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Abstract 

In a data-driven paradigm, machine learning (ML) is the central component for developing 

accurate and universal exchange-correlation (XC) functionals in density functional theory (DFT). 

It is well known that XC functionals must satisfy several exact conditions and physical 

constraints, such as density scaling, spin scaling, and derivative discontinuity. However, these 

physical constraints are generally not incorporated implicitly into machine learning through 

model design or pre-processing on large material datasets. In this work, we demonstrate that 

contrastive learning is a computationally efficient and flexible method to incorporate a physical 

constraint, especially when the constraint is defined by an equality, in ML-based density 

functional design. We propose a schematic approach to incorporate the uniform density scaling 

property of electron density for exchange energies by adopting contrastive representation 

learning during the pretraining task. The pretrained hidden representation is transferred to the 

downstream task to predict the exchange energies calculated by DFT. Based on the computed 

electron density and exchange energies of around 10,000 molecules in the QM9 database, the 

augmented molecular density dataset is generated using the density scaling property of exchange 

energy functionals based on the chosen scaling factors. The electron density encoder transferred 

from the pretraining task based on contrastive learning predicts exchange energies that satisfy the 

scaling property, while the model trained without using contrastive learning gives poor 

predictions for the scaling-transformed electron density systems. Furthermore, the model with 

pretrained encoder gives satisfactory performance with only small fractions of the whole 

augmented dataset labeled, comparable to the model trained from scratch using the whole 

dataset. The results demonstrate that incorporating exact constraints through contrastive learning 

can enhance the understanding of density-energy mapping using neural network (NN) models 
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with less data labeling, which will be beneficial to generalize the application of NN-based XC 

functionals in a wide range of scenarios which are not always available experimentally but are 

theoretically available and justified. This work represents a viable pathway toward the machine 

learning design of a universal density functional via representation learning. 
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Introduction 

Density functional theory (DFT) is an indispensable tool in computational chemistry and 

materials science due to its combination of efficiency and accuracy.1, 2 As the standard 

computational method that is widely applied in physics, chemistry, and materials research, DFT 

has achieved high prediction accuracy enabled by the continued development of approximations 

of the exchange-correlation (XC) energy as a functional of electron density.3-7 An appropriately 

approximated density functional enables more accurate first-principles calculations for molecules 

and material systems on a larger scale. In different forms of approximations, the XC functionals 

must satisfy several exact conditions and constraints8, such as uniform scaling property,9 spin 

scaling property10 and derivative discontinuity.11 So far, all popular approximations suffer from 

systematic errors that arise from the violation of mathematical properties of the exact functional. 

It is expected that the performance and generality of density functionals can be improved by 

satisfying these constraints. For instance, the recently developed strongly constrained and 

appropriately normed (SCAN) functional7 that satisfied 17 exact constraints achieved great 

performance for both molecules and solids. Despite the development made so far, there is no 

systematic way to discover or satisfy more exact constraints and appropriate norms. 

Alternatively, in a data-driven paradigm, machine learning (ML) provides a possible route to 

make the density functionals both more predictive and more interpolative8, by imposing the exact 

constraints during the training process. 

There has been a growing interest in applying ML in physics, chemistry, and material science, 

with the aim of achieving the same or even higher prediction accuracy for molecules and 

materials with much less computational cost compared to first principles simulations. Recently, 

ML has been applied to parametrize XC functionals without domain knowledge of humans by 
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using various methods such as kernel ridge regression (KRR),12 fully connected neural networks 

(NN)13-15 and convolutional neural networks (CNN).16 Being trained in a supervised manner, 

these ML models are highly accurate across a small set of molecule systems similar to those on 

which the models are trained, while in many cases they show a worse performance on larger 

molecular datasets than they do on small ones. Neither of them demonstrates the same level of 

universality compared to conventional XC functionals. 

