Unconventional Error Cancellation Explains the Success of Hartree-Fock Density Functional Theory for Barrier Heights

Bikash Kanungo,[†] Aaron D. Kaplan,^{*,‡} Chandra Shahi,[¶] Vikram Gavini,[†] and John P. Perdew[¶]

†Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109 ‡Lawrence Berkeley National Laboratory, Berkeley, CA 94720.

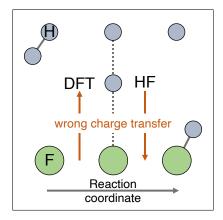
 \P Department of Physics and Engineering Physics, Tulane University, New Orleans, LA 70118

E-mail: adkaplan@lbl.gov

Abstract

Energy barriers, which control the rates of chemical reactions, are seriously underestimated by computationally-efficient semi-local approximations for the exchange-correlation energy. The accuracy of a semi-local density functional approximation is strongly boosted for reaction barrier heights by evaluating that approximation non-self-consistently on Hartree-Fock electron densities, as known for about 30 years. The conventional explanation is that Hartree-Fock theory yields the more accurate density. This article presents a benchmark Kohn-Sham inversion of accurate coupled-cluster densities for the reaction $H_2 + F \rightarrow HHF \rightarrow H + HF$, and finds a strong, understandable cancellation between positive (excessively over-corrected) density-driven and large negative functional-driven errors (expected from stretched radical bonds in the transition state) within this Hartree-Fock density functional theory. This confirms earlier conclusions [J. Chem. Theory Comput. 2023, 19, 532–543] based on 76 barrier heights and three less reliable, but less expensive, fully-nonlocal density-functional proxies for the exact density.

TOC Graphic



Kohn-Sham density functional theory in principle yields exact ground-state energies and 19 electron densities, while constraint-satisfying approximations to its exchange-correlation en-20 ergy make useful predictions² over a vast materials space. Understanding the successes and 21 failures of such approximations is key to improving them. It has been known for more 22 than thirty years that the computationally efficient semi-local approximations, when im-23 plemented self-consistently, severely underestimate the barrier heights to gas-phase chemical reactions, 3-6 and that their accuracy for barriers is strongly boosted by performing a 25 Hartree-Fock (HF) calculation and then replacing the HF exchange energy by the semi-local 26 exchange-correlation energy evaluated on HF densities (and occupied orbitals if needed), ³⁻⁶ 27 a procedure known as "Hartree-Fock density functional theory." Early work was done by Scuseria, Bartlett and collaborators, 4,6 and Janesko and Scuseria. More recently, this ap-29 proach has been systematized by Burke and coworkers as "density-corrected density func-30 tional theory", 7-10 and has been shown to improve the average accuracy of other prop-31 erties of main-group molecules 11 and to remarkably improve the binding energies of water clusters, 12,13 when applied to constraint-satisfying semi-local functionals such as the 33 Perdew-Burke-Ernzerhof generalized gradient approximation (PBE GGA)¹⁴ or the stronglyconstrained and appropriately normed (SCAN) meta-GGA. ¹⁵ The corresponding (non-selfconsistent) Hartree-Fock density functionals are known as PBE@HF and SCAN@HF. More generally, for any density functional approximation (DFA) there is a DFA@HF. While Ref. 7 rigorously defined density-driven error relative to the exact density, more recent work on density corrections has tended for practical reasons to take the HF density as a proxy for 39 the exact density. 40 For many systems and properties, DFA@HF energy differences can be slightly more or 41 slightly less accurate than those of self-consistent DFA@DFA. For compact neutral atoms and molecules at equilibrium bond lengths (including the water monomer), there is graphical, statistical, 16 and energetic 13 evidence that PBE and especially SCAN densities are mod-

estly more accurate than HF densities. SCAN exchange-correlation potentials for compact

molecules are also reasonably accurate.¹⁷ But for large classes of systems and properties,
DFA@HF energy differences are significantly and systematically more accurate than those
of DFA@DFA, which we denote as DFA. For some of these systems and properties (dissociation limits of binding energy curves, ¹⁸ electron removal energies in small negative ions ¹⁹), the
reason is clearly that the more localized HF density yields the correct integer electron numbers on separated subsystems ²⁰ while the too-delocalized DFA density often yields spurious
non-integer values.

The conventional explanation for large systematic improvements in energy differences from DFA@DFA to DFA@HF is that in these cases the self-interaction-free Hartree-Fock density is significantly more accurate than the self-consistent density of a semi-local approximation. That explanation is indisputable for many cases, but we now show that a different explanation accounts for the improvements in the barrier heights to chemical reactions and the binding energies of water clusters in going from DFA to DFA@HF.

