
1.  Introduction
Soils represent the largest terrestrial carbon (C) pool, containing approximately twice as much C as the atmos-
phere and vegetation combined (Canadell et al., 2021; Lal, 2004b). Three-fifths of the global soil C is soil organic 
carbon (SOC)—the main component of soil organic matter with essential effects on promoting soil health, the 
functioning of terrestrial ecosystems, and the global C cycle (FAO, 2018; Lal, 2004b). However, in the face of 
climate change, land use change, and other environmental pressures, it remains unclear if soils will continue to be 
a C sink or instead become a C source (Canadell et al., 2021; Friedlingstein et al., 2022; Gautam et al., 2022). A 

Abstract  Estimates of soil organic carbon (SOC) stocks are essential for many environmental applications. 
However, significant inconsistencies exist in SOC stock estimates for the U.S. across current SOC maps. We 
propose a framework that combines unsupervised multivariate geographic clustering (MGC) and supervised 
Random Forests regression, improving SOC maps by capturing heterogeneous relationships with SOC 
drivers. We first used MGC to divide the U.S. into 20 SOC regions based on the similarity of covariates (soil 
biogeochemical, bioclimatic, biological, and physiographic variables). Subsequently, separate Random Forests 
models were trained for each SOC region, utilizing environmental covariates and SOC observations. Our 
estimated SOC stocks for the U.S. (52.6 ± 3.2 Pg for 0–30 cm and 108.3 ± 8.2 Pg for 0–100 cm depth) were 
within the range estimated by existing products like Harmonized World Soil Database, HWSD (46.7 Pg for 
0–30 cm and 90.7 Pg for 0–100 cm depth) and SoilGrids 2.0 (45.7 Pg for 0–30 cm and 133.0 Pg for 0–100 cm 
depth). However, independent validation with soil profile data from the National Ecological Observatory 
Network showed that our approach (R 2 = 0.51) outperformed the estimates obtained from Harmonized World 
Soil Database (R 2 = 0.23) and SoilGrids 2.0 (R 2 = 0.39) for the topsoil (0–30 cm). Uncertainty analysis (e.g., 
low representativeness and high coefficients of variation) identified regions requiring more measurements, 
such as Alaska and the deserts of the U.S. Southwest. Our approach effectively captures the heterogeneous 
relationships between widely available predictors and the current SOC baseline across regions, offering reliable 
SOC estimates at 1 km resolution for benchmarking Earth system models.

Plain Language Summary  Soils represent the largest terrestrial carbon (C) pool. To understand 
how soil C will change under a changing climate, we first need to have an accurate estimate of how much 
soil organic carbon (SOC) is present. However, SOC maps for the U.S. are highly variable. In this study, 
we developed a new framework for estimating SOC stocks across the entire U.S. using data from site-level 
measurements. We first divided the U.S. into 20 regions based on environmental conditions and then created 
machine-learning models for each region to make an accurate, continuous map. Our method was able to capture 
different relationships between environmental variables and SOC across regions and improved the overall 
estimates for the amount of SOC found in U.S. soils. While in all regions, climate was an important variable 
for predicting SOC, soil properties, plant inputs, and elevation played key roles in some regions. As part of this 
effort, we identified areas with high uncertainty, which could be target regions for additional measurements in 
the future (e.g., Alaska and the deserts of the Southwest U.S.). Our method provides new insights for the soil 
mapping community and yields robust SOC estimates that can inform the terrestrial C cycle in models.
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small relative change in either direction would significantly affect atmospheric carbon dioxide (CO2) concentra-
tions, resulting in a strong feedback effect on future climate (Cox et al., 2000).

Resolving this question is complicated partially due to uncertainties in the size of current SOC pools (Schrumpf 
et al., 2011; Todd-Brown et al., 2013). Significant discrepancies exist in estimates of the amount and spatial 
distribution of SOC stocks (Köchy et al., 2015; Scharlemann et al., 2014). For instance, there is disagreement 
in the estimation of SOC stocks across commonly used gridded databases, such as SoilGrids, the Harmonized 
World Soil Database (HWSD), and the Northern Circumpolar Soil Carbon Database (NCSCD), both regionally 
and globally (Tifafi et al., 2018). Also, there are notable mismatches in the spatial patterns of SOC stocks between 
the Unified North American Soil Map and HWSD version 1.21 across North America (Liu et al., 2013). Having 
SOC maps and gridded products that are as accurate as possible is critical because they are relevant to many 
applications, from setting land management and carbon policy to Earth system model benchmarking.

SOC stocks vary spatially due to factors such as climate, soil type, and land use. Mapping SOC stocks can help iden-
tify areas with high C sequestration potential (Rumpel et al., 2020; Smith et al., 2020; Vågen & Winowiecki, 2013) or 
regions more susceptible to climate change impacts (Ahmed et al., 2017). Significant efforts have been made to collect 
and upscale soil profile data for mapping SOC stocks at regional or global scale (Amundson, 2001; Batjes, 1996; 
Chaney et al., 2019; FAO & ITPS, 2020; Guevara et al., 2020; Hengl et al., 2014, 2017; Mishra et al., 2022; Ramcharan 
et  al.,  2018; Scharlemann et  al.,  2014; Stockmann et  al.,  2015; Tarnocai et  al.,  2009). Soil C mapping methods 
have been constantly evolving, leveraging refinement and innovation from various fields to enhance map accuracy. 
Initially, soil C maps relied on time-consuming, labor-intensive field soil surveys (Brevik et al., 2016). With the 
development of computer systems and geographic information systems, conventional upscaling methods (class- and 
geo-matching approaches) were used to derive soil C maps (Batjes, 2000; FAO, 2018; Lettens et al., 2004). However, 
these maps relied on expert-informed mapping units and did not consider spatially explicit uncertainty assessments.

Subsequently, algorithmically generated mapping units rapidly improved soil C mapping due to advancements 
in remote-sensing technologies, geospatial data sets, and machine learning (McBratney et al., 2003; Minasny 
& McBratney, 2016; Mishra et al., 2010; Scull et al., 2003). Broadly, machine learning algorithms define soil 
mapping units via statistical relationships between remote-sensing data on environmental factors and observed 
soil C at georeferenced sample locations (aka Digital Soil Mapping [DSM]). Random Forests and variations 
on this algorithm have shown promise in estimating SOC stocks (Li et al., 2022; Padarian et al., 2020; Zhang 
et al., 2023). For example, the widely used global soil properties data sets, SoilGrids250m and SoilGrids 2.0, were 
generated using Random Forests and Quantile Regression Forests (QRF) (Hengl et al., 2017; Poggio et al., 2021). 
QRF was also used to predict the spatial distribution of SOC stocks (0–30 cm depth) across Mexico and the 
conterminous United States (CONUS) at 250 m resolution (Guevara et al., 2020).

