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Abstract

In a data-driven paradigm, machine learning (ML) is the central component for developing
accurate and universal exchange-correlation (XC) functionals in density functional theory (DFT).
It is well known that XC functionals must satisfy several exact conditions and physical
constraints, such as density scaling, spin scaling, and derivative discontinuity. However, these
physical constraints are generally not incorporated implicitly into machine learning through
model design or pre-processing on large material datasets. In this work, we demonstrate that
contrastive learning is a computationally efficient and flexible method to incorporate a physical
constraint, especially when the constraint is defined by an equality, in ML-based density
functional design. We propose a schematic approach to incorporate the uniform density scaling
property of electron density for exchange energies by adopting contrastive representation
learning during the pretraining task. The pretrained hidden representation is transferred to the
downstream task to predict the exchange energies calculated by DFT. Based on the computed
electron density and exchange energies of around 10,000 molecules in the QM9 database, the
augmented molecular density dataset is generated using the density scaling property of exchange
energy functionals based on the chosen scaling factors. The electron density encoder transferred
from the pretraining task based on contrastive learning predicts exchange energies that satisfy the
scaling property, while the model trained without using contrastive learning gives poor
predictions for the scaling-transformed electron density systems. Furthermore, the model with
pretrained encoder gives satisfactory performance with only small fractions of the whole
augmented dataset labeled, comparable to the model trained from scratch using the whole
dataset. The results demonstrate that incorporating exact constraints through contrastive learning

can enhance the understanding of density-energy mapping using neural network (NN) models



with less data labeling, which will be beneficial to generalize the application of NN-based XC
functionals in a wide range of scenarios which are not always available experimentally but are
theoretically available and justified. This work represents a viable pathway toward the machine

learning design of a universal density functional via representation learning.



Introduction

Density functional theory (DFT) is an indispensable tool in computational chemistry and
materials science due to its combination of efficiency and accuracy.!? As the standard
computational method that is widely applied in physics, chemistry, and materials research, DFT
has achieved high prediction accuracy enabled by the continued development of approximations
of the exchange-correlation (XC) energy as a functional of electron density.’’ An appropriately
approximated density functional enables more accurate first-principles calculations for molecules
and material systems on a larger scale. In different forms of approximations, the XC functionals
must satisfy several exact conditions and constraints®, such as uniform scaling property,’ spin
scaling property'® and derivative discontinuity.'! So far, all popular approximations suffer from
systematic errors that arise from the violation of mathematical properties of the exact functional.
It is expected that the performance and generality of density functionals can be improved by
satisfying these constraints. For instance, the recently developed strongly constrained and
appropriately normed (SCAN) functional’ that satisfied 17 exact constraints achieved great
performance for both molecules and solids. Despite the development made so far, there is no
systematic way to discover or satisfy more exact constraints and appropriate norms.
Alternatively, in a data-driven paradigm, machine learning (ML) provides a possible route to
make the density functionals both more predictive and more interpolative®, by imposing the exact
constraints during the training process.

There has been a growing interest in applying ML in physics, chemistry, and material science,
with the aim of achieving the same or even higher prediction accuracy for molecules and
materials with much less computational cost compared to first principles simulations. Recently,

ML has been applied to parametrize XC functionals without domain knowledge of humans by



using various methods such as kernel ridge regression (KRR),'? fully connected neural networks
(NN)!*15 and convolutional neural networks (CNN).'® Being trained in a supervised manner,
these ML models are highly accurate across a small set of molecule systems similar to those on
which the models are trained, while in many cases they show a worse performance on larger
molecular datasets than they do on small ones. Neither of them demonstrates the same level of
universality compared to conventional XC functionals.

Plenty of effort has been devoted to leveraging physical constraints in ML of XC functionals. In
a previous work by Lei et al.,'® by using CNN as encoders, rotationally invariant descriptors
were extracted and projected on a basis using spherical harmonic kernels. In another work by
Hollingsworth et al.,'” it was found that the scaling property, which is one of the exact conditions
that the exchange energy must satisfy, can be utilized to improve the machine learning of XC
functionals. The study is limited to one-dimensional systems and lacks the generalizability to
two- and three-dimensional systems. Machine-learning can however follow human-devised
strategies to satisfy exact constraints exactly, even in three dimensions. This is especially true for
semilocal functional forms, such as GGAs and meta-GGAs. In this way, the SCAN meta-GGA,’
which satisfies 17 exact constraints, has been combined with machine-learning in the works of
Dick and Fernandez-Serra'* and of Nagai, Akashi, and Sugino.'® In these works, the uniform
density scaling constraint on the exchange energy functional is satisfied exactly by employing an
exchange enhancement factor that is a machine-learned function of semilocal descriptors d(r)
that scale to d(yr) when the electron density n(r) scales to y3n(yr). Ref. 18 preserved many
of the exact constraints satisfied by SCAN in a machine-learned functional fitted to data for
small molecules. These works suggest that SCAN is close to the limit of what a meta-GGA can

