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Abstract

Energy barriers, which control the rates of chemical reactions, are seriously un-
derestimated by computationally-efficient semi-local approximations for the exchange-
correlation energy. The accuracy of a semi-local density functional approximation is
strongly boosted for reaction barrier heights by evaluating that approximation non-
self-consistently on Hartree-Fock electron densities, as known for about 30 years. The
conventional explanation is that Hartree-Fock theory yields the more accurate density.
This article presents a benchmark Kohn-Sham inversion of accurate coupled-cluster
densities for the reaction Ho + F — HHF — H + HF, and finds a strong, understand-
able cancellation between positive (excessively over-corrected) density-driven and large
negative functional-driven errors (expected from stretched radical bonds in the tran-
sition state) within this Hartree-Fock density functional theory. This confirms earlier
conclusions [J. Chem. Theory Comput. 2023, 19, 532-543] based on 76 barrier heights
and three less reliable, but less expensive, fully-nonlocal density-functional proxies for

the exact density.

TOC Graphic

g ° °

DFT © HF

I

wrong charge transfer

® o'

Reaction
coordinate




19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

Kohn-Sham density functional theory! in principle yields exact ground-state energies and
electron densities, while constraint-satisfying approximations to its exchange-correlation en-
ergy make useful predictions? over a vast materials space. Understanding the successes and
failures of such approximations is key to improving them. It has been known for more
than thirty years that the computationally efficient semi-local approximations, when im-
plemented self-consistently, severely underestimate the barrier heights to gas-phase chem-

36 and that their accuracy for barriers is strongly boosted by performing a

ical reactions,
Hartree-Fock (HF) calculation and then replacing the HF exchange energy by the semi-local
exchange-correlation energy evaluated on HF densities (and occupied orbitals if needed),®©
a procedure known as “Hartree-Fock density functional theory.” Early work was done by

4,6

Scuseria,® Bartlett and collaborators,*% and Janesko and Scuseria.® More recently, this ap-

proach has been systematized by Burke and coworkers as “density-corrected density func-
tional theory”,” ! and has been shown to improve the average accuracy of other prop-
erties of main-group molecules!! and to remarkably improve the binding energies of wa-

1213 when applied to constraint-satisfying semi-local functionals such as the

ter clusters,
Perdew-Burke-Ernzerhof generalized gradient approximation (PBE GGA)! or the strongly-
constrained and appropriately normed (SCAN) meta-GGA.' The corresponding (non-self-
consistent) Hartree-Fock density functionals are known as PBEQHF and SCAN@HF. More
generally, for any density functional approximation (DFA) there is a DFA@QHF. While Ref.
7 rigorously defined density-driven error relative to the exact density, more recent work on
density corrections has tended for practical reasons to take the HF density as a proxy for
the exact density.

For many systems and properties, DFAQHF energy differences can be slightly more or
slightly less accurate than those of self-consistent DFAQDFA. For compact neutral atoms and
molecules at equilibrium bond lengths (including the water monomer), there is graphical,

statistical,'® and energetic!® evidence that PBE and especially SCAN densities are mod-

estly more accurate than HF densities. SCAN exchange-correlation potentials for compact
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molecules are also reasonably accurate.'” But for large classes of systems and properties,
DFAQHF energy differences are significantly and systematically more accurate than those
of DFA@QDFA, which we denote as DFA. For some of these systems and properties (dissocia-
tion limits of binding energy curves, '8 electron removal energies in small negative ions'?), the
reason is clearly that the more localized HF density yields the correct integer electron num-
bers on separated subsystems?® while the too-delocalized DFA density often yields spurious
non-integer values.

The conventional explanation for large systematic improvements in energy differences
from DFA@QDFA to DFAQHF is that in these cases the self-interaction-free Hartree-Fock
density is significantly more accurate than the self-consistent density of a semi-local approx-
imation. That explanation is indisputable for many cases, but we now show that a different
explanation accounts for the improvements in the barrier heights to chemical reactions and
the binding energies of water clusters in going from DFA to DFAQHF.