Despite these advances, the way Random Forests approaches have been applied to mapping SOC to date has 
some limitations. Researchers often implement a single model across a large areal extent when fitting quantitative 
relationships between SOC and covariates. A DSM based on a single model may not capture the spatially heter-
ogeneous environmental factors influencing SOC stocks at global or continental scales. Multiple studies working 
at broad scales have highlighted that dominant environmental controllers of SOC stocks vary spatially (Gonçalves 
et al., 2021; Mishra et al., 2021; Rasmussen et al., 2018; Vitharana et al., 2019). For instance, country-specific 
predictors for SOC and their respective weights varied across Latin America and no universal predictive algo-
rithm was established among these countries (Guevara et al., 2018).

Recent studies demonstrated that segmenting a region of interest into mapping units with similar environmen-
tal conditions, then predicting SOC within each unit using unique models, is a valid approach to capturing the 
spatially diverse environmental factors that control SOC stocks (Chen et al., 2019; Song et al., 2020). Multivariate 
geographic clustering (MGC), a statistical algorithm, can contribute to existing DSM approaches by revealing 
otherwise hard-to-capture patterns in SOC data (Hargrove & Hoffman, 2004). Hargrove and Hoffman (1999) 
first developed MGC to define clustered regions based on their representativeness (i.e., similarity) across multi-
ple variables. Initially, MGC was applied to delineate and visualize ecoregions in CONUS and evaluate the 
representativeness of the AmeriFlux network (Hargrove et al., 2003; Hargrove & Hoffman, 2004). Since then, 
the ecological and environmental sciences communities have successfully used MGC analysis for other applica-
tions. For example, implementing MGC on nine climate variables partitioned the U.S. into 20 National Ecolog-
ical Observatory Network (NEON) ecoclimatic domains that represent distinct regions of ecosystem dynamics 
(Keller et al., 2008; Schimel et al., 2007). Utilizing MGC analysis, a representativeness-based sampling network 
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was designed in Alaska, which optimized sampling strategies, and offered a framework for up-scaling measure-
ments (Hoffman et al., 2013). Similarly, MGC analysis was used to evaluate the representativeness of FLUXNET 
observations and develop a representativeness-based upscaling approach for CO2 fluxes from eddy covariance 
measurements (Kumar et al., 2016). Lastly, MGC analysis was well suited for identifying and assigning decom-
position functional types based on global climatic, edaphic, gross primary production, and topographic charac-
teristics to estimate heterotrophic respiration at large scales (Bond-Lamberty et al., 2016).

The Earth and environmental sciences community are calling for more precise information on SOC stocks to 
promote the understanding of spatio-temporal dynamics of SOC and sustainable soil management practices 
(Amelung et al., 2020; Billings et al., 2021; Malhotra et al., 2019; Todd-Brown et al., 2022). In this study, we 
build on DSM approaches and introduce a novel method that combines MGC analysis and Random Forests 
regression (aka representativeness-based Random Forests) for spatial estimation of SOC stocks across the United 
States. We first divided the United States into 20 clusters, defined as SOC regions, at 30 arc second (∼1 km) 
spatial resolution. Then, we upscaled point-based SOC measurements (0–30 cm and 0–100 cm depths) to the 
continental scale using separate Random Forests in each SOC region. Our specific objectives were to (a) inves-
tigate the critical environmental predictors in different SOC regions; (b) estimate and map SOC stocks in the 
United States at a scale suitable for comparison with Earth System Model outputs (e.g., 30 arc seconds, ∼1 km 
resolution); (c) compare our SOC estimates with existing estimates and validate our maps; (d) identify the regions 
with low representativeness and high uncertainty to inform future monitoring efforts.

2.  Materials and Methods
In this study, we followed a DSM workflow as illustrated in Figure 1. We first used the MGC approach to partition 
the United States into SOC regions based on principal components analysis (PCA) of 36 environmental covar-
iates (Table 1, Figures S1 and S2 in Supporting Information S1). We then used Random Forests regressions to 
map SOC stocks within each of these SOC regions.

2.1.  Environmental Covariates

SOC is controlled by multiple independent variables, including climate, parent material, topography, organisms, 
and time (Jenny, 1994; McBratney et al., 2003). A set of environmental variables that span these factors were 
collected to conduct MGC and Random Forests analyses, including bioclimatic, soil biogeochemical, biological, 
and physiographic variables (Table 1). We acknowledge that not all variables that directly influence SOC are 
included in our predictor set (mineralogy, soil metals, microbes, etc.), but we focus on broad-scale controls with 
widely available gridded data sets.

2.1.1.  Bioclimatic Variables

We selected 19 bioclimatic variables (Table 1) with a spatial resolution of 30 arc seconds from WorldClim Version 
2 to represent bioclimatic conditions across the United States (Fick & Hijmans, 2017). The bioclimatic variables 
are ecologically meaningful, representing annual trends (e.g., mean annual temperature, Annual Precipitation 
[AP]), seasonality (e.g., annual range in temperature and precipitation), and extreme or limiting environmental 
factors (e.g., temperature of the coldest and warmest months, and precipitation of the wet and dry quarters). 
Bioclimatic variables are derived from monthly temperature and rainfall values, and we used the average for the 
years 1970–2000 (Fick & Hijmans, 2017).

2.1.2.  Physiographic Variables

For physiographic variables (or topographic characteristics), we used elevation data from North America Elevation 
1-Kilometer Resolution GRID (U.S. Geological Survey, 2023). This North America elevation data was derived 
from the Global 30 Arc-Second Elevation data set (Earth Resources Observation and Science Center, 2017). We 
further derived slope (unit: degrees) and aspect (unitless) data at 30 arc seconds resolution from elevation data 
using ArcGIS software (version 10.8.1).

