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Summary

Antagonistic selection has long been considered a major driver of the formation and
expansion of sex chromosomes. For example, sexually antagonistic variation on an
autosome can select for suppressed recombination between that autosome and the sex
chromosome, leading to a neo-sex chromosome. Autosomal supergenes, chromosomal
regions containing tightly linked variants affecting the same complex trait, share similarities
with sex chromosomes, raising the possibility that sex chromosome evolution models can
explain the evolution of genome structure and recombination in other contexts. We tested
this premise in a Formica ant species wherein we identified four supergene haplotypes on
chromosome 3 underlying colony social organization and sex ratio. We discovered a novel
rearranged supergene variant (9r) on chromosome 9 underlying queen miniaturization. The
Or is in strong linkage disequilibrium with one chromosome 3 haplotype (P2) found in multi-
queen (polygyne) colonies. We suggest that queen miniaturization is strongly disfavored in
the single queen (monogyne) background, and thus socially antagonistic. As such, divergent
selection experienced by ants living in alternative social ‘environments’ (monogyne and
polygyne) may have contributed to the emergence of a genetic polymorphism on
chromosome 9 and associated queen-size dimorphism. Consequently, an ancestral
polygyne-associated haplotype may have expanded to include the polymorphism on
chromosome 9, resulting in a larger region of suppressed recombination spanning two
chromosomes. This process is analogous to the formation of neo-sex chromosomes and
consistent with models of expanding regions of suppressed recombination. We propose that
miniaturized queens, 16-20% smaller than queens without 9r, could be incipient intraspecific

social parasites.

Introduction

When only certain combinations of alleles at different genes yield positive fithess outcomes,
theory predicts the formation or expansion of regions of suppressed recombination to ensure
that beneficial combinations are co-transmitted. This idea is well established in the sex
chromosome evolution theory literature'?, where sexually antagonistic selection is an
integral part of the 'canonical' sex chromosome evolution scenario®. Specifically, the model
proposes that recombination is suppressed in incipient sex chromosomes when sex
determining genes are linked with alleles that are advantageous in one sex, but detrimental
in the other. Empirical evidence supporting sexually antagonistic selection can be found in

neo-sex chromosomes, where sex chromosomes recently expanded to include a previously
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autosomal region*%. Extending the search for a role of antagonistic selection outside sex
chromosomes will help to reveal the broader prevalence of this mechanism in other regions

of suppressed recombination.

The importance of reduced or suppressed recombination has been widely recognized in
contexts beyond sex chromosome evolution, such as in the emergence of local adaptation
(e.g. Charlesworth and Charlesworth’; Kirkpatrick and Barton®; Yeaman®). Researchers
propose that selection should favor suppressed recombination between combinations of
alleles that work well together in specific environments (achieved through inversion® or other
chromosomal rearrangement®). In parallel to the idea of sexually antagonistic selection,
mismatched alleles would be subject to strong negative selection in either environment.
Given the similarities between models of suppressed recombination around sex-determining
loci and locally adapted loci, both bodies of research are relevant to understanding

supergene evolution.

Some studies of autosomal supergenes have drawn inspiration from models of sex
chromosome evolution and inversion formation (e.g. Branco et al.'%; Branco et al.';
Brelsford et al.’?; Duhamel et al.'). Phenotypic traits controlled by supergenes include
alternative mating systems'', migratory behavior'4, mimetic coloration', and social
organization'®'7. Here, we explore the possibility that supergenes form and expand through
a process that parallels the canonical model of sex chromosome evolution. Working with an
autosomal supergene that controls colony queen number in Formica ants'?7-19 we propose
that alternative social contexts shaped by a supergene could favor the expansion of regions
of suppressed recombination to include “socially antagonistic” loci. We define socially
antagonistic loci as alleles that have beneficial fithess outcomes in one social environment,
but detrimental outcomes in the other social environment (see also Chapuisat'®; Martinez-
Ruiz et al.2%). Because the Formica supergene is approximately 23 MY old, determining what
genetic polymorphisms were present during supergene formation would be difficult in this
system (see also Coughlan and Willis?"). Instead, we focus on elaborations to the existing

supergene system.

The Formica social supergene was initially described in the Alpine silver ant Formica
selysi'?. Alternative haplotypes of the supergene are associated with colony queen number,

thus determining whether a colony is monogyne (with only one queen) or polygyne (with two
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or more queens). In Formica ants (and other socially polymorphic ants), a suite of other traits
is frequently associated with variation in colony queen number, including body size of
queens and workers??-?* colony size?3, dispersal probability??2°, and investment in sexual
offspring?62’. Genes underlying extreme versions of these traits could be candidates in the
search for socially antagonistic loci. In F. selysi, monogyne colonies exclusively harbor
individuals carrying the monogyne-associated haplotype, M, whereas polygyne colonies
always contain individuals bearing at least one copy of the alternative polygyne-associated
haplotype, P'"28. The P haplotype acts as a maternal-effect killer, causing the early death
of any offspring of heterozygous mothers that do not bear the P haplotype?®. Recently,
Tafreshi et al.>® proposed that this polymorphism is only stable in the presence of both
assortative mating and large fitness differences between supergene genotypes, both of

