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VO, is renowned for its electric transition from an insulating monoclinic (M1) phase
characterized by V-V dimerized structures, to a metallic rutile (R) phase above 340 Kelvin.
This transition is accompanied by a magnetic change: the M; phase exhibits a non-
magnetic spin-singlet state, while the R phase exhibits a state with local magnetic moments.
Simultaneous simulation of the structural, electric, and magnetic properties of this
compound is of fundamental importance, but the M; phase alone has posed a significant
challenge to density functional theory (DFT). In this study, we show none of the commonly
used DFT functionals, including those combined with on-site Hubbard U to better treat
3d electrons, can accurately predict the V-V dimer length. The spin-restricted method tends
to overestimate the strength of the V-V bonds, resulting in a small V-V bond length.
Conversely, the spin-symmetry-breaking method exhibits the opposite trends. Each of
these two bond-calculation methods underscores one of the two contentious mechanisms,
i.e., Peierls lattice distortion or Mott localization due to electron-electron repulsion,
involved in the metal-insulator transition in VO,. To elucidate the challenges encountered
in DFT, we also employ an effective Hamiltonian that integrates one-dimensional magnetic
sites, thereby revealing the inherent difficulties linked with the DFT computations.
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1. Introduction

In transition-metal compounds, the coupling between the lattice-charge-spin-orbital degree of freedom makes
these materials a fascinating playground for developing multiple functionalities [1]. At the microscopic level, these
interesting properties originate from or are associated with correlated electrons in the d or f orbitals. For a long
time, the simulation of these materials has been considered to be a grand challenge for the Kohn-Sham density
functional theory (DFT) [2], the workhorse of the material study, and there is a prevalent belief that DFT is a mean-
field theory incapable of describing the correlated d- and f-electron systems. One canonical example is the DFT's
inability to predict the insulating behavior of NiO solid [3] using the local-density approximation (LDA) [2,4].
Subsequently, introducing a Hubbard U correction onto the Ni-3d orbitals largely resolves the problem. This fact

strengthens the belief that electronic correlation is beyond the scope of the DFT approaches.
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However, recent advancements show that the DFT approaches can simulate more and more complex materials
with d- and f- electrons. Most noticeably, combining the SCAN (strongly-constrained and appropriately normed)
functional [5] with the spin-symmetry-breaking (SSB) technique [6], but without the empirical Hubbard U
parameter, we have reliably reproduced many Mott-like characteristics of the prototypical correlated materials, such
as FeO and cuprates [7,8,9]. For example, SCAN opens a bandgap for FeO not only in the antiferromagnetic (AFM)
model, which has a long-range magnetic order but also in the disordered-local-moment (DLM) model that does not
rely on magnetic ordering [7]. Similar predictions have been made in the un-doped cuprates like LaCu,04 [8] and
hole-doped YBa,;Cus0y [9], a group of well-known correlated materials. Moreover, Perdew et al. [6] recently pointed
out that "the spin-symmetry-breaking can reveal strong correlations among the electrons that are present in a
symmetry-unbroken wavefunction" if the broken symmetry persists for a long time. This is usually true for the
conventional Mott insulators. For example, according to Philip Anderson [10], the spin-flip span in the AFM solid
NiO is typically three years, much longer than the duration of any experimental measurement (e.g., neutron
scattering) [6]. These arguments may lay the foundation that the broken symmetry "may correspond to an actual

state" in condensed matter, as pointed out by Martin, Reining, and Ceperley [11].

Besides the antiferromagnets with spatially extended geometries (such as NiO and FeO), a particular class of
solids contains isolated motifs formed by transition metal-metal bonds [12,13,14]. For example, two and three V
atoms form relatively isolated trimer and dimer motifs in LiVO; [15] and VO, [16], respectively. In the isolated motifs,
the inter-site AFM coupling is quite strong, and the spin interactions are maximally entangled among the sites, which
leads to the spin-singlet bonding state. The metal-metal interaction in some solid compounds could be so strong
that the transition-metal atoms form "metallic clusters" and "molecules in solids" [12,13,14], leading to a bond
length comparable with or even shorter than that of the elemental metals. The shortest V-V bonds are 2.62 A in VO,
[16] and 2.56 A in LiVO; [17], compared with 2.629 A [18] in the vanadium metal.