A forward barrier height is the energy difference between the transition state and the 59 separated reactants, and a reverse barrier height is the energy difference between transition 60 state and products. The higher the barrier height, the slower the reaction. The transition states of chemical reactions are typically stretched radicals. The paradigm stretched radical is stretched H_2^+ , where the semi-local functionals evaluated on the exact density can make the total energy severely too negative²¹ for reasons discussed in Ref. 22: the exact exchange-correlation hole is shared by two separated density fragments, while its semi-local 65 approximation is not. Thus the DFA error of the barrier height is not necessarily dominated 66 by the error of the DFA density. A more precise language is provided by the analysis of 67 Burke, Sim, and collaborators, ^{7–10} who write the error of a self-consistent DFA for an energy or energy difference E,

$$\Delta E_{\text{DFA}} = E_{\text{DFA}}[n_{\text{DFA}}] - E_{\text{exact}}[n_{\text{exact}}] = \text{FE} + \text{DE}, \tag{1}$$

70 as the sum of a functional-driven error

$$FE = E_{DFA}[n_{exact}] - E_{exact}[n_{exact}]$$
 (2)

 $_{1}$ and a density-driven error

$$DE = E_{DFA}[n_{DFA}] - E_{DFA}[n_{exact}].$$
(3)

The exact electron density and exact total energy (but not the separate components of the total energy) are defined in the same way in density functional theory and in traditional quantum chemistry. By the variational principle, DE is negative for a self-consistent DFA. For a DFA@HF calculation, where n_{DFA} is replaced by n_{HF} in Eq. (1), we define the analog of Eq. (3) by replacement of n_{DFA} by n_{HF} ,

$$DE(DFA@HF) = E_{DFA}[n_{HF}] - E_{DFA}[n_{exact}], \tag{4}$$

which can then be positive. Equation (2) remains unchanged by the same replacement, and 77 the total error remains equal to FE + DE. With this replacement, Eq. (4) is technically a 78 "density difference" 10 that vanishes when $n_{\mathrm{HF}}=n_{\mathrm{exact}},$ although it was called a "density-79 driven error of $n_{\rm HF}$ in Ref. 23. When DE(DFA@HF) is positive, the HF density over-corrects the DFA density; when $DE(DFA@HF) \gg -DE(DFA)$ it excessively over-corrects the DFA, and use of the HF density cannot be interpreted simply as a density correction to a DFA. 82 The precise evaluation of Eqs. (2)–(4) would require not only the exact energy $E_{\text{exact}}[n_{\text{exact}}]$ 83 and the exact density $n_{\text{exact}}(\boldsymbol{r})$ (both well approximated in many cases by a coupled-cluster 84 calculation), but also an inversion of the exact density to find the exact Kohn-Sham oc-85 cupied orbitals for the evaluation of $E_{\mathrm{DFA}}[n_{\mathrm{exact}}]$. Accurate implementation of the in-86 version has been reported for a limited number of polyatomic systems, with few tens of 87 electrons.^{24–26} To better understand the errors of the 76 barrier heights in the BH76 test

set, ^{27–29} Ref. 30 recently applied three fully-nonlocal proxies for the exact functional and density in Eqs. (1)-(4), chosen to satisfy two criteria: (1) accurate self-consistent barrier heights, and (2) nearly correct electron transfers due to nearly-linear variation of the total energy of a separated fragment between adjacent integer electron numbers. ²⁰ (The semi-local 92 approximations bend below the straight-line segment and are too de-localizing, 20,31 while 93 Hartree-Fock bends above and is too localizing.³¹) The proxy functionals were, in order of reliability, the long-range-corrected hybrid LC- ω PBE, ³² a global hybrid of SCAN with 95 50% exact exchange called SCAN50 or SX-0.5, and the self-interaction corrected SCAN-FLOSIC.³³ All three showed the same pattern: a large negative functional-driven error of PBE and SCAN, largely canceled by a large positive density-driven error when evaluated on the HF density. The estimations of density-driven error (DE) in kcal/mol differed substantially between proxies, leaving some room for doubt. For example, for the forward reaction 100 in Table 1 of this paper, they were (from Table S13 of Ref. 30) -1.3 (PBE@LC- ω PBE), 101 -4.9 (PBE@SCAN50), -6.4 (PBE@SCAN-FLOSIC), although all were significantly differ-102 ent from +11.3 (PBE@HF) from Table 1, which uses an accurate CCSD(T) proxy. The 103 average over the three original proxies, -4.2, was not so different, from -2.2 (PBE) in Table 104 1. 105

Can we understand how all the BH76 transition states can have large negative functional-106 driven errors? Such negative errors arise in the stretched radical H₂⁺ (see Fig. 3 of Ref. 107 22), while large positive functional-driven errors arise in the stretched, symmetry-unbroken 108 singlet or non-radical H₂. All of the BH76 transition states have stretched bonds, with 109 total spins tabulated in Ref. 29. Of 38 forward reactions, 23 involve an odd number of 110 electrons, and their transition states are likely to be stretched radicals. Of the remaining 111 15, 5 have non-singlet transition states that are also likely to be stretched radicals, and 10 112 have stretched singlet or non-radical transition states. But none of these 10 dissociate to 113 separated fragments with strong correlation between them. 6 of these 10 do not fragment 114 in either the forward or reverse directions, and the remaining 4 have at most two fragments 115

in either direction, at least one of which is closed-shell. Thus none of the BH76 transition states appears to be like stretched H₂.

