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ARTICLE INFO ABSTRACT

The mosquito-borne disease (malaria) imposes significant challenges on human health, healthcare systems, and
economic growth/productivity in many countries. This study develops and analyzes a model to understand
the interplay between malaria dynamics, economic growth, and transient events. It uncovers varied effects of
malaria and economic parameters on model outcomes, highlighting the interdependence of the reproduction
number (R;) on both malaria and economic factors, and a reciprocal relationship where malaria diminishes
economic productivity, while higher economic output is associated with reduced malaria prevalence. This
emphasizes the intricate interplay between malaria dynamics and socio-economic factors. The study offers
insights into malaria control and underscores the significance of optimizing external aid allocation, especially
favoring an even distribution strategy, with the most significant reduction observed in an equal monthly
distribution strategy compared to longer distribution intervals. Furthermore, the study shows that controlling
malaria in high mosquito biting areas with limited aid, low technology, inadequate treatment, or low economic
investment is challenging. The model exhibits a backward bifurcation implying that sustainability of control
and mitigation measures is essential even when R, is slightly less than one. Additionally, there is a parameter
regime for which long transients are feasible. Long transients are critical for predicting the behavior of dynamic
systems and identifying factors influencing transitions; they reveal reservoirs of infection, vital for disease
control. Policy recommendations for effective malaria control from the study include prioritizing sustained
control measures, optimizing external aid allocation, and reducing mosquito biting.
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vector control measures including the use of traditional insecticide-
treated nets (ITNs), piperonyl-butoxide (PBO) ITNs, indoor residual
spraying, inhibiting the breeding of mosquitoes in proximity to human

1. Introduction

Malaria is a common source of human illness and death in many
countries across the planet, especially in the World Health Organization
(WHO) African Region, which harbored 95% of the reported malaria
cases and 96% of the malaria-induced deaths in 2021 [1]. The health
impact of malaria is devastating among children under the age of five in
the WHO African Region, with ~80% of malaria-related deaths in 2021
occurring within this age group and region [1]. Despite progress in
reducing the global burden of malaria (i.e., malaria-related morbidity

residences, etc., have been useful in combating malaria [3-6].

Apart from the substantial public health burden imposed by malaria
to individuals, communities, and countries, the disease has significant
economic consequences, including considerable direct healthcare costs,
productivity losses, and barriers to economic development incurred by
individuals, households, and governments in many countries in which

and mortality) over the past decade, there has been an increase in cases
and deaths, including 1 million additional cases from 2014 to 2015, 5
million cases from 2015 to 2016, and 13.4 million cases with 63,000
deaths between 2019 and 2021 [1,2]. Interruptions in malaria control
programs triggered by the COVID-19 pandemic were implicated for
the increase in the global burden of malaria between 2019 and 2021.
Since malaria is transmitted between humans by Anopheles mosquitoes,
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it is endemic [7,8]. Expenses related to prevention, diagnosis, treat-
ment, hospitalization, and medications contribute to the substantial
healthcare costs associated with malaria [9,10]. Studies have shown
that out-of-pocket expenditures for malaria-related services can push
individuals and households further into poverty, exacerbating exist-
ing socioeconomic disparities [11-13]. Productivity losses resulting
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from malaria have a widespread impact, as infected individuals ex-
perience debilitating symptoms that hinder their ability to work or
attend school. In particular, missed workdays, reduced productivity,
and lower educational attainment are common outcomes [8,14-19].
Additionally, malaria can cause agricultural workers to face challenges
in tending to their crops or livestock, leading to decreased agricultural
output and income [17-19]. The repercussions can be dire, leading to
significant nutritional and economic hardships, particularly in resource-
challenged rural communities that depend on subsistence agriculture
and immediate natural resources for their livelihood. Malaria hampers
economic development by deterring foreign investment, tourism, and
trade [8,20-22] since malaria-endemic regions are perceived as high-
risk areas, discouraging potential investors and visitors. The presence
of the disease inhibits industrial growth and limits opportunities for
economic diversification, perpetuating a cycle of poverty and under-
development [20,21,23]. It should be mentioned that malaria has a
profound impact on infants and children, and a significant proportion
of malaria deaths occur in children under the age of 5. Expenditures
on healthcare for malaria-afflicted children can significantly impact
household income, while malaria-related absenteeism from school may
hinder children’s future earning potential, contributing to a cycle of
economic impact into adulthood [24]. Also malaria impacts adults,
leading to economic losses and long-term health complications asso-
ciated with chronic infections [7,25,26]. Studies have emphasized the
economic strain imposed by malaria, including productivity loss among
working-age adults, contributing to poverty in low-income areas [7,27].
The disease correlates with significant reductions in annual economic
growth [7,28], and recent trends show an increase in global expendi-
tures on malaria [13,29]. Additionally, malaria ranks 19th in global
disability-adjusted life years (DALYs) and 4th among infectious diseases
in 2019 [30]. The economic impact of malaria extends beyond individu-
als, households, and countries, affecting regional and global economies.
Healthcare costs and productivity losses drain national resources, di-
verting funds that could have been invested in critical sectors such as
infrastructure and education. This collective burden hampers the ability
of malaria-endemic countries to allocate resources effectively, impeding
their overall economic progress. It is estimated that malaria costs the
economy of African countries $12 million annually [31]. Addressing
the economic impact of malaria requires comprehensive strategies that
focus on reducing healthcare costs, improving productivity, and pro-
moting economic diversification. By investing in malaria prevention,
treatment, and control measures, countries can alleviate the economic
burden, improve livelihoods, and foster sustainable economic growth.

The global health and economic trends of malaria underscore the
need for more research into the efficacy and appropriate implementa-
tion of malaria control measures. One way to approach this is through
mathematical modeling. Well-developed and calibrated mathematical
models have played a critical role in understanding the dynamics of
infectious diseases and in informing infectious disease control mea-
sures. In particular, much of the mathematical modeling literature
on malaria and vector-borne diseases in general builds on the Ross—
Macdonald framework for malaria of the 1900s [32,33]. This basic but
useful framework has been extended in various ways to account for
more epidemiological and immunological aspects of malaria (e.g., [33—
36]), demographic and feeding patterns of mosquitoes (e.g., [37-411),
environmental factors such as temperature (e.g., [42-46]), and various
control and mitigation measures including the use of insecticide-treated
nets and indoor residual spraying (e.g., [47-52])

Although these and other modeling efforts have made significant
contributions to the study and control of malaria, an under-studied,
yet crucial component to the success of malaria control programs is the
dynamic feedback between the socio-economic landscape and malaria
transmission. In particular, despite the overwhelming evidence that
malaria and poverty are interconnected, and that malaria and other
infectious diseases impact economic growth negatively [7,8,53], only a
few mathematical frameworks attempt to explain this and the complex
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interplay between poverty and infectious diseases [54-56]. On the
other hand, the study of transient dynamics in emerging, re-emerging,
and endemic diseases has played an important role in improving disease
management in real-time and understanding of patterns observed in
epidemiological time-series [57]. These transients can emerge from
endogenous and exogenous factors. In particular, the role of transients
in a coupled malaria-economic system is of importance given the syner-
gistic feedback between these two systems operating on different time
scales and given the fact that although transient events occur within
a relatively short timescale, they can have huge ripple global health
and economic effects on such coupled system. Hence, a new mechanis-
tic understanding of various processes leading to changes in malaria
prevalence is key to identifying new interventions, understanding the
intertwined relationship between malaria, socio-economic conditions,
and transient events, and informing new empirical studies.

In this study, an epidemiological model that accounts for the dy-
namics of malaria, socio-economic features, and transient events is
developed and analyzed. The framework is used to understand synergis-
tic feedback between malaria dynamics and economic growth, as well
as to assess the impact of transient events, particularly long transients
on malaria dynamics and economic growth. To our knowledge, this is
the first mathematical model for the transmission dynamics of malaria
that accounts for all these factors in a single framework.