which have recent empirical support?®31,

Brelsford et al.’? showed that our focal species, Formica cinerea, has (at least) three
supergene haplotypes. In the present study, we set out to characterize differences between
the supergene haplotypes in F. cinerea. Since our limited preliminary evidence suggested
that two of the three haplotypes are found in polygyne colonies, we hypothesized that the
two P haplotypes would contain different gene sets and control distinct phenotypic traits.
Certain phenotypes might be beneficial in the polygyne context, but detrimental in the
monogyne context. If so, one or both of the P haplotypes could harbor socially antagonistic
loci. We did not predict a priori the mechanism through which the gene sets would differ,
although we were open to the possibility of an expansion analogous to neo-sex chromosome
formation® or of translocation of genes into the supergene region®3?. To test these
predictions and detect signatures of socially antagonistic selection, we collected workers,
gynes, males, and queens from 172 F. cinerea colonies from northern Italy and
characterized the genetic architecture and phenotype associated with alternative supergene
haplotypes. We examined whether the two putative P haplotypes control alternative traits,
in addition to colony queen number.

Results
Characterization of supergene haplotypes

As expected based on a preliminary assessment of genetic variation on the F. cinerea
supergene'’?, we detected more than two haplotypes. Overall, a principal component

analysis (PCA) of chromosome 3 revealed that F. cinerea populations in northern Italy have
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four supergene haplotypes. Within these plots, we identified ten clusters, which is consistent
with the expected number of genotype combinations for a system with four distinct
haplotypes (four homozygous genotypes and six heterozygous combinations). PC axes 1
and 2 separate all individuals into six clear clusters (Figure 1A) and PC axis 3 further reveals
variation in the putative M haplotypes (Figure 1B). We examined Fis in each of the clusters
to determine whether individuals are homozygous or heterozygous for the supergene;
heterozygous individuals exhibit negative Fis across the supergene region (plotted as split
circles in the figure), while homozygous individuals exhibit positive Fis (full circles). Haploid
males (half circles in the figure) cluster with homozygous females. We then examined the
frequency of reference and alternative alleles relative to the F. selysi reference genome,
which was constructed from a pool of M males'?, to make a preliminary determination about
whether haplotypes were M-like or P-like. Based on this analysis, two of the four haplotypes
are M (Ma and Mp) and two are P (P1 and P2). The Mp is mostly found in a heterozygous
state, with the exception of one newly-mated queen (MpMpb) and seven males (Mp) out of

239 total individuals carrying Mp.

To investigate genetic differences between alternative haplotypes, we looked at the Fsr
between haplotype pairs, revealing that the Mp compared to the Ma spans only the first half
of chromosome 3, from ~2.0-7.5 Mbp (Figure 1C), while the genetic differentiation between
M haplotypes and P1 spans the same supergene region discovered in F. selysi'’, from ~2.0-
12.5 Mbp (Figures 1D-E). The Fst plots show high differentiation that spans almost all of

chromosomes 3 and 9 when comparing P2 with the other haplotypes (Figures 1F-H).
Assessment of a newly discovered supergene region on chromosome 9

Given the second region of high differentiation between the P2 haplotype and all other
supergene haplotypes, we investigated variation on chromosome 9. Here, we detected two
alternative haplotypes. The PCA (Figure 2A) displays three distinct clusters of individuals
along PC 1. Individuals in the left and right clusters appear to be homozygous based on
positive Fis values, while individuals in the central cluster are heterozygous. We named the
two alternative haplotypes as follows: "9a" referring to the ancestral chromosome structure,
and "9r" referring to the rearranged chromosome structure relative to the F. selysi genome,
as revealed by analysis of linkage disequilibrium (LD) within each homozygous genotype
(Figures S1A-B). A comparison of previously published linkage maps from F. selysi and the

distantly related F. exsecta confirms that the 9a chromosome structure and the lack of LD
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between chromosomes 9 and 3 are ancestral'®. This region of suppressed recombination

on chromosome 9 spans from ~2.4- 9.4 Mbp and contains hundreds of genes.

The P2 haplotype on chromosome 3 and the 9r on chromosome 9 are almost always
transmitted together (y? = 1273.8, df = 1, p-value < 0.0001). No P2P2 individual has been
found to be 9a9a homozygous (Figure 2B). In contrast, individuals without the P2 almost
always bear only the 9a haplotype. However, we noticed some mismatches in this pattern
showing an imperfect association between the P2 and 9r (Figure 2B). The mismatches occur

disproportionately in workers (19 out of 20 observations, y2= 14.3, df = 1, p-value < 0.0001).
Colony social form is associated with chromosome 3 haplotypes

In other Formica species, colony social form is controlled by the social supergene on
chromosome 3'2. To verify that queen number is associated with variation on chromosome
3 in F. cinerea, we assessed colony social form and supergene genotype distribution
within colonies. Of the 120 analyzed colonies, half are monogyne (39 monogyne
monandrous, 21 monogyne polyandrous), and half polygyne (Figure 3A). We found a
significant association of the M haplotypes with the monogyne form, where 55 out of 60
colonies contain exclusively MaMa and/or MoMa individuals (Figures 3B-C; Figure S2A).
Similarly, we observed a strong association between P haplotypes and the polygyne form,
with 56 out of 60 polygyne colonies having members with at least one P haplotype (Figure
3D; Figure S2B). Despite several exceptions, the association of M haplotypes with the
monogyne form and the P haplotypes with the polygyne form is still significant (z115= 2.4,
p-value < 0.05, GLMM).

