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VO2 is renowned for its electric transition from an insulating monoclinic (M1) phase 
characterized by V-V dimerized structures, to a metallic rutile (R) phase above 340 Kelvin. 
This transition is accompanied by a magnetic change: the M1 phase exhibits a non-
magnetic spin-singlet state, while the R phase exhibits a state with local magnetic moments. 
Simultaneous simulation of the structural, electric, and magnetic properties of this 
compound is of fundamental importance, but the M1 phase alone has posed a significant 
challenge to density functional theory (DFT). In this study, we show none of the commonly 
used DFT functionals, including those combined with on-site Hubbard 𝑈𝑈 to better treat 
3d electrons, can accurately predict the V-V dimer length. The spin-restricted method tends 
to overestimate the strength of the V-V bonds, resulting in a small V-V bond length. 
Conversely, the spin-symmetry-breaking method exhibits the opposite trends. Each of 
these two bond-calculation methods underscores one of the two contentious mechanisms, 
i.e., Peierls lattice distortion or Mott localization due to electron-electron repulsion, 
involved in the metal-insulator transition in VO2. To elucidate the challenges encountered 
in DFT, we also employ an effective Hamiltonian that integrates one-dimensional magnetic 
sites, thereby revealing the inherent difficulties linked with the DFT computations.  
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1. Introduction 

In transition-metal compounds, the coupling between the lattice-charge-spin-orbital degree of freedom makes 
these materials a fascinating playground for developing multiple functionalities [1]. At the microscopic level, these 
interesting properties originate from or are associated with correlated electrons in the d or f orbitals. For a long 
time, the simulation of these materials has been considered to be a grand challenge for the Kohn-Sham density 
functional theory (DFT) [2], the workhorse of the material study, and there is a prevalent belief that DFT is a mean-
field theory incapable of describing the correlated d- and f-electron systems. One canonical example is the DFT's 
inability to predict the insulating behavior of NiO solid [3] using the local-density approximation (LDA) [2,4]. 
Subsequently, introducing a Hubbard 𝑈𝑈 correction onto the Ni-3d orbitals largely resolves the problem. This fact 
strengthens the belief that electronic correlation is beyond the scope of the DFT approaches.  
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However, recent advancements show that the DFT approaches can simulate more and more complex materials 
with d- and f- electrons. Most noticeably, combining the SCAN (strongly-constrained and appropriately normed) 
functional [5] with the spin-symmetry-breaking (SSB) technique [6], but without the empirical Hubbard 𝑈𝑈 
parameter, we have reliably reproduced many Mott-like characteristics of the prototypical correlated materials, such 
as FeO and cuprates [7,8,9]. For example, SCAN opens a bandgap for FeO not only in the antiferromagnetic (AFM) 
model, which has a long-range magnetic order but also in the disordered-local-moment (DLM) model that does not 
rely on magnetic ordering [7]. Similar predictions have been made in the un-doped cuprates like LaCu2O4 [8] and 
hole-doped YBa2Cu3O7 [9], a group of well-known correlated materials. Moreover, Perdew et al. [6] recently pointed 
out that "the spin-symmetry-breaking can reveal strong correlations among the electrons that are present in a 
symmetry-unbroken wavefunction" if the broken symmetry persists for a long time. This is usually true for the 
conventional Mott insulators. For example, according to Philip Anderson [10], the spin-flip span in the AFM solid 
NiO is typically three years, much longer than the duration of any experimental measurement (e.g., neutron 
scattering) [6]. These arguments may lay the foundation that the broken symmetry "may correspond to an actual 
state" in condensed matter, as pointed out by Martin, Reining, and Ceperley [11].  

Besides the antiferromagnets with spatially extended geometries (such as NiO and FeO), a particular class of 
solids contains isolated motifs formed by transition metal-metal bonds [12,13,14]. For example, two and three V 
atoms form relatively isolated trimer and dimer motifs in LiVO2 [15] and VO2 [16], respectively. In the isolated motifs, 
the inter-site AFM coupling is quite strong, and the spin interactions are maximally entangled among the sites, which 
leads to the spin-singlet bonding state. The metal-metal interaction in some solid compounds could be so strong 
that the transition-metal atoms form "metallic clusters" and "molecules in solids" [12,13,14], leading to a bond 
length comparable with or even shorter than that of the elemental metals. The shortest V-V bonds are 2.62 Å in VO2 
[16] and 2.56 Å in LiVO2 [17], compared with 2.629 Å [18] in the vanadium metal.  