2. The model
2.1. Model formulation

In this section, an integrated model framework for the transmission
dynamics of malaria that couples disease epidemiology with human
and mosquito population dynamics, as well as economic growth is
developed. In the economic component of the framework, per capita
economic yield or output (y = f(k) + yp, where f is a production func-
tion and y is external aid) is generated from labor (L) and per capita
capital (k), which is defined as a stock resource that is used to produce
goods and services. External aid for malaria involves financial and
technical support from international governments or non-governmental
organizations to combat and prevent malaria. This assistance includes
funding, resources, and expertise to strengthen healthcare systems,
implement preventive measures, and improve access to diagnostics
and treatment. Examples include the Global Fund to Fight AIDS, Tu-
berculosis, and Malaria and the President’s Malaria Initiative, which
provide aid for malaria control programs, bed net distribution, and
drug procurement [58,59]. As in [55], f is modeled through the Cobb—
Douglas production function [60]. That is f(k) = k*(AL/N,)!~%, where
N, is the total human population, 0 < « < 1 is the capital share or
elasticity coefficient, and A is technological progress or labor efficiency.
It should be noted that per capita capital (yield) is given by k = K/N,,
(y = Y/N,), where K (Y) is the aggregate capital (yield). Capital
accumulates over time through savings of the unconsumed portion of
the yield (1 — ¢)y (where 0 < ¢ < 1 is the factor for the consumed
portion of the yield) at rate r, or depreciates at rate o (see schematics
in Fig. 1). Thus, in the tradition of [61,62], the rate of change of capital
is the difference between capital accumulation (r(1 — ¢)y) and capital
depreciation (ck), i.e., k = r(1 — ¢)y — ok (last equation of Model (2.1)).

In the malaria model, the total human population (N,) is divided
into susceptible (S),), infectious (I,), and recovered or partially im-
mune (R,) individuals. Similarly, the total mosquito population is
divided into susceptible (.S,) and infectious (/,) individuals. The model
assumes no vertical transmission of malaria, so all human and mosquito
births are into the susceptible classes at respective rates A, and A,. The
transmission dynamics of malaria involve the forces of infection 4,, =

ﬁvpv,,;[—”"l and Ay, = B,Ppy (%), where g, is the average number of

bites a mosquito places on a human per unit time (commonly referred
to as the human biting rate of mosquitoes), p,, is the probability
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that an infectious mosquito infects a susceptible human, and p,, is
the probability that an infectious or partially immune human infects
a susceptible mosquito. It is assumed that partially immune humans
infect susceptible mosquitoes at a reduced rate depicted by the factor,
0 < 6 < 1. Therefore, susceptible humans (mosquitoes) progress to the
infectious human (mosquito) class at rate 4,, (4,,,) after being infected,
i.e., new human and mosquito infections are given by 4,,S, and 4,,,S,,
respectively. Humans (mosquitoes) from any of the human (mosquito)
classes die naturally at per capita rate y;, (4,). Infectious humans either
die from malaria at per capita rate §,, or recover with partial immunity
at per capita rate y,. Given the relatively short lifespan of mosquitoes
and the lack of empirical data supporting the effects of malaria on
mosquito mortality, we assume that malaria does not directly cause
mortality in mosquitoes. Also, since there is no empirical evidence of
mosquito immunity to malaria, we assume that the infectious period
for mosquitoes culminates with their death. Partially immune humans
lose their immunity to become susceptible again at per capita rate pj,.

The malaria model is coupled to the economic model through
malaria-related medical costs (£I,y/N,, 0 < & < 1) in the invest-
ment term, the human population growth rate n = N,/N, = (A, —
Uy Ny, —6,1,)/ N, in the capital depreciation term, and the production
function (f(k, Sy, I, Ry, Np)). In particular, assuming that the total
human population (N,) is proportional to the contribution of labor
(L) to productivity and that clinically ill humans are less productive
than their healthy counterparts, the production function (f) becomes
S, Sp. Iy Ry Ny = k*{A[S), + (1 — &), + R,] /N,,}"", where 0 <
e < 1 is a modification parameter or factor to account for reduced
productivity due to clinical malaria infection (Eq. (2.3)). It should
be noted that e = 0 (¢ = 1) corresponds to a scenario in which
clinically ill humans are fully (not) productive. Thus, the yield (y)
is given by y = f(k, S, I, R;, Ny) + yg. Conversely, the economic
model is coupled to the malaria model through the mosquito biting
rate (f,) in the forces of infection (4,, and 4,, in Eq. (2.2)), the
recovery rate from infection (y,), the mosquito recruitment term (4,),
and the mosquito mortality rate (y,). Specifically, the biting rate of
mosquitoes (f,) is modeled with the function f,(y) = (8,08,)/(y + B,),

where g, is the maximum or background biting rate of mosquitoes
(attained when y — 0) and f, is a positive constant. Additionally, the
human recovery rate is modeled through the functional form y(y) =
Yo + (r1»)/(y +v,), where y, is the background recovery rate (achieved
when y — 0), y; is the additional economic-dependent recovery rate,
7y is a positive (half-saturation) constant, and y, + y; is the maximum
recovery rate (limy_,oo y(») = vy +7; ). The mosquito recruitment rate
(A,) is modeled with the function A,(y) = (A,4,,)/(y+4,,), where A
is the maximum mosquito birth rate and A, is a constant. Furthermore,
the mosquito natural mortality rate is modeled through the function
Hp(¥) = Hyo + (U1 )/ (¥ + 1,y), where p is the background mosquito
mortality rate, u,, is an additional (economic-dependent) mortality
rate, u,, is a half-saturation constant, and lim,_, o, #,(y) = sy + Hy1-

A schematic representation of the coupled economic-malaria model
is presented in Fig. 1, while the corresponding model system is given
by Egs. (2.1)-(2.3). Using the schematics in Fig. 1 in conjunction with
the detailed descriptions of variables and parameters in the text, we
obtain the following coupled economic-malaria framework:

Sp = A+ pp Ry = [App (9, Ips Np) + pp 1Sy,

Iy = 2n . Ly NSy = [ra) + py + 611

Rh =1y — (up + pp) Ry, 21
Sy = Ay = Uno - Iy Ry Np) + p, (01,0

Iy = apy . Iy, Ry, NS, = (01,0
. I
k=rg <1 -c —5N—”‘> Yk, Sy Ty Ry Ny) = (0 + k. c+E< 1,
h

where n=N,/N,, N,=A-u,N-26,I,
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Fig. 1. Schematics of the coupled economic-malaria model. The human population
(N,) is split into susceptible (.5,), infectious (/,), and partially immune (R,) indi-
viduals, while the mosquito population is split into susceptible (S,) and infectious
(1,) individuals. Through production, capital (k) is transformed into yield (y), where a
fraction of this yield (cy) is consumed, and the remaining portion ((1-c)y) is reinvested
into capital. External aid is denoted by y,. Dotted lines represent connections between
the malaria and economic models. The malaria model is linked to the economic model
through g, € {f,r,c},n = N,/N,, while the economic model is connected to the
malaria model through g, € {4, 4y, ¥4, A, 4, }. Dash-dotted (dashed) lines indicate
interactions between humans and mosquitoes leading to mosquito (human) infection.
The rates and functional forms are described in the text.

I, I,+6R,
Aon = By(VPyn Fh’ Anp = By(MPpy Th s (2.2)
A[S, +(1—e)I, + R, 1)
J’=k"‘{ LS, +( N‘g) h h]} +yp. 2.3)
h

All model variables (S}, I,, R, S, I,,, and k) are non-negative, as they
correspond to human populations, mosquito populations, or physical
quantities. Prescribing initial conditions of the form (S}, (0), 1,(0), R,(0),
S,(0), 1,(0), k(0)) = (Sho» Tno» Ruos Suo» Loo» ko), Where Syo > 0,1, >
0,Ryy = 0,8, > 0,1, >0, and k, > 0 is necessary to fully define
the model. Under these conditions, it can be easily verified that the
model (2.1) is well-posed from a mathematical, epidemiological and
economic perspective. Furthermore, the region denoted by 2 = {(S},
Iy Ry, Sy I, k) € RS 20 < Sy, Iy Ry < Ay/uy, 0< S, I, <59,
0 < k < k% }, where S¥ and k° are the respective non-trivial disease-
free equilibrium values of S, and k is invariant and attracting for the
system. Consequently, any solution trajectories originating within this
region remain confined to it indefinitely.