Plenty of effort has been devoted to leveraging physical constraints in ML of XC functionals. In 

a previous work by Lei et al.,16 by using CNN as encoders, rotationally invariant descriptors 

were extracted and projected on a basis using spherical harmonic kernels. In another work by 

Hollingsworth et al.,17 it was found that the scaling property, which is one of the exact conditions 

that the exchange energy must satisfy, can be utilized to improve the machine learning of XC 

functionals. The study is limited to one-dimensional systems and lacks the generalizability to 

two- and three-dimensional systems. Machine-learning can however follow human-devised 

strategies to satisfy exact constraints exactly, even in three dimensions. This is especially true for 

semilocal functional forms, such as GGAs and meta-GGAs. In this way, the SCAN meta-GGA,7 

which satisfies 17 exact constraints, has been combined with machine-learning in the works of 

Dick and Fernandez-Serra14 and of Nagai, Akashi, and Sugino.18 In these works, the uniform 

density scaling constraint on the exchange energy functional is satisfied exactly by employing an 

exchange enhancement factor that is a machine-learned function of semilocal descriptors 𝑑(𝒓)  

that scale to 𝑑(𝛾𝒓) when the electron density 𝑛(𝒓) scales to 𝛾3𝑛(𝛾𝒓).  Ref. 18 preserved many 

of the exact constraints satisfied by SCAN in a machine-learned functional fitted to data for 

small molecules. These works suggest that SCAN is close to the limit of what a meta-GGA can 

achieve, but that meta-GGA accuracy for molecules can still be boosted by machine learning. 
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The approach that we will present here satisfies the uniform density scaling constraint only 

approximately, but is not limited to human-devised functional forms. More recently, another 

exact condition - derivative discontinuity - was incorporated into the NN-based XC functional 

design,19 while the study is again limited to one-dimensional systems. A more recent work has 

demonstrated that the fundamental limitation can be overcome by training a neural network on 

molecular data and on fictitious systems with fractional charge and spin,20 and the resulting NN-

based functional DeepMind-21 demonstrated the universality and greatly improved predictive 

power for molecule energetics and dynamics. At the same time this work was written, schemes 

incorporating the Lieb-Oxford bound 21 and spin scaling property 10  into the machine learning 

density functional design were proposed.22  

Many of the previous works use data augmentation to improve model performance by directly 

increasing the amount of labeled data following a given physical constraint. However, increasing 

the amount of data is not always possible due to the computational cost. Going beyond data 

augmentation, self-supervised learning has gained popularity because of its ability to avoid the 

cost of annotating large-scale datasets. It adopts self-defined pseudo labels as supervision and 

uses the learned representations for downstream tasks. Self-supervised learning has been widely 

used in image representation learning 23 and natural language processing,24 and has been applied 

in molecular machine learning.25, 26 Specifically, contrastive learning (CL) has recently become a 

dominant branch in self-supervised learning methods for computer vision, natural language 

processing, and other domains.27 It aims at embedding augmented versions of the same sample 

close to each other while trying to push away embeddings from different samples in the 

representation space. The goal of contrastive learning is to learn such an embedding space in 

which similar sample pairs stay close to each other while dissimilar ones are far apart, and the 
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CL process can be applied in both unsupervised and supervised settings.28 In this work, we will 

explore the incorporation of physical constraints in density functional learning through 

contrastive learning. 

One of the most important and fundamental constraints for the exchange energy of an electron 

system is derived from the principle of uniform scaling.9 Consider an electron density 

distribution 𝑛(𝒓) and a uniformly scaled density 

𝑛𝛾(𝒓) = 𝛾3𝑛(𝛾𝒓), 

 where 𝛾 is a positive factor that scales the density around an arbitrary origin for r without 

changing the electron number∫ 𝑑3𝑟 𝑛(𝒓).  Uniform scaling preserves the shape of the density, 

apart from an overall change of length scale. (Unless the origin of r is at the center of electronic 

charge, scaling also translates that center relative to the origin, from 〈𝒓〉 to 〈𝒓〉/𝛾.) Several 

important exact constraints on density functionals can be written using the scaled density. In this 

work, we focus on the exchange energy 𝐸𝑥[𝑛], and its scaling property9: 

𝐸𝑥[𝑛𝛾] = 𝛾𝐸𝑥[𝑛]. 

This important constraint is satisfied exactly in almost all human-designed density functionals, 

whether non-empirical or semi-empirical. As a chemical example, atomic one-electron ions of 

nuclear charge Z are scaled versions of the hydrogen atom with scale factor 𝛾 = 𝑍. The exchange 

energy, -5Z𝑒2/(16𝑎0), in this case cancels the Hartree electrostatic interaction of the density with 

itself. Using this constraint as an important and illustrative example, we propose a schematic 

approach to incorporate any physical constraints (represented by equalities) via contrastive 

learning into the NN-based model design.  