achieve, but that meta-GGA accuracy for molecules can still be boosted by machine learning.



The approach that we will present here satisfies the uniform density scaling constraint only
approximately, but is not limited to human-devised functional forms. More recently, another
exact condition - derivative discontinuity - was incorporated into the NN-based XC functional
design,'® while the study is again limited to one-dimensional systems. A more recent work has
demonstrated that the fundamental limitation can be overcome by training a neural network on
molecular data and on fictitious systems with fractional charge and spin,?® and the resulting NN-
based functional DeepMind-21 demonstrated the universality and greatly improved predictive
power for molecule energetics and dynamics. At the same time this work was written, schemes
incorporating the Lieb-Oxford bound 2! and spin scaling property '° into the machine learning
density functional design were proposed.??

Many of the previous works use data augmentation to improve model performance by directly
increasing the amount of labeled data following a given physical constraint. However, increasing
the amount of data is not always possible due to the computational cost. Going beyond data
augmentation, self-supervised learning has gained popularity because of its ability to avoid the
cost of annotating large-scale datasets. It adopts self-defined pseudo labels as supervision and
uses the learned representations for downstream tasks. Self-supervised learning has been widely
used in image representation learning 2* and natural language processing,?* and has been applied
in molecular machine learning.?> 26 Specifically, contrastive learning (CL) has recently become a
dominant branch in self-supervised learning methods for computer vision, natural language
processing, and other domains.?’ It aims at embedding augmented versions of the same sample
close to each other while trying to push away embeddings from different samples in the
representation space. The goal of contrastive learning is to learn such an embedding space in

which similar sample pairs stay close to each other while dissimilar ones are far apart, and the



CL process can be applied in both unsupervised and supervised settings.?® In this work, we will
explore the incorporation of physical constraints in density functional learning through
contrastive learning.
One of the most important and fundamental constraints for the exchange energy of an electron
system is derived from the principle of uniform scaling.” Consider an electron density
distribution n(7) and a uniformly scaled density

n, (r) = y*n(yr).
where y is a positive factor that scales the density around an arbitrary origin for r without
changing the electron number [ d3r n(r). Uniform scaling preserves the shape of the density,
apart from an overall change of length scale. (Unless the origin of r is at the center of electronic
charge, scaling also translates that center relative to the origin, from (r) to (r)/y.) Several
important exact constraints on density functionals can be written using the scaled density. In this
work, we focus on the exchange energy E,[n], and its scaling property’:

Ex[ny] = vEx[n].
This important constraint is satisfied exactly in almost all human-designed density functionals,
whether non-empirical or semi-empirical. As a chemical example, atomic one-electron ions of
nuclear charge Z are scaled versions of the hydrogen atom with scale factor y = Z. The exchange
energy, -5Ze2/(16a,), in this case cancels the Hartree electrostatic interaction of the density with
itself. Using this constraint as an important and illustrative example, we propose a schematic
approach to incorporate any physical constraints (represented by equalities) via contrastive
learning into the NN-based model design.
Specifically, we found that traditional supervised learning without data augmentation was not

able to incorporate the scaling constraint into the ML functional when training the electron



density encoder solely on a dataset of unscaled electron densities, as the model demonstrated a
lack of extrapolability on scaled densities. To incorporate the scaling constraint, we chose to pre-
train an electron density encoder by maximizing the similarity between molecular electron
density and its scaled version with a randomly chosen scaling factor, within the framework of
SimCLR?, which is a widely used framework for contrastive learning of image pretraining. To
obtain an encoder that gives similar representations (while different by a scaling factor) for
scaled and unscaled electron densities, we added a scaling factor predictor component to the
framework. The pre-trained encoder was then transferred to the downstream task to predict the

exchange energies of scaled electron densities of molecule systems. Ht-isshown-thatthe-model