2.2. Disease-free equilibrium and the basic reproduction number

Using the specific functional forms for y, g, A, and p, described in
the text, setting the right hand sides of Eqgs. (2.1) as well as all disease
states (I;,, R;,, and I,) to zero and solving for the non-disease states, we
arrive at the disease-free equilibrium &, = (9, I}?, R?l, 89,10, k0), where

Ay o_ MG 0 0 0 0 _ (10na 41—
= — =——, =R =1'=0, y =((k)A"*+yg,

v ”zr(yO) h h v E
and k¥ satisfies the equation k% — ro (1 — ¢) [(k")*A!=* + y;]| =0, or

[

0 _ OntA(l—a)_ =0. 2.
—ro(l—c)k (k*) ye=0 2.4

It is worth noting that the k° equilibrium equation (Eq. (2.4)) can be
solved in closed form if y;; = 0. Specifically, under the condition y, =0,
1

two closed form solutions arise: k* = k% =0 or k* = k) = 4 (M e

In general, the trivial disease-free equilibrium value of k (k? = 0)
is unrealistic and unstable, while the positive non-trivial equilibrium
value of k (kg) is locally asymptotically stable. For yp, > 0, the
derivative of the left-hand side of (2.4) is ¢ /(ro(1—c))—a A0=® /(k0)(1-0),
which is negative for 0 < k¥ < A(c/(ary(1 — ¢))~® and positive for
k% > A(c /(ary(1—c))'~¥. Consequently, Eq. (2.4) has a unique positive
solution (k°) when y; > 0. This leads to the following result:
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Lemma 2.1. Assume that a € (0,1). If yp > 0, Eq. (2.4) has a unique
positive solution. If y, = 0, then Eq. (2.4) has two solutions: k? =0 and

KO = A (0= h di ilibri
o= (T) , and the system has two disease-free equilibria.

The local stability of the non-trivial disease-free equilibrium (k* =
k(z) > 0) can be established using the Next Generation operator ap-
proach [63,64]. This is a powerful tool for calculating the reproduction
number (R,) of epidemiological models. Applying this approach yields
the following reproduction number for the model (2.1):

ProPu°) (1 07,0°) > Sy
8y + 700 + 1, 00) P+ Hp(Y°)

2 _ PonPu(”)

- 2.5
O 1,09 @5

where S = ”—0 S0 = A00% p0 k9 is the unique positive solution of

0
the equ111br1um Eq. (2. 4),( ar)ld N A1 %k% +yp (See Section S1 of the SI
for details). It can be verified that all conditions of the next generation
operator approach are satisfied if the state variable, k, representing
capital is treated as a disease-free state, irrespective of whether y, =0
or yp > 0, provided that kO is the positive solution to Eq. (2.4) (See
Section S1 of the SI for details). This leads to the following result:

Theorem 2.2. Assume that « € (0,1). If yp > 0, all conditions
of the next generation approach are satisfied if the state variable, k,
representing capital, is treated as a disease-free state. If yp = 0, all
conditions of the next generation matrix approach are satisfied when the
linearization is about the locally asymptotically stable disease-free equi-
librium; that is, the DFE with k° = k‘z) > 0. In either case, RS =

PonB(”) PruBu(®) (1 07, ) sy 0_ Ao g0 _ Aw0")
. where S, = =i = e
OO Sptr O+ (00) Pr+ip ()

S°’ TV (%)
k% is the unique positive solution of the equilibrium equation —k (c) —
ro(c—1) (A% + yg) =0, and )° = A'=*k" + y.

Proof. See Section S1 of the SI. [

Remark 2.3. The value of « is often set to « = 1/2 in the stan-
dard Cobb-Douglas Production function [60]. This choice is based on
empirical observations and mathematical convenience, and it implies
that output is equally sensitive to changes in labor and capital inputs.
Specifically, based on empirical fitting, « = 1/2 has been found to
provide a good empirical fit for many industries and economies, where
output growth appears to be roughly equally attributable to changes
in labor and capital. For mathematical simplicity, the choice of a =
1/2 simplifies the mathematical properties of the production function,
making it easier to analyze and derive results. Regarding other values
of @, the choice of @« may vary in different contexts, and alternative
values are explored based on the specific characteristics of industries
or economies under consideration [65,66].

2.3. Endemic equilibria

The existence of endemic equilibria for Egs. (2.1) is studied for the
special case in which is @ = 1. Let an endemic equilibrium of Egs. (2.1)
be denoted by (S}, I7, R:. ST, I¥.k*), Ni = S+ 1 + R:, Ni = St +1I7,

v’
k* A[SE+(1— 5)1 +R} ]
V= | T by, B = B, AL =
h

I’+0R;
— hh
= ﬂ:phb N; A*

A,y wy = py (¥,

i =G, A%, =p pUhN_l;T' Then, at equilibrium,

S* = ApAi A, . _ ApAr Ay, s _ AnVh A
A Ay + AR, UpA1Ay + A3 A7, HpAL Ay + A3y,
N* = Ah(AlAz + A4)A>Lk'h S = AT) I* = AZAZL N* = A_i
T A A, T A g AT g

where  A| =y + uy + 6, Ay = py + pp,

By + up)uy +pp) + vy >0, and Ay = Ay +y).

Ay = Al Ay —yppp =

By substituting the equilibrium values of I, R;,, and N,, into the expres-
sion for A, and the equilibrium values of I, and N, into the expression
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for A,,, and then proceeding with the established methodology for
variable elimination, we arrive at the ensuing equation for A7,:

(ByA*% + B\ A*, + Bp)A*, =0, (2.6)
where

By = Anps Ay [Bpnu(As +07;) + H3 Ay, 2.7)
By = Appi Ay Ay [ pno(Ay + 01}0) + 205 Ag] (1 = M), (2.8)
By = Ay(uiA;Ay)*(1 = RY), (2.9)

R B ponPnoAyhn(Ay +0r;)
0 AR A Ay
_ (B PunProAy(Ay +077) As

 AHEALA [BEpn(Ay + 07) + 2ur Ay

For any given y*,

>

(2.10)

the endemic equilibrium can be found by solving

—B,++/B%*-4B, B
Eq. (2.6), which gives ﬁ* = 0 and i* M The case

in which 47, = 0 corresponds to the dlsease free equ111br1um The
possible number of positive roots and hence endemic equilibria (0, 1,
or 2) determined by the signs of M and R(z) are summarized in Table
S2 of the SI. Comparing the expressions of RS and M, the inequality
M > R} is true if and only if

(8, + pp)pin + pp) + (It > By Pro(ity + pi +073) + 205 (g, + py + 7).

Specifically, this inequality holds when the disease-induced mortality
rate (6,,) exceeds some threshold. This observation aligns with findings
from other investigations, as exemplified by studies in [49,50], where a
backward bifurcation emerges with an increase in the disease-induced
death rate beyond a certain threshold. It should be underscored that
while the inequality may be satisfied through variations in other pa-
rameters, the choice of §, is particularly motivated by its role as a
contributor to backward bifurcations [49,50,67]. Setting D* = A(S), +
A=l + R)/N,, r* =rg(l —c =& I;/N}), and n* = (A, — Hp N, —
§hI;:)/N*, we have

+ r'D* +l r D 2+4
20+ 2\ \G+n)

Therefore, any equilibrium value of y (y*) satisfies Eq. (2.11). The set
of y* values, and consequently all endemic equilibria of the model
(2.1), are governed by solutions to Eq. (2.11). Since Eq. (2.11) cannot
be solved explicitly to obtain closed form solutions, the stability of
endemic equilibria to the model (2.1) will be investigated numerically.

r*D*yg

rt (2.11)

V' =g

3. Numerical results

In this section, the model (2.1) is simulated to gain insights into
the interplay between malaria dynamics and economic growth, assess
the impact of some critical model parameters (including parameters
through which some control measures can be evaluated) on key re-
sponse functions such as the basic reproduction number, the infectious
human population, and the per capita capital, as well as evaluating
the possibility of long transient events, with a specific focus on long
transients, on both malaria dynamics and economic growth. Unless
explicitly specified, the simulations are carried out using the baseline
parameter values outlined in Table S1 in Section S2 of the SI.

