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Abstract2

Energy barriers, which control the rates of chemical reactions, are seriously un-3

derestimated by computationally-efficient semi-local approximations for the exchange-4

correlation energy. The accuracy of a semi-local density functional approximation is5

strongly boosted for reaction barrier heights by evaluating that approximation non-6

self-consistently on Hartree-Fock electron densities, as known for about 30 years. The7

conventional explanation is that Hartree-Fock theory yields the more accurate density.8

This article presents a benchmark Kohn-Sham inversion of accurate coupled-cluster9

densities for the reaction H2 + F → HHF → H + HF, and finds a strong, understand-10

able cancellation between positive (excessively over-corrected) density-driven and large11

negative functional-driven errors (expected from stretched radical bonds in the tran-12

sition state) within this Hartree-Fock density functional theory. This confirms earlier13

conclusions [J. Chem. Theory Comput. 2023, 19, 532–543] based on 76 barrier heights14

and three less reliable, but less expensive, fully-nonlocal density-functional proxies for15

the exact density.16
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Kohn-Sham density functional theory1 in principle yields exact ground-state energies and19

electron densities, while constraint-satisfying approximations to its exchange-correlation en-20

ergy make useful predictions2 over a vast materials space. Understanding the successes and21

failures of such approximations is key to improving them. It has been known for more22

than thirty years that the computationally efficient semi-local approximations, when im-23

plemented self-consistently, severely underestimate the barrier heights to gas-phase chem-24

ical reactions,3–6 and that their accuracy for barriers is strongly boosted by performing a25

Hartree-Fock (HF) calculation and then replacing the HF exchange energy by the semi-local26

exchange-correlation energy evaluated on HF densities (and occupied orbitals if needed), 3–627

a procedure known as “Hartree-Fock density functional theory.” Early work was done by28

Scuseria,3 Bartlett and collaborators,4,6 and Janesko and Scuseria.5 More recently, this ap-29

proach has been systematized by Burke and coworkers as “density-corrected density func-30

tional theory”,7–10 and has been shown to improve the average accuracy of other prop-31

erties of main-group molecules11 and to remarkably improve the binding energies of wa-32

ter clusters,12,13 when applied to constraint-satisfying semi-local functionals such as the33

Perdew-Burke-Ernzerhof generalized gradient approximation (PBE GGA)14 or the strongly-34

constrained and appropriately normed (SCAN) meta-GGA.15 The corresponding (non-self-35

consistent) Hartree-Fock density functionals are known as PBE@HF and SCAN@HF. More36

generally, for any density functional approximation (DFA) there is a DFA@HF. While Ref.37

7 rigorously defined density-driven error relative to the exact density, more recent work on38

density corrections has tended for practical reasons to take the HF density as a proxy for39

the exact density.40

For many systems and properties, DFA@HF energy differences can be slightly more or41

slightly less accurate than those of self-consistent DFA@DFA. For compact neutral atoms and42

molecules at equilibrium bond lengths (including the water monomer), there is graphical,43

statistical,16 and energetic13 evidence that PBE and especially SCAN densities are mod-44

estly more accurate than HF densities. SCAN exchange-correlation potentials for compact45
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molecules are also reasonably accurate.17 But for large classes of systems and properties,46

DFA@HF energy differences are significantly and systematically more accurate than those47

of DFA@DFA, which we denote as DFA. For some of these systems and properties (dissocia-48

tion limits of binding energy curves,18 electron removal energies in small negative ions19), the49

reason is clearly that the more localized HF density yields the correct integer electron num-50

bers on separated subsystems20 while the too-delocalized DFA density often yields spurious51

non-integer values.52

The conventional explanation for large systematic improvements in energy differences53

from DFA@DFA to DFA@HF is that in these cases the self-interaction-free Hartree-Fock54

density is significantly more accurate than the self-consistent density of a semi-local approx-55

imation. That explanation is indisputable for many cases, but we now show that a different56

explanation accounts for the improvements in the barrier heights to chemical reactions and57

the binding energies of water clusters in going from DFA to DFA@HF.58

A forward barrier height is the energy difference between the transition state and the59

separated reactants, and a reverse barrier height is the energy difference between transition60

state and products. The higher the barrier height, the slower the reaction. The transition61

states of chemical reactions are typically stretched radicals. The paradigm stretched rad-62

ical is stretched H+
2 , where the semi-local functionals evaluated on the exact density can63

make the total energy severely too negative21 for reasons discussed in Ref. 22: the exact64

exchange-correlation hole is shared by two separated density fragments, while its semi-local65

approximation is not. Thus the DFA error of the barrier height is not necessarily dominated66

by the error of the DFA density. A more precise language is provided by the analysis of67