- We compared the
model performance using this method with that of supervised learning with data augmentation.
It is found that the model pretrained using contrastive learning is able to make predictions that
are more consistent with the scaling relation, whereas the model trained without using
contrastive learning does not perform as well in terms of predicting exchange energies. We will
show that contrastively learned encoders are capable of encoding molecular electron density with
less labeling cost based on the fact that they give comparable predictions by fine-tuning using
only a small percentage of labeled data, compared to the model trained on the whole labeled
dataset by supervised learning. This shows that contrastive learning using constraints can
enhance the understanding of DFT theory for neural network models with a small amount of
labeled data while generalizing the application of NN XC functionals in a wide range of
scenarios which are not always available experimentally but are theoretically available and

justified.



Results

Grid-based electron density

In this work, self-consistent energy density matrices were calculated for ~10,000 molecular
systems following the procedures described in the Methods section. These matrices were then
projected onto a grid of size (65, 65, 65) within a cube of edge length 40 angstroms to create the
unscaled density n(r), with the center of mass located at the center of the cube. To generate the

scaled density n,, (1), the uniform density scaling constraint of n, (1) = y3n(yr) was applied by

taking the value of n(r) at yr and multiplying it by ¥3. Inherent to this model choice for
representing electron densities, using a larger number of grids generally leads to improved model
performance. However, it is necessary to achieve a balance between model performance and
computational cost, as the storage requirement for the volumetric data and the training time for
the model will increase exponentially with the size of the grid. To partially mitigate this issue, in
this work we implemented a down-sampling technique for larger grids. The input data on a (129,
129, 129) grid is passed to a fully connected linear layer with a rectified linear unit (ReLU)
activation to create data on a (65, 65, 65) grid. The down-sampled data have more information
than those data obtained directly from the density matrix on a (65, 65, 65) grid. A comparison of
model performance with and without down-sampling is provided in the Supplementary
Information.

Electron density encoder

In machine learning language, encoder refers to a model that transforms the raw input data into a
desired representation, typically with a smaller size. In this work, to efficiently handle a large

amount of three-dimensional grid-based electron density data, the 3D convolutional neural



network with a Residual Network (ResNet) architecture was used as the electron density

encoder. A brief introduction of ResNet is given in the Supplementary Information. ResNetis

Contrastive learning of uniform density scaling property

Contrastive learning (CL) is a self-supervised learning (SSL) strategy that learns useful
representations using unlabeled data by manually designing pre-training tasks with automatically
generated labels or label relations. Typically, when applied in image recognition, data
augmentations such as random shifting, random cropping and random rotation are applied to
generate different views of images. The raw and augmented images are then passed to an image
encoder to generate hidden representations that are passed to a projection head projecting

representations onto a high dimensional unit sphere. The projected representations are used to
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calculate contrastive loss that maximizes the similarity between projected representations of the
same input image, while minimizing the similarity between those of different images. By
minimizing contrastive loss and updating the model parameters through backpropagation, the
image encoder is aware that the different views are from the same raw image, which introduces
invariance to the model for imperfect inputs. Intuitively, an encoder trained by contrastive
learning groups different views of the same image into the same cluster while pushing clusters
from different images far away from each other.

In this work, we intend to design a pre-training task such that the electron density encoder is
aware of the uniform density scaling property. In order to do so, unscaled and scaled electron
densities on a fixed-size spatial grid are generated using the PySCF code® with low computation

€ R3*4%d where the scaling factor y is

cost, represented as three-dimensional arrays x;, ¥,
chosen from five different scales: 1/3, 1/2, 2, and 3. The scaled density is then translated
randomly in the three-dimensional space to incorporate the translational symmetry. We included
translational symmetry because our uniform density scaling translates the center of electronic
charge, but this additional constraint was not found to be numerically important (Table 1).
Electron density arrays are encoded as hidden representations h; = f(x;), fli}, = f(%;) ER™
through the density encoder that is a mapping f: R%*4*4 — R™ to be learned. The hidden
representations are then projected as a set of points z; = g(h;) € R"™ on a high dimensional unit
sphere by a mapping g: R™ — R" (n < m) that is a multilayer perceptron (MLP). For a batch of
N molecules, the output Z € R2¥*™ contains projected representations of unscaled and scaled
densities. Then we calculate the normalized temperature-scaled cross entropy (NT-Xent) loss

that is defined as:

exp (z; - z;/T)
TNy ke XD (2 21 /T)

lij = —log
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where the temperature factor 7 is a small positive real number, and the exponential term when

k =i is excluded in the summation in the denominator to ensure that the loss is zero if dissimilar

projected representations are antiparallel and similar ones are parallel. Indeed;fore—0% 2