3.1. Long term dynamics of the model system

3.1.1. Threshold dynamics and backward bifurcation

The model system (2.1) is simulated using the baseline parameter
values tabulated in Table S1 to illustrate the fact that the basic
reproduction number (R;) is indeed a threshold value. Results of the
simulations presented in Fig. 2 depict a locally asymptotically stable
disease-free equilibrium (DFE) when f,, = 0.2345 and R, = 0.9977
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Fig. 2. Simulations of the model (2.1) to confirm the fact that the basic reproduction number (R;) is a threshold value ((a)-(c)) and the existence of a backward
bifurcation when R, < 1 ((d)-(f)). When g, = 0.2345, the corresponding value of the basic reproduction number is R, = 0.9977 < 1 and the disease-free equilibrium
(DFE) of the model is locally asymptotically stable (dotted curves in (a)-(c)). When B, = 0.24, the corresponding value of the basic reproduction number is R, =
1.0211 > 1 and the endemic equilibrium (EE) of the model is locally asymptotically stable (solid curves in (a)-(c)). The initial condition used for the simulations is
(5,0, 1,,(0), R,(0), S,(0), 1,(0), k(0)) = (1499, 1,0, 10000, 0, 1). For (d)-(f), when R, < 1, there is a parameter regime within which trajectories originating within the basin of attraction
of the DFE, e.g., (S,(0),1,(0), R,(0),5,(0), ,(0), k(0)) = (1490, 1,0,10000,0, 1), converge to the DFE (dotted curves in (d)-(f)), while trajectories originating within the basin of
attraction of the stable EE, e.g., (5,(0), 1,(0), R;(0), S,(0), 1,(0), k(0)) = (490, 1,0, 5000, 2000, 1), converge to the stable EE (solid curves in (d)-(f)). That is, a stable DFE and a stable
EE co-exist for a parameter regime in which R, < 1. The values of the mosquito biting rate and human disease-induced death rates are 0.22 and 4.5068 x 10~*, respectively, and
the corresponding value of the reproduction number is 0.9278. The values of the other parameters are presented in Table SI.

(dotted curves in Fig. 2(a)—(c)) and a stable endemic equilibrium (EE)
when g, = 024 and R, = 1.0211 (solid curves in Fig. 2(a)-(c)).
This confirms the fact that R, is a threshold value. Thus, the disease
free equilibrium is asymptotically stable if R, < 1, while the disease
approaches a positive endemic equilibrium when Rj, > 1.

Additionally, the model (2.1) is simulated using the baseline param-
eter values in Table S1, with a background mosquito biting rate g,, =
0.22 and human disease-induced death rate 5, = 4.5068x10™* > 4.9813x
1075 = uy, (the human natural death rate) to demonstrate the possibility
of a backward (sub-critical) bifurcation. The results of the simulations
depicted in Fig. 2 suggest the potential for the model (2.1) to exhibit a
backward bifurcation, wherein a stable disease-free equilibrium (dotted
curves in Fig. 2(d)-(f)) coexists with a stable endemic equilibrium
(solid curves in Fig. 2(d)-(f)) within the same parameter regime for
which the reproduction number is less than one. The occurrence of
this phenomenon in the model (2.1) hinges on a substantial disparity
between the disease-induced mortality rate and the natural mortality
rate. While formal proof is not provided here, the Center manifold
theory offers a rigorous approach for establishing the existence of a
backward bifurcation [68]. It should be noted that the existence of
a backward bifurcation signifies that, although the requirement that
the reproduction number be less than one to contain a disease is
necessary, it is not sufficient for achieving disease elimination (defined
as a significant reduction in malaria cases to minimal or near-zero
levels). In models with backward bifurcations, mere reduction of the re-
production number slightly below one, as is the case in models without
backward bifurcations, does not guarantee disease elimination. Instead,
in models with backward bifurcations, successful disease elimination
necessitates intensive and sustained control and mitigation efforts until
the reproduction number falls below a critical threshold value. That
is, disease elimination occurs within the region where the disease-free
equilibrium becomes globally asymptotically stable. In this backward
bifurcation (i.e., bistability) scenario, the economic output associated
with the endemic equilibrium is notably low, whereas the output linked
to the disease-free equilibrium is relatively high. This demonstrates the
negative impact of malaria on economic output and the positive impact
of a strong economy on disease control and mitigation.

3.1.2. The impact of key parameters on the long term dynamics of the model

The model (2.1) is simulated using the baseline parameter values
presented in Table S1 to assess the impact of technological progress or
labor efficiency (A) on the long term dynamics of the infectious human
population (I,), the infectious mosquito population (1,), and the per
capita yield (y). Results of the simulations show that increasing labor
efficiency from its baseline value of 1 to 10 will lead to a significant
reduction in the basic reproduction number from R, = 4.04 to R, ~
097 < 1 and a significant increase in the equilibrium value of per
capita yield (comparing the blue and green curves in Fig. 3(a), (f), and
(k)). However, reducing labor efficiency from its baseline value by 50%
will lead to an ~6% increase in the endemic equilibrium value of the
infectious human population (comparing the blue and red curves in
Fig. 3(a)), an ~13% increase in the endemic equilibrium value of the
infectious mosquito population (comparing the blue and red curves in
Fig. 3(f)), and an ~22% decrease in the equilibrium value of the per
capita yield (comparing the blue and red curves in Fig. 3(k)). For this
(50% decrease in labor efficiency) case, there is an ~#22% increase in the
value of the basic reproduction number and the disease is endemic since
(Ry > 1). Furthermore, increasing labor efficiency from its baseline
value by 50% will lead to an ~5% decrease in the endemic equilibrium
value of infectious human population (comparing the blue and gold
curves in Fig. 3(a)), an ~#11% decrease in the endemic equilibrium value
of the infectious mosquito population (comparing the blue and gold
curves in Fig. 3(f)), and an ~21% increase in the equilibrium value of
the per capita yield (comparing the blue and red curves in Fig. 3(k)).
For this (50% increase in labor efficiency) scenario, there is an ~8%
reduction in the value of the basic reproduction number.

Also, the model (2.1) is simulated to assess the impact of external
aid (yz) on the long term dynamics of the system. The results obtained
and illustrated in Fig. 3(b), (g), and (1) show that for the baseline
parameter values in Table S1, the reproduction number is R, ~ 4.04
and the corresponding dynamics are illustrated by the blue curves in
Fig. 3. Reducing external aid from its baseline value of 1.0 by 50%
leads to an ~23% increase in the reproduction number, an 11% increase
in the endemic equilibrium value of the infectious human population,
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Fig. 3. Simulations of the model (2.1) depicting the long term dynamics of the (a)-(e): infectious human population (1,), (f)-(j): infectious mosquito population (Z,), and (k)-(0):
per capita yield (y) for different values of technological progress or labor efficiencies (A: (a), (f), and (k)), external aid (y.: (b), (g), and (1)), proportion of yield consumed
(c: (c), (h), and (m)), background investment rate (ry: (d), (i), and (n)), and background recovery rate (y,: (e), (j), and (0)). The initial condition used for the simulations is
(5,0, 1,,(0), R,(0), S,(0), 1,(0), k(0)) = (999, 1,0, 10000, 0, 1), while the values of the other parameters are presented in Table SI.

an ~22% increase in the endemic equilibrium value of the infectious
mosquito population, and an ~36% reduction in the equilibrium value
of per capita yield (comparing the blue and green curves in Fig. 3(b),
(g), and (1)). However, increasing external aid by 50% will trigger an
~15% decrease in the reproduction number, an 8% decrease in the en-
demic equilibrium value of the infectious human population, an ~16%
decrease in the endemic equilibrium value of the infectious mosquito
population, and an ~33% increase in the equilibrium value of per capita
yield (comparing the blue and gold curves in Fig. 3(b), (g), and (1)). A
significant increase in external aid can result in disease containment.
Specifically, increasing external aid from its baseline value to 1 to 10
will lead to a reproduction number of R, = 0.89, i.e. an ~78% reduction
in the baseline value of the reproduction number (comparing the blue
and green curves in Fig. 3(b), (g), and (1)).