2.1.3.  Soil Biogeochemical Properties

The gridded National Soil Survey Geographic Database (gNATSGO), composed by the United States Depart-
ment of Agriculture, Natural Resources Conservation Service (NRCS), and Soil and Plant Science Division 
(USDA-NRCS-SPSD), provides complete coverage of the best available soil information for the entire United 
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Figure 1.  Workflow of generating representativeness-based soil organic carbon (SOC) stocks in the United States using multivariate geographic clustering (MGC) 
analysis and machine learning (Random Forests) models under the Digital Soil Mapping (DSM) framework. gNATSGO, the gridded National Soil Survey Geographic 
Database; MODIS, Moderate Resolution Imaging Spectroradiometer; PCA, principal component analysis; PCs, principal components; HWSD-NCSCD, Harmonized 
World Soil Database (HWSD v1.2) with Alaska replaced by Northern Circumpolar Soil Carbon Database (NCSCD).
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States and Island Territories (Soil Survey Staff,  2020). The gNATSGO combines data from the Soil Survey 
Geographic Database (SSURGO), State Soil Geographic Database, and Raster Soil Survey Databases into a single 
seamless ESRI file geodatabase. Using a custom set of ArcTools, the “Soil Data Development Toolbox” in ArcGIS 
(10.8.1), we created a data set of spatial soil biogeochemical properties for the United States at 30 arc seconds 
from the gNATSGO (30 m resolution), including clay, sand, and silt content, soil erosion factor (K), pH, cation 
exchange capacity (CEC), water content, available water storage (AWS), calcium carbonate (CaCO3) content, 
depth of water table, and ponding frequency. All soil properties were aggregated at 0–30 cm and 0–100 cm layers.

2.1.4.  Biological Variables

We used Net Primary Productivity (NPP), leaf area index (LAI), and Normalized Difference Vegetation Index (NDVI) 
from the Moderate Resolution Imaging Spectroradiometer (MODIS) to represent biological characteristics. NPP 
data was produced by the Numerical Terradynamic Simulation Group, University of Montana (Zhao et al., 2005). 
This improved MODIS NPP Project (MOD17) is a post-reprocessed MODIS NPP data set where the contaminated 
MODIS Fraction of Photosynthetically Active Radiation and LAI inputs to the MOD17 algorithm have been cleaned 
(Zhao et al., 2005). The mean annual NPP data set covers the years 2000–2015. We collected the average LAI and 
NDVI data spanning 2000 to 2015 using Google Earth Engine (Gorelick et al., 2017) and the “geemap” python 
package (Wu, 2020). LAI data was obtained from the MODIS MOD15A2H Version 6.1 LAI product (Myneni 
et al., 2021); NDVI data were obtained from the MODIS MOD13Q1 V6.1 NDVI product (Didan, 2021).

2.2.  SOC Observational Data

2.2.1.  International Soil Carbon Network (ISCN)

SOC observations (27,976 for 0–30 cm depth and 21,807 for 0–100 cm depth) across the United States were obtained 
from the International Soil Carbon Network (ISCN) version 3 Database (ISCN; Nave et al., 2022). SOC observations 
were collected over several decades, ranging from the 1910s to the 2010s. We considered all soil profiles containing 
continuous soil layers at 0–30 cm and 0–100 cm intervals of soil depth in the United States (see Text S1 in Supporting 
Information S1 for more information). ISCN is one of the largest, most wide-ranging, and most diverse repositories 
of measured soil data (Harden et al., 2018; Malhotra et al., 2019). The majority of the ISCN data is from the NRCS 
and National Cooperative Soil Survey. It is worth noting that ISCN data is not completely independent of soil bioge-
ochemical properties from gNATSGO, which we used to produce the soil properties described above. While the data 
sets are not completely independent, they are not entirely overlapping either. Since our response variable is SOC while 
the predictors are physical and chemical properties, this primary data source overlap has undue influence on our study.

2.2.2.  An Independent Alaska Soil Profile Data

We collected georeferenced Alaska soil profile observations (113 for 0–100 cm depth) from a published database 
(Michaelson et al., 2013). This database includes data collected by the University of Alaska Fairbanks Northern 
Latitudes Soils Program from 1991 through 2011 in Alaska (Vitharana et al., 2017).

2.2.3.  National Ecological Observatory Network (NEON)

NEON is a continental-scale observation facility designed to collect long-term open-access ecological data to 
improve our understanding of ecosystems across the United States. It was advantageously designed as a network 
of sites with a suite of common measurements including SOC (Weintraub et al., 2019), as opposed to data compi-
lation of independent efforts. NEON statistically partitioned the continental U.S., Hawaii, and Puerto Rico into 
20 ecoclimatic domains to ensure sampling would occur across the full range of U.S. ecological and climatic 
diversity. Here, we used soil profile data from the distributed initial characterization data set (Soil physical and 
chemical properties, distributed initial characterization, DP1.10047.001), which was collected from a number of 
1 m deep pits distributed throughout each terrestrial site for a one-time characterization of site-wide soil proper-
ties (National Ecological Observatory Network, 2023).

2.2.4.  Calculation of SOC Stocks

The SOC stocks for 0–30 cm and 0–100 cm depths were calculated using the following equation:

SOC = %C × BD ×𝐷𝐷 × (1 − CF)� (1)

where SOC is the SOC stock (kg m −2), %C is the concentration (g 100 g −1) of C in the sample, BD is the soil bulk 
density (kg m −3), D is the soil layer thickness (m), and CF is the volumetric fraction of coarse fragments. For soil 
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profiles missing bulk density (20,261 for 0–30 cm depth and 16,111 for 0–100 cm depth), we used a pedotransfer 
function to estimate it (Drew, 1973; Guevara et al., 2020; Yigini et al., 2018).

BD =
1

(0.6268 + 0.0361 × OM)
� (2)

The OM (organic matter) content was estimated as OM = SOC concentration × 1.724. This pedotransfer function 
was used based on findings from Guevara et al. (2020). They conducted an extensive analysis of the residual vari-
ance of six conventional pedotransfer functions for estimating bulk density in relation to SOC stocks. Their findings 
suggested that the equation proposed by Drew  (1973, Equation 2) exhibited the strongest correlation with SOC 
prediction across Mexico and CONUS. Hence, we incorporated this pedotransfer function into our analysis and tested 
it using the NEON data, yielding an R 2 value of 0.39, a reasonable prediction accuracy for pedotransfer functions 
(Abdelbaki, 2018; Tranter et al., 2007). All SOC observation values were log-transformed while developing Random 
Forests models to reduce the right-skewed distribution of SOC values (see histograms of SOC in Figure 2). By imple-
menting the log-transformation, we aimed to reduce the relative impact of these high values, thereby achieving a more 
acceptable level of error in prediction, while simultaneously enhancing the accuracy for the majority of the data set.

2.3.  Principal Component Analysis (PCA)

Some statistical methods, such as k-means clustering based MGC, are sensitive to multicollinearity in their input 
variables. We performed principal component analysis (PCA) on the 36 environmental covariates to address 
that issue. PCA is a multivariate analysis technique for dimensionality reduction. It increases interpretability 
but minimizes information loss by extracting the most important information from non-independent variables to 
compress the size of the data set (Abdi & Williams, 2010; Jolliffe & Cadima, 2016). The PCA applied an orthog-
onal transformation that converted our set of possibly correlated variables into a set of values of linearized and 
uncorrelated variables called principal components (Figures S1 and S2 in Supporting Information S1) that were 
most appropriate for use in the clustering algorithm.