The metal-metal singlet bonding state is characterized by intense spin fluctuations and is observed to be non-
magnetic (also referred to as paramagnetic) in experiments. For the application of Kohn-Sham DFT, one can choose 
between spin-restricted and SSB simulation approaches. The spin-restricted method may be favored by some due 
to its superior alignment with the non-magnetic reality. However, others might argue that the transition-metal 3d 
orbitals inherently localize to form a local magnetic moment, suggesting the SSB method, as underscored by Perdew 
et al., could be more "revealing" [6]. The suitability of these methods for the spin-singlet state remains ambiguous 
at this juncture. Complexity in describing the spin-singlet state and related magnetism can be increased when 
considering the recent findings of Streltsov and Khomskii, who noted that "strong intersite coupling may invalidate 
the standard single-site starting point for considering magnetism" [19].  

In this work, we select VO2 as an example to evaluate the applicability of Kohn-Sham DFT approaches, including 
various exchange-correlation functionals on the first four rungs of Jacob's ladder of DFT [20]. VO2 is a fascinating 
material having three simultaneous transitions around room temperature [21], i.e., (1) the structural transition from 
the dimerized monoclinic (referred to as M1) phase to the high-temperature rutile (referred to as R) phase, where 
the dimers break apart, (2) the associated transition of electric transport behaviors from an insulator to a metal, (3) 
the magnetic transition from a non-magnetic M1 phase to a state with local magnetic moments in R. The concurrent 
simulation of structural, electrical, and magnetic properties is of utmost importance. Yet, prior DFT research has 
faced considerable challenges and ambiguity in choosing suitable structural and magnetic models, exchange-
correlation functionals, and Hubbard 𝑈𝑈 parameters [21]. There have been instances where researchers confidently 
predict specific properties while overlooking conflicting outcomes. A particularly perplexing issue pertains to 
reconciling two ostensibly contradictory properties observed in the M1 VO2: the lack of net magnetic moments and 
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the tendency to develop local magnetism. Addressing this paradox is vital for understanding the driving force of 
insulator-metal transition, which is still debatable [21] among the Peierls, Mott, or Peierls-Mott-collaborative 
mechanisms starting from the early days by Goodenough [22].  

We close this introduction with a discussion of how correlation is included in a theory that in practice computes 
only a non-interacting wavefunction. Kohn-Sham DFT is a computationally efficient and thus widely-used 
simplification of the quantum mechanics of electronic ground states. It has an underlying exact theory [2,23] in 
which the exact exchange-correlation energy for a given electron density is defined [23] by a search over correlated 
wavefunctions constrained to have that electron density. This underlying exact theory would yield the exact ground-
state energy and electron density for any system of interacting electrons in the presence of an external scalar 
potential, with the help of an auxiliary non-interacting or single-determinant wavefunction that yields the non-
interacting part of the kinetic energy and is not intended to be an approximation to the true correlated wavefunction. 
There is little doubt that this underlying exact theory applies even to strongly-correlated systems. The exact many-
body exchange-correlation energy has about 20 known mathematical properties [24] which can be built into its 
practical approximations. The approximations also rely on appropriate norms [24], such as the electron gas of 
uniform density, rare-gas atoms, etc., all of which are normally correlated. Nevertheless, a good non-empirical 
approximation plus energy-minimizing symmetry breaking can often predict and describe the energetic effects of 
strong correlation on real materials [6,7,8,9,25,26]. Strong correlation can arise from degeneracies or near-
degeneracies of the exact Kohn-Sham non-interacting system. Breaking the symmetry can break the degeneracy 
and transform strong correlation into normal correlation that a good approximate functional can handle.  

There is of course no guarantee that any particular approximate density functional can accurately describe the 
energetic effects of strong correlation through symmetry breaking. Numerical evidence suggests that functionals 
from the simplest (local spin density) approximation [25] to SCAN or r2SCAN [7] can do so for the simple case of 
stretched H2. For the more complex case of equilibrium singlet C2, accuracy improves dramatically through the same 
sequence of improving functionals [26]. For the even more complex d and f materials, SCAN plus symmetry breaking 
is sometimes but not always accurate, and further-improved functionals appear to be needed. A density functional 
approximation that can deal with strong correlation and still preserve symmetry must in all probability make use of 
some unoccupied orbitals [27]. 

The SCAN approximate functional [5] was constructed to satisfy 17 exact constraints, without any fitting to 
bonded systems, but it is not exact for all one-electron densities. Work on a proper self-interaction correction to 
SCAN is ongoing [28,29], but for now SCAN plus symmetry breaking describes the effects of strong correlation in 
only some systems. In other systems, SCAN can still be supplemented with a (usually empirical) +𝑈𝑈 correction that 
mimics [30] some of the effects of self-interaction correction.  