Furthermore, the model (2.1) is simulated using the baseline pa-
rameter values presented in Table S1 to assess the impact of the
portion of yield consumed (c¢) on the long term dynamics of the system.
The results obtained and depicted in Fig. 3(c), (h), and (m) show
that for the baseline value of ¢, the model relaxes at an endemic
equilibrium (blue curves in Fig. 3(c), (h), and (m)). Increasing the
baseline portion of the yield consumed by 75% will result in an ~22%
increase in the basic reproduction number, an ~10% (~22%) increase
in the equilibrium infectious human (mosquito) population, and a 35%
reduction in the per capita yield (comparing the blue and red curves
in Fig. 3(c), (h), and (m)). However, a 75% reduction in the baseline
portion of the yield consumed will lead to an ~14% reduction in the
basic reproduction number an ~7% (~14%) reduction in the equilibrium
infectious human (mosquito) population, and an ~29% increase in the
per capita yield (comparing the blue and gold curves in Fig. 3(c), (h),
and (m)). Additional reductions in the proportion of the yield consumed
will result in further reductions in the reproduction number, as well
as the endemic infectious human and mosquito populations. However,
it should be noted that this will not lead to disease containment, even
when none of the yield is consumed. In particular, if none of the yield is
consumed (i.e., if ¢ = 0.0), an ~18% reduction in the basic reproduction
number, an 9% (~19%) increase in the equilibrium infectious human
(mosquito) population, and an ~39% reduction in the per capita yield
(comparing the blue and green curves in Fig. 3(c), (h), and (m)).

Additional simulations of the model (2.1) are carried out using the
baseline parameter values presented in Table S1 to assess the impact
of the background investment rate in capital (ry) on the long term
dynamics of the system. The results obtained and depicted in Fig. 3(d),
(i), and (n) show that halving the baseline background investment
rate in capital will trigger an ~22% increase in the basic reproduction
number, an ~6% (~13%) increase in the equilibrium infectious human
(mosquito) population, and a 22% reduction in the per capita yield
(comparing the blue and red curves in Fig. 3(d), (i), and (n)), while
significant increases in the baseline background investment rate in
capital will generate significant reductions in the infectious human
and mosquito equilibria and significant increases in the per capita
yield. Specifically, increasing the baseline background investment rate
in capital ten-fold will lead to a reproduction number that is less than
unity and the system will converge to the disease-free equilibrium
(comparing the blue and green curves in Fig. 3(d), (i), and (n)). In
summary, notable increases in the baseline background investment
rate in capital result in significant reductions in the infectious human
and mosquito equilibria. In practical terms, this implies that higher
investments in economic capital, including improved infrastructure,
drainage systems, sanitation, healthcare facilities, or economic devel-
opment projects, contribute to reduced disease transmission levels. For
example, improved economic conditions may enable individuals and
communities to implement effective mosquito control measures, invest
in healthcare infrastructure, and implement public health interventions,
leading to reduced disease prevalence and transmission.

Fig. 3(e), (j), and (o) depicts simulations of the model (2.1) using
the baseline parameter values given in Table S1 to assess the impact of
the human background recovery rate in from infection (y,) on the long
term dynamics of the system. They indicate that reducing the baseline
value of the human background recovery rate in from infection by half
will lead to an ~5% increase in the basic reproduction number, an ~6%
(~4%) increase in infectious human (mosquito) endemic equilibrium,
an (~3%) reduction in per capita yield (comparing the blue and red
curves in Fig. 3(e), (j), and (0)). On the other hand, increasing the hu-
man background recovery rate in from infection will result in decreases
in basic reproduction number and the equilibrium infectious human
and mosquito populations. For example, increasing the baseline value
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of y, to 0.0714 (i.e., setting the average duration of infection to 14 days)
will result in an ~37% reduction in the basic reproduction number, an
~59% (~38%) reduction in the infectious human (mosquito) endemic
equilibrium, and an ~18% increase in per capita yield (comparing the
blue and red curves in Fig. 3(e), (j), and (0)).

More simulations were carried out to assess the impacts of the
malaria-related medical costs parameter (¢) and the adjustment factor
for decreased productivity associated with clinical malaria (¢) on the
long term dynamics of the model (2.1). The results obtained and
presented in Fig. S1 of the SI show that more expenditure on malaria
will lead to reduced per capita yield and increased malaria prevalence,
while reduced spending on malaria will lead to increased per capita
yield and reduced malaria prevalence. In particular, a 50% increase
in the baseline value of ¢ will generate an ~7.1% reduction in per
capita yield and an ~1.9% (~4.1%) increase in the infectious human
(mosquito) equilibrium (comparing the blue and red curves in Fig.
S1(a)-(c)), while reducing the baseline spending on malaria by half
will lead to an ~6.5% increase in per capita yield and an ~1.7% (~3.6%)
reduction in the infectious human (mosquito) equilibrium (comparing
the blue and gold curves in Fig. S1(a)—(c)). More increases in per capita
yield (~12.5%) and more reductions in malaria prevalence (~3.6% for
humans and ~6.6% for mosquitoes) are achieved if no portion of the
yield is spent on malaria-related illness (comparing the blue and green
curves in Fig. S1(a)-(c)). Similarly, a higher decrease in economic
productivity caused by malaria will lead to a decrease in per capita
yield and an increase in malaria prevalence, whereas a lower decrease
in economic productivity due to malaria will result in an increase in
per capita yield and a decrease in malaria prevalence. Specifically, if
no clinically sick human contributes to productivity (i.e., if e = 1), an
~9.9% reduction in per capita yield and an ~2.7% (~5.6%) increase in
the infectious human (mosquito) equilibrium is recorded (comparing
the blue and red curves in Fig. S1(d)—(f)), while if everybody including
clinically sick humans contribute to productivity (i.e., if ¢ = 0) an ~8.9%
increase in per capita yield and an ~2.3% (~4.7%) reduction in the
infectious human (mosquito) equilibrium is recorded (comparing the
blue and green curves in Fig. S1(d)-(f)).

3.2. Assessing the impact of parameters on the basic reproduction number

In this section, heat maps (depicted in Fig. 4) are generated to
assess the influence of critical parameters of the model (2.1) on disease
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control, quantified by the basic reproduction number (R,) using the
baseline parameter values from Table S1 (unless otherwise specified).

Fig. 4(a) depicts a heat map of the basic reproduction number (R,)
as a function of the fraction of the yield that is consumed (¢) and
external aid (y;). The heat map indicates that achieving a reproduction
number that is below one (which is required to control the disease) is
intricately linked to both the level of external aid and the proportion
of the yield consumed. Specifically, if both consumption and external
aid are maintained at their baseline values, it becomes unfeasible to
reduce the reproduction number below one. In contrast, if none of the
yield is consumed, achieving a reproduction number that is below one
necessitates less external assistance compared to when a portion of
the yield is consumed. In particular, upholding the consumed portion
of the yield at its baseline value requires an extra 15% augmentation
in the external aid value, linked to zero consumed yield, to attain a
reproduction number reduction below one. Moreover, elevating the
baseline fraction of the yield consumed by 50% demands an additional
24% increase in the external aid value, associated with zero consumed
yield, to achieve a reduction in the reproduction number below one.
In summary, a higher consumption of yield complicates the task of
reducing the reproduction number below one. When consumption is ex-
ceptionally high and external aid is minimal, achieving R, < 1 becomes
unattainable. These findings underscore the intricate interplay between
external aid, yield consumption, and their collective impact on R, (a
crucial determinant in infectious disease dynamics), providing valuable
insights into the dynamics of disease transmission and prevention.

Fig. 4(b) presents a heat map illustrating the relationship between
the basic reproduction number (R), technological progress (4), and
external aid (yp). This plot reveals that when reducing the basic
reproduction number below one is impossible if both technological
progress and external aid are maintained at their baseline values.
However, if technological progress is held at its baseline value, a 8.8-
fold increase in the baseline value of external is required to reduce the
basic reproduction number below one, whereas if external aid is held at
its baseline value, a 9-fold increase in technological progress is required
to reduce the basic reproduction number below one. On the other hand,
a four-fold increase in baseline value of external aid requires a five-
fold increase in baseline value of technological progress to reduce the
reproduction number below one. Hence, if external aid is high, less
external aid is needed to bring the basic reproduction number below
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Fig. 4. Heatmaps of the basic reproduction number (R,) of the model (2.1) as a function of (a) the fraction of the yield consumed (c) and external aid (y;), (b) technological
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their baseline values given in Table SI.
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one. Conversely, with higher external aid, less technological progress
is required to achieve this goal. In summary, higher technological
progress reduces the need for external aid in controlling the disease;
similarly, increased aid lessens the required technological progress.