The work of Ref. 30 suggested that this unconventional error cancellation occurs strongly, 118 widely and reliably for barrier heights, but the extent to which the proxies fairly represented 119 the exact functional could still be questioned. Here we will focus on the forward and reverse 120 barrier heights of the BH76 reaction $H_2 + F \rightarrow HHF \rightarrow H + HF$, taking the coupled cluster 121 CCSD(T)/aug-cc-pV5Z ^{34,35} energies and densities ³⁶ from the PySCF code ³⁷ to be exact. 122 The resulting barrier heights differ by 0.2 kcal/mol or less from the W2-F12 "exact" values 123 in BH76, ²⁹ which aim to reproduce CCSD(T) results in the complete basis-set limit. ³⁸ This 124 work and Ref. 30 together permit a firm conclusion that, for many BH76 barrier heights, 125 the Hartree-Fock density makes a density-driven error that largely cancels the substantial 126 functional-driven error of PBE or SCAN. This article also briefly discusses the possibility of 127 a similar error cancellation in the water clusters, and presents a possible explanation for this 128 unconventional error cancellation in molecules and molecular clusters. 129

With the help of the accurate coupled cluster method, we can evaluate the total DFA 130 or DFA@HF error of a barrier height from Eq. (1). But finding the separate functional-131 driven [Eq. (2)] and density-driven [Eq. (3)] errors still requires an accurate determination of the Kohn-Sham orbitals that yield the CCSD(T) density, a challenging inverse problem. For this, we use the partial differential equation constrained optimization method of Refs. 134 17,25,39. In this method, the inverse problem is formulated as a constrained optimization of 135 the Kohn-Sham exchange-correlation potential $v_{\rm xc}(\boldsymbol{r})$ and solved using a convergent finite-136 element basis set. Each finite element is a fifth-order Lagrange polynomial in the x, y, and z137 directions. For open-shell systems, we use a recent extension ⁴⁰ of the inverse formulation with 138 a spin-dependent exchange-correlation potential. Self-consistent DFA and DFA@HF at the 139 quadruple-zeta level can be found in Ref. 30; we recompute these values at the quintuple-zeta 140 level here. All our density-functional calculations employ the separate up- and down-spin 141 electron densities, not just the total density. The DFA and DFA@HF calculations were 142

treated as spin-unrestricted for F, H, and the HHF transition state; and as spin-restricted for H₂ and HF. The local spin density approximation (LSDA) uses the parametrization of Ref. 41.

Importantly, none of the functionals predicts a highly spin-contaminated transition state.

At the 5ζ level, $\langle S^2 \rangle$ is 0.75 with the exact functional, 0.77 with HF, 0.75 with LSDA and PBE, and 0.76 with SCAN and r²SCAN.

Table 1: Barrier heights (BHs) and their functional-driven errors (FEs), and density-driven errors (DEs) for the reaction $H_2 + F \rightarrow HHF \rightarrow H + HF$. All units are kcal/mol. (1 Hartree ≈ 627.5 kcal/mol; 1 eV ≈ 23.06 kcal/mol.) FEs and DEs are computed by taking the CCSD(T)/aug-cc-pV5Z energies and densities as exact. The strong density sensitivity (absolute change of BH from LSDA to LSDA@HF \gg 2 kcal/mol) is often taken as an indicator of the need for HF density correction. However, as BH(DFA) – BH(DFA@CCSD(T)) is about 1 kcal/mol for SCAN and r²SCAN (see Table S2 of the Supporting Information), this should not be a highly density-sensitive system for the meta-GGAs. The sum of FE and DE yields the total error with reference to the CCSD(T)/aug-cc-pV5Z BH.

	Forwards			Reverse		
DFA	BH	FE	DE	ВН	FE	DE
LSDA	-23.7	-20.7	-4.4	25.4	-3.8	-4.7
LSDA@HF	-5.4	-20.7	13.9	43.2	-3.8	13.1
PBE	-12.6	-11.8	-2.2	24.8	-6.8	-2.3
PBE@HF	0.9	-11.8	11.3	37.6	-6.8	10.5
SCAN	-7.4	-7.8	-1.0	22.0	-10.6	-1.2
SCAN@HF	2.1	-7.8	8.5	30.9	-10.6	7.7
r^2SCAN	-6.9	-7.3	-1.0	23.8	-8.9	-1.3
$r^2SCAN@HF$	2.5	-7.3	8.5	32.6	-8.9	7.6
$\overline{\text{CCSD}(T)}$	1.4	0.0	0.0	33.9	0.0	0.0

Table 1 shows our numerical results. The coupled cluster "exact" barrier heights are much smaller for the forward reaction than for the reverse. The semi-local functionals severely underestimate the barrier heights, but there is overall improvement from LSDA to PBE to SCAN and its more computationally-efficient twin r²SCAN. ⁴² For these self-consistent DFAs, both FE of Eq. (2) and DE of Eq. (3) are negative, but FE is typically much more negative. From DFA to DFA@HF, the too-delocalized DFA density is replaced by the too-localized

Hartree-Fock density, and DE becomes strongly positive, cancelling most of FE, especially for the more sophisticated SCAN and r²SCAN. This is the same error pattern found for the full BH76 set from the proxy-exact estimates of Ref. 30. By this energetic measure, the Hartree-Fock density for the transition state is actually much less accurate than the self-consistent DFA density. But, as suggested at the end of Ref. 10, there is in principle a DFA that yields the DFA@HF total energy and a self-consistent density expected to be more accurate than the HF density.