Stationary states have time-dependent correlations between density fluctuations that can be extracted from 
the wavefunction with the help of a product of position- and time-dependent one-particle density operators. As the 
size of a system grows, the frequencies of these fluctuations can drop toward zero and freeze out in the one-particle 
density. In infinite systems, the symmetry-unbroken ground-state wavefunction can become degenerate with 
observable symmetry-broken wavefunctions. In density functional theory, symmetry breaking can often indicate [6] 
the nature of the slow density fluctuations or strong correlations. For example, a singlet state can show strong anti-
ferromagnetic correlations [31]. 

Since “correlation” means the effect of Coulomb interaction on the electron pair density or equivalently on the 
exchange-correlation hole around an electron, can we see this within DFT without a correlated wavefunction? The 
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exchange-correlation energy itself is just an integral over the system-averaged exchange-correlation hole [25,32], 
which is modelled in the construction of some approximate functionals like PBE [33,34] and can be reverse-
engineered for others like SCAN. Spin symmetry breaking can, like strong correlation, make the hole deeper and 
more short-ranged [35]. Correlation is real, and DFT can deal effectively with strong correlation, exactly in principle 
and (at least in many cases) approximately in practice.  

2. Computational details 

Most simulations are carried out using the r2SCAN functional [36], which is a revised form of the original SCAN 
meta-GGA [5], as implemented in the VASP code [37,38]. Both r2SCAN and SCAN are general-purpose functionals 
on the third rung of Jacob's ladder, yet the former improves the numerical stability significantly. For comparison, we 
also use other density functionals, including the first rung LDA [4], the second rung generalized-gradient-
approximation (GGA) in the form of Perdew-Burke-Ernzerhof (PBE) [33], and the range-separated hybrid functional 
of Heyd-Scuseria-Ernzerhof (HSE06) [39,40] on the fourth rung. The Heisenberg-type spin exchange parameters, 𝐽𝐽, 
are extracted using the LKAG method implemented in the TB2J code [41,42]. The chemical bonding property is 
quantitatively analyzed via the projected Crystal-Orbital-Hamilton-Population (pCOHP) [43,44] as implemented in 
the Lobster code [45]. We find that the effects of spin-orbit coupling play a minor role in the studied properties, and 
we exclude them from this work. By default, the crystal structures are completely relaxed unless specified otherwise.  

3. Results and Discussions 

3.1. Insulating band structure and V-V dimer length 

Given that the experimentally observed dimerized M1 phase is a non-magnetic insulator, a key criterion for 
validating a DFT simulation is the successful reproduction of a gapped band structure, yet without any macroscopic 
magnetism. This requirement is met by the three theoretical models illustrated in Figure 1. Figure 1(a) represents 
the non-magnetic (NM) model, where spin-up and spin-down electrons are uniformly balanced across the entire 
structure. The band structure develops a gap of 0.277 eV [Figure 1(e)] according to the r2SCAN calculation, although 
it is underestimated compared with an experimentally measured optical bandgap of about 0.6 eV [16]. In the NM 
model, the emergence of a bandgap underscores the critical role of V-V dimerization. Two V-3d 𝑑𝑑𝑥𝑥2−𝑦𝑦2 electrons 
strongly hybridize at the center of two V atomic sites, resulting in a dimerization distortion, a critical factor in the 
Peierls gapping mechanism [46]. The bonding characteristics will be visualized in Section 3.3.  

Restricting the spin polarization could be an aggressive hypothesis since the V-3d electrons are intrinsically 
localized. A circumvention is to allow spin polarization and simultaneously assign an AFM spin configuration to 
nullify the overall magnetism. This technique is known as SSB for DFT [6,11], and the model is shown in Figure 1(b). 
The calculated local magnetic moment is 0.96 𝜇𝜇𝐵𝐵, and the bandgap is 0.287 eV [Figure 1(f)]. The gapping is due to 
the well-known Mott mechanism, which states that double electron occupation of a single atomic site (and thus 
inter-site electron hopping) is prevented due to significant on-site Coulombic repulsion [3]. Moreover, SSB leads to 
considerable energy lowering, as established previously [6]. Here, the AFM model is more stable than the NM model 
by 112.2 meV/formula [Figure 1(d)].  

The long-range magnetic ordering in the AFM model, absent in experiments, can be further removed using the 
disordered-local-moment (DLM) model Figure 1(c). Note that the DLM superstructure keeps the AFM pattern within 
each V-V dimer, which is favored energetically to be discussed in Figure 3, but introduces a disordering pattern 
between the dimers. The DLM model, without a long-range magnetic ordering, is energetically almost degenerate 
with the AFM model and has a similar bandgap [Figure 1(d,g)].  
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Figure 1. Three theoretical models yielding insulating states of M1 VO2 without producing macroscopic magnetism. 
(a) Spin-restricted non-magnetic (NM) state. The V-V intra- and inter-dimer bonds are denoted as solid and dashed 
green lines. (b) Each V site is spin-polarized and exhibits antiferromagnetic (AFM) coupling with neighboring sites. 
(c) Antiferromagnetic coupling within V-V dimers, but the magnetic coupling between different dimers is disordered 
(i.e., disordered-local-moment, DLM). (d) Relative energies of three models. (e,f,g) Corresponding band structures 
or density-of-states, with the characteristics of 𝑑𝑑𝑥𝑥2−𝑦𝑦2 orbitals highlighted in red. The dashed lines indicate the 
valence band maximum.  