Additionally, a heat map of the basic reproduction number as a
function of technology and the fraction of the yield that is consumed
(Fig. 4(c)) is used assess the combined impact of these parameters on
disease control. The results obtained show that reducing the reproduc-
tion number below one is unachievable if both parameters are held at
their baseline values stipulated in Table S1. However, if no portion
of the yield is consumed, a threshold level of technology (which is
approximately 5.5 times the baseline value of technological progress)
is identified, allowing the reproduction number to fall below one. If
the portion of the yield consumed is maintained at its baseline value,
a nine-fold increase in the baseline value of technological progress is
required to achieve a reduction in the reproduction number below one.
Alternatively, if the baseline value of the consumed yield is reduced
by 50%, a seven-fold increase in the baseline value of technological
progress is needed to attain the same outcome. To summarize, reducing
the reproduction number below one is challenging at baseline values,
but achievable with adjustments in technology and yield consumption.

Fig. 4(d) shows a heat map of the basic reproduction number as
a function of external aid and the human background recovery rate
from infection. The graphical representation illustrates that achieving
disease containment is unattainable when both external aid and the
background recovery rate are kept at their baseline values, as outlined
in Table S1. But containing the disease might be feasible if the back-
ground recovery rate is maintained at its baseline value but external
aid is increased. In summary, disease containment is unattainable when
maintaining both external aid and the background recovery rate at
baseline values, but there is a potential for containment by increasing
external aid while keeping the background recovery rate constant.

Fig. 4(e)—(h) illustrate heat maps representing the basic repro-
duction number (R;) of model (2.1). These plots demonstrate its re-
lationship with the background biting rate of mosquitoes (f,,) and
external aid (Fig. 4(e)), technological progress (Fig. 4(f)), the frac-
tion of the yield consumed (Fig. 4(g)), and the background recovery
rate (Fig. 4(h)). The findings highlight the challenges associated with
malaria control in regions characterized by high mosquito biting rates,
particularly in the presence of limited external aid, low technologi-
cal advancement, inadequate treatment, or high consumption of the
yield. Specifically, if the background biting rate of mosquitoes is held
at its baseline value in Table S1, high external aid or technology
is required to reduce the reproduction number below one, while it
becomes impractical to reduce the reproduction number below one and
thus contain the disease effectively, even when none of the yield is
consumed or for a very high background recovery rate.

It should be noted that reducing the mosquito biting rate, along
with increasing external aid, technology, or the background recovery
rate, has a positive impact on lowering the reproduction number. In
the absence of external aid, achieving a basic reproduction number
below one requires a reduction of approximately 85% in the baseline
background biting rate of mosquitoes, with smaller reductions needed
in the presence of external aid (Fig. 4(e)). Specifically, with baseline
external aid, a 75% reduction is necessary, and a fourfold increase in
external aid requires only a 47% reduction in the baseline mosquito
biting rate for the same outcome (Fig. 4(e)). Additionally, increasing
external aid fourfold leads to a basic reproduction number below one,
even with the baseline mosquito biting rate (Fig. 4(e)). Similar trends
are observed for technological progress (Fig. 4(f)). Furthermore, simul-
taneously reducing both the mosquito biting rate and the fraction of the
yield consumed accelerates disease control. Specifically, maintaining
the consumed portion of the yield at its baseline value demands an
85% reduction in the baseline mosquito biting rate to achieve a basic
reproduction number below one. If the consumed portion is increased
by 75%, an 88% reduction in the mosquito biting rate is required
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(Fig. 4(f). If none of the yield is consumed, an 81% reduction in the
mosquito biting rate is necessary (Fig. 4(f)). Fig. 4(g) demonstrates
that holding the background recovery rate of humans at its baseline
value requires a 76% reduction in the mosquito biting rate for a basic
reproduction number below one. Increasing the baseline human recov-
ery rate to ~0.0714 (i.e., recovery in two weeks) necessitates a 59%
reduction in the mosquito biting rate to achieve the same outcome. In
conclusion, controlling malaria in areas with high mosquito biting rates
is challenging, especially with limited external aid, low technology,
inadequate treatment, or high yield consumption. Reducing mosquito
biting plays a crucial role in disease control, especially when coupled
with external aid and advanced technology. It should be mentioned
that, reducing mosquito biting can be achieved through vector control
measures like Long-lasting insecticide-treated nets, while increased
recovery rates can result from enhanced diagnosis and treatment.

3.3. External aid distribution strategy

Model (2.1) is simulated to assess the impact of external aid distri-
bution strategies on the infectious human and mosquito populations,
as well as on per capita yield. The strategies involve the distribution
of a fixed amount of external aid over three-year periods. Strategy
1: Full allocation exclusively in the first year, with no external aid in
the subsequent two years (Fig. 5(a)-(c)). Strategy 2: Equitable annual
distributions over the first two years with no allocation in the third year
(Fig. 5(d)-(f)). Strategy 3: Equal annual allocations across the three
years (Fig. 5(g)-(i)). Each of the strategies is repeated for three years
over a 15-year period. These strategies are assessed in conjunction with
a scenario where no external aid is allocated (magenta curves in Fig. 5).

Strategy 1 compared with the no external aid scenario results in a
35% (42%) reduction in the total infectious human (mosquito) pop-
ulation and a 470% increase in the total per capita yield over the
15-year period (comparing the areas under the magenta and red curves
in Fig. 5(a)-(c)). Similarly, for Strategy 2, a 40% (48%) reduction in
the total infectious human (mosquito) population and a 462% increase
in the total per capita yield is recorded over the three-year period
(comparing the areas under magenta and green curves in Fig. 5(d)—(f)).
For Strategy 3, a 46% (50%) reduction in the total infectious human
(mosquito) population and a 445% increase in the total per capita
yield is observed over the three-year period (comparing the areas under
magenta and blue curves in Fig. 5(g)-(i)).

Comparing the results of the various strategies, implementing Strat-
egy 2 instead of Strategy 1 results in an additional 5% (6%) reduction in
the total infectious human (mosquito) population and a 8% reduction
in the total per capita yield over the 15-year period (comparing the
areas under red and green curves in Fig. 5(a)-(c) and Fig. 5(d)—(f)).
Implementing Strategy 3 instead of 1 results in an additional 11% (8%)
reduction in the total infectious human (mosquito) population and an
additional 25% decrease in the total per capita yield over the three-year
period (comparing the areas under red and green curves in Fig. 5(a)-(c)
and Fig. 5(g)-(@i)), while implementing Strategy 3 instead of 2 results
in an additional 6% (2%) reduction in the infectious human (mosquito)
population and a 17% decrease in the total per capita yield over the
three-year period (comparing the areas under gold and green curves in
Fig. 5(d)-(f) and Fig. 5(g)—(i)). In summary, although each of the three
strategies results in a decreased total number of cases and an increased
per capita yield, Strategy 3 involving equitable annual allocation of
external aid leads to the lowest total number of disease cases and the
lowest total per capita yield over the 15-year period.

Additional simulations were carried out to assess the impact of
diverse external aid allocation strategies, considering different time
frames and durations, on the total infectious human population over
a 15-year period, with each strategy repeated every three years. Given
the overlap between previous larger distribution time points and some
of the smaller distribution time points in subsequent strategies, we
avoid repeating them, except for the full equitable distribution points in
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Fig. 5. Simulations of the model (2.1) to assess various external aid (y;) allocation strategies. (a)-(c): All external aid is distributed in the first year (with no external aid in
Years 2 to 3). (d)—(f): All external aid is distributed evenly on an annual basis over the first two years (with no external aid in Year 3). (d)-(f): All external aid is distributed
evenly on an annual basis over three years. The initial condition used for the simulations is (5,(0), 1,(0), R,(0),.S,(0), I,(0), k(0)) = (999, 1,0, 10000, 0, 1), while the values of the other

parameters are outlined in Table S1.

this discussion. The distribution scenarios included: (1) Yearly
distributions—all external aid distributed during the first year with no
external aid during the second and third years (blue dots in Fig. 6), two
equal installments during the first two years and no external aid during
the third year (blue squares in Fig. 6), and three equal installments
(blue diamonds in Fig. 6). (2) Bi-annual distributions—bi-annually but
only during the first six months (magenta dots in Fig. 6), bi-annually
but only during the first 18 months or 1.5 years (magenta squares
in Fig. 6), and six equal installments (blue diamonds in Fig. 6). (3)
Quarterly distributions—quarterly but only during the first quarter
(green dots in Fig. 6), quarterly but only during the first 3 quarters
(green pentagrams in Fig. 6), quarterly but only during the first 5
quarters (green hexagrams in Fig. 6), quarterly but only during the
first 7 quarters (green squares), quarterly but only during the first 9
quarters (green triangles in Fig. 6), quarterly but only during the first
11 quarters (green diamonds in Fig. 6), and twelve equal quarterly
installments (blue diamonds in Fig. 6). (4) Monthly distributions—all
external aid distributed only during the first month (orange dot in
Fig. 6(d)), first two months, first three months, etc., and upto 36 equal
monthly installments (blue diamond in Fig. 6(d)).