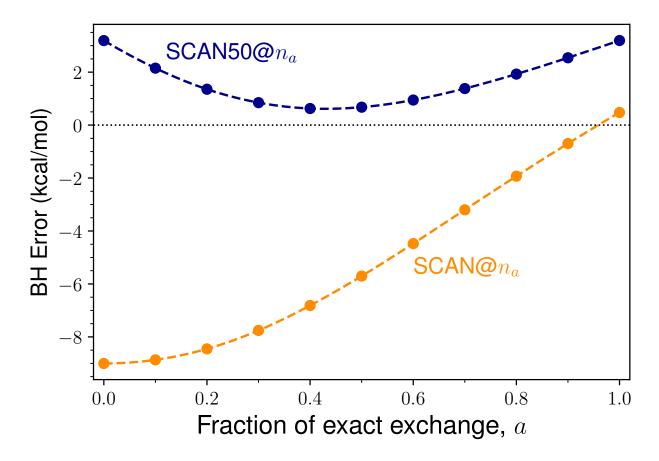


Figure 1: Error of the forward energy barrier height for the reaction $H_2 + F \rightarrow HHF \rightarrow H$ + HF from SCAN (green) and proxy-exact SCAN50 (black), evaluated on a density n_a that interpolates between the self-consistent SCAN density at a=0 and the HF density at a=1. That density is found self-consistently from the exchange-correlation functional of Eq. (5).

Hartree-Fock DFT is a successful density correction to a DFA like SCAN when FE is small in magnitude and DE(DFA) is large, as in the dissociation limits of molecular binding energy curves or the electron affinities of atoms or small molecules, because in these cases the too-delocalized DFA density is qualitatively wrong while the too-localized HF density is qualitatively right. In the barrier heights problem, however, DE(DFA) is much smaller in magnitude than FE, so that a true density correction would leave most of the total error uncorrected. To understand what actually happens for the barrier heights, imagine a density n_a computed self-consistently from a linear interpolation of the exchange-correlation energy

$$E_{\rm xc}([n];a) = E_{\rm xc}^{\rm DFA}[n] + a(E_{\rm x}^{\rm HF}[n] - E_{\rm xc}^{\rm DFA}[n]) \quad (0 \le a \le 1).$$
 (5)

The error in the barrier height is due to a small density variation around a minimizing density 171 n_a , for which $E_{\text{DFA}}[n_a] \approx E_{\text{DFA}}[n_{\text{DFA}}] + C_{\text{DFA}}a^2$, and $C_{\text{DFA}} > 0$, as we now show. 172 Figure 1 plots the forward barrier height errors of SCAN and SCAN50 when evaluated 173 on n_a , as a function of a. The error in the SCAN50@ n_a barrier height minimizes at 0.6 174 kcal/mol for $a \approx 0.43$ (by spline interpolation). Taking SCAN50 as a proxy for the exact 175 energy functional only, then the density which is closest to the exact one lies roughly in the 176 range $0.3 \lesssim a \lesssim 0.5$. Let $a = a_{\text{best}}$ be that value of a for which $n_{a_{\text{best}}} \approx n_{\text{exact}}$ is closest to 177 the exact density. Under the simplifying assumptions that $DE(DFA@n_a)$ is linear in a^2 , and 178 that $E_{\text{DFA}}[n_{a_{\text{best}}}] = E_{\text{DFA}}[n_{\text{exact}}],$

This $E_{xc}([n]; a)$ functional interpolates between the DFA (a = 0) and HF (a = 1) functionals.

170

180

$$DE(DFA) \approx -C_{DFA}a_{best}^2,$$
 (6)

DE(DFA@HF)
$$\approx C_{\text{DFA}}(1 - a_{\text{best}}^2)$$
 (7)

the SCAN data in Table 1 suggest $C_{\text{SCAN}} \approx 9.5$ kcal/mol and $a_{\text{best}} \approx 0.32$ for the forward reaction, and $C_{\text{SCAN}} \approx 8.9$ kcal/mol and $a_{\text{best}} \approx 0.37$ for the reverse reaction.

Why is the unconventional error cancellation between FE(DFA) and DE(DFA@HF) so good for barrier heights? Such a reliable effect is unlikely to be accidental. Taking SCAN50 to be a proxy for the exact functional's barrier height energy, the FE of SCAN, computed

consistent with the signs and relative magnitudes of these two DEs in Table 1. In particular,

as the difference between the barrier-height errors in SCAN@ n_a and SCAN50@ n_a in Fig. 1, strongly decreases in magnitude as a approaches 1, the HF limit. The physical reason for this could be that SCAN and other semi-local functions become more accurate for a given density as that density becomes more localized and more HF-like. Over the range 0 < a < 1, SCAN varies much more strongly than proxy-exact SCAN50.

Table 2: Binding energies (BEs), functional-driven errors (FEs), and density-driven errors (DEs) for the water dimer, using the aug-cc-pVQZ basis set.³⁵ In the CCSD(T) columns, FEs and DEs are computed by taking the CCSD(T) density to be $n_{\rm exact}$ in Eqs. (2)–(4). In the r²SCAN50 columns, FEs and DEs are computed using the self-consistent densities of the 50% global hybrid of r²SCAN, r²SCAN50, as a proxy³⁰ for the exact density $n_{\rm exact}$ in Eqs. (2)–(4). In all cases, we take the self-consistent CCSD(T) binding energy to be $E_{\rm exact}[n_{\rm exact}]$. All values are in kcal/mol.