Burke, Sim, and collaborators,7–10 who write the error of a self-consistent DFA for an energy68

or energy difference E,69

∆EDFA = EDFA[nDFA] − Eexact[nexact] = FE + DE, (1)
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as the sum of a functional-driven error70

FE = EDFA[nexact] − Eexact[nexact] (2)

and a density-driven error71

DE = EDFA[nDFA] − EDFA[nexact]. (3)

The exact electron density and exact total energy (but not the separate components of the72

total energy) are defined in the same way in density functional theory and in traditional73

quantum chemistry. By the variational principle, DE is negative for a self-consistent DFA.74

For a DFA@HF calculation, where nDFA is replaced by nHF in Eq. (1), we define the analog75

of Eq. (3) by replacement of nDFA by nHF,76

DE(DFA@HF) = EDFA[nHF] − EDFA[nexact], (4)

which can then be positive. Equation (2) remains unchanged by the same replacement, and77

the total error remains equal to FE + DE. With this replacement, Eq. (4) is technically a78

“density difference”10 that vanishes when nHF = nexact, although it was called a “density-79

driven error of nHF in Ref. 23. When DE(DFA@HF) is positive, the HF density over-corrects80

the DFA density; when DE(DFA@HF) ≫ −DE(DFA) it excessively over-corrects the DFA,81

and use of the HF density cannot be interpreted simply as a density correction to a DFA.82

The precise evaluation of Eqs. (2)–(4) would require not only the exact energy Eexact[nexact]83

and the exact density nexact(r) (both well approximated in many cases by a coupled-cluster84

calculation), but also an inversion of the exact density to find the exact Kohn-Sham oc-85

cupied orbitals for the evaluation of EDFA[nexact].
17,23 Accurate implementation of the in-86

version has been reported for a limited number of polyatomic systems, with few tens of87

electrons.24–26 To better understand the errors of the 76 barrier heights in the BH76 test88
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set,27–29 Ref. 30 recently applied three fully-nonlocal proxies for the exact functional and89

density in Eqs. (1)–(4), chosen to satisfy two criteria: (1) accurate self-consistent barrier90

heights, and (2) nearly correct electron transfers due to nearly-linear variation of the total en-91

ergy of a separated fragment between adjacent integer electron numbers.20 (The semi-local92

approximations bend below the straight-line segment and are too de-localizing,20,31 while93

Hartree-Fock bends above and is too localizing.31) The proxy functionals were, in order94

of reliability, the long-range-corrected hybrid LC-ωPBE,32 a global hybrid of SCAN with95

50% exact exchange called SCAN50 or SX-0.5, and the self-interaction corrected SCAN-96

FLOSIC.33 All three showed the same pattern: a large negative functional-driven error of97

PBE and SCAN, largely canceled by a large positive density-driven error when evaluated on98

the HF density. The estimations of density-driven error (DE) in kcal/mol differed substan-99

tially between proxies, leaving some room for doubt. For example, for the forward reaction100

in Table 1 of this paper, they were (from Table S13 of Ref. 30) −1.3 (PBE@LC-ωPBE),101

−4.9 (PBE@SCAN50), −6.4 (PBE@SCAN-FLOSIC), although all were significantly differ-102

ent from +11.3 (PBE@HF) from Table 1, which uses an accurate CCSD(T) proxy. The103

average over the three original proxies, -4.2, was not so different, from -2.2 (PBE) in Table104

1.105

Can we understand how all the BH76 transition states can have large negative functional-106

driven errors? Such negative errors arise in the stretched radical H+
2 (see Fig. 3 of Ref.107

22), while large positive functional-driven errors arise in the stretched, symmetry-unbroken108

singlet or non-radical H2. All of the BH76 transition states have stretched bonds, with109

total spins tabulated in Ref. 29. Of 38 forward reactions, 23 involve an odd number of110

electrons, and their transition states are likely to be stretched radicals. Of the remaining111