The findings reveal that an effective strategy for optimized disease
control entails distributing available aid evenly. In particular, allocating
all external aid within the initial six months results in a 7% higher total
infectious human population compared to distributing all external aid
solely in the first year (comparing the magenta dot in Fig. 6(b) with
the blue dot in Fig. 6(a)). Similarly, allocating all external aid within
the first quarter leads to a 14% higher total infectious human popu-
lation compared to distributing all external aid solely in the first year
(comparing the green dot in Fig. 6(c) with the blue dot in Fig. 6(a)).
Additionally, allocating all external aid within the first month results in
a 20% higher total infectious human population compared to distribut-
ing all external aid solely in the first year (comparing the orange dots
in Fig. 6(d) with the blue dot in Fig. 6(a)). Nonetheless, if all external
aid is distributed in equal annual installments for two years only, an

8% reduction in the total infectious human population compared to
allocating all external aid solely during the first year will be recorded
(comparing the blue dot and square in Fig. 6(a)), while if all external
aid is distributed in four six-month installments only, a 16% reduction
in the total infectious human population compared to allocating all
external aid solely during the initial six months will be recorded
(comparing the magenta dot and blue square in Fig. 6(b)). Similarly,
if all external aid is distributed in eight quarterly installments, a 23%
reduction in the total infectious human population compared to allocat-
ing all external aid during the first quarter will be recorded (comparing
the green dot and blue square in Fig. 6(c)). Furthermore, distributing all
external aid in 24 monthly installments will result in a 29% reduction
in the total infectious human population compared to distributing all
external aid solely during the first month (comparing the orange dot
and blue square in Fig. 6(d)). Similar reductions are observed as the
distribution frequency increases. Precisely, distributing all aid in equal
annual installments leads to an 11% reduction in the total number of
infectious humans compared to distributing all aid during the first year
only (comparing the blue dot and diamond in Fig. 6(a)). Distributing
all aid equally every six months results in a 17% reduction in the total
number of infectious humans compared to distributing all aid during
the first six months only (comparing the magenta dot and blue diamond
in Fig. 6(b)). Distributing all aid in equal quarterly installments leads to
a 22% reduction in the total number of infectious humans compared to
distributing all aid during the first quarter only (comparing the green
dot and blue diamond in Fig. 6(c)), while distributing all aid in equal
monthly installments results in a 26% reduction in the total number
of infectious humans compared to distributing all aid during the first
month only (comparing the orange dot and blue diamond in Fig. 6(d)).
In summary, allocating all external aid within six, three, or one month
leads to a higher total number of infectious cases compared to dis-
tributing external aid within one year, while equitable distribution of
external aid leads to the lowest total number of infectious humans.
The most substantial reduction in total infectious cases is observed
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Fig. 6. Simulations of the model (2.1) to assess various external aid (y,) strategies. The initial condition used for the simulations is (.5,(0), 1,(0), R,(0), S,(0), ,(0), k(0)) =

(999, 1,0, 10000, 0, 1), while the values of the other parameters are outlined in Table S1.

with the equal monthly distribution strategy compared to equal annual,
bi-annual, and quarterly distribution strategies.

3.4. Long transient dynamics for the coupled system

In mathematics and ecology, “long transients” refer to extended
periods during which a dynamic system, such as a mathematical model
or an ecological population, takes a substantial amount of time to
reach a stable or equilibrium state. These transients occur due to
complex interactions, feedback loops, or time delays within the system,
preventing it from quickly reaching a steady state. Long transients
are often observed in ecological models where populations respond to
changing environmental conditions or perturbations, and in mathemat-
ical systems exhibiting complex non-linear behavior before eventually
converging to an attractor or a stable solution. Understanding long
transients is essential for predicting the behavior of dynamic systems
over time and for studying the factors that influence their transitions
to stability or new dynamic regimes. In epidemiology, long transients
can be relevant when studying the dynamics of infectious diseases
within populations. They can help researchers understand how disease
prevalence varies over extended periods before stabilizing or evolving
into new patterns. This understanding is essential for effective disease

control and intervention planning. In particular, in infectious disease
modeling, long transients can signal the existence of reservoirs of infec-
tion. These are subpopulations or environmental factors that maintain
the disease even during periods when it seems to be under control.
Identifying and addressing such reservoirs is vital for preventing disease
resurgence. Fig. 7 demonstrates the occurrence of this phenomenon in
our model system when the initial conditions are near a saddle point.
The system converges to the disease-free equilibrium (dotted curves in
Fig. 7) and to the endemic equilibrium (solid curves in Fig. 7), with
only a slight change in the initial susceptible human population. These
results are attainable for the same parameter regime for which a back-
ward bifurcation occurs. That is, for a high value of the disease-induced
mortality rate (5,) and a low value of the background mosquito biting
rate (f,y). These long transient dynamics, characterized by the system
staying near the saddle point for a prolonged time before transitioning
to the endemic equilibrium is sensitive to the initial condition. That is,
the region for the model (2.1) exhibits long transient dynamics is very
small, suggesting that this phenomenon is rare for the malaria model. It
should be emphasized that interpreting the system’s prolonged stay at
the saddle point as a stable equilibrium can be misleading, potentially
masking the impending transition to a high-level infection state.

1.2 1.6 3.6
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=06 2038 29
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Fig. 7. Simulations of the model (2.1) illustrating the long transients phenomena. The system converges to a disease-free equilibrium (DFE) denoted by dotted curves for the
initial conditions: (5,(0), 1,(0), R,(0), S,(0), 1,(0)) = (1072.96,36.08, 64.45, 6202.61,213.17,3.27) and to an endemic equilibrium (EE) denoted by solid curves for the initial conditions:
(5,(0),1,,(0),R,(0),S,,(0),1,(0)) = (1072.94, 36.08, 64.45,6202.61,213.17,3.27). For this simulation, g, = 0.22,8, = 4.5068 x 10~%, and the other parameters are maintained at their baseline
values stipulated in Table S1. The reproduction number for this parameter regime is 0.936. It should be noted that the system stays near the saddle point for a prolonged time

((@)—(c)) before transitioning to the endemic equilibrium ((d)-(f)).
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4. Discussion, limitations, and conclusion

Malaria imposes significant annual costs encompassing both di-
rect prevention and care expenses and indirect costs such as lost
productivity. Economic considerations involve prioritizing malaria con-
trol, choosing tailored prevention and treatment strategies, evaluating
options, and optimizing resource allocation to ensure efficiency, high-
lighting the crucial role of economics in decision-making. In economic
growth studies, the impact of improved labor quality on income and
economic productivity has been explored extensively, with a focus on
education rather than health. Understanding the relationship between
health investments and increased labor productivity, particularly in
agricultural-based developing countries is crucial. Evidence is needed
to demonstrate how reducing sickness-related work absences can en-
hance overall efficiency and productivity. Conversely, understanding
how the economy improves health outcomes is essential. Using malaria
as a prototype disease, a framework integrating malaria dynamics,
socio-economic factors, and transient events is formulated and ana-
lyzed. Unlike conventional malaria models, this framework integrates
the malaria model with an economic growth model. The linkage occurs
through malaria-related medical costs affecting the investment term,
human population growth rate influencing the capital depreciation
term, and reduced productivity due to malaria in the production func-
tion. Conversely, the economic model is connected to the malaria
model through the mosquito biting rate in the forces of infection, hu-
man recovery rate from infection, mosquito recruitment term, and the
mosquito mortality rate. This framework is used to analyze synergistic
feedback between malaria dynamics and economic growth, while also
assessing the impact of vaious external aid allocation strategies and
transient events on both malaria dynamics and economic growth.