		F	Έ	DE		
DFA	BE	CCSD(T)	$r^2SCAN50$	CCSD(T)	$r^2SCAN50$	
LSDA	-8.1	-2.6	-2.5	-0.4	-0.4	
LSDA@HF	-6.9	-2.6	-2.5	0.7	0.7	
PBE	-5.2	0.1	0.1	-0.2	-0.2	
PBE@HF	-4.4	0.1	0.1	0.6	0.6	
SCAN	-5.4	-0.1	-0.1	-0.2	-0.1	
SCAN@HF	-4.7	-0.1	-0.1	0.4	0.5	
r^2SCAN	-5.1	0.2	0.1	-0.2	-0.1	
$\rm r^2SCAN@HF$	-4.5	0.2	0.1	0.4	0.5	
$r^2SCAN50$	-4.8					
CCSD(T)	-5.1					

Finally we turn to the (negative-definite) binding energy of a water cluster $(H_2O)_n$, defined as the energy of the bound cluster minus the energies of its n separated H_2O monomers (at their optimized geometries). SCAN is accurate for the relative energies of different hydrogen-bond networks, and even for the binding energy of the water dimer $(H_2O)_2$, but overestimates the binding of larger water clusters, reaching an error of about -20 kcal/molfor $(H_2O)_{20}$ clusters. However, SCAN@HF reaches almost coupled-cluster accuracy for the binding energies of the larger water clusters. ^{12,13} Kohn-Sham inversion of a coupled cluster density for a large water cluster is computationally prohibitive at present, but we have done this for the water dimer in Table 2. While LSDA overbinds the water dimer by -3

kcal/mol, PBE, SCAN and especially r²SCAN overbind by only a few tenths of a kcal/mol, in comparison to CCSD(T). DFA@HF is more accurate than DFA for LSDA but not for PBE 201 or SCAN. Nevertheless, we still find that DFA@HF turns a small negative density-driven 202 error of DFA into a substantially larger positive density-driven error. In the larger water 203 clusters, there might again be a cancellation in DFA@HF between negative FE and positive 204 DE. Table 2 also shows that the r²SCAN 50% global hybrid is a good proxy for the exact 205 or CCSD(T) density, yielding almost the same FEs and DEs. However, as its parent meta-206 GGA r²SCAN makes essentially zero FE for the water dimer, admixture of exact exchange 207 to correct errors in the r²SCAN density introduces a more substantial FE to the r²SCAN50 208 BE. Composite methods like HF-r²SCAN-DC4⁴³ (with a long-range dispersion correction) 209 might be general-purpose practical solutions to this apparent catch-22. 210

Table S1 of the Supporting Information shows that our Kohn-Sham inversion is sufficiently accurate for our study. Letting PBE-inv denote the density obtained from Kohn-Sham inversion of the PBE density, the barrier heights from PBE@PBE and PBE@PBE-inv agree within 0.4 kcal/mol. There is a small but noticeable difference, ~ 2 kcal/mol between DFA@HF and DFA@HF-inv (the Hartree-Fock density obtained from Kohn-Sham inversion).

This is associated with the difference in the Hartree-Fock and Kohn-Sham orbitals.

To understand the density errors of DFA or DFA@HF, $E_{DFA}[n]$ must be used, as in 217 Eqs. (3) and (4), but there are many other ways to measure density errors that can lead 218 to different conclusions about the relative accuracies of the DFA and HF densities. For the 219 neutral water dimer, Ref. 13 set up a plane perpendicular to the bond axis, such that a 220 coupled cluster calculation put exactly 10 electrons on each side, and found electron transfer 221 errors of opposite sign for semi-local DFAs and for HF. Ref. 30 found the same behavior for 222 several transition states. The errors were small in magnitude, and smaller for HF than for a 223 few DFAs. In the cases studied here, $E_{\text{DFA}}[n_{\text{HF}}] - E_{\text{DFA}}[n_{\text{exact}}]$ is strongly positive, but that 224 does not rule out $E_{\rm exact}[n_{\rm HF}] - E_{\rm exact}[n_{\rm DFA}]$ being negative; the HF density could be better 225 than the DFA density in the sense of the exact density functional variational principle. That said, Fig. S1 of the Supplemental Material shows an independent measure by which the density error of H...H...F decreases from Hartree-Fock to SCAN to CCSD(T).

In summary, we have shown that DFA@HF works for the barrier heights to chemical 229 reactions, and have suggested that it works for the binding energies of larger water clusters, 230 not because the Hartree-Fock density is more accurate than the self-consistent DFA density 231 but because the Hartree-Fock density creates a positive and excessive over-correction of the 232 DFA density-driven error that cancels much of the negative functional-driven error. The 233 large functional-driven error for barrier heights was estimated first in Ref. 30, and has been 234 refined and confirmed here. It is clear from Refs. 7-10 and from Eqs. (1)-(3) that, when the 235 functional-driven error of a DFA is large and its density-driven error is small in comparison, 236 a true density correction cannot lead to high accuracy. Future work will employ proxy-exact 237 functionals to test this hypothesis for larger water clusters. Clearly, improved functionals 238 will need the right amount of fully nonlocal density dependence, in both the exchange-239 correlation energy and the exchange-correlation potential. Self-interaction corrections ^{30,44} 240 to DFAs, while needing improvement for some properties, appear for barrier heights to get 241 the right answer for the right reason, by significantly reducing both functional- and density-242 driven errors.