The Mp influences colony sex ratio

Some species of social insect show a pattern of split sex ratio at the population level, in
which some colonies specialize in the production of future queens and others in the
production of males33-3¢. This also occurs in F. cinerea, especially in monogyne colonies
(Figure S3). In contrast, polygyne colonies more often produce a mix of males and gynes or
exclusively males (Figure S3). Our data show that the Mp haplotype is associated with the
production of gynes (z32= 2.3, p < 0.05, GLMM). The Mp haplotype is rarely present in males

although we found some exceptions (7 Mp males).
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The effect of the two supergenes on body size: chromosome 9 harbors a miniaturizing

haplotype

Based on field observations that F. cinerea alates vary substantially in size, we measured
the head width of gynes, queens and males. Our results revealed that alates with at least
one copy of the P2 haplotype have significantly smaller heads than alates without the P2
(gynes and queens: all Tukey post-hoc comparisons p< 0.0001; males: all Tukey post-hoc
comparisons p< 0.0001; linear mixed model) (Figures 4A, C). However, this size reduction
is caused by the 9r haplotype on chromosome 9 rather than the P2, as demonstrated by a
genome-wide association study (GWAS) that identified numerous loci associated with alate
size, all on chromosome 9 (Figure 4E). The presence of a single small gyne without the P2
but with the 9r is consistent with this pattern (Figure 4A). Overall, gynes and queens with at
least one 9r copy are significantly smaller than 9a9a gynes (F2=232.2, p< 0.0001) (Figure
4B). On average, 9a9r gynes are 15.7% smaller than 9a9a gynes (t146 = 16.1, p < 0.0001,
linear mixed model). This size reduction is 20.3% in 9r homozygous gynes (t2s6= 17.3, p<
0.0001; linear mixed model). 9r homozygous gynes are 5.42% smaller than 9r heterozygous
gynes (tz2ro= 4.4, p< 0.0001; linear mixed model). Males exhibit a similar pattern, although
male miniaturization appears to be less drastic, with 9r males being 8.6% smaller than 9a
males (tso.0= 12.7, p< 0.0001; linear mixed model) (Figure 4D). We also observed a
significant reduction in body size of 4.9% in 9a9a gynes with at least one P+ haplotype
compared to 9a9a gynes without a P haplotype (MaMa-MaP1, t197.5=6.7, p< 0.0001; MaMp-
MaP1, t202.4=6.8; p< 0.0001; MaMa-P1P1,t1406=4.7, p< 0.001; MaMp-P1P1, t1442=5.4, p<
0.0001; linear mixed model; we did not observe a significant difference between MaMb and
MaMa gynes and queens and MpP1 gynes and queens due to the small sample size of the
latter [n=6], although they are smaller on average). Interestingly, P1 males are on average

2.6% bigger than Ma males (t-119.8=-3.1, p< 0.05; linear mixed model).
Discussion

Most ant species harboring a social supergene have only two alternative haplotypes, one
associated with monogyny and the other associated with polygyny?3’. Here we describe for
the first time a species, Formica cinerea, that bears four supergene haplotypes on
chromosome 3, all co-occurring in a single population. As found in several congeneric
species so far'”:36.3839 the social form in F. cinerea is genetically controlled. Two M
haplotypes (Ma and Mp) are strongly associated with single-queen colonies, while two P
haplotypes (P1 and P2) are almost exclusively present in multi-queen colonies. We
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discovered a novel rearranged supergene variant (9r) on chromosome 9 underlying queen

miniaturization, in strong LD with the P2 polygyne-associated haplotype.
Socially antagonistic alleles and supergene expansion

Alternative social forms in ants generally conform to the "polygyny syndrome" in which gynes
of polygyne colonies are about 10% smaller and have lower relative fat content than those
produced by monogyne colonies*. In F. cinerea polygyne colonies, we observed two distinct
gyne sizes: 9a9a gynes are relatively large (though still 5% smaller on average than
monogyne-produced gynes); in contrast, gynes with a 9r haplotype are 16-20% smaller than
9a9a gynes (Figures 4A-B). This aligns with other cases of extreme queen-size dimorphism
(microgynes and macrogynes)*'. No 9r F. cinerea gynes or queens have been observed in
monogyne colonies. Polygyny, therefore, appears to be a precondition for microgyny in this

species.