The metal-metal singlet bonding state is characterized by intense spin fluctuations and is observed to be non-
magnetic (also referred to as paramagnetic) in experiments. For the application of Kohn-Sham DFT, one can choose
between spin-restricted and SSB simulation approaches. The spin-restricted method may be favored by some due
to its superior alignment with the non-magnetic reality. However, others might argue that the transition-metal 3d
orbitals inherently localize to form a local magnetic moment, suggesting the SSB method, as underscored by Perdew
et al., could be more "revealing" [6]. The suitability of these methods for the spin-singlet state remains ambiguous
at this juncture. Complexity in describing the spin-singlet state and related magnetism can be increased when
considering the recent findings of Streltsov and Khomskii, who noted that "strong intersite coupling may invalidate

the standard single-site starting point for considering magnetism" [19].

In this work, we select VO, as an example to evaluate the applicability of Kohn-Sham DFT approaches, including
various exchange-correlation functionals on the first four rungs of Jacob's ladder of DFT [20]. VO; is a fascinating
material having three simultaneous transitions around room temperature [21], i.e., (1) the structural transition from
the dimerized monoclinic (referred to as M;) phase to the high-temperature rutile (referred to as R) phase, where
the dimers break apart, (2) the associated transition of electric transport behaviors from an insulator to a metal, (3)
the magnetic transition from a non-magnetic M; phase to a state with local magnetic moments in R. The concurrent
simulation of structural, electrical, and magnetic properties is of utmost importance. Yet, prior DFT research has
faced considerable challenges and ambiguity in choosing suitable structural and magnetic models, exchange-
correlation functionals, and Hubbard U parameters [21]. There have been instances where researchers confidently
predict specific properties while overlooking conflicting outcomes. A particularly perplexing issue pertains to
reconciling two ostensibly contradictory properties observed in the M; VO;: the lack of net magnetic moments and
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the tendency to develop local magnetism. Addressing this paradox is vital for understanding the driving force of
insulator-metal transition, which is still debatable [21] among the Peierls, Mott, or Peierls-Mott-collaborative

mechanisms starting from the early days by Goodenough [22].

We close this introduction with a discussion of how correlation is included in a theory that in practice computes
only a non-interacting wavefunction. Kohn-Sham DFT is a computationally efficient and thus widely-used
simplification of the quantum mechanics of electronic ground states. It has an underlying exact theory [2,23] in
which the exact exchange-correlation energy for a given electron density is defined [23] by a search over correlated
wavefunctions constrained to have that electron density. This underlying exact theory would yield the exact ground-
state energy and electron density for any system of interacting electrons in the presence of an external scalar
potential, with the help of an auxiliary non-interacting or single-determinant wavefunction that yields the non-
interacting part of the kinetic energy and is not intended to be an approximation to the true correlated wavefunction.
There is little doubt that this underlying exact theory applies even to strongly-correlated systems. The exact many-
body exchange-correlation energy has about 20 known mathematical properties [24] which can be built into its
practical approximations. The approximations also rely on appropriate norms [24], such as the electron gas of
uniform density, rare-gas atoms, etc., all of which are normally correlated. Nevertheless, a good non-empirical
approximation plus energy-minimizing symmetry breaking can often predict and describe the energetic effects of
strong correlation on real materials [6,7,8,9,25,26]. Strong correlation can arise from degeneracies or near-
degeneracies of the exact Kohn-Sham non-interacting system. Breaking the symmetry can break the degeneracy

and transform strong correlation into normal correlation that a good approximate functional can handle.

There is of course no guarantee that any particular approximate density functional can accurately describe the
energetic effects of strong correlation through symmetry breaking. Numerical evidence suggests that functionals
from the simplest (local spin density) approximation [25] to SCAN or r?SCAN [7] can do so for the simple case of
stretched H,. For the more complex case of equilibrium singlet C;, accuracy improves dramatically through the same
sequence of improving functionals [26]. For the even more complex d and f materials, SCAN plus symmetry breaking
is sometimes but not always accurate, and further-improved functionals appear to be needed. A density functional
approximation that can deal with strong correlation and still preserve symmetry must in all probability make use of

some unoccupied orbitals [27].