15, 5 have non-singlet transition states that are also likely to be stretched radicals, and 10112

have stretched singlet or non-radical transition states. But none of these 10 dissociate to113

separated fragments with strong correlation between them. 6 of these 10 do not fragment114

in either the forward or reverse directions, and the remaining 4 have at most two fragments115
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in either direction, at least one of which is closed-shell. Thus none of the BH76 transition116

states appears to be like stretched H2.117

The work of Ref. 30 suggested that this unconventional error cancellation occurs strongly,118

widely and reliably for barrier heights, but the extent to which the proxies fairly represented119

the exact functional could still be questioned. Here we will focus on the forward and reverse120

barrier heights of the BH76 reaction H2 + F → HHF → H + HF, taking the coupled cluster121

CCSD(T)/aug-cc-pV5Z 34,35 energies and densities36 from the PySCF code37 to be exact.122

The resulting barrier heights differ by 0.2 kcal/mol or less from the W2-F12 “exact” values123

in BH76,29 which aim to reproduce CCSD(T) results in the complete basis-set limit.38 This124

work and Ref. 30 together permit a firm conclusion that, for many BH76 barrier heights,125

the Hartree-Fock density makes a density-driven error that largely cancels the substantial126

functional-driven error of PBE or SCAN. This article also briefly discusses the possibility of127

a similar error cancellation in the water clusters, and presents a possible explanation for this128

unconventional error cancellation in molecules and molecular clusters.129

With the help of the accurate coupled cluster method, we can evaluate the total DFA130

or DFA@HF error of a barrier height from Eq. (1). But finding the separate functional-131

driven [Eq. (2)] and density-driven [Eq. (3)] errors still requires an accurate determination132

of the Kohn-Sham orbitals that yield the CCSD(T) density, a challenging inverse problem.133

For this, we use the partial differential equation constrained optimization method of Refs.134

17,25,39. In this method, the inverse problem is formulated as a constrained optimization of135

the Kohn-Sham exchange-correlation potential vxc(r) and solved using a convergent finite-136

element basis set. Each finite element is a fifth-order Lagrange polynomial in the x, y, and z137

directions. For open-shell systems, we use a recent extension40 of the inverse formulation with138

a spin-dependent exchange-correlation potential. Self-consistent DFA and DFA@HF at the139

quadruple-zeta level can be found in Ref. 30; we recompute these values at the quintuple-zeta140

level here. All our density-functional calculations employ the separate up- and down-spin141

electron densities, not just the total density. The DFA and DFA@HF calculations were142
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treated as spin-unrestricted for F, H, and the HHF transition state; and as spin-restricted143

for H2 and HF. The local spin density approximation (LSDA) uses the parametrization of144

Ref. 41.145

Importantly, none of the functionals predicts a highly spin-contaminated transition state.146

At the 5ζ level, ⟨S2⟩ is 0.75 with the exact functional, 0.77 with HF, 0.75 with LSDA and147

PBE, and 0.76 with SCAN and r2SCAN.148

Table 1: Barrier heights (BHs) and their functional-driven errors (FEs), and
density-driven errors (DEs) for the reaction H2 + F → HHF → H + HF. All
units are kcal/mol. (1 Hartree ≈ 627.5 kcal/mol; 1 eV ≈ 23.06 kcal/mol.) FEs and
DEs are computed by taking the CCSD(T)/aug-cc-pV5Z energies and densities
as exact. The strong density sensitivity (absolute change of BH from LSDA
to LSDA@HF ≫ 2 kcal/mol) is often taken as an indicator of the need for
HF density correction.10 However, as BH(DFA) − BH(DFA@CCSD(T)) is about 1
kcal/mol for SCAN and r2SCAN (see Table S2 of the Supporting Information),
this should not be a highly density-sensitive system for the meta-GGAs. The
sum of FE and DE yields the total error with reference to the CCSD(T)/aug-
cc-pV5Z BH.