Besides density-corrected density functional theory, there is a second evolution from HF-DFT which is less relevant to our work but also interesting. Bartlett and collaborators 45,46 have proposed a correlated orbital theory and associated QTP functionals in which the 246 orbital energy eigenvalues yield accurate vertical ionization energies from all the occupied 247 states (a condition they infer from adiabatic time-dependent density functional theory). In 248 their work, the (generalized) Kohn-Sham potential, and not the density, takes center stage. 249 As an example, they start with a four-parameter range-separated hybrid functional, then 250 adjust the parameters in the functional (and thus in its potential) to give a best fit of the 251 energy eigenvalues to the five vertical ionization energies of the water molecule. 45 The same 252 parameters produce good vertical ionization energies and other properties in other systems, 253

with low many-electron self-interaction error. This approach should not be applied to the semi-local functionals considered here, for which all parameters satisfy other constraints and for which the orbital energy eigenvalues are strongly contaminated by self-interaction error. It could however be a way to improve one-electron self-interaction corrections to the semi-local functionals.

The conclusions of Ref. 30 (cancellation of functional- and density-driven errors) for 259 the BH76 barrier heights in Hartree-Fock density functional theory were based upon three 260 (hybrid or self-interaction-corrected) proxies for the exact densities, and have been confirmed 261 here for the H_2 + F \rightarrow H + HF barriers, and their accurate Kohn-Sham inversions. A 262 confirmation for the full BH76 set, using a more efficient but perhaps less accurate approach 263 (orbital optimized MP2), has been made recently in Ref. 47. Reference 48 provides recent 264 confirmation of our findings, with an interesting analysis of barrier-height errors with and 265 without a self-interaction correction. The higher accuracy of GGA, meta-GGA, and hybrid 266 functional densities over the Hartree-Fock density was demonstrated for isolated atoms 16 267 and for the dipole moments of molecules at equilibrium.⁴⁹ 268

For the barrier heights to chemical reactions, as for the binding energies of equilibrium molecules, the density-driven errors of self-consistent DFA calculations are small, as the variational principle applied to Eq. (3) would suggest, but the functional-driven errors of the barrier heights are large in magnitude, as in Table 1.

3 Supporting Information

Numerical validation of the Kohn-Sham inversion; single-point total energies with respect to basis set size; complete basis set extrapolation; molecular geometries; analysis of density errors of HF, SCAN, and CCSD(T) relative to Brueckner coupled-cluster doubles (CCD) density

278 Acknowledgement

B.K and V.G acknowledge support from the Department of Energy (DOE) grant DE-279 SC0022241. J.P.P. acknowledges the support of National Science Foundation grant DMR-280 1939528. J.P.P. and C.S. acknowledge support from DOE grant DE-SC0018331. A.D.K. 281 acknowledges the support of a Temple University Presidential Fellowship and the DOE-BES 282 Materials Project Program, Contract No. KC23MP. This research includes calculations car-283 ried out on HPC resources supported in part by the National Science Foundation through 284 major research instrumentation grant number 1625061 and by the US Army Research Laboratory under contract number W911NF-16-2-0189. J.P.P. and A.D.K. acknowledge discussions with Kieron Burke (who suggested the numerical tests in Table S1). J.P.P. acknowledges discussions with Michael Medvedev, Saswata Dasgupta, and Filipp Furche (who 288 suggested using the Brueckner CCD density as a reference in Fig. S1). C.S. thanks Qiming 280 Sun for his help with the PySCF code. B.K., A.D.K., and C.S. contributed equally to this 290 work. V.G. and J.P.P. contributed to the analysis and writing. 291

References

- (1) Kohn, W.; Sham, L. J. Self-consistent equations including exchange and correlation.

 Phys. Rev. 1965, 140, A1133.
- ²⁹⁵ (2) Kaplan, A. D.; Levy, M.; Perdew, J. P. Predictive power of the exact constraints and approximate norms in density functional theory. *Annu. Rev. Phys. Chem.* **2023**, *74*, 193–218.
- 298 (3) Scuseria, G. E. Comparison of coupled-cluster results with a hybrid of Hartree–Fock and density functional theory. *J. Chem. Phys.* **1992**, *97*, 7528–7530.
- 300 (4) Oliphant, N.; Bartlett, R. J. A systematic comparison of molecular properties obtained