The SCAN approximate functional [5] was constructed to satisfy 17 exact constraints, without any fitting to
bonded systems, but it is not exact for all one-electron densities. Work on a proper self-interaction correction to
SCAN is ongoing [28,29], but for now SCAN plus symmetry breaking describes the effects of strong correlation in
only some systems. In other systems, SCAN can still be supplemented with a (usually empirical) +U correction that

mimics [30] some of the effects of self-interaction correction.

Stationary states have time-dependent correlations between density fluctuations that can be extracted from
the wavefunction with the help of a product of position- and time-dependent one-particle density operators. As the
size of a system grows, the frequencies of these fluctuations can drop toward zero and freeze out in the one-particle
density. In infinite systems, the symmetry-unbroken ground-state wavefunction can become degenerate with
observable symmetry-broken wavefunctions. In density functional theory, symmetry breaking can often indicate [6]
the nature of the slow density fluctuations or strong correlations. For example, a singlet state can show strong anti-

ferromagnetic correlations [31].

Since “correlation” means the effect of Coulomb interaction on the electron pair density or equivalently on the
exchange-correlation hole around an electron, can we see this within DFT without a correlated wavefunction? The
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exchange-correlation energy itself is just an integral over the system-averaged exchange-correlation hole [25,32],
which is modelled in the construction of some approximate functionals like PBE [33,34] and can be reverse-
engineered for others like SCAN. Spin symmetry breaking can, like strong correlation, make the hole deeper and
more short-ranged [35]. Correlation is real, and DFT can deal effectively with strong correlation, exactly in principle

and (at least in many cases) approximately in practice.

2. Computational details

Most simulations are carried out using the r’SCAN functional [36], which is a revised form of the original SCAN
meta-GGA [5], as implemented in the VASP code [37,38]. Both r>SCAN and SCAN are general-purpose functionals
on the third rung of Jacob's ladder, yet the former improves the numerical stability significantly. For comparison, we
also use other density functionals, including the first rung LDA [4], the second rung generalized-gradient-
approximation (GGA) in the form of Perdew-Burke-Ernzerhof (PBE) [33], and the range-separated hybrid functional
of Heyd-Scuseria-Ernzerhof (HSE06) [39,40] on the fourth rung. The Heisenberg-type spin exchange parameters, J,
are extracted using the LKAG method implemented in the TB2J code [41,42]. The chemical bonding property is
quantitatively analyzed via the projected Crystal-Orbital-Hamilton-Population (pCOHP) [43,44] as implemented in
the Lobster code [45]. We find that the effects of spin-orbit coupling play a minor role in the studied properties, and

we exclude them from this work. By default, the crystal structures are completely relaxed unless specified otherwise.

3. Results and Discussions
3.1. Insulating band structure and V-V dimer length

Given that the experimentally observed dimerized M; phase is a non-magnetic insulator, a key criterion for
validating a DFT simulation is the successful reproduction of a gapped band structure, yet without any macroscopic
magnetism. This requirement is met by the three theoretical models illustrated in Figure 1. Figure 1(a) represents
the non-magnetic (NM) model, where spin-up and spin-down electrons are uniformly balanced across the entire
structure. The band structure develops a gap of 0.277 eV [Figure 1(e)] according to the r2SCAN calculation, although
it is underestimated compared with an experimentally measured optical bandgap of about 0.6 eV [16]. In the NM
model, the emergence of a bandgap underscores the critical role of V-V dimerization. Two V-3d d,z_,2 electrons
strongly hybridize at the center of two V atomic sites, resulting in a dimerization distortion, a critical factor in the
Peierls gapping mechanism [46]. The bonding characteristics will be visualized in Section 3.3.