In the original SimCLR framework?’, augmented and unaugmented views of the same input form
positive pairs, while those of different inputs form negative pairs. We would emphasize that,
without any modules added to distinguish positive pairs, the encoder trained would be too “lazy”
to learn different representations for the two “views” of the same input, since the simplest
mapping f that minimize the loss learns the same hidden representation for the augmented and
unaugmented input from the same image, which satisfies fliy =f ()?iy) = f(x;) = h;. Therefore,
a module predicting the scaling factor from two hidden representations of the same molecule is

added to distinguish the scaled density data from unscaled data. The final loss of the contrastive
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pretraining task is the summation of these two losses. The workflow of the pretraining task is
shown in Fig. 2(a).

The cosine similarity of learned projected representations z and Z for a batch of 32 molecules is
shown in Fig. 3(a). As expected, the cosine similarity shows maximum values for positive pairs —
unscaled and scaled densities of the same molecules, while the value is close to zero for negative
pairs — densities of different molecules. We further verify that projected representations of
different molecules are well separated from each other by computing the t-distributed neighbor
embedding (t-SNE). In Fig. 2(c), two examples of molecules, learned projected representations
and predictions on scaling factors are shown. The best model achieves 0.01976 contrastive loss

and 2e-4 mean square error for scaling factor prediction.

Supervised learning using unscaled electron densities

Supervised learning of neural networks is one of the most widely used machine learning
strategies in material science. In machine learned-XC functionals, by training with a large
amount of labeled-data electron densities with the corresponding target exchange energies, the
model can give predictions with a small discrepancy with the true-targets energy values.
However, one of the limitations of supervised learning is the fact that an outstanding
performance on a given dataset does not guarantee equally good performance on other datasets.
In this section, we will show that the model trained by supervised learning on unscaled density
data achieves a very high prediction accuracy for predicting exchange energies from unscaled
molecular electron densities, but at the same time demonstrates a large prediction error for scaled

densities. This observation clearly shows that the model trained on unscaled density dataset with
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supervised learning does not understand the uniform scaling property that exchange energy
functionals must satisfy.

Within the data-driven paradigm, the mapping of molecular electron density to the exchange
energy is directly learned in a supervised manner by feeding electron densities to an electron
density encoder, with the corresponding exchange energies calculated from first-principles
calculations as labels the learning targets. Electron density in three-dimensional space is
represented by a three-dimensional array, with the dimension along each axis equal to the grid
dimension along the same axis. Encoding and decoding of volumetric data in three-dimensional

space has been previously studied in 3D-UNet,**

with a DoubleConv layer consisting of two
subsequent 3D convolutional layers as the building block. In the same 3D-UNet framework,
instead of DoubleConv, residual networks can be used as the building block to extract useful
information from raw three-dimensional volumetric data.?® In this work, the mapping of electron
density to the exchange energy will be learned, so only the encoder part will be adopted from
3D-UNet. The encoder consists of several connected building block layers, being either
DoubleConv or ResNet (see Methods). Due to the fact that ResNet outperforms DoubleConv for
our learning tasks, as shown in the Supplementary Information, we chose ResNet as the building
block of the encoder.

The architecture of the encoder is shown in Fig. 1(b). A hidden representation that captures
density-energy correlation is learned and fed to a subsequent fully connected prediction layer to
give a single value prediction on the exchange energy. The original electron densities of
molecules (with a scaling factor equal to one) are included in the dataset. For reliable evaluation
of the models, the dataset is split into 80%, 26% 10%, and 10% as training, validation, and

testing datasets, containing 8000, 1000, and 1000 unscaled data, respectively. The training set is
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employed to train the model for 500 epochs by minimizing the mean squared error (MSE) loss,
and the model is then applied to validate the performance on the validatien testing set using the
mean absolute error (MAE) as the measure.