We suggest that fitness epistasis initially emerged between an ancestral P haplotype and
an incipient mutation on chromosome 9 that caused reduced body size in queens. In the
process of establishing a new colony, macrogynes rely solely on their body reserves (wing
muscles and fat bodies) to raise their first brood*?43, In order to be successful it is essential
that they produce a worker caste in a short time, before depleting all their body reserves.
The independent colony founding strategy is highly risky, and founding queens often suffer
high mortality*°. Microgynes lack large fat reserves necessary to establish new nests40:4144,
and thus, would be severely disadvantaged in an independent founding monogyne context.
Conversely, in the polygyne background, colony foundation risks are reduced because
queens can join existing colonies. Based on studies of microgynes in other species*’#4, we
hypothesize that F. cinerea microgynes are less costly to produce. Although they are
expected to lay fewer eggs than macrogynes*'#* their lower fecundity could be buffered by

coexistence with other reproductive queens.

Genetic mismatches between body size and colony social form would have a high cost,
leading to strong selection for LD between alleles on P2 and 9r (Figure S1C). This expanded
region of suppressed recombination spanning two chromosomes would include socially

antagonistic alleles, beneficial in polygyne colonies but detrimental in monogyne colonies.

We also observed miniaturization in males (Figures 4C-D), where 9r males are 8.6% smaller
than 9a males. Miniaturization of males may be a byproduct of selection on queen body size,

or small males may be favored in some contexts. For example, body size reduction in both
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sexes may lead to assortative mating between morphotypes. Incomplete assortative mating
with respect to social form has been documented in F. selysi, where 80% of queens of
monogyne origin mated with males from monogyne colonies, while the remaining 20%
mated with males from polygyne colonies?>?8. Here we speculate that small 9r males from
polygyne colonies are disadvantaged during mating flights, where they must compete with
large 9a males (Ma and P1). If true, they may adopt alternative strategies by mating close to

nests, with small 9r gynes.

Ultimately, our results are consistent with predictions of the canonical model of sex
chromosome evolution in which antagonistic selection leads to the expansion of regions of
suppressed recombination between advantageous combinations of alleles. Two novel
features are present in our system. First, the expansion of LD is occurring in an autosomal
supergene instead of in a sex chromosome'?. Second, the environment that shapes
alternative traits is the social context determined by colony queen number as opposed to
sex' or the extrinsic environment®. We note that we cannot rule out the possibility that the
initial mutation leading to an association between chromosome 9 and the P2 haplotype was
selectively neutral, and that this association enabled the invasion of a queen miniaturizing

mutation on chromosome 94°.

Although they exhibit high levels of LD, P2 and 9r are not perfectly correlated (Figure 2B).
The occasional decoupling of alleles suggests that recombination occasionally happens
between chromosomes 3 and 9, raising questions about how these two supergene regions
are associated. Several alternative mechanisms could mediate the incomplete association
between P2 and 9r. We speculate that P2 and 9r may be physically linked by the fusion of
chromosomes 3 and 9 or, alternatively, that they are linked through a reciprocal
translocation. Neo-sex chromosomes shaped by suppression of recombination between an
autosome and an ancestral sex chromosome have been documented in a variety of
eukaryotic organisms [e.g., reptiles®; fish*%; birds*®; insects*’; and plants®]. These neo-sex
chromosomes often arise from Robertsonian fusion of acrocentric chromosomes*®4° or the
reciprocal translocation of genetic material between non-homologous chromosomes®°°. We
suggest that our system may be analogous to the formation of neo-sex chromosomes.
Suppression of recombination between 9r and P2 could initially be achieved through
chromosomal fusion, reciprocal translocation, or very strong epistasis. Strong epistasis
without physical linkage can occur if individuals with mismatched genotypes (e.g. P2 without

9r or 9r without P2) experience a high mortality rate during development. We observed 20
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cases where the 9r and P2 were not co-transmitted to offspring. These genotypic
mismatches occurred in both directions (9r without P2 and P2 without 9r). If the strong
association between the two is derived from physical changes in the chromosome structure,
these exceptions could result from rare double-recombination events. Alternatively, if
selection against mismatches is present, the exceptions reveal that such a system is not
100% lethal. In either scenario, the observation that recombinant individuals were
significantly more likely to be workers suggests that decoupling P2 and 9r could bias the
development of immature offspring toward workers instead of gynes. Further research is
needed to identify the mechanism that locked these two regions of suppressed

recombination together.
Microgyny as an incipient form of intraspecific social parasitism?

Queen-size dimorphism associated with polygyny may lead to intraspecific parasitism,
where the microgynes take advantage of the macrogynes by specializing in sexual offspring
production®'. Researchers are generally interested in the origins of social parasitism (e.g.
Trible et al.®?), and Linksvayer et al.>® predicted that a supergene might underlie the
transition from a free-living to a socially parasitic lifestyle in ants. In Formica, queen
miniaturization was previously described only in species that parasitize other Formica
species (difficilis, dakotensis, and exsecta clades)®*, although it has not been linked with
colony social organization. Here we describe microgyny in a non-parasitic Formica species
for the first time and speculate that 9r microgynes could be incipient intraspecific social
parasites. The best-known case of intraspecific parasitism occurs in Myrmica rubra: when
microgynes and macrogynes coexist in the same nest, microgynes produce very few worker
offspring, focusing their reproductive effort mostly on sexuals®'%. During our field
collections, we tried to minimize damage to nests, so we did not observe mature microgynes
and macrogynes occurring together in the same nest. However, we found four colonies
where all the workers were 9a9a homozygotes while alates were 9a9r and 9r9r microgynes.
We also noticed that virgin microgynes and macrogynes were never produced by the same
colony. Although preliminary, these findings could represent the first hint that F. cinerea

microgynes are intraspecific social parasites.