Since both the spin-restricted and SSB methods yield bandgaps, further evaluations, such as those involving 
crystal structures, become necessary. As shown in Figure 2(a), predicting the V-V dimer length is a challenging task, 
contrasting with the relatively straightforward prediction of insulating band structures. We conduct comparative 
studies using four functionals: LDA, PBE, r2SCAN, and HSE06. Besides the spin-restricted NM state, we consider SSB 
states in two forms: AFM and ferromagnetic (FM) spin configurations. Interestingly, all predicted dimer lengths 
deviate noticeably from the experimental value of 2.62 Å [16], being either too short or excessively long. An analysis 
of the magnetic moment [Figure 2(b)] discloses a clear connection: the dimer length is markedly underestimated 
when the V's magnetic moment is absent, but overestimated once the magnetic moment is stabilized. For instance, 
in all calculations, LDA cannot stabilize local magnetic moments for V atoms and consistently underestimates the 
dimer length. PBE cannot stabilize the SSB-AFM model, which eventually converges to the NM state. PBE results in 
extremely short dimer lengths in the NM state, whereas in the SSB-FM model, which stabilizes local magnetic 
moments for V atoms, the dimer lengths generated by PBE are too long. The behaviors of r2SCAN and HSE06 are 
qualitatively alike: the dimer length is even shorter in the NM calculations where local magnetic moments are absent, 
but excessively long when the moments are stabilized.  

Previous studies have established that the SCAN and r2SCAN functionals are generally reliable in describing the 
geometries of numerous materials [47,48], and noticeable deviations arise in correlated materials due to the 
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persistence of the self-interaction error [49,50]. To mitigate this error in VO2, we combine the r2SCAN functional 
with the on-site Hubbard 𝑈𝑈 correction (r2SCAN+𝑈𝑈) to reevaluate the structural and magnetic properties using the 
SSB-AFM model. Interestingly, the V-V intra-dimer length increases with higher values of 𝑈𝑈 [Figure 2(d)], while the 
distance between dimers decreases accordingly. The dimer structure is wholly disrupted when 𝑈𝑈 reaches 2.0 eV, 
collapsing into the R phase with equally distributed V ions. Furthermore, a nearly linear correlation exists between 
the dimer length and the local magnetic moment [Figure 2(e)], indicating that the magnetic moment destabilizes 
the dimer structure.  

Another unexpected result is the stability of the FM spin configuration calculated by the PBE and r2SCAN 
functionals, which disagrees with experiments [Figure 2(c)]. The reason will be explained later.  

 

Figure 2. Structural, energetic, and magnetic properties of M1 VO2. (a) V-V intra-dimer bond length. Simulations are 
done with LDA, PBE-GGA, r2SCAN meta-GGA, and HSE06 hybrid functionals, in combination with spin-restricted NM 
and the SSB-AFM/FM. (b) Local magnetic moments of V ions. (c) Relative energies of the NM/FM models with 
respect to the AFM model. (d) V-V bond length from the r2SCAN+𝑈𝑈 simulations as a function of Hubbard 𝑈𝑈. (e) V-
V intra-dimer length plotted against the local magnetic moments of V ions. Note that the subplots (d,e) are based 
on the SSB-AFM model.  

The preceding evaluations make it clear that spin-restricted calculations utilizing diverse density functionals 
tend to consistently undervalue the dimer length, which might be attributed to the missing strong correlation. The 
SSB method is capable of capturing a substantial part of these correlation effects [6], leading to a notable reduction 
in energy compared to the NM state. However, this SSB method brings forth two new complications in M1 VO2: it 
destabilizes the dimer structure due to the emergence of local magnetic moments, and (except in HSE) it indicates 
the FM spin configuration as the most stable. Additionally, it is crucial to note that applying on-site Hubbard 𝑈𝑈 to 
the SSB model exacerbates the dimer length problem. These findings hint that the issues may extend beyond the 
tested functionals. The following sections examine a potential factor contributing to these difficulties.  