Specifically, we found that traditional supervised learning without data augmentation was not 

able to incorporate the scaling constraint into the ML functional when training the electron 
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density encoder solely on a dataset of unscaled electron densities, as the model demonstrated a 

lack of extrapolability on scaled densities. To incorporate the scaling constraint, we chose to pre-

train an electron density encoder by maximizing the similarity between molecular electron 

density and its scaled version with a randomly chosen scaling factor, within the framework of 

SimCLR29, which is a widely used framework for contrastive learning of image pretraining. To 

obtain an encoder that gives similar representations (while different by a scaling factor) for 

scaled and unscaled electron densities, we added a scaling factor predictor component to the 

framework. The pre-trained encoder was then transferred to the downstream task to predict the 

exchange energies of scaled electron densities of molecule systems. It is shown that the model 

pretrained contrastively predicts exchange energies that satisfy the scaling relation, while the 

model trained without using contrastive learning gives poor predictions.  We compared the 

model performance using this method with that of supervised learning with data augmentation.  

It is found that the model pretrained using contrastive learning is able to make predictions that 

are more consistent with the scaling relation, whereas the model trained without using 

contrastive learning does not perform as well in terms of predicting exchange energies. We will 

show that contrastively learned encoders are capable of encoding molecular electron density with 

less labeling cost based on the fact that they give comparable predictions by fine-tuning using 

only a small percentage of labeled data, compared to the model trained on the whole labeled 

dataset by supervised learning. This shows that contrastive learning using constraints can 

enhance the understanding of DFT theory for neural network models with a small amount of 

labeled data while generalizing the application of NN XC functionals in a wide range of 

scenarios which are not always available experimentally but are theoretically available and 

justified. 
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Results 

Grid-based electron density 

In this work, self-consistent energy density matrices were calculated for ~10,000 molecular 

systems following the procedures described in the Methods section. These matrices were then 

projected onto a grid of size (65, 65, 65) within a cube of edge length 40 angstroms to create the 

unscaled density 𝑛(𝒓), with the center of mass located at the center of the cube. To generate the 

scaled density 𝑛𝛾(𝒓), the uniform density scaling constraint of 𝑛𝛾(𝒓) = 𝛾3𝑛(𝛾𝒓) was applied by 

taking the value of  𝑛(𝒓) at 𝛾𝒓 and multiplying it by 𝛾3. Inherent to this model choice for 

representing electron densities, using a larger number of grids generally leads to improved model 

performance. However, it is necessary to achieve a balance between model performance and 

computational cost, as the storage requirement for the volumetric data and the training time for 

the model will increase exponentially with the size of the grid. To partially mitigate this issue, in 

this work we implemented a down-sampling technique for larger grids. The input data on a (129, 

129, 129) grid is passed to a fully connected linear layer with a rectified linear unit (ReLU) 

activation to create data on a (65, 65, 65) grid. The down-sampled data have more information 

than those data obtained directly from the density matrix on a (65, 65, 65) grid. A comparison of 

model performance with and without down-sampling is provided in the Supplementary 

Information. 

Electron density encoder 

In machine learning language, encoder refers to a model that transforms the raw input data into a 

desired representation, typically with a smaller size. In this work, to efficiently handle a large 

amount of three-dimensional grid-based electron density data, the 3D convolutional neural 
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network with a Residual Network (ResNet) architecture was used as the electron density 

encoder. A brief introduction of ResNet is given in the Supplementary Information. ResNet is 

one of the most commonly used networks in image recognition. With deeper and deeper neural 

networks, effective learning becomes more challenging due to the gradient vanishing or 

exploding problem,30, 31 which makes traditional models using convolutional neural network 

layers reach a limit of performance when the number of layers increases. In 2016, He et al.32 

proposed using skip-connection that allows direct connection from the input layer to the output. 

By skipping intermediate layers, the model is able to learn the identity map even if there is a 

gradient issue within these layers. Instead of learning the mapping 𝐻 between input 𝑥 and target 

𝑦, residual networks aim to learn the residual 𝐹: 

𝐹(𝑥) ∶= 𝐻(𝑥) − 𝑥 

In the worst case, a trivial result is learned such that 𝐹(𝑥) = 0, the mapping 𝐻 is the identity 

mapping 𝐻(𝑥) = 𝑥. This skip-connection architecture enables the learning ability of neural 

networks that are extremely deep, which is critical for large-scale three-dimensional electron 

densities.  