Supergene variation associated with three complex traits

Our results reveal that four haplotypes on chromosome 3 detected in F. cinerea are

associated with at least three complex traits: social structure, alate size, and sex ratio. We
10
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show that microgyny is controlled by a newly discovered supergene region on chromosome
9. As already studied in other Formica species, we confirm that M haplotypes are associated
with monogyne colonies, while P haplotypes are associated with polygyny. However, we
found a few exceptions to this pattern: several apparently monogyne colonies include
individuals with a P haplotype, and several apparently polygyne colonies lack P haplotypes
(Figures S2A-B). We suggest that these exceptions could be an expression of the natural
decline of the colony. Polygyne colonies may be functionally monogyne at the end of their
lifespan if only one queen is effectively reproductive or has survived®. On the other hand,
declining monogyne colonies may be more inclined to accept a new, most likely related,

queen if their queen stops producing enough eggs®’.

A third complex phenotypic trait, colony sex ratio, is associated with the Mp haplotype,
aligning with recent discoveries in F. glacialis and F. podzolica®®. We find that F. cinerea
monogyne colonies, regardless of the number of matings, specialize in the production of
gynes or males. We show that split sex ratio is mediated by Mp and Ma haplotypes. Based
on inferences from offspring genotypes, queens heterozygous for Mp tend to produce gynes,
while queens homozygous for Ma tend to produce males. In contrast, polygyne colonies are
mostly male-producing or produce both males and gynes. Structurally, the Mp haplotype in
F. cinerea spans the first half of chromosome 3 as in F. glacialis and F. podzolica. In a further
parallel, we mainly found the Mp haplotype in heterozygous females, and observed a very
low frequency of Mb homozygotes and haploids. We do not yet have enough information to
determine whether these Mp haplotypes share a common origin or originated

independently.
Conclusions

A novel supergene variant (9r) on chromosome 9 underlying a 16-20% reduction of queen
body size (microgyny) is highly associated with the polygyne-associated P2 haplotype on
chromosome 3. Microgynes are absent from F. cinerea monogyne colonies, consistent with
previous hypotheses that polygyny is a precondition for microgyny#'#3. Here we propose
that socially antagonistic selection favored the suppression of recombination between a P
haplotype and a miniaturizing allele on chromosome 9, consistent with the canonical model
of sex chromosome evolution?. While models of sex chromosome evolution have been used
as a source of inspiration for supergene research for more than a decade, many studies
have applied these models to try to understand degeneration of a non-recombining
supergene haplotype (e.g. Wang et al.'®; Tuttle et al.58; Stolle et al.’°). Here, we add
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empirical support to the idea that such models can also provide a useful starting point for
understanding the origin and expansion of autosomal supergenes (reviewed by Gutierrez-
Valencia et al.?%). In recent years, new models from both the sex chromosome and local
adaptation research fields describe additional hypotheses for the emergence of regions of
suppressed recombination®'62 The hypotheses developed in these models should also be
tested in autosomal supergene systems, as this may lead to new breakthroughs in our

understanding of the evolution of recombination.
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Figure 1. Principal component analysis and genetic differentiation identify four
supergene haplotypes, including one encompassing variation on both chromosome
3 and chromosome 9.

Principal component axes 1 and 2 (A) distinguish six groups of individuals. The solid colored
circles show homozygous individuals (based on positive Fis values). Dual-colored circles
show heterozygous individuals (based on negative Fis values). Each half circle represents
a haplotype on chromosome 3, and haploid males are represented by half circles. PC axis
3 reveals a fourth haplotype (Mp) that is distinct from Ma over a smaller region of
chromosome 3 (B). Individuals with at least one copy of Mp exhibited relatively high PC3
values. The Mp compared to Ma spans only the first half of chromosome 3 (C). Elevated
differentiation (FST) occurred between the M and P haplotypes across most of chromosome
3 when comparing haploid males (D, E). High differentiation was also evident on
chromosome 9 (F-H), when comparing the P2 haplotype to the other three haplotypes. PC1
explains 51% of the total variance, while PC2 and PC3 explain respectively 29% and 3.8%.

Figure 2. PCA of variants on chromosome 9 identified three clusters corresponding
to three supergene genotypes.

The left cluster contains 9a9a individuals, while middle and right clusters show respectively
9a9r and 9r9r individuals (A). The colors of half circles in the PCA indicate chromosome 3
haplotypes to reveal mismatches between chromosomes 3 and 9. PC1 explains 75% of the
total variance, and PC2 2.1%. Individuals with the 9r haplotype on chromosome 9 almost
always have the P2 haplotype on chromosome 3, although we found some mismatches (13
out of 1151 9a9a individuals, all workers, harbor at least one copy of the P2; 7 out of 130
9a9r individuals, one gyne and six workers, do not carry the P2 haplotype). The chord
diagram (B) shows associations between genotypes on chromosome 9 (left segments) and
genotypes on chromosome 3 (right segments). Note that the ribbons connect chromosome

9 with chromosome 3 genotypes in the same individuals. Related to Figure S1.