A forward barrier height is the energy difference between the transition state and the
separated reactants, and a reverse barrier height is the energy difference between transition
state and products. The higher the barrier height, the slower the reaction. The transition
states of chemical reactions are typically stretched radicals. The paradigm stretched rad-
ical is stretched Hj, where the semi-local functionals evaluated on the exact density can
make the total energy severely too negative?! for reasons discussed in Ref. 22: the exact
exchange-correlation hole is shared by two separated density fragments, while its semi-local
approximation is not. Thus the DFA error of the barrier height is not necessarily dominated
by the error of the DFA density. A more precise language is provided by the analysis of
Burke, Sim, and collaborators, " ** who write the error of a self-consistent DFA for an energy

or energy difference F,

AEWDFA — EDFA [nDFA] - Eexact [nexact] =FE + DE> (1)
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as the sum of a functional-driven error

FE = EDFA [nexact] - Eexact [nexact] (2)

and a density-driven error

DE = EDFA[nDFA] - EDFA [nexact]- (3)

The exact electron density and exact total energy (but not the separate components of the
total energy) are defined in the same way in density functional theory and in traditional
quantum chemistry. By the variational principle, DE is negative for a self-consistent DFA.
For a DFA@QHF calculation, where npga is replaced by npr in Eq. (1), we define the analog

of Eq. (3) by replacement of npga by nyr,

DE(DFAQHF) = Eppa [nur] — Epra[fexact], (4)

which can then be positive. Equation (2) remains unchanged by the same replacement, and
the total error remains equal to FE + DE. With this replacement, Eq. (4) is technically a
“density difference” !? that vanishes when ngp = nNexact, although it was called a “density-
driven error of nyr in Ref. 23. When DE(DFAQHF) is positive, the HF density over-corrects
the DFA density; when DE(DFAQHF) > —DE(DFA) it excessively over-corrects the DFA,
and use of the HF density cannot be interpreted simply as a density correction to a DFA.
The precise evaluation of Egs. (2)—(4) would require not only the exact energy Eexact[Mexact)
and the exact density nexact () (both well approximated in many cases by a coupled-cluster
calculation), but also an inversion of the exact density to find the exact Kohn-Sham oc-
cupied orbitals for the evaluation of Fppa[Rexact]-'"*® Accurate implementation of the in-
version has been reported for a limited number of polyatomic systems, with few tens of

electrons.?* 2% To better understand the errors of the 76 barrier heights in the BH76 test
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set,2”29 Ref. 30 recently applied three fully-nonlocal proxies for the exact functional and
density in Eqgs. (1)—(4), chosen to satisfy two criteria: (1) accurate self-consistent barrier
heights, and (2) nearly correct electron transfers due to nearly-linear variation of the total en-
ergy of a separated fragment between adjacent integer electron numbers.? (The semi-local

20,31

approximations bend below the straight-line segment and are too de-localizing, while

Hartree-Fock bends above and is too localizing.3!) The proxy functionals were, in order
of reliability, the long-range-corrected hybrid LC-wPBE,?? a global hybrid of SCAN with
50% exact exchange called SCAN50 or SX-0.5, and the self-interaction corrected SCAN-
FLOSIC.33 All three showed the same pattern: a large negative functional-driven error of
PBE and SCAN), largely canceled by a large positive density-driven error when evaluated on
the HF density. The estimations of density-driven error (DE) in kcal /mol differed substan-
tially between proxies, leaving some room for doubt. For example, for the forward reaction
in Table 1 of this paper, they were (from Table S13 of Ref. 30) —1.3 (PBEQLC-wPBE),
—4.9 (PBE@QSCAN50), —6.4 (PBEQSCAN-FLOSIC), although all were significantly differ-
ent from +11.3 (PBEQHF) from Table 1, which uses an accurate CCSD(T) proxy. The
average over the three original proxies, -4.2, was not so different, from -2.2 (PBE) in Table
1.