2.4.  Multivariate Geographic Clustering (MGC) and Representativeness Analysis

We implemented the MGC (Hargrove & Hoffman, 1999, 2004) approach to delineate SOC regions across the 
United States. MGC uses an iterative k-means clustering algorithm, which starts with a set of initial centroids and 
calculates the Euclidean distance of each point to every centroid, classifying it to the closest centroid creating k 

Figure 2.  Locations of soil organic carbon (SOC) observation sites and distribution of SOC values in the United States from three data sets (Alaska data set, ISCN, 
and NEON). Point-based SOC measurements were obtained for two depths: (a) 0–30 cm and (b) 0–100 cm. ISCN, International Soil Carbon Network; NEON, National 
Ecological Observatory Network.
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clusters. Once all points are classified into k clusters, new centroids of the clusters are calculated and iterations 
are  continued till the convergence criteria of less than 0.05% of cells changing their cluster assignment since 
previous iteration is reached. We applied MGC to 12 principal components (explaining 89% of variance), derived 
from 36 original environmental covariates (Table 1). MGC identifies clusters containing spatial grid cells based 
solely on their environmental characteristics without explicitly using their spatial coordinates. Thus, it does not 
force or require any spatial contiguity in the distribution of clusters, rather it lets them evolve based on the under-
lying environmental covariates.

The k-means clustering algorithm requires the desired number of clusters (k) to be prescribed. Traditionally, the 
optimal number of clusters (k) is determined using the elbow method by examining the mean distance of points 
from the centroid within each cluster, which is a measure of cluster compactness. However, in our study, the 
goal of MGC was not just to identify an optimal number of clusters based on environmental variables, but to 
also segment the available SOC observations to develop models for estimating SOC stocks. Thus, we conducted 
clustering at varying numbers of k and these initial tests helped us identify an appropriate k value, most suitable 
for developing machine learning models for estimating SOC stocks. At k = 10 (Figure S3 in Supporting Informa-
tion S1), a large portion of the eastern US was grouped into one SOC region, masking known heterogeneity in 
important soil forming factors. On the other hand, at k = 30 (Figure S3 in Supporting Information S1) there were 
six SOC regions that had less than 100 data points for both 0–30 cm and 0–100 cm layers, limiting our ability to 
create accurate SOC prediction models. We adopted k = 20 (Figure S3 in Supporting Information S1) in our study 
as it limited only three SOC regions that had less than 100 data points for both 0–30 cm and 0–100 cm layers, 
allowing sufficient SOC observations within most SOC regions for this modeling application while still allowing 
the data to be grouped along key axes of environmental variation. Thus, our approach struck a balance between 
the number of observations within each region and the number of SOC regions. NEON also segmented the U.S. 
into 20 ecoclimatic domains, but our 20 SOC regions are distinct from those as we used multiple sources of input 
data for MGC while NEON only used climate variables.

Since the SOC observations available within each SOC region were not taken with the SOC regions in mind, 
they represent a random sampling of the environmental conditions across the SOC region and thus provide 
heterogenous representation for grid cells within and across the study regions. Representativeness provided by 
the available SOC observations, or lack thereof, is likely to have important implications for accuracy and uncer-
tainty of models trained using them and is important to quantify and understand. We therefore quantified how 
well each grid cell is represented by the available SOC observations using a point-based representativeness 
approach (Hoffman et al., 2013). At each site with SOC observations, the environmental covariables (the prin-
cipal components here) were extracted from the gridded data sets and the Euclidean distance to every other 
pixel was computed in the environmental variables data space. We selected the inverse of the closest Euclidean 
distance between the pixel and the observation sites among all observation sites, in the environmental data space 
defined by 12 principal components, as the representativeness of that pixel. Higher representativeness values 
indicate better representation of grid cells by observation sites' environmental conditions while lower values 
represent poor representation.

2.5.  Random Forests and Model Performance

Random Forests is a commonly used machine learning algorithm that combines the output of multiple deci-
sion trees to yield a single result. It is suited for handling non-linear relationships between response variables 
and predictors without requiring predefined functional forms or a normal sample distribution (Breiman, 2001). 
Unlike MGC, Random Forests algorithms have been demonstrated to be robust and less sensitive to the presence 
of multicollinearity in the predictor variables. Thus, we used the original environmental covariates (n = 36) 
instead of principal components to generate data-driven SOC estimation models, allowing for better interpret-
ability of predictor importance scores. Separate Random Forests models were trained to predict SOC in each 
SOC region, similar to Chen et al. (2019) and Song et al. (2020). SOC observations from ISCN (n = 27,976 and 
21,807 for 0–30 cm and 0–100 cm depths, respectively) and Alaska soil profile data (n = 113 for 0–100 cm depth) 
were randomly split into 80% training and 20% testing sets. To quantify the uncertainties caused by random 
sampling, we repeated the random splitting 20 times, generating 20 groups of training and testing sets for each 
SOC region. We then trained 20 Random Forests using the training sets with all predictors and evaluated model 
performance using the testing sets. In our study, the ntree (number of trees) was set to 1,000. The hyperparameter 
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mtry (the number of variables considered at each split in prediction trees, mtry = 3, 5, 7, or 9) was optimized 
using out-of-bag (OOB) samples with the caret package (Kuhn, 2008) for the R software (version 4.1.2; R Core 
Team, 2022).

Model performance was evaluated based on the coefficient of determination (R 2), the mean absolute error (MAE), 
and the root mean squared error (RMSE) in testing sets. To compare our new SOC maps with existing gridded 
products, we downloaded SoilGrids 2.0 (Poggio et  al.,  2021), HWSD v1.2 (FAO et  al.,  2012), and NCSCD 
(Hugelius et al., 2013) and used NCSCD to replace HWSD v1.2 values in Alaska to correct the high latitudes 
SOC stocks bias (Georgiou et al., 2021), naming it HWSD-NCSCD. Then, we extracted the SOC values from 
the pixels that matched the locations (latitude and longitude) of the testing data from ISCN. We accordingly 
compared testing data to SoilGrids 2.0 and HWSD-NCSCD values, generating R 2, MAE, and RMSE that could 
be compared to our model metrics. Additionally, the NEON soil profile data were used for independent valida-
tion, where we compared measured values to predictions from our method as well as those from SoilGrids 2.0 and 
HWSD-NCSCD at the same locations. The uncertainties of our SOC estimates were quantified using the coeffi-
cients of variation (CV) of the predictions from 20 Random Forests in each SOC region. Lastly, we compared our 
overall estimates of SOC stocks with SoilGrids 2.0 and HWSD-NCSCD.