 



Page 7 of 15 
 

3.2. Instability of Néel-ordered or local-moment state against valence-bond state 

In the framework of the SSB-AFM model utilized for DFT simulations, each spin is situated on a discrete atomic 
site, with their interactions taken into account subsequently. This way of treating spin interactions aligns with the 
principles of the Mott insulating mechanism, which emphasizes the electronic repulsion among the spin sites. The 
magnetic ground state is recognized as the Néel state for traditional three-dimensional solids such as NiO and FeO. 
However, Sachdev et al. [51,52] have established that the Néel-ordered state is not the ground state for low-
dimensional antiferromagnets due to its instability, which prompts a transition into a valence-bond state that 
highlights enhanced spin interactions within the low-dimensional motifs. In the case of M1 VO2, the V-V dimers 
structurally resemble zero-dimensional "molecules". These earlier investigations on the valence-bond state, 
employing the effective Hamiltonian method, can provide valuable insights into understanding the challenges faced 
by DFT, suggesting a relationship between the zero-dimensional characteristic of the V-V dimers and the spin 
interactions within VO2.  

We substantiate the above arguments by extracting the spin interaction parameters in VO2, as shown in Figure 
3. The central V0 atom is surrounded by ten neighboring atoms, where the V1 and V2 atoms are in line along the 
dimer chain (the 𝑦𝑦  direction), and the remaining eight are situated off the chain. We first focus on the 𝐽𝐽 
parameters for the experimental crystal structure. Notably, the intra-dimer exchange interaction is remarkably 
strong (𝐽𝐽𝑉𝑉0−𝑉𝑉1 = −49.2 meV), making the other interactions (𝐽𝐽𝑉𝑉0−𝑉𝑉2 and 𝐽𝐽𝑉𝑉0−𝑉𝑉𝑥𝑥 with 𝑥𝑥 ≥ 3) essentially negligible. 
Therefore, the strong intra-dimer AFM spin interactions define the zero-dimensional structural motifs, i.e., the V-V 
dimers. Structural relaxation leads to a significant reduction of the intra-dimer spin interaction to a value of 𝐽𝐽𝑉𝑉0−𝑉𝑉1 =
−15.9 meV. This reduction aligns with the observed increase in the dimer length [Figure 2(a)]. As the structure 
relaxes further, the intra-dimer interaction 𝐽𝐽𝑉𝑉0−𝑉𝑉1 begins to converge with the inter-dimer interaction 𝐽𝐽𝑉𝑉0−𝑉𝑉2. When 
V-V dimerization entirely disappears in the limit, the magnetic ions form a one-dimensional spin chain.  

 
Figure 3. Spin interactions in the M1 VO2. (a) Crystal structures showing the central V0 atom and its ten neighbors. 
The red arrows denote the assumed AFM spin configuration in the simulation. The blue isosurfaces are the electron 
density of the polarized 𝑑𝑑𝑥𝑥2−𝑦𝑦2  orbitals [53], whose local coordinates are defined by black arrows. (b) Spin 
exchange parameters extracted from the SSB-AFM model. Two geometries, i.e., the experimental and r2SCAN-
relaxed crystal structures, are used in calculations. Here, V0 and V1 form a dimer. 

The comparative stability of the Néel-ordered and valence-bond states can be illustrated using a one-
dimensional illustrative model, as depicted schematically in Figure 4, reproduced from Reference [1]. The instability 
of one-dimensional spin chains is referred to as the Spin-Peierls problem, which suggests that equally distributed 
AFM spins within a one-dimensional chain are unstable against spin pairing. The uniformly distributed spins, i.e., 



Page 8 of 15 
 

the Néel-ordered state, are characterized by an exchange energy:  

𝐸𝐸Néel−ordered = 𝑁𝑁𝑁𝑁�𝑺𝑺𝑖𝑖 ∙ 𝑺𝑺𝑗𝑗� = 𝑁𝑁𝑁𝑁�𝑆𝑆𝑖𝑖𝑧𝑧𝑆𝑆𝑗𝑗𝑧𝑧� = 𝑁𝑁𝑁𝑁(−1
4
) = −1

4
𝑁𝑁𝑁𝑁.                      (1) 

Here, 𝑁𝑁 represents the number of magnetic interactions, and 𝐽𝐽 represents the exchange strength. Only the 𝑧𝑧-
component of spin, 𝑆𝑆𝑧𝑧, contributes to this energy. Contrastingly, spin pairing leads to a valence-bond state, and the 
associated spin interaction energy is:  