Can we understand how all the BH76 transition states can have large negative functional-
driven errors? Such negative errors arise in the stretched radical H (see Fig. 3 of Ref.
22), while large positive functional-driven errors arise in the stretched, symmetry-unbroken
singlet or non-radical Hy. All of the BH76 transition states have stretched bonds, with
total spins tabulated in Ref. 29. Of 38 forward reactions, 23 involve an odd number of
electrons, and their transition states are likely to be stretched radicals. Of the remaining
15, 5 have non-singlet transition states that are also likely to be stretched radicals, and 10
have stretched singlet or non-radical transition states. But none of these 10 dissociate to
separated fragments with strong correlation between them. 6 of these 10 do not fragment

in either the forward or reverse directions, and the remaining 4 have at most two fragments
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in either direction, at least one of which is closed-shell. Thus none of the BH76 transition
states appears to be like stretched Hs.

The work of Ref. 30 suggested that this unconventional error cancellation occurs strongly,
widely and reliably for barrier heights, but the extent to which the proxies fairly represented
the exact functional could still be questioned. Here we will focus on the forward and reverse
barrier heights of the BH76 reaction Hy + F — HHF — H + HF', taking the coupled cluster
CCSD(T)/aug-cc-pV5Z 3% energies and densities®® from the PySCF code®” to be exact.
The resulting barrier heights differ by 0.2 kcal/mol or less from the W2-F12 “exact” values
in BH76,2 which aim to reproduce CCSD(T) results in the complete basis-set limit.3® This
work and Ref. 30 together permit a firm conclusion that, for many BH76 barrier heights,
the Hartree-Fock density makes a density-driven error that largely cancels the substantial
functional-driven error of PBE or SCAN. This article also briefly discusses the possibility of
a similar error cancellation in the water clusters, and presents a possible explanation for this
unconventional error cancellation in molecules and molecular clusters.

With the help of the accurate coupled cluster method, we can evaluate the total DFA
or DFA@QHF error of a barrier height from Eq. (1). But finding the separate functional-
driven [Eq. (2)] and density-driven [Eq. (3)] errors still requires an accurate determination
of the Kohn-Sham orbitals that yield the CCSD(T) density, a challenging inverse problem.
For this, we use the partial differential equation constrained optimization method of Refs.
17,25,39. In this method, the inverse problem is formulated as a constrained optimization of
the Kohn-Sham exchange-correlation potential vy (r) and solved using a convergent finite-
element basis set. Each finite element is a fifth-order Lagrange polynomial in the x, y, and z
directions. For open-shell systems, we use a recent extension?” of the inverse formulation with
a spin-dependent exchange-correlation potential. Self-consistent DFA and DFAQHF at the
quadruple-zeta level can be found in Ref. 30; we recompute these values at the quintuple-zeta
level here. All our density-functional calculations employ the separate up- and down-spin

electron densities, not just the total density. The DFA and DFAQHF calculations were
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treated as spin-unrestricted for F, H, and the HHF transition state; and as spin-restricted
for Hy and HF. The local spin density approximation (LSDA) uses the parametrization of
Ref. 41.

Importantly, none of the functionals predicts a highly spin-contaminated transition state.
At the 5C level, (S?) is 0.75 with the exact functional, 0.77 with HF, 0.75 with LSDA and
PBE, and 0.76 with SCAN and r2SCAN.

Table 1: Barrier heights (BHs) and their functional-driven errors (FEs), and
density-driven errors (DEs) for the reaction H, + F — HHF — H 4+ HF. All
units are kcal/mol. (1 Hartree ~ 627.5 kcal/mol; 1 eV =~ 23.06 kcal/mol.) FEs and
DEs are computed by taking the CCSD(T)/aug-cc-pV5Z energies and densities
as exact. The strong density sensitivity (absolute change of BH from LSDA
to LSDA@QHF > 2 kcal/mol) is often taken as an indicator of the need for
HF density correction.'® However, as BH(DFA) — BH(DFAQCCSD(T)) is about 1
kcal/mol for SCAN and r?SCAN (see Table S2 of the Supporting Information),
this should not be a highly density-sensitive system for the meta-GGAs. The
sum of FE and DE yields the total error with reference to the CCSD(T)/aug-
cc-pV5Z BH.