Contrastive learning of uniform density scaling property 

Contrastive learning (CL) is a self-supervised learning (SSL) strategy that learns useful 

representations using unlabeled data by manually designing pre-training tasks with automatically 

generated labels or label relations. Typically, when applied in image recognition, data 

augmentations such as random shifting, random cropping and random rotation are applied to 

generate different views of images. The raw and augmented images are then passed to an image 

encoder to generate hidden representations that are passed to a projection head projecting 

representations onto a high dimensional unit sphere. The projected representations are used to 
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calculate contrastive loss that maximizes the similarity between projected representations of the 

same input image, while minimizing the similarity between those of different images. By 

minimizing contrastive loss and updating the model parameters through backpropagation, the 

image encoder is aware that the different views are from the same raw image, which introduces 

invariance to the model for imperfect inputs. Intuitively, an encoder trained by contrastive 

learning groups different views of the same image into the same cluster while pushing clusters 

from different images far away from each other. 

In this work, we intend to design a pre-training task such that the electron density encoder is 

aware of the uniform density scaling property. In order to do so, unscaled and scaled electron 

densities on a fixed-size spatial grid are generated using the PySCF code33 with low computation 

cost, represented as three-dimensional arrays 𝑥𝑖 , 𝑥̃𝑖𝛾 ∈ ℝ𝑑×𝑑×𝑑, where the scaling factor 𝛾 is 

chosen from five different scales: 1/3, 1/2, 2, and 3. The scaled density is then translated 

randomly in the three-dimensional space to incorporate the translational symmetry. We included 

translational symmetry because our uniform density scaling translates the center of electronic 

charge, but this additional constraint was not found to be numerically important (Table 1). 

Electron density arrays are encoded as hidden representations ℎ𝑖 = 𝑓(𝑥𝑖), ℎ̃𝑖𝛾 = 𝑓(𝑥̃𝑖𝛾) ∈ ℝ𝑚 

through the density encoder that is a mapping 𝑓: ℝ𝑑×𝑑×𝑑 → ℝ𝑚 to be learned. The hidden 

representations are then projected as a set of points 𝑧𝑖 = 𝑔(ℎ𝑖) ∈ ℝ𝑛 on a high dimensional unit 

sphere by a mapping 𝑔: ℝ𝑚 → ℝ𝑛 (𝑛 < 𝑚) that is a multilayer perceptron (MLP). For a batch of 

𝑁 molecules, the output 𝑍 ∈ ℝ2𝑁×𝑚  contains projected representations of unscaled and scaled 

densities. Then we calculate the normalized temperature-scaled cross entropy (NT-Xent) loss29 

that is defined as: 

𝑙𝑖𝑗 = −log
exp (𝑧𝑖 ∙ 𝑧𝑗/𝜏)

∑ exp (𝑧𝑖 ∙ 𝑧𝑘/𝜏)2𝑁
𝑘=1,𝑘≠𝑖

, 
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where the temperature factor 𝜏 is a small positive real number, and the exponential term when 

𝑘 = 𝑖 is excluded in the summation in the denominator to ensure that the loss is zero if dissimilar 

projected representations are antiparallel and similar ones are parallel. Indeed, for 𝜏 → 0+, 𝑧𝑖 ∙

𝑧𝑗 ≠ 0, 𝑧𝑖 ∙ 𝑧𝑘 = −1 (𝑘 ≠ 𝑗), 

𝑙𝑖𝑗 = log (1 +
∑ exp(𝑧𝑖 ∙ 𝑧𝑘/𝜏)2𝑁

𝑘=1,𝑘≠𝑖,𝑗

exp(𝑧𝑖 ∙ 𝑧𝑗/𝜏)
) = log [1 + (2N − 2) exp (−

2

τ
)] → 0 

For a batch of 𝑁 molecules, 𝑧2𝑘−1 and 𝑧2𝑘 are the corresponding projected representations of 

unscaled and scaled densities of the same molecule. Notice that the loss function is asymmetric 

(𝑙𝑖𝑗 ≠ 𝑙𝑗𝑖) and the total loss is 

𝐿 =
1

2𝑁
∑(𝑙2𝑘−1,2𝑘 + 𝑙2𝑘,2𝑘−1)

𝑁

𝑘=1

 

The loss is zero when the projected representations of different molecules are perpendicular to 

each other, which ensures that dissimilar samples are pushed far apart from each other.  