Restricting the spin polarization could be an aggressive hypothesis since the V-3d electrons are intrinsically
localized. A circumvention is to allow spin polarization and simultaneously assign an AFM spin configuration to
nullify the overall magnetism. This technique is known as SSB for DFT [6,11], and the model is shown in Figure 1(b).
The calculated local magnetic moment is 0.96 g, and the bandgap is 0.287 eV [Figure 1(f)]. The gapping is due to
the well-known Mott mechanism, which states that double electron occupation of a single atomic site (and thus
inter-site electron hopping) is prevented due to significant on-site Coulombic repulsion [3]. Moreover, SSB leads to
considerable energy lowering, as established previously [6]. Here, the AFM model is more stable than the NM model
by 112.2 meV/formula [Figure 1(d)].

The long-range magnetic ordering in the AFM model, absent in experiments, can be further removed using the
disordered-local-moment (DLM) model Figure 1(c). Note that the DLM superstructure keeps the AFM pattern within
each V-V dimer, which is favored energetically to be discussed in Figure 3, but introduces a disordering pattern
between the dimers. The DLM model, without a long-range magnetic ordering, is energetically almost degenerate
with the AFM model and has a similar bandgap [Figure 1(d,g)].
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Figure 1. Three theoretical models yielding insulating states of M1 VO, without producing macroscopic magnetism.
(a) Spin-restricted non-magnetic (NM) state. The V-V intra- and inter-dimer bonds are denoted as solid and dashed
green lines. (b) Each V site is spin-polarized and exhibits antiferromagnetic (AFM) coupling with neighboring sites.
(c) Antiferromagnetic coupling within V-V dimers, but the magnetic coupling between different dimers is disordered
(i.e., disordered-local-moment, DLM). (d) Relative energies of three models. (e,f,g) Corresponding band structures
or density-of-states, with the characteristics of d,z_,2 orbitals highlighted in red. The dashed lines indicate the

valence band maximum.

Since both the spin-restricted and SSB methods yield bandgaps, further evaluations, such as those involving
crystal structures, become necessary. As shown in Figure 2(a), predicting the V-V dimer length is a challenging task,
contrasting with the relatively straightforward prediction of insulating band structures. We conduct comparative
studies using four functionals: LDA, PBE, r2SCAN, and HSE06. Besides the spin-restricted NM state, we consider SSB
states in two forms: AFM and ferromagnetic (FM) spin configurations. Interestingly, all predicted dimer lengths
deviate noticeably from the experimental value of 2.62 A [16], being either too short or excessively long. An analysis
of the magnetic moment [Figure 2(b)] discloses a clear connection: the dimer length is markedly underestimated
when the V's magnetic moment is absent, but overestimated once the magnetic moment is stabilized. For instance,
in all calculations, LDA cannot stabilize local magnetic moments for V atoms and consistently underestimates the
dimer length. PBE cannot stabilize the SSB-AFM model, which eventually converges to the NM state. PBE results in
extremely short dimer lengths in the NM state, whereas in the SSB-FM model, which stabilizes local magnetic
moments for V atoms, the dimer lengths generated by PBE are too long. The behaviors of r’SCAN and HSE06 are
qualitatively alike: the dimer length is even shorter in the NM calculations where local magnetic moments are absent,
but excessively long when the moments are stabilized.

Previous studies have established that the SCAN and r2SCAN functionals are generally reliable in describing the

geometries of numerous materials [47,48], and noticeable deviations arise in correlated materials due to the
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persistence of the self-interaction error [49,50]. To mitigate this error in VO, we combine the r2SCAN functional
with the on-site Hubbard U correction (r?’SCAN+U) to reevaluate the structural and magnetic properties using the
SSB-AFM model. Interestingly, the V-V intra-dimer length increases with higher values of U [Figure 2(d)], while the
distance between dimers decreases accordingly. The dimer structure is wholly disrupted when U reaches 2.0 eV,
collapsing into the R phase with equally distributed V ions. Furthermore, a nearly linear correlation exists between
the dimer length and the local magnetic moment [Figure 2(e)], indicating that the magnetic moment destabilizes
the dimer structure.