Forwards Reverse
DFA BH FE DE | BH FE DE
LSDA -23.71-20.7 -44|254| -3.8 -4.7
LSDA@HF -5.41-20.7 1391432 -3.8 13.1
PBE -12.6 | -11.8 -2.2 248 | -6.8 -2.3
PBE@QHF 09]-11.8 113|376 | -6.8 10.5
SCAN 74| -78 -1.01(220|-106 -1.2
SCANQHF 21 -78 851309 |-106 7.7
r’SCAN 69| -73 -1.01]238]| -89 -1.3
r’SCANQHF 25 -73 851326| -89 7.6
CCSD(T) 1.4 0.0 0.0/33.9 0.0 0.0

Table 1 shows our numerical results. The coupled cluster “exact” barrier heights are much
smaller for the forward reaction than for the reverse. The semi-local functionals severely
underestimate the barrier heights, but there is overall improvement from LSDA to PBE to
SCAN and its more computationally-efficient twin r2SCAN.*2 For these self-consistent DFAs,
both FE of Eq. (2) and DE of Eq. (3) are negative, but FE is typically much more negative.
From DFA to DFAQHF, the too-delocalized DFA density is replaced by the too-localized
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Hartree-Fock density, and DE becomes strongly positive, cancelling most of FE, especially
for the more sophisticated SCAN and r2SCAN. This is the same error pattern found for
the full BH76 set from the proxy-exact estimates of Ref. 30. By this energetic measure,
the Hartree-Fock density for the transition state is actually much less accurate than the
self-consistent DFA density. But, as suggested at the end of Ref. 10, there is in principle
a DFA that yields the DFA@QHF total energy and a self-consistent density expected to be

more accurate than the HF density.
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Figure 1: Error of the forward energy barrier height for the reaction Hy, + F — HHF — H
+ HF from SCAN (green) and proxy-exact SCAN50 (black), evaluated on a density n, that
interpolates between the self-consistent SCAN density at @ = 0 and the HF density at a = 1.
That density is found self-consistently from the exchange-correlation functional of Eq. (5).

Hartree-Fock DFT is a successful density correction to a DFA like SCAN when FE is
small in magnitude and DE(DFA) is large, as in the dissociation limits of molecular binding

energy curves or the electron affinities of atoms or small molecules, because in these cases

9
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the too-delocalized DFA density is qualitatively wrong while the too-localized HF density is
qualitatively right. In the barrier heights problem, however, DE(DFA) is much smaller in
magnitude than FE, so that a true density correction would leave most of the total error
uncorrected. To understand what actually happens for the barrier heights, imagine a density

n, computed self-consistently from a linear interpolation of the exchange-correlation energy

Exe([n);a) = Eg™ ] + a(EB"[n] — B [0]) (0 <a<1). ()

This Ey.([n]; @) functional interpolates between the DFA (a = 0) and HF (a = 1) functionals.
The error in the barrier height is due to a small density variation around a minimizing density
Ng, for which Eppa[ne] & Eppal[npra] + Cpraa?, and Cppa > 0, as we now show.

Figure 1 plots the forward barrier height errors of SCAN and SCAN50 when evaluated
on n,, as a function of a. The error in the SCAN50@Qn, barrier height minimizes at 0.6
kecal/mol for a ~ 0.43 (by spline interpolation). Taking SCAN50 as a proxy for the ezact
enerqy functional only, then the density which is closest to the exact one lies roughly in the
range 0.3 S a S 0.5. Let a = apest be that value of a for which ng, ., & Nexact is closest to
the exact density. Under the simplifying assumptions that DE(DFA@Qn,) is linear in a?, and

that EDFA [nahemr] — EDFA [nexact]a

DE(DFA) ~ —Cppadi,., (6)

DE(DFAQHF) =~ Chpa(l —ai.,) (7)

consistent with the signs and relative magnitudes of these two DEs in Table 1. In particular,
the SCAN data in Table 1 suggest Cscan = 9.5 kecal/mol and apes; &~ 0.32 for the forward
reaction, and Cgcan ~ 8.9 kecal/mol and apesy = 0.37 for the reverse reaction.

Why is the unconventional error cancellation between FE(DFA) and DE(DFAQHF) so
good for barrier heights? Such a reliable effect is unlikely to be accidental. Taking SCANS50

to be a proxy for the exact functional’s barrier height energy, the FE of SCAN, computed

10
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as the difference between the barrier-height errors in SCAN@n, and SCAN50@Qn,, in Fig. 1,
strongly decreases in magnitude as a approaches 1, the HF limit. The physical reason for
this could be that SCAN and other semi-local functions become more accurate for a given
density as that density becomes more localized and more HF-like. Over the range 0 < a < 1,
SCAN varies much more strongly than proxy-exact SCAN50.