Forwards Reverse
DFA BH FE DE BH FE DE
LSDA -23.7 -20.7 -4.4 25.4 -3.8 -4.7
LSDA@HF -5.4 -20.7 13.9 43.2 -3.8 13.1
PBE -12.6 -11.8 -2.2 24.8 -6.8 -2.3
PBE@HF 0.9 -11.8 11.3 37.6 -6.8 10.5
SCAN -7.4 -7.8 -1.0 22.0 -10.6 -1.2
SCAN@HF 2.1 -7.8 8.5 30.9 -10.6 7.7
r2SCAN -6.9 -7.3 -1.0 23.8 -8.9 -1.3
r2SCAN@HF 2.5 -7.3 8.5 32.6 -8.9 7.6
CCSD(T) 1.4 0.0 0.0 33.9 0.0 0.0

Table 1 shows our numerical results. The coupled cluster “exact” barrier heights are much149

smaller for the forward reaction than for the reverse. The semi-local functionals severely150

underestimate the barrier heights, but there is overall improvement from LSDA to PBE to151

SCAN and its more computationally-efficient twin r2SCAN.42 For these self-consistent DFAs,152

both FE of Eq. (2) and DE of Eq. (3) are negative, but FE is typically much more negative.153

From DFA to DFA@HF, the too-delocalized DFA density is replaced by the too-localized154
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Hartree-Fock density, and DE becomes strongly positive, cancelling most of FE, especially155

for the more sophisticated SCAN and r2SCAN. This is the same error pattern found for156

the full BH76 set from the proxy-exact estimates of Ref. 30. By this energetic measure,157

the Hartree-Fock density for the transition state is actually much less accurate than the158

self-consistent DFA density. But, as suggested at the end of Ref. 10, there is in principle159

a DFA that yields the DFA@HF total energy and a self-consistent density expected to be160

more accurate than the HF density.161
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Figure 1: Error of the forward energy barrier height for the reaction H2 + F → HHF → H
+ HF from SCAN (green) and proxy-exact SCAN50 (black), evaluated on a density na that
interpolates between the self-consistent SCAN density at a = 0 and the HF density at a = 1.
That density is found self-consistently from the exchange-correlation functional of Eq. (5).

Hartree-Fock DFT is a successful density correction to a DFA like SCAN when FE is162

small in magnitude and DE(DFA) is large, as in the dissociation limits of molecular binding163

energy curves or the electron affinities of atoms or small molecules, because in these cases164
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the too-delocalized DFA density is qualitatively wrong while the too-localized HF density is165

qualitatively right. In the barrier heights problem, however, DE(DFA) is much smaller in166

magnitude than FE, so that a true density correction would leave most of the total error167

uncorrected. To understand what actually happens for the barrier heights, imagine a density168

na computed self-consistently from a linear interpolation of the exchange-correlation energy169

Exc([n]; a) = EDFA
xc [n] + a(EHF

x [n] − EDFA
xc [n]) (0 ≤ a ≤ 1). (5)

This Exc([n]; a) functional interpolates between the DFA (a = 0) and HF (a = 1) functionals.170

The error in the barrier height is due to a small density variation around a minimizing density171

na, for which EDFA[na] ≈ EDFA[nDFA] + CDFAa
2, and CDFA > 0, as we now show.172

Figure 1 plots the forward barrier height errors of SCAN and SCAN50 when evaluated173

on na, as a function of a. The error in the SCAN50@na barrier height minimizes at 0.6174

kcal/mol for a ≈ 0.43 (by spline interpolation). Taking SCAN50 as a proxy for the exact175

energy functional only, then the density which is closest to the exact one lies roughly in the176

range 0.3 ≲ a ≲ 0.5. Let a = abest be that value of a for which nabest ≈ nexact is closest to177

the exact density. Under the simplifying assumptions that DE(DFA@na) is linear in a2, and178

that EDFA[nabest ] = EDFA[nexact],179

DE(DFA) ≈ −CDFAa
2
best, (6)

DE(DFA@HF) ≈ CDFA(1 − a2best) (7)

consistent with the signs and relative magnitudes of these two DEs in Table 1. In particular,180

the SCAN data in Table 1 suggest CSCAN ≈ 9.5 kcal/mol and abest ≈ 0.32 for the forward181

reaction, and CSCAN ≈ 8.9 kcal/mol and abest ≈ 0.37 for the reverse reaction.182

Why is the unconventional error cancellation between FE(DFA) and DE(DFA@HF) so183

good for barrier heights? Such a reliable effect is unlikely to be accidental. Taking SCAN50184

to be a proxy for the exact functional’s barrier height energy, the FE of SCAN, computed185
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as the difference between the barrier-height errors in SCAN@na and SCAN50@na in Fig. 1,186

strongly decreases in magnitude as a approaches 1, the HF limit. The physical reason for187

this could be that SCAN and other semi-local functions become more accurate for a given188

density as that density becomes more localized and more HF-like. Over the range 0 < a < 1,189