 

In the original SimCLR framework29, augmented and unaugmented views of the same input form 

positive pairs, while those of different inputs form negative pairs. We would emphasize that, 

without any modules added to distinguish positive pairs, the encoder trained would be too “lazy” 

to learn different representations for the two “views” of the same input, since the simplest 

mapping 𝑓 that minimize the loss learns the same hidden representation for the augmented and 

unaugmented input from the same image, which satisfies ℎ̃𝑖𝛾 = 𝑓(𝑥̃𝑖𝛾) = 𝑓(𝑥𝑖) = ℎ𝑖. Therefore, 

a module predicting the scaling factor from two hidden representations of the same molecule is 

added to distinguish the scaled density data from unscaled data. The final loss of the contrastive 
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pretraining task is the summation of these two losses. The workflow of the pretraining task is 

shown in Fig. 2(a). 

The cosine similarity of learned projected representations 𝑧 and 𝑧̃ for a batch of 32 molecules is 

shown in Fig. 3(a). As expected, the cosine similarity shows maximum values for positive pairs – 

unscaled and scaled densities of the same molecules, while the value is close to zero for negative 

pairs – densities of different molecules. We further verify that projected representations of 

different molecules are well separated from each other by computing the t-distributed neighbor 

embedding (t-SNE). In Fig. 2(c), two examples of molecules, learned projected representations 

and predictions on scaling factors are shown. The best model achieves 0.01976 contrastive loss 

and 2e-4 mean square error for scaling factor prediction. 

Comparison of performance of supervised learning and contrastive learning 

Supervised learning using unscaled electron densities 

Supervised learning of neural networks is one of the most widely used machine learning 

strategies in material science. In machine learned-XC functionals, by training with a large 

amount of labeled data electron densities with the corresponding target exchange energies, the 

model can give predictions with a small discrepancy with the true targets energy values. 

However, one of the limitations of supervised learning is the fact that an outstanding 

performance on a given dataset does not guarantee equally good performance on other datasets. 

In this section, we will show that the model trained by supervised learning on unscaled density 

data achieves a very high prediction accuracy for predicting exchange energies from unscaled 

molecular electron densities, but at the same time demonstrates a large prediction error for scaled 

densities. This observation clearly shows that the model trained on unscaled density dataset with 
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supervised learning does not understand the uniform scaling property that exchange energy 

functionals must satisfy.  

Within the data-driven paradigm, the mapping of molecular electron density to the exchange 

energy is directly learned in a supervised manner by feeding electron densities to an electron 

density encoder, with the corresponding exchange energies calculated from first-principles 

calculations as labels the learning targets. Electron density in three-dimensional space is 

represented by a three-dimensional array, with the dimension along each axis equal to the grid 

dimension along the same axis. Encoding and decoding of volumetric data in three-dimensional 

space has been previously studied in 3D-UNet,34 with a DoubleConv layer consisting of two 

subsequent 3D convolutional layers as the building block. In the same 3D-UNet framework, 

instead of DoubleConv, residual networks can be used as the building block to extract useful 

information from raw three-dimensional volumetric data.35 In this work, the mapping of electron 

density to the exchange energy will be learned, so only the encoder part will be adopted from 

3D-UNet. The encoder consists of several connected building block layers, being either 

DoubleConv or ResNet (see Methods). Due to the fact that ResNet outperforms DoubleConv for 

our learning tasks, as shown in the Supplementary Information, we chose ResNet as the building 

block of the encoder. 

The architecture of the encoder is shown in Fig. 1(b). A hidden representation that captures 

density-energy correlation is learned and fed to a subsequent fully connected prediction layer to 

give a single value prediction on the exchange energy. The original electron densities of 

molecules (with a scaling factor equal to one) are included in the dataset. For reliable evaluation 

of the models, the dataset is split into 80%, 20% 10%, and 10% as training, validation, and 

testing datasets, containing 8000, 1000, and 1000 unscaled data, respectively. The training set is 
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employed to train the model for 500 epochs by minimizing the mean squared error (MSE) loss, 

and the model is then applied to validate the performance on the validation testing set using the 

mean absolute error (MAE) as the measure.  