𝐸𝐸Valence−bond = 𝑁𝑁
2
𝐽𝐽′�𝑺𝑺𝑖𝑖 ∙ 𝑺𝑺𝑗𝑗� = 𝑁𝑁

2
𝐽𝐽′�𝑆𝑆𝑖𝑖𝑥𝑥𝑆𝑆𝑗𝑗𝑥𝑥 + 𝑆𝑆𝑖𝑖

𝑦𝑦𝑆𝑆𝑗𝑗
𝑦𝑦 + 𝑆𝑆𝑖𝑖𝑧𝑧𝑆𝑆𝑗𝑗𝑧𝑧� = 𝑁𝑁

2
𝐽𝐽′(− 3

4
) = − 3

8
𝑁𝑁𝐽𝐽′.           (2) 

In this case, the inter-dimer exchange becomes negligible, causing the valence-bond state to lose half of the spin 
interactions. However, the valence-bond state could be more stable, because the spin is isotropic and all three spin 

components contribute equally. It requires that 𝐽𝐽′ > 2
3

 𝐽𝐽 , which is generally true as the exchange interaction 

strengthens after dimerization [see the example of VO2 in Figure 3(b)].  

   

Figure 4. Spin-Peierls transition in the one-dimensional spin chain with AFM coupling, reproduced from [1]. (a) Néel-
ordered state with uniformly distributed spins. The inter-site exchange parameter is 𝐽𝐽. (b) Valence-bond state with 
dimer structures. The exchange strength within a dimer is 𝐽𝐽′ , while the inter-dimer magnetic interaction is 
neglectable. 

The emergence of the valence-bond state highlights the significance of spin entanglement, a key physical 
principle intrinsic to many quantum materials [54]. For example, TlCuCl3 [55] and RuCl3 [56] exhibit a quantum phase 
transition from the Néel-ordered phase to a quantum-disordered phase under external pressure. This disordered 
phase is predominantly characterized by the valence-bond state. Turning our attention back to M1 VO2, each V4+ ion 
in the V-V dimer motif carries one valence electron, causing the motif to behave akin to a two-electron system. It 
would be more appropriate to consider VO2 as a valence-bond solid [1] because there is no spin interaction between 
dimers as shown in Figure 3(b).  

3.3. Description of two-electron singlet bonding by Kohn-Sham DFT 

Is there any reason preventing the DFT from accurately describing the valence-bond state in M1 VO2? Since 
Kohn-Sham DFT is formulated in terms of the Kohn-Sham molecular orbitals, it is informative to express the two-
electron wave function. The molecular-orbital theory (MOT), pioneered by Mulliken and Hund in the late 1920s 
[57,58,59,60,61], defines the spin-singlet state of a valence bond in the independent-electron (IE) representation as 
[62]:  

𝛹𝛹MOT,IE
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 1

2�1+𝑆𝑆1,2
[𝜑𝜑1(𝒓𝒓1)𝜑𝜑2(𝒓𝒓2) + 𝜑𝜑2(𝒓𝒓1)𝜑𝜑1(𝒓𝒓2)][𝛼𝛼1𝛽𝛽2 − 𝛽𝛽1𝛼𝛼2]  

+ 1
2�1+𝑆𝑆1,2

[𝜑𝜑1(𝒓𝒓1)𝜑𝜑1(𝒓𝒓2) + 𝜑𝜑2(𝒓𝒓1)𝜑𝜑2(𝒓𝒓2)][𝛼𝛼1𝛽𝛽2 − 𝛽𝛽1𝛼𝛼2] .               (3) 

Here, 𝜑𝜑(𝒓𝒓)  represents the one-electron atomic wave function, and the double overlap integral is denoted as 
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𝑆𝑆1,2 = 〈𝜑𝜑1(𝒓𝒓1)𝜑𝜑2(𝒓𝒓2)|𝜑𝜑1(𝒓𝒓2)𝜑𝜑2(𝒓𝒓1)〉. 𝛼𝛼 and 𝛽𝛽 are the spin functions. However, a potential issue may arise in 

𝛹𝛹MOT,IE
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆. The two ionic terms 𝜑𝜑1(𝒓𝒓1)𝜑𝜑1(𝒓𝒓2) + 𝜑𝜑2(𝒓𝒓1)𝜑𝜑2(𝒓𝒓2), representing a single atomic site occupied by two 

electrons, appears at an equally high probability as the other terms. This situation can result in unphysical Coulombic 
repulsion. While this repulsion is less critical for delocalized electrons (as observed in the H2 molecule with an 
equilibrium geometry), it becomes particularly prominent in the presence of localized electrons, such as V-3d 
electrons in VO2.  