Another unexpected result is the stability of the FM spin configuration calculated by the PBE and r?SCAN
functionals, which disagrees with experiments [Figure 2(c)]. The reason will be explained later.
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Figure 2. Structural, energetic, and magnetic properties of M1 VO,. (a) V-V intra-dimer bond length. Simulations are
done with LDA, PBE-GGA, r’SCAN meta-GGA, and HSEO6 hybrid functionals, in combination with spin-restricted NM
and the SSB-AFM/FM. (b) Local magnetic moments of V ions. (c) Relative energies of the NM/FM models with
respect to the AFM model. (d) V-V bond length from the r’SCAN+U simulations as a function of Hubbard U. (e) V-
V intra-dimer length plotted against the local magnetic moments of V ions. Note that the subplots (d,e) are based
on the SSB-AFM model.

The preceding evaluations make it clear that spin-restricted calculations utilizing diverse density functionals
tend to consistently undervalue the dimer length, which might be attributed to the missing strong correlation. The
SSB method is capable of capturing a substantial part of these correlation effects [6], leading to a notable reduction
in energy compared to the NM state. However, this SSB method brings forth two new complications in My VO;: it
destabilizes the dimer structure due to the emergence of local magnetic moments, and (except in HSE) it indicates
the FM spin configuration as the most stable. Additionally, it is crucial to note that applying on-site Hubbard U to
the SSB model exacerbates the dimer length problem. These findings hint that the issues may extend beyond the
tested functionals. The following sections examine a potential factor contributing to these difficulties.
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3.2. Instability of Néel-ordered or local-moment state against valence-bond state

In the framework of the SSB-AFM model utilized for DFT simulations, each spin is situated on a discrete atomic
site, with their interactions taken into account subsequently. This way of treating spin interactions aligns with the
principles of the Mott insulating mechanism, which emphasizes the electronic repulsion among the spin sites. The
magnetic ground state is recognized as the Néel state for traditional three-dimensional solids such as NiO and FeO.
However, Sachdev et al. [51,52] have established that the Néel-ordered state is not the ground state for low-
dimensional antiferromagnets due to its instability, which prompts a transition into a valence-bond state that
highlights enhanced spin interactions within the low-dimensional motifs. In the case of M; VO,, the V-V dimers
structurally resemble zero-dimensional "molecules”. These earlier investigations on the valence-bond state,
employing the effective Hamiltonian method, can provide valuable insights into understanding the challenges faced
by DFT, suggesting a relationship between the zero-dimensional characteristic of the V-V dimers and the spin
interactions within VO,.

We substantiate the above arguments by extracting the spin interaction parameters in VO, as shown in Figure
3. The central Vo atom is surrounded by ten neighboring atoms, where the Vi and V; atoms are in line along the
dimer chain (the y direction), and the remaining eight are situated off the chain. We first focus on the J
parameters for the experimental crystal structure. Notably, the intra-dimer exchange interaction is remarkably
strong (Jy,—v, = —49.2 meV), making the other interactions (Jy,_y, and Jy _y_with x = 3) essentially negligible.
Therefore, the strong intra-dimer AFM spin interactions define the zero-dimensional structural motifs, i.e., the V-V
dimers. Structural relaxation leads to a significant reduction of the intra-dimer spin interaction to a value of Jy, _y, =
—15.9 meV. This reduction aligns with the observed increase in the dimer length [Figure 2(a)]. As the structure
relaxes further, the intra-dimer interaction Jy, _y, begins to converge with the inter-dimer interaction Jy _y,. When

V-V dimerization entirely disappears in the limit, the magnetic ions form a one-dimensional spin chain.
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Figure 3. Spin interactions in the M1 VO.. (a) Crystal structures showing the central Vo atom and its ten neighbors.
The red arrows denote the assumed AFM spin configuration in the simulation. The blue isosurfaces are the electron
density of the polarized d,z_,2 orbitals [53], whose local coordinates are defined by black arrows. (b) Spin
exchange parameters extracted from the SSB-AFM model. Two geometries, i.e., the experimental and r?SCAN-
relaxed crystal structures, are used in calculations. Here, Vo and V1 form a dimer.