3.  Results
3.1.  Model Performance

The mean R 2 for our representativeness-based Random Forests from testing sets (Figure 3) in 20 SOC regions 
(Figure S3 and Table S1 in Supporting Information S1) varied between 0.15–0.53 and 0.16–0.49 for 0–30 cm and 
0–100 cm depths, respectively. There was a large difference in the number of ground truth observations in our 
testing sets among the 20 SOC regions, ranging between 10 and 897 for 0–30 cm depth and 9 to 780 for 0–100 cm 
depth, respectively. Random Forests runs in the SOC regions with a small number of observations tended to have 
a more extensive range of R 2 than SOC regions with a large number of observations. For reference, we trained 
a Random Forests model using a single SOC region (e.g., no clusters), and the resulting R 2 was 0.47 and 0.41 
for 0–30 cm and 0–100 cm depths, respectively (Figures S4c and S4f in Supporting Information S1). The single 
SOC region-based Random Forests represents the commonly used method but tends to mask the variable model 
performances in different regions.

Figure 3.  Model performances were evaluated using testing data in 20 soil organic carbon (SOC) regions. Box plots represent R 2 values for 20 representativeness-based 
Random Forests models for (a) 0–30 cm and (b) 0–100 cm depths. Maps represent spatial distribution of mean R 2 of all SOC regions for (c) 0–30 cm and (d) 0–100 cm 
depths. The bar plot and numbers above each bar (a, b) indicate the number of observations in testing sets. The numbers above each box are the mean value of the 20 R 2 
from 20 Random Forests runs. The box and whiskers plot display the minimum, first, median, third, and maximum quartile values.
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Compared to SoilGrids 2.0 and HWSD-NCSCD, our method showed better performance in reproducing observa-
tions in most SOC regions. While our approach always resulted in higher R 2 values than HWSD-NCSCD, 16 and 
13 out of 20 SOC regions also resulted in higher R 2 values than SoilGrids 2.0 for 0–30 cm and 0–100 cm depths, 
respectively (Figure 3, Figure S4 in Supporting Information S1). Compared to SoilGrids 2.0 and HWSD-NCSCD, 
our representativeness-based estimates had lower RMSE in 14 SOC regions and 8 SOC regions for 0–30 cm and 
0–100 cm depths, respectively (Figure S5 in Supporting Information S1). For MAE, our estimates showed lower 
values than SoilGrids 2.0 and HWSD-NCSCD in 12 SOC regions and 14 SOC regions for 0–30 cm and 0–100 cm 
depths, respectively (Figure S6 in Supporting Information S1).

We used NEON soil profile SOC stocks (0–30  cm and 0–100  cm depths) to independently validate our 
representativeness-based SOC estimates (Figure  4). For 0–30  cm depth, representativeness-based SOC 
(R 2 = 0.51; RMSE = 7.72 kg C m −2; MAE = 4.75 kg C m −2) showed a higher R 2, lower RMSE and MAE than 
SoilGrids 2.0 (R 2 = 0.39; RMSE = 8.91 kg C m −2; MAE = 5.27 kg C m −2) and HWSD-NCSCD (R 2 = 0.23; 
RMSE  =  9.55  kg  C  m −2; MAE  =  5.94  kg  C  m −2). For 0–100  cm depth, representativeness-based SOC 
estimates (R 2 = 0.39; RMSE = 17.76 kg C m −2; MAE = 8.63 kg C m −2) were nearly the same as SoilGrids 
2.0 (R 2 = 0.4; RMSE = 16.87 kg C m −2; MAE = 8.14 kg C m −2) but better than HSWD-NCSCD (R 2 = 0.18; 
RMSE = 20.21 kg C m −2; MAE = 10.49 kg C m −2). The representativeness-based SOC stocks captured larger 
SOC values in surface soil (0–30 cm) at high latitudes than SoilGrids 2.0 and HWSD-NCSCD, in which high 
latitudes SOC stocks were underestimated (Figure 4). Overall, our combined MGC analysis and Random Forests 
regression approach outperformed HWSD and SoilGrids 2.0.

Figure 4.  Independent validation using National Ecological Observatory Network (NEON) soil profile soil organic carbon (SOC) and comparison with 
HWSD-NCSCD and SoilGrids 2.0 SOC data sets. Scatter plots represent predicted versus observed SOC stocks at NEON sites for (a, d) representativeness-based SOC; 
(b, e) SoilGrids 2.0; and (c, f) HWSD-NCSCD. Top panels (a, b, c) represent 0–30 cm depth and bottom panels (d, e, f) represent 0–100 cm depth. Black lines represent 
1:1 lines. Error bars in (a) and (d) indicate the standard deviation of 20 Random Forests ensembles in representativeness-based SOC estimates. The Units of root mean 
squared error and mean absolute error are kg C m −2. HWSD-NCSCD, Harmonized World Soil Database (HWSD v1.2) with Alaska replaced by Northern Circumpolar 
Soil Carbon Database (NCSCD).
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3.2.  Representativeness and Coefficient of Variation

The representativeness of the United States is low in the Southeast coastal area, the Great Lakes basin, the South-
west deserts, the Rocky Mountains, the Pacific Northwest, and most parts of Alaska, Hawaii, and Puerto Rico 
(Figures 5a and 5b). All coastlines are likely under-represented. Overall, 0–30 cm depth was more representative 
than 0–100 cm depth, indicated by higher representativeness values (or fewer red pixels) in representativeness 
maps in the former (Figures 5a and 5b).

To evaluate uncertainty in our products, we analyzed the CV of the representativeness-based SOC estimates. The 
higher CV indicated more uncertainties introduced by the random sampling and splitting of data. We found larger 
CVs located in Alaska, the Great Lakes basin, Nebraska Sand Hills, the far northeast US, Southwest deserts, the 
Rocky Mountains, and southeast Florida (Figures 5c and 5d). These areas had fewer observations, and the random 
sampling resulted in wider variability of Random Forests models. More areas with high CV values (or more pink 
pixels) were found for 0–100 cm than for 0–30 cm in our SOC maps, especially in Alaska, Southwest desert areas, 
and the Great Lakes basin.