Analysis of the integrated framework shows that the reproduction
number is a function of both epidemiological and economic parameters
implying that the framework can be used to assess the impact of socio-
economic factors and disease parameters on disease control. Similar
to many traditional malaria models, when the reproduction number is
below unity, there exists a parameter range where disease containment
is possible and another range where a backward bifurcation occurs.
As in [46,49,50,52], the backward bifurcation occurs when the human
disease-induced mortality rate is significantly higher than the human
natural mortality rate. This backward bifurcation phenomenon implies
that achieving disease elimination requires intensified and sustained
control measures until the reproduction number drops below a critical
threshold and hence a push to lower transmission levels. In particular,
a backward bifurcation and hence bistability in disease dynamics has
profound implications for intervention outcomes and the emergence or
re-emergence of diseases. Minor parameter changes can trigger signif-
icant fluctuations in incidence. Elimination states may be robust, but
relaxing control efforts can trigger sudden transitions, and disease-free
regions may experience abrupt shifts based on local conditions deter-
mining transmission intensity. In this backward bifurcation (bistability)
scenario, the economic output linked to the disease-free equilibrium
is comparatively high, while the economic output associated with the
stable endemic equilibrium is significantly low. This underscores the
detrimental effect of the disease on economic output.

Further analysis of the framework reveals that in the case where
the elasticity coefficient is 0.5, the framework exhibits a single interior
endemic equilibrium when the reproduction number exceeds one in the
presence of external aid. However, in the absence of external aid, mul-
tiple interior endemic equilibria are possible, which is consistent with
simulation results in [54,55,69,70]. For this case in which the reproduc-
tion number is bigger than one, invasion establishes high prevalence,
while lower transmission intensities trap imported cases into low preva-
lence equilibria. The existence of endemic equilibria when R;, > 1, a
disease-free equilibria when R, < 1, and the possibility of a backward
bifurcation are confirmed through numerical simulations. These simu-
lations show that various disease and economic parameters (including
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labor efficiency, external aid, fraction of the yield consumed, back-
ground investment rate, and background recovery rate from malaria)
impact both disease and economic outcomes, although their effects
vary in magnitude and scope. Additionally, the simulations show a
reciprocal relationship between malaria and per capita yield. On one
hand, the presence of malaria significantly diminishes per capita yield,
suggesting that individuals in regions with a high malaria burden are
more likely to experience lower economic productivity. Conversely, the
level of per capita yield plays a crucial role in reducing the prevalence
of malaria. Higher economic productivity often leads to improved
living conditions and greater access to resources, which can contribute
to lower malaria prevalence rates in affected areas. This highlights
the intricate interplay between disease dynamics and socio-economic
factors in endemic regions. This is consistent with findings from [71]
depicting a bidirectional relationship between malaria burden and eco-
nomic development, with economic progress contributing to a decrease
in malaria burden. This connection is notably reflected in the strong
correlation between malaria burden and indicators such as GDP per
capita and total health expenditure per capita. These findings align
with those in [55], underscoring the importance of universal healthcare
access for fostering economic growth.

Heatmaps are used to assess the combined impact of parameters on
the reproduction number. The results show that controlling malaria in
high mosquito biting areas is challenging with limited aid, low tech-
nology, inadequate treatment, or high yield consumption, emphasizing
the intricate interplay between these parameters and disease dynamics.
However, reducing mosquito biting, increasing aid, technology, or the
recovery rate impacts lowering the reproduction number positively.
Hence, reducing mosquito biting coupled with increased external aid or
technology, is crucial for disease control even in high mosquito biting
areas. Reducing mosquito biting can be achieved through measures
like insecticide-treated nets, while enhanced diagnosis and treatment
increase recovery rates. Furthermore, the study shows that increased
technological progress reduces external aid reliance, and increased ex-
ternal aid reduces the required technological progress for disease con-
trol. Hence, the study identifies important parameters to be calibrated
using available or newly collected data for proper model validation.

Moreover, simulations of the model (2.1) were carried out to evalu-
ate the effects of different external aid implementation strategies. These
strategies include consistent annual allocation of the same amount over
a three-year period, equal distribution over the first two years with no
external aid in the third year, and allocating the entire amount only
in the first year. The findings reveal that the strategy of allocating
external aid equally each year over the three year period results in the
lowest total number of disease cases. Additional strategies, including
finer stratification into biannual, quarterly, and monthly allocations,
highlight the potential for an optimal approach. Specifically, distribut-
ing all external aid equally emerges as a strategy associated with the
lowest total number of infectious humans. Moreover, distributing all
external aid within six, three, or one month results in a higher total
number of infectious humans compared to distributing aid within one
year. The most significant reduction in the total number of infectious
cases occurs with the equal monthly distribution strategy compared to
the equal annual, bi-annual, and quarterly distribution strategies.

Simulations of the framework demonstrate the possibility of long
transients [57,72-74], describe extended periods during which a sys-
tem takes significant time to reach stability due to complex interactions,
feedback loops, or time delays. Understanding long transients is crucial
for predicting dynamic system behavior and studying factors influenc-
ing transitions. In epidemiology, long transients are relevant for under-
standing disease dynamics, indicating potential infection reservoirs that
require identification and addressing to prevent resurgence.

It should be noted that certain simplifying assumptions have been
incorporated into the model framework, potentially influencing out-
comes and constraining its applicability. However, the relaxation of
these assumptions would introduce increased complexity, rendering
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the model framework more mathematically intractable. For example,
the disease model assumes homogeneity within the population, con-
sidering individuals as uniform entities with equal susceptibility and
recovery rates. In reality, populations can be heterogeneous, and in-
dividual variations in immunity, exposure, and recovery can impact
disease dynamics. The model does not account for exposed humans
and mosquitoes, which could lead to a delay in the observed dynamics.
Also, the model neglects spatial aspects, treating the entire popula-
tion as a single homogeneous unit. Malaria transmission, however, is
influenced by geographical factors, such as mosquito breeding sites
and climate, which are crucial for a comprehensive understanding.
The framework ignores factors such as mosquito behavior, breeding
habitats, and insecticide resistance, which are critical for understanding
malaria transmission dynamics. The Solow growth model with a Cobb-
Douglas function, insightful as it is in explaining economic growth,
encounters limitations. It assumes homogeneous capital and labor,
neglecting variations in skills and education. The model also assumes
constant returns to scale, a fixed savings rate, and places limited
emphasis on technological progress, disregarding the crucial role of
technology in sustaining growth. Additionally, it lacks consideration
for human capital, assumes full employment, homogeneity of output,
and lacks distributional analysis, overlooking income inequality’s real-
world implications. While external aid is constant in this study, it
should be noted that it can vary as a function of a country’s disease bur-
den. A possible extension of the project includes accounting for skilled
and unskilled labor and using the more general constant elasticity
of substitution function. Another possible extension includes using an
optimal control approach to identify an external aid strategy that will
minimize disease prevalence, while maximizing the economic output.
Other possible extensions of this study include accounting for specific
malaria control and mitigation measures and using both malaria and
economic data sets to calibrate the parameters of the model, especially
the assumed economic parameters and coupling functional forms.

In conclusion, the study underscores the intricate interplay between
malaria dynamics and economic factors, showcasing bidirectional links
between malaria burden and economic development. Hence, the study
emphasizes the pivotal role of economics in decision-making for effec-
tive disease control. The integrated framework, coupling an epidemi-
ological model of malaria with an economic growth model, provides
insights into disease control and highlights the importance of opti-
mizing external aid allocation, particularly favoring strategies with
even distribution at short time intervals. The occurrence of bistability,
characterized by a backward bifurcation, underscores the challenges of
achieving disease elimination, highlights the robustness of elimination
states, with the possibility of minor parameter changes triggering signif-
icant fluctuations, and the requirement for sustained control measures.
The study reveals the potential for long transients, emphasizing the
need to address infectious disease reservoirs, as well as the need for ex-
tended control measures and continuous monitoring to prevent disease
resurgence. Furthermore, the study highlights the nuanced effects of
disease and economic parameters on various model outcomes, empha-
sizing the reciprocal relationship between malaria and per capita yield.
In summary, policy recommendations include prioritizing sustained
control measures, optimizing aid allocation, and understanding the
nuanced inter-dependencies between disease and economic parameters
for effective malaria control and prevention.
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