To investigate whether the model trained with only unscaled densities understands the uniform
density scaling property, we test its performance on both unscaled and scaled density datasets.
As shown in Fig. 3(a), the difference in energy between predictions and targets on the unscaled
dataset is close to 0.45 eV on average. Instead of minimizing this prediction error for unscaled
electron density by improving existing learning frameworks, the focus in this work is to
demonstrate the role of contrastive learning in the process of incorporating physical constraints
in density functional design. As shown in Fig. 3(a), a clear observation is that the model does not
provide reasonable predictions for the exchange energies of the scaled density dataset. This
indicates that the models trained in a supervised manner using only unscaled density in general
do not satisfy the uniform density scaling property and thus give unreliable predictions for scaled
densities, although they may achieve very high accuracy on the unscaled density dataset. This
motivates us to apply contrastive learning in a pretraining task to give our model the ability to
understand the density scaling property.

Contrastive learning model performance with different label-percentages amount of
training data

Now we investigate the model for predicting exchange energies from electron densities. The
density encoder part of the model is transferred from the contrastive pretraining task. In a
comparative test, the model is trained from scratch and its performance is compared to the
transferred model. When fine-tuning the transferred model, we adopt training-sets-with-86%;

60%;-40%-or20%labels-data five different training/validation/testing data splits:
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40,000/5,000/5,000, 32,000/5,000/5,000, 24,000/5,000/5,000, 16,000/5,000/5,000 and
8,000/5,000/5,000. As shown in Table 1, our approach outperforms supervised learning with data
augmentation in terms of exchange energy prediction accuracy, as demonstrated by smaller mean
absolute errors (MAE) after fine-tuning with the same amount of training data (40,000). This
demonstrates that our contrastive learning model can reduce the need for a large amount of data
while achieving even better performance.

Furthermore, the model trained with the contrastive learning method gives a prediction of
exchange energies that satisfy the uniform density scaling property. As shown in Fig. 4,
predicted and target exchange energies demonstrate a strong linear correlation even when the
number of training data is decreased. Note that for the case of using 8000 training data, the
model uses the same number of training data as that of the supervised learning task in a previous
section. The dramatic difference of performance between models shown in Fig. 3 shows the
understandability of uniform scaling property which is enabled by our proposed models. Because
of the choice of using the same uniform grids for both scaled and unscaled densities, when the
electron densities are “squeezed”, the number of effective grid points with finite density values is
decreased. As a result, the prediction accuracy for the scaled electron densities with y > 1 is in
general worse. Note that the model prediction accuracy can be further improved by using
nonuniform density grids or representing the electron densities by a set of local orbitals.'*
Alternatively, this can be addressed in future studies by learning the exchange energy directly
from density matrices instead of a projected uniform grid with limited resolution.

Discussion

In this work, contrastive learning is adapted to a pretrained electron density encoder to

incorporate the uniform density scaling property for exchange energy predictions. Generated
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from first-principles calculations, the scaled and unscaled electron densities of molecules from
the QM9 dataset are used to contrastively train the electron density encoder. Scaled and unscaled
densities of the same molecule are treated as similar pairs, while those from different molecules
as dissimilar ones. The pretrained model achieves a 0.01976 contrastive loss. It also predicts the
scaling factors from hidden representations of scaled and unscaled densities, with a 2e-4 MSE
accuracy. The encoder is then transferred to a downstream task to predict the computed exchange
energies from electron densities with different scaling factors. Using contrastive learning as the
pretraining method, our model performs well for the prediction of exchange energies of both
scaled and unscaled electron densities that satisfy the uniform scaling property, while the model
trained using only unscaled densities in a supervised manner demonstrates unreliable
performance for the prediction of exchange energies of scaled densities. This clearly
demonstrates that contrastive learning is an effective approach in a data-driven paradigm to
enable the neural network to learn physical principles in the process of mapping electron
densities to energies.

In conclusion, we show that contrastive learning can be used as an adaptive and effective method
to incorporate the uniform scaling property of DFT theory into the machine learning model
design. Moreover, the contrastive learning method proposed in this work has the potential to be
generalized to other exact physical constraints, such as rotational symmetry, spin scaling
property, and so on. Incorporating physical constraints into machine learning model design
through contrastive learning can lead to a significant reduction of the need of training data while
providing insights into the machine learning XC density functionals and beyond.

A similar effect occurs with human-designed density functionals: Those that are constructed to

satisfy more exact constraints require fewer fit parameters that can be determined from smaller

17



sets of molecular data, and a nonempirical meta-GGA functional’ satisfying 17 exact constraints
can perform rather well without any fitting to molecular data. The improvement of generalized
gradient approximations (GGAs) or meta-GGAs by their global hybridization®® with exact
exchange is a good example, since the exact constraints on the underlying GGA or meta-GGA
are preserved for any value of the fraction of exact exchange that is mixed with a complementary

fraction of GGA or meta-GGA exchange.