Table 2: Binding energies (BEs), functional-driven errors (FEs), and density-
driven errors (DEs) for the water dimer, using the aug-cc-pVQZ basis set.3°
In the CCSD(T) columns, FEs and DEs are computed by taking the CCSD(T)
density to be n... in Egs. (2)—(4). In the r’SCAN50 columns, FEs and DEs are
computed using the self-consistent densities of the 50% global hybrid of r’SCAN,
r’SCANS50, as a proxy3? for the exact density newc: in Egs. (2)—(4). In all cases,
we take the self-consistent CCSD(T) binding energy to be Feyact[Nexact]- All values
are in kcal/mol.

FE DE

DFA BE | CCSD(T) 12SCAN50 | CCSD(T) r*SCAN50
LSDA -8.1 -2.6 -2.5 -0.4 -0.4
LSDA@QHF | -6.9 -2.6 -2.5 0.7 0.7
PBE -5.2 0.1 0.1 -0.2 -0.2
PBEQHF 4.4 0.1 0.1 0.6 0.6
SCAN 54 -0.1 -0.1 -0.2 -0.1
SCANQHF | 4.7 -0.1 -0.1 0.4 0.5
r’SCAN -5.1 0.2 0.1 -0.2 -0.1
r2SCAN@HF -4.5 0.2 0.1 0.4 0.5
r’SCAN5/0 | -4.8

CCSD(T) -5.1

Finally we turn to the (negative-definite) binding energy of a water cluster (H50),,, de-
fined as the energy of the bound cluster minus the energies of its n separated H,O monomers
(at their optimized geometries). SCAN is accurate for the relative energies of different
hydrogen-bond networks, and even for the binding energy of the water dimer (H50)2, but
overestimates the binding of larger water clusters, reaching an error of about —20 kcal/mol
for (H20)qq clusters. However, SCAN@QHF reaches almost coupled-cluster accuracy for the
binding energies of the larger water clusters.'?!® Kohn-Sham inversion of a coupled clus-
ter density for a large water cluster is computationally prohibitive at present, but we have

done this for the water dimer in Table 2. While LSDA overbinds the water dimer by —3

11
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kcal/mol, PBE, SCAN and especially r?SCAN overbind by only a few tenths of a kcal /mol,
in comparison to CCSD(T). DFAQHF is more accurate than DFA for LSDA but not for PBE
or SCAN. Nevertheless, we still find that DFAQHF turns a small negative density-driven
error of DFA into a substantially larger positive density-driven error. In the larger water
clusters, there might again be a cancellation in DFA@QHF between negative FE and positive
DE. Table 2 also shows that the r2SCAN 50% global hybrid is a good proxy for the exact
or CCSD(T) density, yielding almost the same FEs and DEs. However, as its parent meta-
GGA r?SCAN makes essentially zero FE for the water dimer, admixture of exact exchange
to correct errors in the r?SCAN density introduces a more substantial FE to the r2SCAN50
BE. Composite methods like HF-r?SCAN-DC4% (with a long-range dispersion correction)
might be general-purpose practical solutions to this apparent catch-22.

Table S1 of the Supporting Information shows that our Kohn-Sham inversion is suffi-
ciently accurate for our study. Letting PBE-inv denote the density obtained from Kohn-
Sham inversion of the PBE density, the barrier heights from PBEQPBE and PBEQPBE-inv
agree within 0.4 kcal/mol. There is a small but noticeable difference, ~ 2 kcal/mol between
DFA@QHF and DFA@QHF-inv (the Hartree-Fock density obtained from Kohn-Sham inversion).
This is associated with the difference in the Hartree-Fock and Kohn-Sham orbitals.