The comparative stability of the Néel-ordered and valence-bond states can be illustrated using a one-
dimensional illustrative model, as depicted schematically in Figure 4, reproduced from Reference [1]. The instability
of one-dimensional spin chains is referred to as the Spin-Peierls problem, which suggests that equally distributed

AFM spins within a one-dimensional chain are unstable against spin pairing. The uniformly distributed spins, i.e.,
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the Néel-ordered state, are characterized by an exchange energy:
pNéel-ordered — Nj(s, - §;) = NJ(S?S7) = NJ(—3) = =3 NJ. (1)

Here, N represents the number of magnetic interactions, and | represents the exchange strength. Only the z-
component of spin, S%, contributes to this energy. Contrastingly, spin pairing leads to a valence-bond state, and the
associated spin interaction energy is:

N

_ N ., , N.,, 3 3,0
pYalencesbond = = j!(s,; - 8;) = 2] <5ix5jx +57S7 + 555]-Z> =2J'(=)=—3N/" (2)

In this case, the inter-dimer exchange becomes negligible, causing the valence-bond state to lose half of the spin
interactions. However, the valence-bond state could be more stable, because the spin is isotropic and all three spin

. . 2 S . .
components contribute equally. It requires that J' > 5], which is generally true as the exchange interaction

strengthens after dimerization [see the example of VO, in Figure 3(b)].
(a)
JINIJ VI LT JLJ
1 2 3 4 5 6
(b) &7 J J

Figure 4. Spin-Peierls transition in the one-dimensional spin chain with AFM coupling, reproduced from [1]. (a) Néel-
ordered state with uniformly distributed spins. The inter-site exchange parameter is J. (b) Valence-bond state with
dimer structures. The exchange strength within a dimer is J', while the inter-dimer magnetic interaction is
neglectable.

The emergence of the valence-bond state highlights the significance of spin entanglement, a key physical
principle intrinsic to many quantum materials [54]. For example, TICuCls [55] and RuCls [56] exhibit a quantum phase
transition from the Néel-ordered phase to a quantum-disordered phase under external pressure. This disordered
phase is predominantly characterized by the valence-bond state. Turning our attention back to M1 VO,, each V** ion
in the V-V dimer motif carries one valence electron, causing the motif to behave akin to a two-electron system. It
would be more appropriate to consider VO; as a valence-bond solid [1] because there is no spin interaction between
dimers as shown in Figure 3(b).

3.3. Description of two-electron singlet bonding by Kohn-Sham DFT

Is there any reason preventing the DFT from accurately describing the valence-bond state in M; VO,? Since
Kohn-Sham DFT is formulated in terms of the Kohn-Sham molecular orbitals, it is informative to express the two-
electron wave function. The molecular-orbital theory (MOT), pioneered by Mulliken and Hund in the late 1920s
[57,58,59,60,61], defines the spin-singlet state of a valence bond in the independent-electron (IE) representation as
[62]:

i 1
"’{Zglffﬁt = 2/Ts, [@1(r)2(12) + 0, (r) e, (r)]laif; — fras]

[01(r)e(r2) + @2 (r) e (r)][ayf — Bras] . (3)

+ —_—
2,/1+S;:,

Here, @(r) represents the one-electron atomic wave function, and the double overlap integral is denoted as
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S12 =(@1(r1) @, (1) |91(rz)@,(r1)). @ and B are the spin functions. However, a potential issue may arise in

‘I’Nslglffgt. The two ionic terms @4 (1)@, (r,) + @, (1)@, (r,), representing a single atomic site occupied by two

electrons, appears at an equally high probability as the other terms. This situation can result in unphysical Coulombic
repulsion. While this repulsion is less critical for delocalized electrons (as observed in the H; molecule with an
equilibrium geometry), it becomes particularly prominent in the presence of localized electrons, such as V-3d

electrons in VO,.