SCAN varies much more strongly than proxy-exact SCAN50.190

Table 2: Binding energies (BEs), functional-driven errors (FEs), and density-
driven errors (DEs) for the water dimer, using the aug-cc-pVQZ basis set.35

In the CCSD(T) columns, FEs and DEs are computed by taking the CCSD(T)
density to be nexact in Eqs. (2)–(4). In the r2SCAN50 columns, FEs and DEs are
computed using the self-consistent densities of the 50% global hybrid of r2SCAN,
r2SCAN50, as a proxy30 for the exact density nexact in Eqs. (2)–(4). In all cases,
we take the self-consistent CCSD(T) binding energy to be Eexact[nexact]. All values
are in kcal/mol.

FE DE
DFA BE CCSD(T) r2SCAN50 CCSD(T) r2SCAN50
LSDA -8.1 -2.6 -2.5 -0.4 -0.4
LSDA@HF -6.9 -2.6 -2.5 0.7 0.7
PBE -5.2 0.1 0.1 -0.2 -0.2
PBE@HF -4.4 0.1 0.1 0.6 0.6
SCAN -5.4 -0.1 -0.1 -0.2 -0.1
SCAN@HF -4.7 -0.1 -0.1 0.4 0.5
r2SCAN -5.1 0.2 0.1 -0.2 -0.1
r2SCAN@HF -4.5 0.2 0.1 0.4 0.5
r2SCAN50 -4.8
CCSD(T) -5.1

Finally we turn to the (negative-definite) binding energy of a water cluster (H2O)n, de-191

fined as the energy of the bound cluster minus the energies of its n separated H2O monomers192

(at their optimized geometries). SCAN is accurate for the relative energies of different193

hydrogen-bond networks, and even for the binding energy of the water dimer (H2O)2, but194

overestimates the binding of larger water clusters, reaching an error of about −20 kcal/mol195

for (H2O)20 clusters. However, SCAN@HF reaches almost coupled-cluster accuracy for the196

binding energies of the larger water clusters.12,13 Kohn-Sham inversion of a coupled clus-197

ter density for a large water cluster is computationally prohibitive at present, but we have198

done this for the water dimer in Table 2. While LSDA overbinds the water dimer by −3199
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kcal/mol, PBE, SCAN and especially r2SCAN overbind by only a few tenths of a kcal/mol,200

in comparison to CCSD(T). DFA@HF is more accurate than DFA for LSDA but not for PBE201

or SCAN. Nevertheless, we still find that DFA@HF turns a small negative density-driven202

error of DFA into a substantially larger positive density-driven error. In the larger water203

clusters, there might again be a cancellation in DFA@HF between negative FE and positive204

DE. Table 2 also shows that the r2SCAN 50% global hybrid is a good proxy for the exact205

or CCSD(T) density, yielding almost the same FEs and DEs. However, as its parent meta-206

GGA r2SCAN makes essentially zero FE for the water dimer, admixture of exact exchange207

to correct errors in the r2SCAN density introduces a more substantial FE to the r2SCAN50208

BE. Composite methods like HF-r2SCAN-DC443 (with a long-range dispersion correction)209

might be general-purpose practical solutions to this apparent catch-22.210

Table S1 of the Supporting Information shows that our Kohn-Sham inversion is suffi-211

ciently accurate for our study. Letting PBE-inv denote the density obtained from Kohn-212

Sham inversion of the PBE density, the barrier heights from PBE@PBE and PBE@PBE-inv213

agree within 0.4 kcal/mol. There is a small but noticeable difference, ∼ 2 kcal/mol between214

DFA@HF and DFA@HF-inv (the Hartree-Fock density obtained from Kohn-Sham inversion).215

This is associated with the difference in the Hartree-Fock and Kohn-Sham orbitals.216

To understand the density errors of DFA or DFA@HF, EDFA[n] must be used, as in217