To investigate whether the model trained with only unscaled densities understands the uniform 

density scaling property, we test its performance on both unscaled and scaled density datasets. 

As shown in Fig. 3(a), the difference in energy between predictions and targets on the unscaled 

dataset is close to 0.45 eV on average. Instead of minimizing this prediction error for unscaled 

electron density by improving existing learning frameworks, the focus in this work is to 

demonstrate the role of contrastive learning in the process of incorporating physical constraints 

in density functional design. As shown in Fig. 3(a), a clear observation is that the model does not 

provide reasonable predictions for the exchange energies of the scaled density dataset. This 

indicates that the models trained in a supervised manner using only unscaled density in general 

do not satisfy the uniform density scaling property and thus give unreliable predictions for scaled 

densities, although they may achieve very high accuracy on the unscaled density dataset. This 

motivates us to apply contrastive learning in a pretraining task to give our model the ability to 

understand the density scaling property. 

Contrastive learning model performance with different label percentages amount of 

training data 

Now we investigate the model for predicting exchange energies from electron densities. The 

density encoder part of the model is transferred from the contrastive pretraining task. In a 

comparative test, the model is trained from scratch and its performance is compared to the 

transferred model. When fine-tuning the transferred model, we adopt training sets with 80%, 

60%, 40% or 20% labels data five different training/validation/testing data splits: 
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40,000/5,000/5,000, 32,000/5,000/5,000, 24,000/5,000/5,000, 16,000/5,000/5,000 and 

8,000/5,000/5,000. As shown in Table 1, our approach outperforms supervised learning with data 

augmentation in terms of exchange energy prediction accuracy, as demonstrated by smaller mean 

absolute errors (MAE) after fine-tuning with the same amount of training data (40,000). This 

demonstrates that our contrastive learning model can reduce the need for a large amount of data 

while achieving even better performance.  

Furthermore, the model trained with the contrastive learning method gives a prediction of 

exchange energies that satisfy the uniform density scaling property. As shown in Fig. 4, 

predicted and target exchange energies demonstrate a strong linear correlation even when the 

number of training data is decreased. Note that for the case of using 8000 training data, the 

model uses the same number of training data as that of the supervised learning task in a previous 

section. The dramatic difference of performance between models shown in Fig. 3 shows the 

understandability of uniform scaling property which is enabled by our proposed models. Because 

of the choice of using the same uniform grids for both scaled and unscaled densities, when the 

electron densities are “squeezed”, the number of effective grid points with finite density values is 

decreased. As a result, the prediction accuracy for the scaled electron densities with γ > 1 is in 

general worse. Note that the model prediction accuracy can be further improved by using 

nonuniform density grids or representing the electron densities by a set of local orbitals.14 

Alternatively, this can be addressed in future studies by learning the exchange energy directly 

from density matrices instead of a projected uniform grid with limited resolution. 

Discussion 

In this work, contrastive learning is adapted to a pretrained electron density encoder to 

incorporate the uniform density scaling property for exchange energy predictions. Generated 
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from first-principles calculations, the scaled and unscaled electron densities of molecules from 

the QM9 dataset are used to contrastively train the electron density encoder. Scaled and unscaled 

densities of the same molecule are treated as similar pairs, while those from different molecules 

as dissimilar ones. The pretrained model achieves a 0.01976 contrastive loss. It also predicts the 

scaling factors from hidden representations of scaled and unscaled densities, with a 2e-4 MSE 

accuracy. The encoder is then transferred to a downstream task to predict the computed exchange 

energies from electron densities with different scaling factors. Using contrastive learning as the 

pretraining method, our model performs well for the prediction of exchange energies of both 

scaled and unscaled electron densities that satisfy the uniform scaling property, while the model 

trained using only unscaled densities in a supervised manner demonstrates unreliable 

performance for the prediction of exchange energies of scaled densities. This clearly 

demonstrates that contrastive learning is an effective approach in a data-driven paradigm to 

enable the neural network to learn physical principles in the process of mapping electron 

densities to energies.  