3.3.  Spatial Variability in Dominant Environmental Factors Across SOC Regions

The importance of different environmental predictors varied across SOC regions (Figure 6, Figure S7 in Support-
ing Information S1). For 0–30 cm depth, all SOC region's top five important covariates included more than one 
bioclimatic variable (Figure 6, Table 1), and in many regions, they were the majority of the top predictors. In SOC 
regions 3, 6, 8, 9, and 11, biological covariates were more important in predicting SOC than in other regions. 
This mainly covers drylands such as Nevada, interior Alaska, Idaho, Utah, Colorado, and Texas (Figure S3a in 
Supporting Information S1). Soil biogeochemical properties were most important for predicting SOC in regions 
2 and 19 (e.g., some areas in southeast Alaska Pacific coastal and southeast and southern US coastal plain) and 
emerged as important predictors in regions 4, 9, 17, and 18 as well (e.g., some areas in Pacific Northwest, Utah, 
south Alaska, Corn Belt plains). Elevation was an important predictor in SOC regions 7, 13, 14, 18, and 20 (e.g., 
some areas in the Appalachians, Mississippi River floodplain, Corn Belt plains, and Nebraska Sand Hills) and 
co-occurred with temperature-related bioclimatic covariates.

For 0–100 cm depth, bioclimatic covariates were relatively important in all regions except SOC region 4 (Pacific 
Northwest) (Figures S3 and S7 in Supporting Information S1). Similar to 0–30 cm depth, biological covariates 

Figure 5.  Representativeness maps and coefficient of variations (CV) identify areas that need more ground truth observations. Left panels (a, b) represent 
representativeness maps comparing each pixel to observation pixels based on the closest Euclidean distance in environmental covariates data space at 0–30 cm and 
0–100 cm depths, respectively. Right panels (c, d) represent spatial distributions of CV of representativeness-based soil organic carbon for 0–30 cm and 0–100 cm 
depths, respectively. Top panels (a, c) represent 0–30 cm depth and bottom panels (b, d) represent 0–100 cm depth.
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were found to be most important in the dryland and Alaska regions (SOC regions 15, 17, and 20, areas in South-
west deserts regions, Southeastern plains, southern Alaska, and interior Alaska, Figures S3 and S7 in Supporting 
Information S1). Soil biogeochemical properties were more broadly important at the deeper depth, appearing in 
the top 5 variables in 11 out of the 20 SOC regions (Figure S7 in Supporting Information S1), as opposed to nine 
regions for surface soil (Figure 6). Like 0–30 cm, elevation was an important predictor in the Appalachians and 
Mississippi River floodplain (SOC regions 7 and 14, Figures S3 and S7 in Supporting Information S1) as well 
as in areas of the Rocky Mountains and interior Alaska (SOC regions 3 and 9, Figures S3 and S7 in Supporting 
Information S1).

3.4.  Estimates of SOC Stocks

The spatial pattern of mean SOC stocks at 30 arc seconds resolution is shown in Figure 7. In the United States, 
well-known spatial patterns of SOC stocks were reproduced. SOC stock generally decreased from high-latitude 
to low-latitude areas. The Great Lakes basin, northeast CONUS, and Alaska tended to have high SOC stocks. 

Figure 6.  The relative importance of predictor variables in 20 soil organic carbon (SOC) regions for the 0–30 cm depth. More information and spatial distribution 
of SOC regions can be found in Supporting Information S1 (Figure S3, Table S1, and Text S2 in Supporting Information S1). Only the top five most important 
variables are shown here. MAT, Mean Annual Temperature; MDR, Mean Diurnal Range; TS, Temperature Seasonality; MaxTWM, Max Temperature of Warmest 
Month; MinTCM, Min Temperature of Coldest Month; TAR, Temperature Annual Range; MeanTWetQ, Mean Temperature of Wettest Quarter; MeanTDQ, Mean 
Temperature of Driest Quarter; MeanTWQ, Mean Temperature of Warmest Quarter; MeanTCQ, Mean Temperature of Coldest Quarter; AP, Annual Precipitation; 
PWM, Precipitation of Wettest Month; PDM, Precipitation of Driest Month; PS, Precipitation Seasonality; PWetQ, Precipitation of Wettest Quarter; PDQ, Precipitation 
of Driest Quarter; PWQ, Precipitation of Warmest Quarter; PCQ, Precipitation of Coldest Quarter; AWS, Available Water Storage; WC, Water Content; DTW, Depth 
to Water Table; PF, Ponding Frequency. See the relative importance of prediction variables in 20 SOC regions for the 0–100 cm depth in Figure S7 in Supporting 
Information S1.
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In contrast, the Southwest deserts and the Rocky Mountains tended to show low SOC stocks. For the 0–30 cm 
layer, we estimated 52.6 ± 3.2 (Mean ± SD) Pg C in the United States, which was 12.7% and 15.1% larger 
than HWSD-NCSCD and SoilGrids 2.0, respectively. Our estimation for the 0–100 cm layer was 108.3 ± 8.2 
(Mean  ±  SD) Pg C, which was 19.4% larger than HWSD-NCSCD and 18.6% smaller than SoilGrids 2.0 
(Table 2). In Alaska, representativeness-based SOC stock for the 0–30 cm depth was larger than HWSD-NCSCD 
and SoilGrids 2.0 by 30.8% and 46.6%, respectively. In contrast, in CONUS, representativeness-based SOC for 
the 0–30 cm depth was only larger than HWSD-NCSCD and SoilGrids 2.0 by 5.9% and 4.3%, respectively. For 
Alaska and CONUS, representativeness-based SOC for 0–100  cm depth was larger than HWSD-NCSCD by 
71.7% and 2% but lower than SoilGrids 2.0 by 11.8% and 21.9%, respectively. SOC stocks had more discrepan-
cies at high latitudes and deeper layers across different data sets (Figure 7 and Table 2).

4.  Discussion
Our DSM framework, coupling MGC with Random Forests to estimate SOC, shows promise in both generating 
accurate SOC maps at the continental scale and identifying areas that need more observational data. Additionally, 

Figure 7.  Spatial distribution of soil organic carbon (SOC) stocks for (a–c) 0–30 cm and (d–f) 0–100 cm depths in the United States. The top panels represent SOC 
stocks for 0–30 cm depth for (a) representativeness-based SOC, (b) HWSD-NCSCD, and (c) SoilGrids 2.0. The bottom panels represent SOC stocks for 0–100 cm 
depth for (d) representativeness-based SOC, (e) HWSD-NCSCD, and (f) SoilGrids 2.0. HWSD-NCSCD, Harmonized World Soil Database (HWSD v1.2) with Alaska 
replaced by Northern Circumpolar Soil Carbon Database (NCSCD).