- using Hartree–Fock, a hybrid Hartree–Fock density-functional-theory, and coupledcluster methods. J. Chem. Phys. **1994**, 100, 6550–6561.
- Janesko, B. G.; Scuseria, G. E. Hartree–Fock orbitals significantly improve the reaction barrier heights predicted by semilocal density functionals. *J. Chem. Phys.* **2008**, *128*, 244112.
- ³⁰⁶ (6) Verma, P.; Perera, A.; Bartlett, R. J. Increasing the applicability of DFT I: Non-³⁰⁷ variational correlation corrections from Hartree–Fock DFT for predicting transition ³⁰⁸ states. Chem. Phys. Lett. **2012**, 524, 10–15.
- (7) Kim, M.-C.; Sim, E.; Burke, K. Understanding and Reducing Errors in Density Functional Calculations. *Phys. Rev. Lett.* **2013**, *111*, 073003.
- Wasserman, A.; Nafziger, J.; Jiang, K.; Kim, M.-C.; Sim, E.; Burke, K. The Importance of Being Inconsistent. *Annu. Rev. Phys. Chem.* **2017**, *68*, 555–581.
- (9) Sim, E.; Song, S.; Burke, K. Quantifying Density Errors in DFT. J. Phys. Chem. Lett.
 2018, 9, 6385–6392.
- (10) Vuckovic, S.; Song, S.; Kozlowski, J.; Sim, E.; Burke, K. Density Functional Analysis:
 The Theory of Density-Corrected DFT. J. Chem. Theory Comput. 2019, 15, 6636–6646.
- 318 (11) Santra, G.; Martin, J. M. L. What Types of Chemical Problems Benefit from Density319 Corrected DFT? A Probe Using an Extensive and Chemically Diverse Test Suite. J.
 320 Chem. Theory Comput. 2021, 17, 1368–1379.
- Dasgupta, S.; Lambros, E.; Perdew, J.; Paesani, F. Elevating Density Functional Theory to Chemical Accuracy for Water Simulations through a Density-Corrected Many-Body Formalism. *Nature Commun.* **2021**, *12*, 6359.

- Density-Corrected SCAN Functional for Neutral and Ionic Aqueous Systems, and What Is So Right about the Hartree–Fock Density? *J. Chem. Theory Comput.* **2022**, *18*, 4745–4761.
- ³²⁸ (14) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. *Phys. Rev. Lett.* **1996**, *77*, 3865.
- 330 (15) Sun, J.; Ruzsinszky, A.; Perdew, J. P. Strongly constrained and appropriately normed semilocal density functional. *Phys. Rev. Lett.* **2015**, *115*, 036402.
- Medvedev, M. G.; Bushmarinov, I. S.; Sun, J.; Perdew, J. P.; Lyssenko, K. A. Density functional theory is straying from the path toward the exact functional. *Science* **2017**, 355, 49–52.
- (17) Kanungo, B.; Zimmerman, P. M.; Gavini, V. A Comparison of Exact and Model Exchange–Correlation Potentials for Molecules. J. Phys. Chem. Lett. 2021, 12, 12012–12019.
- 338 (18) Kim, M.-C.; Park, H.; Son, S.; Sim, E.; Burke, K. Improved DFT Potential Energy
 339 Surfaces via Improved Densities. *J. Phys. Chem. Lett.* **2015**, *6*, 3802–3807.
- (19) Kim, M.-C.; Sim, E.; Burke, K. Communication: Avoiding unbound anions in density
 functional calculations. J. Chem. Phys. 2011, 134, 171103.
- (20) Perdew, J. P.; Parr, R. G.; Levy, M.; Balduz Jr., J. L. Density-Functional Theory for
 Fractional Particle Number: Derivative Discontinuities of the Energy. *Phys. Rev. Lett.* 1982, 49, 1691.
- 345 (21) Sun, J.; Perdew, J. P.; Yang, Z.; Peng, H. Communication: Near-locality of exchange 346 and correlation density functionals for 1- and 2-electron systems. J. Chem. Phys. 2016, 347 144, 191101, errata ibid. 145, 019902 (2016) and submitted.

- Shahi, C.; Bhattarai, P.; Wagle, K.; Santra, B.; Schwalbe, S.; Hahn, T.; Kortus, J.;
 Jackson, K. A.; Peralta, J. E.; Trepte, K. et al. Stretched or noded orbital densities
 and self-interaction correction in density functional theory. J. Chem. Phys. 2019, 150,
 174102.
- Nam, S.; Song, S.; Sim, E.; Burke, K. Measuring Density-Driven Errors Using Kohn–Sham Inversion. J. Chem. Theory Comput. **2020**, 16, 5014–5023.
- Shi, Y.; Chávez, V. H.; Wasserman, A. n2v: A density-to-potential inversion suite. A
 sandbox for creating, testing, and benchmarking density functional theory inversion
 methods. WIREs Comput. Molec. Sci. 2022, 12, e1617.
- ³⁵⁷ (25) Kanungo, B.; Zimmerman, P. M.; Gavini, V. Exact exchange-correlation potentials from ground-state electron densities. *Nat. Commun.* **2019**, *10*, 4497.
- (26) Stückrath, J. B.; Bischoff, F. A. Reduction of Hartree–Fock Wavefunctions to
 Kohn–Sham Effective Potentials Using Multiresolution Analysis. J. Chem. Theory
 Comput. 2021, 17, 1408–1420.
- ³⁶² (27) Zhao, Y.; Lynch, B. J.; Truhlar, D. G. Multi-coefficient extrapolated density functional theory for thermochemistry and thermochemical kinetics. *Phys. Chem. Chem. Phys.* **2005**, 7, 43–52.
- Zhao, Y.; González-García, N.; Truhlar, D. G. Benchmark Database of Barrier Heights
 for Heavy Atom Transfer, Nucleophilic Substitution, Association, and Unimolecular
 Reactions and Its Use to Test Theoretical Methods. J. Phys. Chem. A 2005, 109,
 2012–2018.
- of the density functional theory zoo with the advanced GMTKN55 database for general main group thermochemistry, kinetics and noncovalent interactions. *Phys. Chem.*