Given these insights, we can explain the discrepancy in calculating the V-V dimer length between the spin-
restricted and SSB models. The V-V bond length is determined by a delicate balance between two interactions. On 
one side, there is an attractive covalent bonding between neighboring V 𝑑𝑑𝑥𝑥2−𝑦𝑦2 orbitals in a spin-singlet state. This 
bonding promotes electron overlap around the bond center, resulting in a shortened V-V bond. Conversely, the 
localization of V-3d orbitals favors spatial separation of the individual V atoms, leading to charge depletion at the 
bond center and a consequent elongation of the bond length. In the spin-restricted calculation, the suppression of 
electron localization results in a bias towards covalence, favoring a bond length shorter than the experimental value. 
Alternatively, the spin polarization of V-3d orbitals in the SSB model better captures the electronic correlation, which 
localizes d electrons. This however overestimates ionic characteristic interactions within a V-V dimer. As a result, 
this overestimation contributes to a longer bond length than the experimental data.  

Our arguments are corroborated by examining the chemical bonding properties using the projected-Crystal-
Orbital-Hamilton-Population (pCOHP) approach [43,44]. Figure 5(a) visualizes the bonding interactions between two 
V-V atoms in a dimer, where the interaction of five 𝑑𝑑 orbitals or solely the 𝑑𝑑𝑥𝑥2−𝑦𝑦2 orbital is represented by red 
shades or blue lines, respectively. It is the 𝑑𝑑𝑥𝑥2−𝑦𝑦2 orbital that predominantly drives the bonding interaction, which 
is more evident in the NM model than the SSB-AFM model. The bonding characteristics become clearer when the 
electronic and crystal structures are treated in a self-consistent manner, as depicted in Figure 5(b): the bonding is 
significantly stronger in the NM model, while it appears markedly weaker in the SSB-AFM model. A comparison of 
the electron densities of the two models reveals that SSB leads to electron depletion at the center of the V-V dimer 
[Figure 5(c)]. This reduction is also present in the FM model [Figure 5(d)], which suggests that the principal 
mechanism at play is the spin-symmetry breaking, consistent with the bond overestimation in both the AFM and 
FM models [Figure 2(a)]. The electron depletion at the bond center diminishes the interactions between the 𝑑𝑑𝑥𝑥2−𝑦𝑦2 
orbitals, which is evident in the band structures where the 𝑑𝑑𝑥𝑥2−𝑦𝑦2 orbital's bandwidth narrows from 0.54 eV in the 
spin-restricted calculation to 0.46 eV in the SSB-AFM scenario.   

The ionic term present in the spin-singlet state can provide insights into the false stability of the FM spin 
configuration, as observed in the PBE and r2SCAN simulations [Figure 2(c)]. The FM configuration also represents a 
broken spin symmetry, being one of the three spin-triplet states described by:  

𝛹𝛹MOT,IE
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 1

2�1−𝑆𝑆1,2
[𝜑𝜑2(𝒓𝒓1)𝜑𝜑1(𝒓𝒓2) − 𝜑𝜑1(𝒓𝒓1)𝜑𝜑2(𝒓𝒓2)]𝜒𝜒𝑠𝑠𝑠𝑠𝑠𝑠 ,                 (4) 

where 𝜒𝜒𝑠𝑠𝑠𝑠𝑠𝑠 is the triplet symmetric spin function. It is important to note that 𝛹𝛹MOT,IE
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 does not incorporate any 

additional contribution from the ionic states, unlike 𝛹𝛹MOT,IE
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆. Therefore, when calculating the expectation value of 

a V-V dimer using 𝛹𝛹MOT,IE
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 and 𝛹𝛹MOT,IE

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 wave functions, the latter's energy is likely lower [62].  
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Figure 5. Chemical bonding properties of the spin-restricted NM and SSB models. (a) Diagrams of −pCOHP, showing 
bonding interactions between two V-V atoms within a dimer. The calculation is done with the experimental crystal 
structure. (b) The same as subplot (a), except for optimized geometries. (c) Electron density difference of ∆𝑛𝑛 =
𝑛𝑛AFM − 𝑛𝑛NM. The experimental crystal structure is used for both states. Note the electron depletion at the V-V 
dimer center, denoted by black arrows. The right panel is the 2D plot of the ∆𝑛𝑛. (d) Electron density difference of 
∆𝑛𝑛 = 𝑛𝑛FM − 𝑛𝑛NM. 

 

For a comprehensive understanding, it's worth mentioning another theory that was developed early on to 
address spin interactions in chemical bonds. This theory, known as the valence-bond theory (VBT), was developed 
by Heitler, London, Pauling, and Slater during the 1916-1920s [63,64,65]. The VBT and MOT were considered "rival" 
theories, but many theoreticians now agree that they complement each other [66,67,68]. In the Heitler-London (HL) 
limit, the VBT defines the singlet state wave function as [62]:  

𝛹𝛹VBT,HL
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 1

2�1+𝑆𝑆1,2
[𝜑𝜑1(𝒓𝒓1)𝜑𝜑2(𝒓𝒓2) + 𝜑𝜑2(𝒓𝒓1)𝜑𝜑1(𝒓𝒓2)][𝛼𝛼1𝛽𝛽2 − 𝛽𝛽1𝛼𝛼2] .               (5) 