Figure 3. Association of the haplotypes on chromosome 3 with colony social form.

Ridgeline plots of the distribution of pairwise relatedness among nestmates reveal variation
in colony social structure. Of the 120 colonies analyzed, half were monogyne (39
monandrous monogynous, 21 polyandrous monogynous) and half were polygyne (A). In
monogyne monandrous (B) and polyandrous (C) colonies, most colonies contained either

exclusively MaMa workers or a mix of MaAMa and MaMb workers. In contrast, most polygyne
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colonies (D) contained individuals with at least one copy of one of the P haplotypes (P1 and
P2). A few exceptions to this general pattern are observed in both monogyne and polygyne
colonies (Related to Figure. S2). Vertical lines at 0.7 and 0.2 show approximately where we
expect peaks of full- and half-siblings, respectively, considering the downward bias typical

of relatedness estimates based on RADseq markers.

Figure 4. The 9r haplotype is strongly associated with reduced head width in gynes
and males.

Individual gynes and males with the P2 haplotype are significantly smaller than those without
(A, C). Likewise, gynes and males with at least one copy of the 9r haplotype are significantly
smaller than those without a 9r haplotype (B, D). GWAS analysis (E) confirms that a large
region on chromosome 9 is most strongly associated with body size miniaturization in F.

cinerea. The blue line shows the significance threshold adjusted for Bonferroni correction.

STAR Methods

LEAD CONTACT AND MATERIALS AVAILABILITY
Further information and requests for resources and reagents should be directed to and will

be fulfilled by the Lead Contact, Jessica Purcell (jpurcell@ucr.edu).
Materials availability

This study did not generate new unique reagents. There are restrictions to the availability of
tissue and DNA samples due to the lack of an external centralized repository for their
distribution and our need to maintain the stock. We are glad to share oligonucleotides with

reasonable compensation by requestor for processing and shipping.
Data and code availability

¢ Raw lllumina sequencing reads are available at the National Center for Biotechnology
Information Short Reads Archive, BioProject PRINA966702.

e Phenotypic data and supergene genotypes for each individual ant are available in
Dryad, https://doi.org/doi:10.5061/dryad.02v6wwq8s.

e Any additional information required to reanalyze the data reported in this paper is

available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS
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Formica cinerea is a socially polymorphic species with a wide distribution across Europe®3.
This species nests preferentially along sand and gravel banks of rivers and open sand
dunes. We collected F. cinerea workers and alates (gynes and males) from colonies in
northern Italy (Aosta Valley and Piedmont) in June-July across several years, 2014, 2018-
2021 (Table S1). Whenever possible, we sampled up to 10 gynes and males, and about 15
workers from each colony, and noted the observed sex-ratio. When multiple mature queens
were found within colonies, we also sampled a subset of them. During 2019-2021, we
collected newly mated wingless queens that were either looking for suitable locations to start
new colonies or were under stones in self-dug chambers with no workers. We stored

samples in 96-100% ethanol.
METHOD DETAILS
Library preparation

We extracted DNA from the head and thorax of workers, and only the head of gynes, queens
and males. For the 2014 and 2018-2020 samples, we used the QIAGEN DNeasy Blood &
Tissue Kit with modifications described in McGuire et al.38. Specifically,we manually ground
the tissue with sterile pestles in a 1.7 mL tube while immersed in liquid nitrogen, and left the
pulverized samples overnight in a solution of 180 uL of buffer ATL and 20 uL of proteinase
K at 56°C. The day after we added 200 uL of buffer AL and 200 pL of 100% ethanol. We
then transferred the supernatant into alternatively sourced spin columns (BPI-tech.com),
added 70% ethanol for DNA wash, and eluted the DNA in 30 yL of buffer EB. We extracted
individuals collected in 2021 using the QiaAmp 96 DNA QiaCube HT kit. We manually
ground the ant tissues as described above, and, following the overnight digestion in 180 uL
of buffer ATL and 20 uL of proteinase K, we transferred the supernatant to the QlAcube
HT/QIlAxtractor robot to complete the extraction. We followed the automatized protocol
QiaAmp 96 DNA. We eluted the DNA in 100 pL of buffer EB.

We sequenced all samples using a double-digest restriction site-associated DNA
sequencing (RADseq) approach (protocol from Brelsford et al.?*). We digested 6 uyL DNA
per sample using restriction enzymes Msel and Pstl and incubated the samples at 37°C for
3 hours on a thermal cycler with a heated lid. We then ligated a universal Msel adapter and
uniquely barcoded Pstl adapter to each sample. After an incubation of 3 hours at 16° C on