- Chem. Phys. **2017**, 19, 32184–32215, This revision of BH76 is an update of datasets ^{27,28} created by D.G. Truhlar and collaborators.
- 374 (30) Kaplan, A. D.; Shahi, C.; Bhetwal, P.; Sah, R. K.; Perdew, J. P. Understanding Density-375 Driven Errors for Reaction Barrier Heights. *J. Chem. Theory Comput.* **2023**, *19*, 532– 376 543.
- 377 (31) Mori-Sánchez, P.; Cohen, A. J.; Yang, W. Many-electron self-interaction error in approximate density functionals. *J. Chem. Phys.* **2006**, *125*, 201102.
- 379 (32) Vydrov, O. A.; Scuseria, G. E. Assessment of a long-range corrected hybrid functional.
 380 J. Chem. Phys. **2006**, 125, 234109.
- ³⁸¹ (33) Pederson, M. R.; Ruzsinszky, A.; Perdew, J. P. Communication: Self-interaction cor-³⁸² rection with unitary invariance in density functional theory. *J. Chem. Phys.* **2014**, *140*, ³⁸³ 121103.
- 384 (34) Bartlett, R. J.; Musiał, M. Coupled-cluster theory in quantum chemistry. Rev. Mod.
 385 Phys. 2007, 79, 291–352.
- 386 (35) Dunning, T. H. Gaussian basis sets for use in correlated molecular calculations. I. The 387 atoms boron through neon and hydrogen. J. Chem. Phys. 1989, 90, 1007–1023.
- 388 (36) Scuseria, G. E. Analytic evaluation of energy gradients for the singles and doubles coupled cluster method including perturbative triple excitations: Theory and applications
 to FOOF and Cr₂. J. Chem. Phys. **1991**, 94, 442–447.
- 391 (37) Sun, Q.; Zhang, X.; Banerjee, S.; Bao, P.; Barbry, M.; Blunt, N. S.; Bogdanov, N. A.;

 Booth, G. H.; Chen, J.; Cui, Z.-H. et al. Recent developments in the PySCF program

 package. J. Chem. Phys. 2020, 153, 024109.
- (38) Karton, A.; Martin, J. M. L. Explicitly correlated Wn theory: W1-F12 and W2-F12.
 J. Chem. Phys. 2012, 136.

- (39) Jensen, D. S.; Wasserman, A. Numerical methods for the inverse problem of density
 functional theory. Int. J. Quantum Chem. 2018, 118, e25425.
- ³⁹⁸ (40) Kanungo, B.; Hatch, J.; Zimmerman, P. M.; Gavini, V. Exact and model exchange-³⁹⁹ correlation potentials for open-shell systems. *J. Phys. Chem. Lett.* **2023**, *14*, 10039– ⁴⁰⁰ 10045.
- (41) Perdew, J. P.; Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. *Phys. Rev. B* **1992**, *45*, 13244–13249.
- (42) Furness, J. W.; Kaplan, A. D.; Ning, J.; Perdew, J. P.; Sun, J. Accurate and Numerically Efficient r²SCAN Meta-Generalized Gradient Approximation. J. Phys. Chem.
 Lett. 2020, 11, 8208–8215.
- 406 (43) Song, S.; Vuckovic, S.; Kim, Y.; Yu, H.; Sim, E.; Burke, K. Extending density functional
 407 theory with near chemical accuracy beyond pure water. *Nat. Commun.* **2023**, *14*, 799.
- 408 (44) Shukla, P. B.; Mishra, P.; Baruah, T.; Zope, R. R.; Jackson, K. A.; Johnson, J. K.
 How Do Self-Interaction Errors Associated with Stretched Bonds Affect Barrier Height
 Predictions? J. Phys. Chem. A 2023, 127, 1750–1759.
- 411 (45) Bartlett, R. J.; Ranasinghe, D. S. The power of exact conditions in electronic structure
 412 theory. Chem. Phys. Lett. **2017**, 669, 54–70.
- 413 (46) Bartlett, R. J. Adventures in DFT by a wavefunction theorist. J. Chem. Phys. 2019,
 414 151, 160901.
- 415 (47) Hernandez, D. J.; Rettig, A.; Head-Gordon, M. A New View on Density Corrected
 416 DFT: Can One Get a Better Answer for a Good Reason? **2023**, arXiv:2306.15016.
- 417 (48) Singh, Y.; Peralta, J. E.; Jackson, K. A. The rise and fall of stretched-bond errors: An
 418 analysis of Perdew-Zunger self-interaction correction of reaction barrier heights using
 419 semilocal density functionals. *J. Chem. Phys.* **2023**, to appear.

(49) Hait, D.; Head-Gordon, M. How Accurate Is Density Functional Theory at Predicting
 Dipole Moments? An Assessment Using a New Database of 200 Benchmark Values. J.
 Chem. Theory Comput. 2018, 14, 1969–1981.