To understand the density errors of DFA or DFAQHF, Eppa[n| must be used, as in
Egs. (3) and (4), but there are many other ways to measure density errors that can lead
to different conclusions about the relative accuracies of the DFA and HF densities. For the
neutral water dimer, Ref. 13 set up a plane perpendicular to the bond axis, such that a
coupled cluster calculation put exactly 10 electrons on each side, and found electron transfer
errors of opposite sign for semi-local DFAs and for HF. Ref. 30 found the same behavior for
several transition states. The errors were small in magnitude, and smaller for HF than for a
few DFAs. In the cases studied here, Eppa[nur| — Epra[Nexact] 18 strongly positive, but that
does not rule out Feygact[nur] — Fexact[PDFA] being negative; the HF density could be better

than the DFA density in the sense of the exact density functional variational principle. That

12
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said, Fig. S1 of the Supplemental Material shows an independent measure by which the
density error of H...H...F decreases from Hartree-Fock to SCAN to CCSD(T).

In summary, we have shown that DFAQHF works for the barrier heights to chemical
reactions, and have suggested that it works for the binding energies of larger water clusters,
not because the Hartree-Fock density is more accurate than the self-consistent DFA density
but because the Hartree-Fock density creates a positive and excessive over-correction of the
DFA density-driven error that cancels much of the negative functional-driven error. The
large functional-driven error for barrier heights was estimated first in Ref. 30, and has been
refined and confirmed here. It is clear from Refs. 7-10 and from Egs. (1)—(3) that, when the
functional-driven error of a DFA is large and its density-driven error is small in comparison,
a true density correction cannot lead to high accuracy. Future work will employ proxy-exact
functionals to test this hypothesis for larger water clusters. Clearly, improved functionals
will need the right amount of fully nonlocal density dependence, in both the exchange-
correlation energy and the exchange-correlation potential. Self-interaction corrections3%:4*
to DFAs, while needing improvement for some properties, appear for barrier heights to get
the right answer for the right reason, by significantly reducing both functional- and density-
driven errors.

Besides density-corrected density functional theory, there is a second evolution from HF-
DFT which is less relevant to our work but also interesting. Bartlett and collaborators 446
have proposed a correlated orbital theory and associated QTP functionals in which the
orbital energy eigenvalues yield accurate vertical ionization energies from all the occupied
states (a condition they infer from adiabatic time-dependent density functional theory). In
their work, the (generalized) Kohn-Sham potential, and not the density, takes center stage.
As an example, they start with a four-parameter range-separated hybrid functional, then
adjust the parameters in the functional (and thus in its potential) to give a best fit of the
energy eigenvalues to the five vertical ionization energies of the water molecule.*® The same

parameters produce good vertical ionization energies and other properties in other systems,
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with low many-electron self-interaction error. This approach should not be applied to the
semi-local functionals considered here, for which all parameters satisfy other constraints
and for which the orbital energy eigenvalues are strongly contaminated by self-interaction
error. It could however be a way to improve one-electron self-interaction corrections to the
semi-local functionals.

The conclusions of Ref. 30 (cancellation of functional- and density-driven errors) for
the BH76 barrier heights in Hartree-Fock density functional theory were based upon three
(hybrid or self-interaction-corrected) proxies for the exact densities, and have been confirmed
here for the Hy + F — H + HF barriers, and their accurate Kohn-Sham inversions. A
confirmation for the full BH76 set, using a more efficient but perhaps less accurate approach
(orbital optimized MP2), has been made recently in Ref. 47. Reference?® provides recent
confirmation of our findings, with an interesting analysis of barrier-height errors with and
without a self-interaction correction. The higher accuracy of GGA, meta-GGA, and hybrid

functional densities over the Hartree-Fock density was demonstrated for isolated atoms 6

and for the dipole moments of molecules at equilibrium. 4’
For the barrier heights to chemical reactions, as for the binding energies of equilibrium
molecules, the density-driven errors of self-consistent DFA calculations are small, as the

variational principle applied to Eq. (3) would suggest, but the functional-driven errors of

the barrier heights are large in magnitude, as in Table 1.

Supporting Information

Numerical validation of the Kohn-Sham inversion; single-point total energies with respect
to basis set size; complete basis set extrapolation; molecular geometries; analysis of density
errors of HF, SCAN, and CCSD(T) relative to Brueckner coupled-cluster doubles (CCD)

density
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