a thermal cycler, we diluted the product adding 40 pL of water. We then removed small DNA
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fragments using Serapure magnetic beads® or Omega magnetic beads (Omega Bio-tek,
2021) in a 0.8:1 ratio (beads: sample solution) and removed impurities with two consecutive
70% ethanol washes. We air-dried the magnetic beads for 10-15 minutes to remove all
traces of ethanol. Finally, we resuspend the DNA adding 40 uL of water. We amplified each
sample in four separate PCR reactions with indexed lllumina primers and then pooled the
replicate PCR products for each sample for a final PCR cycle, with added primers and dNTP.
We ran each PCR product on a 1.5% agarose gel for 20 minutes. Finally, we pooled the
samples that were successfully amplified in a tube and did a final round of small fragment
removal using the magnetic beads. We sequenced all libraries using 150 bp paired-end
reads on lllumina Novaseq 6000 or HiSeq X sequencers. Sample sizes and sequencing

details for each batch are provided (Table S2).
Bioinformatics

We used Stacks 2.60 to demultiplex our data with default parameters®®, PEAR v0.9.10%" to
merge paired-end reads and remove adaptor sequences, and BWA-mem2%® to align reads
to the Formica selysi genome'2. We called SNPs using BCFtools mpileup®® and filtered the
genotypes for a minimum read depth of 7 (--minDP), a minor allele frequency of 5% (--maf)
and excluded indels (--remove-indels) and sites with over 80% missing data (--max-missing)
using VCFtools 0.1.16-1870.

Excluding duplicated regions

Ant males are haploid, and this feature provides an opportunity to identify and omit
duplicated genomic regions. Males were treated as diploid in our initial pipeline, and loci that
appeared heterozygous in at least 5% of males were flagged for removal from the complete
dataset, because these reflect variable sequences in duplicated regions instead of

alternative alleles in a single region of the genome.
Mitigating the batch effect

In order to have an adequate sample size for all supergene genotypes in all castes
(particularly gynes and males, which are sampled opportunistically), we added data
incrementally across years. Differences in extraction protocols and variation among
sequencing lanes caused a batch effect (Figure S4A). To mitigate this issue, we calculated

the Weir and Cockerham's Fst between batch pairs at each locus. We then removed all
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SNPs showing Fst values = 0.3 in the comparison of at least one pair of batches (because
the geographic scope of sampling was similar across years, we would not expect to find true
changes in allele frequency of this magnitude) (Figure S4B). Our final dataset resulted in
15129 SNPs and 1415 individuals. Workers, gynes, males and mature queens were
collected from 172 colonies, and 95 newly mated queens were collected as they sought a

suitable place to start their colony.
Population structure

Formica cinerea samples were collected from 13 localities in northern ltaly (Table S1),
ranging from 1 km to 82 km apart. To assess the genetic structure of the sampled individuals,
we randomly selected 1 worker per colony and filtered the genotypes for a minimum read
depth of 7 (--minDP), a minor allele count of 2 (--mac) and excluded indels (--remove-indels)
and sites with over 80% missing data (--max-missing) using VCFtools’®. We removed all the
loci suspected to be responsible for the batch effect (see ‘Mitigating the batch effect’
paragraph) and misaligned due to duplicated regions (see ‘Excluding duplicated regions’
paragraph). Finally, we excluded markers on chromosomes 3 and 9. This dataset resulted
in 139 workers and 27398 SNPs.

We performed a PCA in PLINK v1.90b6.257" and plotted the first two principal components
in R v3.4.072 using the function ggplot’3. Using the same dataset, we ran ADMIXTURE
v1.3.07* to infer genetic clusters in our dataset for K values from 1 to 13 and assessed the
best K value using the cross-validation error. The PCA and ADMIXTURE result (K=1)
suggested the absence of population structure and that the samples analyzed in this study

belong to a panmictic population (Figures S4C-D).
Determination of colony social form

We used COANCESTRY 1.0.1.107° to determine pairwise relatedness using workers and
gynes (using Wang’® estimator) and infer colony social form. To ensure that these analyses
were independent of our assessments of supergene variation, we created a dataset that
excluded chromosome 3 and chromosome 9. To have a robust assignment, we kept only
colonies with at least 5 diploid individuals and excluded haploid males. The final dataset
resulted in 761 individuals from 120 colonies. A recent literature review and simulation study
confirmed that relatedness estimates tend to be downward biased, yet more precise, in

SNP-based datasets with hundreds or thousands of loci compared to microsatellite-based
17
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datasets with fewer loci’’. Given the known biases in datasets like ours, we called colonies
with all pairwise relatedness estimates = 0.6 as monogyne monandrous, colonies with
bimodal distribution of pairwise relationships with at least 40% = 0.6, but none <0.2 as
monogyne polyandrous, and colonies with at least one pairwise relationship < 0.1 as
polygyne. We visualized the distribution of within-colony relatedness estimates with a

ridgeline plot produced in R72 using the function ggplot (package ggplot273).

To investigate the association of the colony social organization with the supergene, we first
performed a principal component analysis (PCA) for all individuals (workers, males, gynes
and queens) using only the 1235 SNPs on chromosome 3, which contains the known
Formica social supergene’ '8, We then assigned the genotypes to each individual based on
clusters in PCA and Fis value (heterozygous individuals have negative Fis values across the
supergene, while homozygotes have positive values). To further investigate the genetic
differentiation between each haplotype, we selected haploid males and calculated Weir and
Cockerham’s Fsr for all pairwise combinations of supergene haplotypes. The PCA was
calculated in PLINK”" with the --pca flag, while the F statistics were calculated in VCFtools™®,
using the --het flag (Fis) and the --weir-fst-pop flag. Finally, we examined haplotype

distribution in monogyne and polygyne colonies.