In conclusion, we show that contrastive learning can be used as an adaptive and effective method 

to incorporate the uniform scaling property of DFT theory into the machine learning model 

design. Moreover, the contrastive learning method proposed in this work has the potential to be 

generalized to other exact physical constraints, such as rotational symmetry, spin scaling 

property, and so on. Incorporating physical constraints into machine learning model design 

through contrastive learning can lead to a significant reduction of the need of training data while 

providing insights into the machine learning XC density functionals and beyond. 

A similar effect occurs with human-designed density functionals: Those that are constructed to 

satisfy more exact constraints require fewer fit parameters that can be determined from smaller 
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sets of molecular data, and a nonempirical meta-GGA functional7 satisfying 17 exact constraints 

can perform rather well without any fitting to molecular data. The improvement of generalized 

gradient approximations (GGAs) or meta-GGAs by their global hybridization36 with exact 

exchange is a good example, since the exact constraints on the underlying GGA or meta-GGA 

are preserved for any value of the fraction of exact exchange that is mixed with a complementary 

fraction of GGA or meta-GGA exchange. 

 

Methods 

Molecular electron density dataset 

We chose 10k,000 molecules from the QM9 dataset 37, 38 by imposing the following criteria: (i) 

each molecule contains less than 20 atoms; (ii) each molecule does not contain atoms with an 

atomic number larger than 36 (element Kr); (iii) the size of each molecule is less than 12 

angstroms; and (iv) the DFT calculated exchange energy of the molecule should be greater than -

200 eV. Molecular density matrices are calculated by DFT with the PBE functional3 as 

implemented in the PySCF package.33 To prepare the grid-like input data with fixed dimensions, 

we project the density matrices onto real space grid points with a shape (65, 65, 65) on a fixed 

size cube centered at the origin with a length of 40 angstroms. The number of grid points is set to 

odd integers to include the origin. A larger grid with shape (129, 129, 129) is also used to 

construct more detailed density data. Due to the limit of storage for the whole dataset, an average 

pooling down-sampling pre-process is applied to reduce the grid dimensions from 129 to 65. A 

comparison of the results using these two grids is given in later sections the Supplementary 

Information. The projection of density matrices on grids in three-dimensional space is performed 
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by using the PySCF code.33 The exchange energies are calculated from the density matrices as 

they would be in Hartree-Fock or exact exchange theories using the NWChem code39. 

Training and evaluation of supervised learning task 

To demonstrate that the model trained with supervised learning without data augmentation does 

not understand the uniform scaling property, supervised learning was performed on unscaled 

dataset. The dataset contains the unscaled electron density in real space of 10,000 molecules 

from QM9 dataset.  To find out the best model that encodes the electron density, two different 

types of building block layers: ResNet and DoubleConv, were tested to build the density 

encoder. The model was built and trained using the PyTorch-Lightning package40 which is a 

framework based on the PyTorch package41. The whole dataset is split into 80% and 20%, 10% 

and 10% for training, validation and testing, containing 8000, 1000 and 1000 data, respectively. 

Training loss is backpropagated to update the model parameters by an Adam optimizer 42  with a 

learning rate of 0.001. The best model was chosen to be that with smallest MAE after 500 

epochs. 

Training and evaluation of contrastive learning task 

The dataset consists of electron densities of 10k,000 molecules chosen from QM9 dataset. Each 

raw electron density is augmented by a scaled one with the scaling factor chosen from 1/3, 1/2, 1, 

2, and 3, leading to a dataset with 50,000 data. The scaled density is then translated randomly in 

the three-dimensional space. As a result of hyperparameter searching, ResNet with feature maps 

(16, 32, 64, 128) and DoubleConv with feature maps (32, 64, 128) are chosen for the comparison 

of performance on the downstream task. The whole dataset is split into 80% and 20%, 10% and 

10% for training, validation and testing, containing 40,000, 5,000 and 5,000 data, respectively. 

(See Figs. 3 and 4, and Table 1.) The total training loss is the summation of contrastive loss and 
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scaling factor prediction loss, which is then backpropagated to update the model parameters by 

an Adam optimizer with a learning rate of 0.001. The best model was chosen to be that with 

smallest total loss after 1000 epochs. 