Depth (cm) Data set Total stock (Pg) Alaska stock Continental US stock

0–30 Representativeness-based SOC 52.6 ± 3.2 17.0 ± 1.4 35.4 ± 1.8

0–30 HWSD-NCSCD 46.7 13.0 33.4

0–30 SoilGrids 2.0 45.7 11.6 33.9

0–100 Representativeness-based SOC 108.3 ± 8.2 38.6 ± 3.7 69.3 ± 4.4

0–100 HWSD-NCSCD 90.7 22.5 67.8

0–100 SoilGrids 2.0 133.0 43.8 88.7

Note. HWSD-NCSCD, Harmonized World Soil Database (HWSD v1.2) with Alaska replaced by Northern Circumpolar Soil 
Carbon Database (NCSCD); Pg, Peta-gram.

Table 2 
Estimated Soil Organic Carbon Stocks (Mean ± SD) in the United States, Alaska, and Continental US for 0–30 cm and 
0–100 cm Depths
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we revealed new insights into how different environmental factors influence SOC stocks in different regions. 
Finally, we generated gridded SOC stock estimates (and associated uncertainties) for the United States with 
30 arc second resolutions that are more accurate, especially for surface soils, compared to other commonly used 
gridded products according to independent validations.

4.1.  Low Representativeness and High Uncertainty Areas for Further Survey

We bootstrapped uncertainties in the SOC estimates using 20 repeated random samplings data sets (80% train-
ing and 20% testing sets). We found a general pattern of converging uncertainty based on the spatial density of 
observations. In SOC regions defined by covariates with fewer observations (generally, n < 500; Figure S8 in 
Supporting Information S1), the 20 repeated random samplings resulted in a larger range of R 2 than regions with 
more observations (Figure 3 and Figure S8 in Supporting Information S1), indicating that model performances 
in SOC stock estimates are more unstable and uncertain in these SOC regions. Instead of simply merging those 
SOC regions into other regions, we chose to keep the 20 SOC regions to highlight these regions with unique 
properties and high uncertainty, emphasizing the pressing need for additional observations in these areas. These 
uncertainties from bootstrapping indicate the need to structure sample collection to be more representative. In 
theory, if there are enough well-distributed observations covering the entire “population” of SOC, the random 
separation into training and testing sets should result in only minor differences in prediction results. Spatially, the 
CV maps highlight higher uncertainty areas (Figure 5), which tend to be where observations are sparse (Figure 2), 
and representativeness values are low (Figure  5). These areas of low representativeness and high uncertain-
ties occurred in Alaska, the Great Lakes basin, Nebraska Sand Hills, far northeast US, Southwest Deserts, the 
Rocky Mountains, and southeast Florida (Figure S3 in Supporting Information S1). In these areas, coordinated 
and systematic field sampling efforts are needed to fill data gaps and increase our confidence in estimates of 
SOC stocks. Additionally, the SOC map for 0–100 cm depth has more areas with higher uncertainty and less 
representativeness than the SOC map for 0–30 cm (Figure 5). This can be partially attributed to the scarcity of 
SOC observations at greater depths since obtaining samples from these deeper layers is a resource-intensive and 
challenging endeavor (Billings et al., 2021; Jandl et al., 2014). Meanwhile, estimated SOC at 0–30 cm depth by 
our approach and HSWD-NCSCD showed better performance (larger R 2 values) compared to estimated SOC at 
0–100 cm depth (Figure 4). This aligns with the observation that DSM generally performs better in topsoil than 
subsoil for SOC concentrations and SOC stocks, as reported by Chen et al. (2022).

We also quantified the representativeness of each grid cell in the data space (Figure 5). The areas with larger 
CV values were generally matched with the underrepresented areas, indicating that representativeness could be 
a helpful method for identifying areas needing more ground-based SOC measurements. Increasing SOC meas-
urements, specifically in underrepresented grid cells, could better center the SOC regions in data space, leading 
to improved representation within each SOC region. Several studies have used the MGC point-based repre-
sentativeness method to locate measurement sites to better monitor large-scale ecosystem dynamics (Hoffman 
et  al.,  2013). This kind of representativeness analysis could guide future field campaigns as far as where to 
do more monitoring and, in turn, help modelers identify areas where more observations are needed to better 
constrain Earth system models.

4.2.  The Impacts of Environmental Factors Across Different SOC Regions

Multiple environmental factors control SOC, including climate, plant productivity, edaphic properties, and 
topographic variables (McBratney et al., 2003). Moreover, understanding the spatial distribution of what varia-
bles drive SOC is crucial for predicting how ecosystems will respond to changing climate conditions (Doetterl 
et al., 2015; Gautam et al., 2022; Gonçalves et al., 2021; Mishra et al., 2022). Thus, it is critical to understand 
the key predictive drivers across different regions. Our variable importance analysis indicates that bioclimatic 
covariates were the most common top five predictors in all SOC regions for both 0–30 cm and 0–100 cm depths 
(Figure 6 and Figure S7 in Supporting Information S1). However, other types of predictors were as or more 
important in specific regions.

Biological predictors tended to be more important in the southwest drylands (SOC regions 3, 8, 9, and 11, for 
0–30 cm depth and regions 15 for 0–100 cm depth; Figure 6), which have arid or semi-arid climates (Lauenroth & 
Bradford, 2009). Our finding is in line with results from a CONUS-scale study, which revealed NPP was the most 
important predictor for SOC stocks in the driest ecosystems (Gonçalves et al., 2021). In drylands, SOC accrual 
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is more limited by inputs (i.e., plant production, NPP) since decomposition rate is relatively slow (Lal, 2004a; 
Schulze & Freibauer, 2005). Despite exhibiting temperature and precipitation patterns contrary to those found 
in drylands, biological covariates (e.g., NPP, NDVI) also played a significant role in predicting SOC in Alaska 
(e.g., SOC regions 17 and 20) at 0–100 cm depth. This could be explained by limited carbon input in high-latitude 
regions due to short and cold growing seasons (Bjorkman et al., 2020; Hobbie et al., 2000). Although not often 
considered in soil studies across Alaska (Bliss & Maursetter, 2010; Johnson et al., 2011; Mishra & Riley, 2012), 
including more explicit vegetation-related variables, such as NPP, NDVI, could be helpful in estimating SOC 
stocks.

Soil biogeochemical covariates were important predictors in some regions. For example, depth to water table 
was a key predictor for 0–30  cm SOC stock in SOC region 19 (mainly found in the southeast and southern 
coastal plain) and for 0–100 cm SOC stocks in SOC regions 1, 2, and 5 (mainly found in the Northwest US). In 
these areas with high AP, depth to water table likely plays a critical role in SOC dynamics (Ise et al., 2008). For 
instance, anoxic conditions resulting from a rising water table could lower SOC decomposition rates, leading to 
high SOC stocks (Fenton et al., 2005; Ise et al., 2008). Soil variables such as sand content, CEC, and AWS were 
important predictors in surface soils (0–30 cm) for SOC regions 2, 4, 9, and 17, which were distributed among 
the Rocky Mountains and mountainous areas of the south and southeast Alaska. Mountain soils are likely to be 
shallow, thin, and coarse-textured, so variation in these properties may have more influence on SOC dynamics 
there (Egli & Poulenard, 2016).

