta, V., Dalíková, M., Čapková Frydrychová,
744 R., Neven L. G., Sahara, K., and Marec, F. (2013). Neo-sex chromosomes and
745 adaptive potential in tortricid pests. *PNAS* 110(17), 6931-6936.
746 [10.1073/pnas.1220372110](https://doi.org/10.1073/pnas.1220372110)

747 48. Gruetzner, F., Ashley, T., Rowell, D. M., and Marshall Graves, J. A. (2006). How did
748 the platypus get its sex chromosome chain? A comparison of meiotic multiples and
749 sex chromosomes in plants and animals. *Chromosoma* 115, 75-88.

750 49. Palacios-Gimenez, O. M., Marti, D. A., and Cabral-de-Mello, D. C. (2015). Neo-sex
751 chromosomes of *Ronderosia bergi*: insight into the evolution of sex chromosomes in
752 grasshoppers. *Chromosoma* 124, 353-365.

753 50. Toups, M. A., Rodrigues, N., Perrin, N., & Kirkpatrick, M. (2019). A reciprocal
754 translocation radically reshapes sex-linked inheritance in the common frog. *Mol.*
755 *ecol.* 28(8), 1877-1889.

756 51. Schär, S., and Nash, D. R. (2014). Evidence that microgynes of *Myrmica rubra* ants
757 are social parasites that attack old host colonies. *J. Evol. Biol.* 27(11), 2396-2407.
758 [10.1111/jeb.12482](https://doi.org/10.1111/jeb.12482)

759 52. Trible, W., Chandra, V., Lacy, K.D., Limón, G., McKenzie, S.K., Olivos-Cisneros, L.,
760 Arsenault, S.V. and Kronauer, D.J. (2023). A caste differentiation mutant elucidates
761 the evolution of socially parasitic ants. *Curr. Biol.* 33(6), 1047-1058.
762 [10.1016/j.cub.2023.01.067](https://doi.org/10.1016/j.cub.2023.01.067)

763 53. Linksvayer, T.A., Busch, J.W. and Smith, C.R. (2013). Social supergenes of
764 superorganisms: do supergenes play important roles in social
765 evolution?. *BioEssays*, 35(8), pp.683-689. doi.org/10.1002/bies.201300038

766 54. Borowiec, M. L., Cover, S. P., and Rabeling, C. (2021). The evolution of social
767 parasitism in *Formica* ants revealed by a global phylogeny. *PNAS* 118(38),
768 [e2026029118](https://doi.org/10.1073/pnas.2026029118). [10.1073/pnas.2026029118](https://doi.org/10.1073/pnas.2026029118)

769 55. Leppänen, J., Seppä, P., Vepsäläinen, K., and Savolainen, R. (2015). Genetic
770 divergence between the sympatric queen morphs of the ant *Myrmica rubra*. *Mol.*
771 *Ecol.* 24(10), 2463-2476 (2015). [10.1111/mec.13170](https://doi.org/10.1111/mec.13170)

772 56. Purcell, J., and Chapuisat, M. (2013). Bidirectional shifts in colony queen number in
773 a socially polymorphic ant population. *Evol.* 67(4), 1169-1180

774 57. Al-Lawati, H., and Bienenfeld, K. (2009). Maternal age effects on embryo mortality
775 and juvenile development of offspring in the honey bee (Hymenoptera: Apidae). *Ann.*
776 *Entomol. Soc. Am.* 102, 881–888.

777 58. Tuttle, E.M., Bergland, A.O., Korody, M.L., Brewer, M.S., Newhouse, D.J., Minx, P.,
778 Stager, M., Betuel, A., Cheviron, Z.A., Warren, W.C. and Gonser, R.A., 2016.

779 Divergence and functional degradation of a sex chromosome-like supergene. *Curr.*
780 *Biol.* 26(3), 344-350. doi.org/10.1016/j.cub.2015.11.069

781 59. Stolle, E., Pracana, R., Howard, P., Paris, C.I., Brown, S.J., Castillo-Carrillo, C.,
782 Rossiter, S.J. and Wurm, Y. (2019). Degenerative expansion of a young
783 supergene. *MBE* 36(3), 553-561. doi.org/10.1093/molbev/msy236

784 60. Gutiérrez-Valencia, J., Hughes, P.W., Berdan, E.L. and Slotte, T. (2021). The
785 genomic architecture and evolutionary fates of supergenes. *GBE* 13(5), p.evab057.
786 doi.org/10.1093/gbe/evab057

787 61. Lenormand, T., and Roze, D. (2022). Y recombination arrest and degeneration in the
788 absence of sexual dimorphism. *Science* 375, 663–666. [10.1126/science.abj1813](https://doi.org/10.1126/science.abj1813)

789 62. Jay, P., Tezenas, E., Véber, A., and Giraud, T. (2022). Sheltering of deleterious
790 mutations explains the stepwise extension of recombination suppression on sex
791 chromosomes and other supergenes. *PLoS Biol.* 20, e3001698.
792 [10.1371/journal.pbio.3001698](https://doi.org/10.1371/journal.pbio.3001698)

793 63. Seifert, B. (2018). The Ants of Central and North Europe. Iutra Verlags – und
794 Vertriebsgesellschaft Tauer, Germany, 310–312 pp.