It's important to note the absence of the ionic term in the HL representation. The HL treatment emphasizes the 
overlap of atomic orbitals in forming the valence-bond state, which increases the likelihood of electrons residing in 
the bond center. It is widely understood that the IE and HL wave functions are approximate representations, and 
the actual electronic state is likely between these extremes. In the case of M1 VO2, cluster dynamical mean-field 
theory, in conjunction with the DFT scheme (DFT+cDMFT) [69,70,71], suggested that the V-V dimer is close to the 
HL limit [70]. However, the inherently localized nature of the 3d electrons, and thus less orbital overlaps, may 
somewhat invalidate the HL representation for M1 VO2.  
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3.4. Spin-symmetry-breaking in the intermediate M2 VO2: An imperfect yet valuable approach 

Finally, we present a situation in which SSB is highly advantageous, even though imperfect. In addition to the 
well-known M1 and R phases, VO2 can also form an intermediate phase under pressure or chemical doping 
conditions. Half of the V atoms form dimer chains in this phase, while the remaining V atoms are evenly dispersed. 
Experimentally, M2 VO2 is an insulator [21]. 

Figure 6 demonstrates the band structures calculated using the spin-restricted NM and SSB-AFM models, 
producing a metallic and an insulating phase, respectively. By projecting the orbital characters onto the band 
structure, we can distinguish the varying behaviors of the dimerized and non-dimerized V atoms. In the NM model, 
the dimerized V atoms do not contribute electrons at the Fermi level, while the non-dimerized V atoms account for 
the metallic nature. This metallic character arises due to the suppression of the Mott gapping mechanism as a result 
of the spin restriction. Conversely, in the SSB model, both the dimerized and non-dimerized V atoms can establish 
gaps via the Mott mechanism. It is important to acknowledge that, based on the discussion in previous sections, 
these two types of V atoms should ideally rely on different gapping mechanisms. Therefore, within the Kohn-Sham 
DFT framework, SSB is a valuable method for producing an insulating band structure of M2 VO2.  

 

Figure 6. Band structure of M2 VO2. (a) Spin-restricted NM model. (b) SSB-AFM model. The red circles (green squares) 
represent V 𝑑𝑑𝑥𝑥2−𝑦𝑦2 orbitals of the non-dimerized (dimerized) chain.  

 

4. Summary 

This study addresses a fundamental difficulty in characterizing the dimer structure of M1 VO2, primarily utilizing 
the advanced r2SCAN density functional. The metal-metal singlet state is marked by robust covalent bonding and 
intense spin fluctuations within a V-V dimer. However, there is a high degree of localization of V-3d electrons around 
equilibrium atomic positions in VO2, which is different in the involved orbitals from the stretched H2 molecule. 

These aspects present a significant challenge to Kohn-Sham DFT methods. On one hand, the spin-restricted 
model severely inhibits the localization of the V-3d electron, which results in an unfavored high energy. The 
predicted dimer length is strongly underestimated. On the other hand, the SSB model respects the electron 
localization and thus provides a more accurate description of the electronic correlation energy. However, the 
predicted dimer length tends to be too long due to the excessively strong electronic repulsions, as seen in the ionic 
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term when presenting the two-electron wave function within the molecular-orbital theory framework. The spin-
restricted and SSB models represent two extreme scenarios, with the actual V-V bonding likely existing somewhere 
in between. 

For the ground-state total energy, the inadequacies of the Kohn-Sham determinant as an approximation to the 
true wavefunction should (except in special cases, including failure of the exact density to be non-interacting v-
representable) be exactly compensated by the sum of the Hartree energy and the exact density functional for the 
exchange-correlation energy. But we only have approximate functionals, which compensate imperfectly. R2SCAN 
was constructed to respect most known mathematical properties of the exact functional, but none of the functionals 
tested here is exact for all one-electron densities. Thus, VO2 stands as a challenge to any self-interaction correction 
to r2SCAN that exists (e.g., the +𝑈𝑈 correction [30] or the full Fermi-Löwdin self-interaction correction [72] or an 
improved self- interaction correction to be developed.)  

These findings highlight the continuing challenges faced by the DFT approaches in accurately describing the 
metal-metal singlet bonding. A reliable treatment should allow for breaking the spin-symmetry while capturing 
intense spin interactions more accurately. Currently, the combination of r2SCAN with SSB is an imperfect yet valuable 
approach, as demonstrated in the intermediate M2 VO2 phase. Our results on VO2 also have broader implications 
for calculations of quantum antiferromagnets in general, such as quantum spin liquid systems.  
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