Given these insights, we can explain the discrepancy in calculating the V-V dimer length between the spin-
restricted and SSB models. The V-V bond length is determined by a delicate balance between two interactions. On
one sside, there is an attractive covalent bonding between neighboringV d,z_,2 orbitals in a spin-singlet state. This
bonding promotes electron overlap around the bond center, resulting in a shortened V-V bond. Conversely, the
localization of V-3d orbitals favors spatial separation of the individual V atoms, leading to charge depletion at the
bond center and a consequent elongation of the bond length. In the spin-restricted calculation, the suppression of
electron localization results in a bias towards covalence, favoring a bond length shorter than the experimental value.
Alternatively, the spin polarization of V-3d orbitals in the SSB model better captures the electronic correlation, which
localizes d electrons. This however overestimates ionic characteristic interactions within a V-V dimer. As a result,
this overestimation contributes to a longer bond length than the experimental data.

Our arguments are corroborated by examining the chemical bonding properties using the projected-Crystal-
Orbital-Hamilton-Population (pCOHP) approach [43,44]. Figure 5(a) visualizes the bonding interactions between two
V-V atoms in a dimer, where the interaction of five d orbitals or solely the d,z_, orbital is represented by red
shades or blue lines, respectively. Itis the d,z_,2 orbital that predominantly drives the bonding interaction, which
is more evident in the NM model than the SSB-AFM model. The bonding characteristics become clearer when the
electronic and crystal structures are treated in a self-consistent manner, as depicted in Figure 5(b): the bonding is
significantly stronger in the NM model, while it appears markedly weaker in the SSB-AFM model. A comparison of
the electron densities of the two models reveals that SSB leads to electron depletion at the center of the V-V dimer
[Figure 5(c)]. This reduction is also present in the FM model [Figure 5(d)], which suggests that the principal
mechanism at play is the spin-symmetry breaking, consistent with the bond overestimation in both the AFM and
FM models [Figure 2(a)]. The electron depletion at the bond center diminishes the interactions between the dxz_yz
orbitals, which is evident in the band structures where the d,z_,2 orbital's bandwidth narrows from 0.54 eV in the

spin-restricted calculation to 0.46 eV in the SSB-AFM scenario.

The ionic term present in the spin-singlet state can provide insights into the false stability of the FM spin
configuration, as observed in the PBE and r2SCAN simulations [Figure 2(c)]. The FM configuration also represents a

broken spin symmetry, being one of the three spin-triplet states described by:

ipl 1
Yiorie = 57ms 2201 () = 01 (r) @2 () Xsym (4)

where X, is the triplet symmetric spin function. It is important to note that l}’&gﬁ? does not incorporate any

l{,Singlet

MoTIE - Therefore, when calculating the expectation value of

additional contribution from the ionic states, unlike

. . Singlet Triplet . ' ..
a V-V dimer using 'I’MO%{IE and 'PMO,?IE wave functions, the latter's energy is likely lower [62].
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Figure 5. Chemical bonding properties of the spin-restricted NM and SSB models. (a) Diagrams of -pCOHP, showing
bonding interactions between two V-V atoms within a dimer. The calculation is done with the experimental crystal

structure. (b) The same as subplot (a), except for optimized geometries. (c) Electron density difference of An =
AFM

n — nM_ The experimental crystal structure is used for both states. Note the electron depletion at the V-V
dimer center, denoted by black arrows. The right panel is the 2D plot of the An. (d) Electron density difference of
An = nfM — nNM,

For a comprehensive understanding, it's worth mentioning another theory that was developed early on to
address spin interactions in chemical bonds. This theory, known as the valence-bond theory (VBT), was developed
by Heitler, London, Pauling, and Slater during the 1916-1920s [63,64,65]. The VBT and MOT were considered "rival"
theories, but many theoreticians now agree that they complement each other [66,67,68]. In the Heitler-London (HL)
limit, the VBT defines the singlet state wave function as [62]:

,{,Singlet _

VBTHL — 2\/;— (1) @2(12) + @2 (r) e (r)[ay B — Pras] - (5)

14512

It's important to note the absence of the ionic term in the HL representation. The HL treatment emphasizes the
overlap of atomic orbitals in forming the valence-bond state, which increases the likelihood of electrons residing in
the bond center. It is widely understood that the IE and HL wave functions are approximate representations, and
the actual electronic state is likely between these extremes. In the case of M; VO,, cluster dynamical mean-field
theory, in conjunction with the DFT scheme (DFT+cDMFT) [69,70,71], suggested that the V-V dimer is close to the
HL limit [70]. However, the inherently localized nature of the 3d electrons, and thus less orbital overlaps, may
somewhat invalidate the HL representation for M; VO,.
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3.4. Spin-symmetry-breaking in the intermediate M, VO: An imperfect yet valuable approach