Methods

Molecular electron density dataset

We chose 10k,000 molecules from the QM9 dataset 3”3 by imposing the following criteria: (i)
each molecule contains less than 20 atoms; (ii) each molecule does not contain atoms with an
atomic number larger than 36 (element Kr); (iii) the size of each molecule is less than 12
angstroms; and (iv) the DFT calculated exchange energy of the molecule should be greater than -
200 eV. Molecular density matrices are calculated by DFT with the PBE functional® as
implemented in the PySCF package.>* To prepare the grid-like input data with fixed dimensions,
we project the density matrices onto real space grid points with a shape (65, 65, 65) on a fixed
size cube centered at the origin with a length of 40 angstroms. The number of grid points is set to
odd integers to include the origin. A larger grid with shape (129, 129, 129) is also used to
construct more detailed density data. Due to the limit of storage for the whole dataset, an average
pooling down-sampling pre-process is applied to reduce the grid dimensions from 129 to 65. A
comparison of the results using these two grids is given in laterseetions the Supplementary

Information. The projection of density matrices on grids in three-dimensional space is performed
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by using the PySCF code.?® The exchange energies are calculated from the density matrices as
they would be in Hartree-Fock or exact exchange theories using the NWChem code®”.
Training and evaluation of supervised learning task

To demonstrate that the model trained with supervised learning without data augmentation does
not understand the uniform scaling property, supervised learning was performed on unscaled
dataset. The dataset contains the unscaled electron density in real space of 10,000 molecules
from QM9 dataset. To find out the best model that encodes the electron density, two different
types of building block layers: ResNet and DoubleConv, were tested to build the density
encoder. The model was built and trained using the PyTorch-Lightning package*’ which is a
framework based on the PyTorch package*!. The whole dataset is split into 80% ard-20%, 10%
and 10% for training, validation and testing, containing 8000, 1000 and 1000 data, respectively.
Training loss is backpropagated to update the model parameters by an Adam optimizer ** with a
learning rate of 0.001. The best model was chosen to be that with smallest MAE after 500

epochs.

Training and evaluation of contrastive learning task

The dataset consists of electron densities of 10k,000 molecules chosen from QM9 dataset. Each
raw electron density is augmented by a scaled one with the scaling factor chosen from 1/3, 1/2, 1,
2, and 3, leading to a dataset with 50,000 data. The scaled density is then translated randomly in
the three-dimensional space. As a result of hyperparameter searching, ResNet with feature maps
(16, 32, 64, 128) and DoubleConv with feature maps (32, 64, 128) are chosen for the comparison
of performance on the downstream task. The whole dataset is split into 80% anrd-20%, 10% and
10% for training, validation and testing, containing 40,000, 5,000 and 5,000 data, respectively.

(See Figs. 3 and 4, and Table 1.) The total training loss is the summation of contrastive loss and
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scaling factor prediction loss, which is then backpropagated to update the model parameters by
an Adam optimizer with a learning rate of 0.001. The best model was chosen to be that with
smallest total loss after 1000 epochs.

Training and evaluation of downstream task using transfer learning and supervised
learning

The dataset consists of original unscaled and four augmented electron densities that are scaled by
four scaling factors (1/3, 1/2, 2, and 3) for 10,000 molecules chosen from the QM9 dataset,
resulting in a dataset containing 50,000 electron densities. The whole dataset is split into 80%,
10% and 10% for training, validation and testing, with a total of 40,000 training data, 5000
validation data and 5000 testing data. The model consists of an encoder that transferred from the
contrastive learning task and a simple linear layer. For a given scaled density data n,,, the model
predicts the scaling factor y and the unscaled exchange energy E,,—; from which the predicted
scaled energy can easily been calculated by E,, = yE,—;. The total loss is calculated by the mean
squared error between the real and predicted y and E, _;.

To ensure a fair comparison, we also train a model from scratch without using the transferred
encoder, which represents the simple method of supervised learning with data augmentation. The

results of comparison are shown in Table 1.

Data availability

The python code and data for this work can be found at https://github.com/qmatyanlab/DFCL.
The authors declare that the main data supporting the findings of this study are available within
the paper and its Supplementary files. Other relevant data are available from the corresponding

author upon reasonable request.