From the Fst plot we noticed a second supergene on chromosome 9 visible when comparing
the P2 haplotype (see Results section) on chromosome 3 with the other haplotypes. For
chromosome 9, we performed a PCA and analysis of Fis using only the 983 loci on that
chromosome to assign genotypes to each individual. To identify which of the variants is
rearranged relative to the F. selysi reference genome, we built two within-haplotype
heatmaps of linkage disequilibrium using only homozygous individuals at each haplotype on
chromosome 9. We also constructed a third heatmap of linkage disequilibrium between P2
and 9r using only those individuals that were P2P2 on chromosome 3 and 9r9r on

chromosome 9. For this analysis, we used the LDheatmap package® from R.
Morphometrics

To assess whether polygyne Formica cinerea alates (gynes, queens and males) exhibit the
reduction in size typical of polygyny syndrome*°, we measured the maximum width across
the eyes in 281 gynes and queens and 374 males using a Leica DMC2900 camera mounted

on a Leica S8APO at 25x magnification. We used head width because it is known to have
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a strong positive correlation with several body segment dimensions in Formica species?38,

and thus serves as a good proxy for body size within caste.
Sex ratio

While inspecting F. cinerea colonies during sampling, we took note of whether they exhibited
a strongly skewed sex ratio, i.e. whether the colony preferentially produced gynes or males,
or both sexes. We attributed the sex ratio to colonies observed with at least seven alates.
Gyne producing colonies had at least seven gynes and no more than two males, male
producing colonies had at least seven males and no more than two gynes, and mixed
colonies were intermediate between the two. In total, 23 F. cinerea colonies were male-
producing, 13 gyne-producing, and 6 were mixed. For each of these colonies, we looked at

the haplotype counts on chromosome 3.

QUANTIFICATION AND STATISTICAL ANALYSIS
Determination of colony social form

We tested the significance of the association between haplotypes on chromosome 3 and
colony social form by fitting a generalized linear mixed model (GLMM) with binomial
distribution’®, where monogyny is 0 and polygyny is 1. The "presence of P haplotypes" was
defined as 0 if no individual in the colony carries a P haplotype, and 1 if at least one individual
in the colony harbors a P haplotype (regardless if P1 or P2). The variable "presence of P
haplotypes" was included as a fixed factor; year, and locality as random factors. Since not
all colonies produced alates, we considered only workers. For this analysis, we used the
glmer function in R (package Ime47°). The analysis included 59 monogyne colonies and 60

polygyne colonies.
Testing the association between P2 and 9r

We verified the association between P2 and 9r by performing a chi-squared test (levels: P2
present or absent, 9r present or absent). In total our dataset counted 1134 individuals (605
workers, 257 gynes/queens and 272 males) without P2 and 9r; 254 individuals (88 workers,
54 gynes/queens and 112 males) with both P2 and 9r; 7 individuals (1 gyne and 6 workers)
with 9r but not P2; 13 individuals (all workers) with P2 but not 9r. Since we found some
mismatches in the co-transmission of P2 and 9r, we checked whether these mismatches

were mainly present in the workers rather than in the reproductive individuals (queens,
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gynes, and males) by performing a second chi-squared test (levels: workers or alates,
presence or absence of P2-9r mismatches). Nineteen out of 712 workers and 1 out of 696

alates showed mismatches. Both chi-squared tests were performed in R72.
Body size association with chromosome 9

To test whether gynes and queens (n= 281) with different supergene genotypes have
significantly different sizes, we fit two independent linear mixed models for chromosome 3
and chromosome 9 using colony as a random effect and genotype as a fixed effect. We
repeated the same analyses for males (n= 373). For these analyses, we used the R package
Ime47°. Pairwise p-values were obtained after performing Tukey post hoc tests using the

emmeans function8? in R.

To identify genomic regions associated with body size, we performed a Genome Wide
Association Study (GWAS) using a univariate linear mixed model implemented in Gemma
v0.9483, Males were excluded from this analysis. Since Gemma requires that no missing
genotypes are present in the data, we imputed missing genotypes with Beagle v4.184 using
the full dataset of SNPs that passed previously mentioned filters. Gemma uses a
relatedness matrix generated from the sample genetic data to correct for non-independence
of the samples due to population structure. We applied a Bonferroni correction to calculate

the significance threshold.
Sex ratio

We tested the significance of the association between Mp and gyne production by fitting a
generalized linear mixed model (GLMM) with binomial distribution”®, where male-producing
colonies (n= 23) are 0 and gyne-producing colonies (n= 13) are 1. Mixed colonies were
excluded from this analysis. We also transformed "presence of Mp haplotype" into a binomial
variable, where colonies without Mp haplotype were coded as 0, and colonies with at least
one individual with a Mp haplotype were coded as 1. The variable "presence of Mp
haplotype" was included as a fixed factor; year, and locality as random factors. We
considered only workers for this analysis. We used the R package Ime4’® and the glmer

function.
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