Finally, we present a situation in which SSB is highly advantageous, even though imperfect. In addition to the
well-known M; and R phases, VO, can also form an intermediate phase under pressure or chemical doping
conditions. Half of the V atoms form dimer chains in this phase, while the remaining V atoms are evenly dispersed.
Experimentally, M, VO3 is an insulator [21].

Figure 6 demonstrates the band structures calculated using the spin-restricted NM and SSB-AFM models,
producing a metallic and an insulating phase, respectively. By projecting the orbital characters onto the band
structure, we can distinguish the varying behaviors of the dimerized and non-dimerized V atoms. In the NM model,
the dimerized V atoms do not contribute electrons at the Fermi level, while the non-dimerized V atoms account for
the metallic nature. This metallic character arises due to the suppression of the Mott gapping mechanism as a result
of the spin restriction. Conversely, in the SSB model, both the dimerized and non-dimerized V atoms can establish
gaps via the Mott mechanism. It is important to acknowledge that, based on the discussion in previous sections,
these two types of V atoms should ideally rely on different gapping mechanisms. Therefore, within the Kohn-Sham
DFT framework, SSB is a valuable method for producing an insulating band structure of M, VO..

(3)3 \/Ww\ (b)3 VY T Y

Energy (eV)

0 E-Fermi

| NIAPNRRA I\ ADEY)

ryczr AE ZDBT ryczr AE ZDBT

Figure 6. Band structure of M, VO.. (a) Spin-restricted NM model. (b) SSB-AFM model. The red circles (green squares)
representV d,z_,2 orbitals of the non-dimerized (dimerized) chain.

4. Summary

This study addresses a fundamental difficulty in characterizing the dimer structure of M1 VO, primarily utilizing
the advanced r?SCAN density functional. The metal-metal singlet state is marked by robust covalent bonding and
intense spin fluctuations within a V-V dimer. However, there is a high degree of localization of V-3d electrons around
equilibrium atomic positions in VO,, which is different in the involved orbitals from the stretched H, molecule.

These aspects present a significant challenge to Kohn-Sham DFT methods. On one hand, the spin-restricted
model severely inhibits the localization of the V-3d electron, which results in an unfavored high energy. The
predicted dimer length is strongly underestimated. On the other hand, the SSB model respects the electron
localization and thus provides a more accurate description of the electronic correlation energy. However, the
predicted dimer length tends to be too long due to the excessively strong electronic repulsions, as seen in the ionic
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term when presenting the two-electron wave function within the molecular-orbital theory framework. The spin-
restricted and SSB models represent two extreme scenarios, with the actual V-V bonding likely existing somewhere
in between.

For the ground-state total energy, the inadequacies of the Kohn-Sham determinant as an approximation to the
true wavefunction should (except in special cases, including failure of the exact density to be non-interacting v-
representable) be exactly compensated by the sum of the Hartree energy and the exact density functional for the
exchange-correlation energy. But we only have approximate functionals, which compensate imperfectly. R2SCAN
was constructed to respect most known mathematical properties of the exact functional, but none of the functionals
tested here is exact for all one-electron densities. Thus, VO3 stands as a challenge to any self-interaction correction
to r2SCAN that exists (e.g., the +U correction [30] or the full Fermi-Léwdin self-interaction correction [72] or an
improved self- interaction correction to be developed.)

These findings highlight the continuing challenges faced by the DFT approaches in accurately describing the
metal-metal singlet bonding. A reliable treatment should allow for breaking the spin-symmetry while capturing
intense spin interactions more accurately. Currently, the combination of r2.SCAN with SSB is an imperfect yet valuable
approach, as demonstrated in the intermediate M, VO, phase. Our results on VO; also have broader implications
for calculations of quantum antiferromagnets in general, such as quantum spin liquid systems.
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