795 64. Brelsford, A., Rodrigues, N., and Perrin, N. (2016). High-density linkage maps fail to
796 detect any genetic component to sex determination in a *Rana temporaria* family. *J.*
797 *Evol. Biol.* 29, 220–225. [10.1111/jeb.12747](https://doi.org/10.1111/jeb.12747)

798 65. Rohland, N., and Reich, D. (2012). Cost-effective, high-throughput DNA sequencing
799 libraries for multiplexed target capture. *Genome Res.* 22, 939–946.
800 [10.1101/gr.128124.111](https://doi.org/10.1101/gr.128124.111)

801 66. Catchen, J. M., Amores, A., Hohenlohe, P., Cresko, W., and Postlethwait, J. H.
802 (2011). Stacks: building and genotyping loci de novo from short-read sequences. *G3: Genes|genomes|genetics* 1, 171–182. [10.1534/g3.111.000240](https://doi.org/10.1534/g3.111.000240)

803 67. Zhang, J., Kobert, K., Flouri, T., and Stamatakis, A. (2014). PEAR: a fast and
804 accurate Illumina Paired-End reAd mergeR. *Bioinformatics*, 30, 614–620.
805 [10.1093/bioinformatics/btt593](https://doi.org/10.1093/bioinformatics/btt593)

806 68. Vasimuddin, M., Misra, S., Li, H., and Aluru, S. (2019). “Efficient architecture-aware
807 acceleration of bwa-mem for multicore systems” in 2019 IEEE International Parallel
808 and Distributed Processing Symposium (IPDPS)., pp. 314–324.
809 [10.1109/IPDPS.2019.00041](https://doi.org/10.1109/IPDPS.2019.00041)

810 69. Li, H., and Durbin, R. (2009). Fast and accurate short read alignment with Burrows-
811 Wheeler transform. *Bioinformatics* 25, 1754–1760. [10.1093/bioinformatics/btp324](https://doi.org/10.1093/bioinformatics/btp324)

812 70. Danecek, P., et al. (2011) The variant call format and VCFtools. *Bioinformatics* 27,
813 2156–2158. [10.1093/bioinformatics/btr330](https://doi.org/10.1093/bioinformatics/btr330)

814 71. Purcell, S., et al. (2007) PLINK: a tool set for whole-genome association and
815 population-based linkage analyses. *Am. J. Hum. Genet.* 81(3), 559-575.
816 [10.1086/519795](https://doi.org/10.1086/519795)

817 72. R Core Team, R: A language and environment for statistical computing. R
818 Foundation for Statistical Computing, Vienna, Austria. Available at <http://www.R-project.org>

820 project.org/.Deposited 2016

821 73. Wickham, H. (2009). Ggplot: using the grammar of graphics with R. New York, 1076.

822 74. Alexander, D. H., Novembre, J., and Lange, K. (2009). Fast model-based estimation

823 of ancestry in unrelated individuals. *Genome Res.* 19(9), 1655–1664

824 75. Wang, J. (2011). COANCESTRY: a program for simulating, estimating and analysing

825 relatedness and inbreeding coefficients. *Mol. Ecol. Resour.* 11, 141–145.

826 [10.1111/j.1755-0998.2010.02885.x](https://doi.org/10.1111/j.1755-0998.2010.02885.x)

827 76. Wang, J. (2002). An estimator for pairwise relatedness using molecular markers.

828 *Genetics* 160(3), 1203–1215. [10.1093/genetics/160.3.1203](https://doi.org/10.1093/genetics/160.3.1203)

829 77. Attard, C. R., Beheregaray, L. B., and Möller, L. M. (2018). Genotyping-by-

830 sequencing for estimating relatedness in nonmodel organisms: Avoiding the trap of

831 precise bias. *Mol. Ecol. Resour.* 18(3), 381-390. [10.1111/1755-0998.12739](https://doi.org/10.1111/1755-0998.12739)

832 78. Bolker, B.M., Brooks, M.E., Clark, C.J., Geange, S.W., Poulsen, J.R., Stevens,

833 M.H.H. and White, J.S.S. (2009). Generalized linear mixed models: a practical guide

834 for ecology and evolution. *TREE* 24(3), pp.127-135.

835 79. Bates, D., Mächler, M., Bolker, B., and Walker, S. (2014). Fitting linear mixed-effects

836 models using lme4. Available at <https://arxiv.org/abs/1406.5823>. Deposited 23 Jun

837 2014

838 80. Shin, J.H., Blay, S., Lewin-Koh, N., McNeney, B., Yang, G., Reyers, M., Yan, Y. and

839 Graham, J. (2016). Package 'LDheatmap'. R package.

840 81. Tawdros, S., West, M., and Purcell, J. (2020). Scaling relationships in *Formica* ants

841 with continuous worker size variation. *Insectes Soc.* 67(4), 463-472.

842 [10.1007/s00040-020-00779-0](https://doi.org/10.1007/s00040-020-00779-0)

843 82. Lenth, R., Singmann, H., Love, J., Buerkner, P., and Herve, M. (2019). Package

844 'emmeans'.

845 83. Zhou, X., and Stephens, M. (2012). Genome-wide efficient mixed-model analysis for

846 association studies. *Nat. Genet.* 44(7), 821-824. [10.1038/ng.2310](https://doi.org/10.1038/ng.2310)

847 84. Browning, B. L., and Browning, S. R. (2016). Genotype imputation with millions of

848 reference samples. *Am. J. Hum. Genet.* 98(1), 116-126. [10.1016/j.ajhg.2015.11.020](https://doi.org/10.1016/j.ajhg.2015.11.020)

849 85. Toews, D. P., Brelsford, A., Grossen, C., Milá, B., and Irwin, D. E. (2016). Genomic

850 variation across the Yellow-rumped Warbler species complex. *Auk* 133(4), 698-717.

851

852

853