Eqs. (3) and (4), but there are many other ways to measure density errors that can lead218

to different conclusions about the relative accuracies of the DFA and HF densities. For the219

neutral water dimer, Ref. 13 set up a plane perpendicular to the bond axis, such that a220

coupled cluster calculation put exactly 10 electrons on each side, and found electron transfer221

errors of opposite sign for semi-local DFAs and for HF. Ref. 30 found the same behavior for222

several transition states. The errors were small in magnitude, and smaller for HF than for a223

few DFAs. In the cases studied here, EDFA[nHF] −EDFA[nexact] is strongly positive, but that224

does not rule out Eexact[nHF] − Eexact[nDFA] being negative; the HF density could be better225

than the DFA density in the sense of the exact density functional variational principle. That226
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said, Fig. S1 of the Supplemental Material shows an independent measure by which the227

density error of H...H...F decreases from Hartree-Fock to SCAN to CCSD(T).228

In summary, we have shown that DFA@HF works for the barrier heights to chemical229

reactions, and have suggested that it works for the binding energies of larger water clusters,230

not because the Hartree-Fock density is more accurate than the self-consistent DFA density231

but because the Hartree-Fock density creates a positive and excessive over-correction of the232

DFA density-driven error that cancels much of the negative functional-driven error. The233

large functional-driven error for barrier heights was estimated first in Ref. 30, and has been234

refined and confirmed here. It is clear from Refs. 7–10 and from Eqs. (1)–(3) that, when the235

functional-driven error of a DFA is large and its density-driven error is small in comparison,236

a true density correction cannot lead to high accuracy. Future work will employ proxy-exact237

functionals to test this hypothesis for larger water clusters. Clearly, improved functionals238

will need the right amount of fully nonlocal density dependence, in both the exchange-239

correlation energy and the exchange-correlation potential. Self-interaction corrections 30,44
240

to DFAs, while needing improvement for some properties, appear for barrier heights to get241

the right answer for the right reason, by significantly reducing both functional- and density-242

driven errors.243

Besides density-corrected density functional theory, there is a second evolution from HF-244

DFT which is less relevant to our work but also interesting. Bartlett and collaborators 45,46
245

have proposed a correlated orbital theory and associated QTP functionals in which the246

orbital energy eigenvalues yield accurate vertical ionization energies from all the occupied247

states (a condition they infer from adiabatic time-dependent density functional theory). In248

their work, the (generalized) Kohn-Sham potential, and not the density, takes center stage.249

As an example, they start with a four-parameter range-separated hybrid functional, then250

adjust the parameters in the functional (and thus in its potential) to give a best fit of the251

energy eigenvalues to the five vertical ionization energies of the water molecule. 45 The same252

parameters produce good vertical ionization energies and other properties in other systems,253
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with low many-electron self-interaction error. This approach should not be applied to the254

semi-local functionals considered here, for which all parameters satisfy other constraints255

and for which the orbital energy eigenvalues are strongly contaminated by self-interaction256

error. It could however be a way to improve one-electron self-interaction corrections to the257

semi-local functionals.258

The conclusions of Ref. 30 (cancellation of functional- and density-driven errors) for259

the BH76 barrier heights in Hartree-Fock density functional theory were based upon three260

(hybrid or self-interaction-corrected) proxies for the exact densities, and have been confirmed261

here for the H2 + F → H + HF barriers, and their accurate Kohn-Sham inversions. A262

confirmation for the full BH76 set, using a more efficient but perhaps less accurate approach263

(orbital optimized MP2), has been made recently in Ref. 47. Reference48 provides recent264

confirmation of our findings, with an interesting analysis of barrier-height errors with and265

without a self-interaction correction. The higher accuracy of GGA, meta-GGA, and hybrid266

functional densities over the Hartree-Fock density was demonstrated for isolated atoms 16
267

and for the dipole moments of molecules at equilibrium.49268

For the barrier heights to chemical reactions, as for the binding energies of equilibrium269

molecules, the density-driven errors of self-consistent DFA calculations are small, as the270

variational principle applied to Eq. (3) would suggest, but the functional-driven errors of271

the barrier heights are large in magnitude, as in Table 1.272

Supporting Information273

Numerical validation of the Kohn-Sham inversion; single-point total energies with respect274

to basis set size; complete basis set extrapolation; molecular geometries; analysis of density275

errors of HF, SCAN, and CCSD(T) relative to Brueckner coupled-cluster doubles (CCD)276

density277
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