20



Acknowledgments

W. Gong and Q. Yan acknowledge support from the U.S. Department of Energy, Office of
Science, under award number DE-SC0020310. S.T.U.R. Chowdhury and J.P. Perdew
acknowledge support from the U.S. National Science Foundation under Grant No. DMR-
1939528. This work benefitted from the supercomputing resources of the National Energy
Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science
User Facility operated under Contract No. DE-AC02-05CH11231. H. Ling acknowledge the

support from SBU-BNL Seed Grant.

Competing Interests

The authors declare that they have no competing interests.

Contributions

Q.Y. conceived the research. W.G. conducted the first-principle calculations and designed the
contrastive learning framework. W.G. and Q. Y. wrote the manuscript. T.S., H.B., S.T.U.R.C.,
P.C., A.A. and J.Y. were involved in the discussion and manuscript revisions. H.L., J.P.P. and

Q.Y. supervised the project.

21



Scale

predictor >

MSE loss

Random scaling +
fandom translation

n
—
n

(b)
Downstream
task

Negative pair

w1

. . =

h, z
T — — =]
Density Hidden Projection Projected
Encoder representation head representation
oo — | — — [mm ]
h, Zy
Transfer
v
(©
Data augmentation
Encoder
y
A —> —

Positive pair

]

} Similarity loss

Encoding and projection

(d)

ResNet, 16|

[ Conv 16 |

ResNet, 32

ResNet, 64

ResNet, 128

Encoder

Linear

Conv, 16

Batch Norm

il

Group Norm

RelU

Linear

Projection

ResNet, 16

Figure 1. (a) The workflow of the proposed contrastive learning framework. For a given

molecule, an unscaled and a scaled and translated electron density are fed into the density

encoder to obtain hidden representations. The subsequent modules are divided into two parts: a

projection head that produces the projected representations, from which the contrastive similarity

loss is calculated; a scale predictor that predicts the scaling factor from the hidden representation

pairs, from which the mean squared error loss is calculated. (b) The two electron densities from

the same molecule form positive pairs, while those from different molecules form negative pairs.

(c) The visualization of general contrastive learning. Multiple “views” of the same input

molecule are generated by data augmentation. After encoding and projection, representations

from the same molecule attract each other, while those from different molecules repel each other.

(d) The architecture of the density encoder, the projection module, and the ResNet building

block.
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Figure 2. (a)The cosine similarity between the learned projected representations of unscaled and

ESNE 2
.
.

scaled densities for a batch of 32 molecules. Each element in the matrix is computed as
cos(z;,Z;) := z; - Z;. The brighter it is, the closer the value is to 1. (b) The t-distributed stochastic
neighbor embedding (t-SNE) of 32 learned projected representations. (c) Two molecule
examples, the corresponding learned projected representations, and the predictions on scaling

factors.
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Figure 3. Performance comparison of supervised learning model and contrastive learning model

on datasets with different scaling factors. (a) Supervised learning model shows large prediction

errors on scaled datasets. (b) Model trained by contrastive learning give much more reliable

predictions on all datasets (both scaled and unscaled).‘
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Figure 4. Performance of contrastively pre-trained models fine-tuned with four different training

set sizes. The model keeps the capability to give predictions with relatively small error even

when the number of training data decreases.
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Table 1. The MAE of the-medel-in-eV)-with ResNet (in eV) and-DoubleConv-as-density

eneceders-for predicting exchange energies of molecule systems in the QM9 database. A down-
sampling is applied to the input data to down-sample the data on grid (129, 129, 129) to a grid
(65, 65, 65). Performance is tested for a model trained from scratch in a supervised manner and
models trained in a contrastive learning (with and without random translations) plus transfer
learning scheme with 80%;-60%;-40%and 20% labeled-data(different percentages-of-the
unsealed-data-used-to-train-the-medel)-train / validate split. MAE on unscaled (1,000 data with

scale equals to 1) and scaled (5,000 data with 5 different scales) test sets is used to represent the

model performance.

MAE on test set (eV)

Train/validate split | Unscaled (size = 1000) | Scaled (size = 5000)

(r=0 r=1/3,1/2,1,2,3)

Supervised learning

40,000/5,000 0.481 0.757

Contrastive + transfer learning

40,000/5,000 0.461 0.739
32,000/5,000 0.505 0.874
24,000/5,000 0.561 0.932
16,000/5,000 0.738 1.070
8,000/5,000 0.973 1.289
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