Training and evaluation of downstream task using transfer learning and supervised 

learning 

The dataset consists of original unscaled and four augmented electron densities that are scaled by 

four scaling factors (1/3, 1/2, 2, and 3) for 10,000 molecules chosen from the QM9 dataset, 

resulting in a dataset containing 50,000 electron densities. The whole dataset is split into 80%, 

10% and 10% for training, validation and testing, with a total of 40,000 training data, 5000 

validation data and 5000 testing data. The model consists of an encoder that transferred from the 

contrastive learning task and a simple linear layer. For a given scaled density data 𝑛𝛾, the model 

predicts the scaling factor 𝛾 and the unscaled exchange energy 𝐸𝛾=1 from which the predicted 

scaled energy can easily been calculated by 𝐸𝛾 = 𝛾𝐸𝛾=1. The total loss is calculated by the mean 

squared error between the real and predicted 𝛾 and 𝐸𝛾=1. 

To ensure a fair comparison, we also train a model from scratch without using the transferred 

encoder, which represents the simple method of supervised learning with data augmentation. The 

results of comparison are shown in Table 1. 

 

Data availability 

The python code and data for this work can be found at https://github.com/qmatyanlab/DFCL. 

The authors declare that the main data supporting the findings of this study are available within 

the paper and its Supplementary files. Other relevant data are available from the corresponding 

author upon reasonable request. 
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Figure 1. (a) The workflow of the proposed contrastive learning framework. For a given 

molecule, an unscaled and a scaled and translated electron density are fed into the density 

encoder to obtain hidden representations. The subsequent modules are divided into two parts: a 

projection head that produces the projected representations, from which the contrastive similarity 

loss is calculated; a scale predictor that predicts the scaling factor from the hidden representation 

pairs, from which the mean squared error loss is calculated. (b) The two electron densities from 

the same molecule form positive pairs, while those from different molecules form negative pairs. 

(c) The visualization of general contrastive learning. Multiple “views” of the same input 

molecule are generated by data augmentation. After encoding and projection, representations 

from the same molecule attract each other, while those from different molecules repel each other. 

(d) The architecture of the density encoder, the projection module, and the ResNet building 

block.   
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Figure 2. (a)The cosine similarity between the learned projected representations of unscaled and 

scaled densities for a batch of 32 molecules. Each element in the matrix is computed as 

𝑐𝑜𝑠(𝑧𝑖 , 𝑧̃𝑗) ∶= 𝑧𝑖 ∙ 𝑧̃𝑗. The brighter it is, the closer the value is to 1. (b) The t-distributed stochastic 

neighbor embedding (t-SNE) of 32 learned projected representations.  (c) Two molecule 

examples, the corresponding learned projected representations, and the predictions on scaling 

factors. 
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Figure 3. Performance comparison of supervised learning model and contrastive learning model 

on datasets with different scaling factors. (a) Supervised learning model shows large prediction 

errors on scaled datasets. (b) Model trained by contrastive learning give much more reliable 

predictions on all datasets (both scaled and unscaled). Commented [YQ1]: The figure labels are a bit small. Also, 
mark those changes in the caption in red. 
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Figure 4. Performance of contrastively pre-trained models fine-tuned with four different training 

set sizes. The model keeps the capability to give predictions with relatively small error even 

when the number of training data decreases. 
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Table 1. The MAE of the model (in eV) with ResNet (in eV) and DoubleConv as density 

encoders for predicting exchange energies of molecule systems in the QM9 database. A down-

sampling is applied to the input data to down-sample the data on grid (129, 129, 129) to a grid 

(65, 65, 65). Performance is tested for a model trained from scratch in a supervised manner and 

models trained in a contrastive learning (with and without random translations) plus transfer 

learning scheme with 80%, 60%, 40%, and 20% labeled data (different percentages of the 

unscaled data used to train the model) train / validate split. MAE on unscaled (1,000 data with 

scale equals to 1) and scaled (5,000 data with 5 different scales) test sets is used to represent the 

model performance.  

 

Train/validate split  

MAE on test set (eV) 

Unscaled (size = 1000)   

(𝛾=1) 

Scaled (size = 5000) 

(𝛾=1/3, 1/2, 1, 2, 3) 

Supervised learning 

40,000/5,000 0.481 0.757 

Contrastive + transfer learning 

40,000/5,000 0.461 0.739 

32,000/5,000 0.505 0.874 

24,000/5,000 0.561 0.932 

16,000/5,000 0.738 1.070 

8,000/5,000 0.973 1.289 
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