Other soil biogeochemical covariates (e.g., CaCO3, CEC, pH) emerged as important predictors for 0–100 cm 
depth more so than for 0–30 cm depth (Figure 6 and Figure S7 in Supporting Information S1). For 0–100 cm 
depth, 11 out of 20 SOC regions have at least one edaphic variable ranked in the top five important variables. 
Similar to what we observed here, another continental-scale study across sub-Saharan Africa reported that climate 
variables played a larger role in the topsoil, and geochemical predictors had a larger influence on the subsoil (von 
Fromm et al., 2021). Other global scale studies also supported that climate variables dominated SOC in surface 
soil, while edaphic properties were more important controllers in deeper layers (Jobbágy & Jackson, 2000; Luo 
et al., 2021). However, a recent study from the United States demonstrated the generally consistent relative impor-
tance of geochemical and climate predictors of SOC across the soil depth (Yu et al., 2021). Thus, the relative 
importance of soil biogeochemical and climate predictors of SOC in top versus sub-layers might change depend-
ing on the scale of analysis or the specific region.

Regions related to the Appalachians and the Mississippi River had physiographic variables (e.g., elevation) as 
influential predictors. In mountains, elevation has an effect on vegetation productivity and decomposition rates 
due to decreasing temperature along the elevation gradient, which is likely to influence organic carbon inputs 
to and losses from soils (Garten et al., 1999; Shedayi et al., 2016; Sheikh et al., 2009). In the Mississippi River 
floodplain, flooding has a significant influence on SOC by changing hydrology and sediment transportation 
processes (De Jager et al., 2012; Elsey-Quirk et al., 2019; Grubaugh & Anderson, 1989). Regions with higher 
elevations are less impacted by flooding, and lower-elevation land experiences more flooding. Even though it is 
generally a low-relief area, this could explain the critical role of elevation in predicting SOC in areas along the 
Mississippi River.

4.3.  Comparison of Representativeness-Based SOC Stocks With Other Existing Gridded Products

We estimated larger SOC stocks for the 0–30  cm layer in the United States (52.6  ±  3.2 Pg) compared to 
HWSD-NCSCD (46.7 Pg) and SoilGrids 2.0 (45.7 Pg) at 30 arc-seconds (1 km) resolution. This is primarily due 
to relatively high estimates of SOC stocks in Alaska by our approach compared to other products (17.0 ± 1.4 Pg 
for representativeness-based SOC; 13.04 Pg for HWSD-NCSCD; and 11.6 Pg for SoilGrids 2.0). In Alaska, we 
also observed a large range of SOC estimates across the three data sets for 0–100 cm depth (Table 2). Discrep-
ancies among SOC stock data sets at high latitudes were also detected by other studies (Lin et al., 2022; Tifafi 
et  al., 2018). Resolving this uncertainty in Alaska and high-latitude boreal regions is paramount due to their 
disproportionately large SOC stocks (Ping et al., 2008) and faster warming (IPCC, 2022; Schuur et al., 2008) 
compared to other regions. Variations in estimated SOC stocks across Alaska most likely arise from differ-
ences in upscaling and statistical modeling approaches between the data sets we compared. In our DSM frame-
work, instead of using a single Random Forests model globally (e.g., SoilGrids), we used a clustering method, 
building Random Forests based on individual SOC regions, to better capture the spatial heterogeneity between 
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key predictors and SOC. In Alaska, our MGC analysis identified over 10 distinct pixel-specific SOC regions. 
These regions were sporadically distributed across geographic areas, with some being small in size (Figure S3 in 
Supporting Information S1). We argue that these detailed data-based, pixel-specific SOC regions better represent 
varying relationships between SOC and predictors, making our method a more robust way to upscale SOC stock 
estimates. Still, more observational data are needed to confirm this, as some of the SOC regions in Alaska were 
very data-poor.

Our estimated SOC stocks and spatial distributions for the 0–30 cm layer in the United States (52.6 ± 3.2 Pg) 
were close to Global Soil Organic Carbon Map v1.5 (GSOC) (FAO & ITPS, 2020) (52.8 Pg 0–30 cm depth, 
Figure S9 in Supporting Information S1). GSOC is the first global SOC map ever produced through a consultative 
and participatory process involving member countries, generating global SOC maps at 30 arc-seconds (1 km) 
resolution.

We also compared our results with country-specific and continental efforts that used both conventional and DSM 
across the US at various scales. At 30 m spatial resolution, Probabilistic Remapping of SSURGO (POLARIS) 
(Chaney et al., 2019), predicted 59.2 Pg and 105.0 Pg SOC for 0–30 cm and 0–100 cm depth, respectively across 
CONUS. The spatial patterns observed in the POLARIS SOC align closely with our estimations; however, nota-
bly higher values were evident in regions with high SOC levels at both depths, including the Pacific Northwest, 
the Northern Lake States, and the Northeast (Figure S9 in Supporting Information S1). Calculation from soil 
property and class maps of CONUS at 100 m spatial resolution (Ramcharan et al., 2018) indicated 106.2 Pg and 
186.7 Pg for 0–30 cm and 0–100 cm depth, respectively. SOC estimation derived from Ramcharan et al. (2018) 
revealed the highest SOC value among all data sets across the continental US (Figure S9 in Supporting Informa-
tion S1). Another study implemented geographically weighted regression (GWR) at 800 m resolution and esti-
mated SOC stock at 0–100 cm depth across CONUS as 75.2 Pg (Gonçalves et al., 2021), which was also higher 
than our estimate. However, GWR cannot simulate the nonlinear relationships between environmental covariates 
and SOC, which may explain why their estimate is high. On the other hand, the SSURGO with data gaps filled 
at 1:250,000-scale (∼125 m resolution) Digital General Soil Map (Bliss et  al., 2014) estimated smaller SOC 
stocks in CONUS for 0–30 cm (29.3 Pg) and 0–100 cm (57 Pg) depths compared to our estimates. This might be 
attributed to the fact that the SSURGO data set is structured based on soil map units. However, assuming SOC 
stocks are homogenous within map units underrepresents the spatial variability of SOC (Adams & Wilde, 1976; 
Thomas et al., 1989). Our 0–30 cm estimate in CONUS (35.4 ± 1.8 Pg, Table 2) was also larger than an esti-
mate across  Mexico and CONUS at 250 m resolution (28.9 Pg) from Guevara et al. (2020), despite exhibiting 
similar spatial patterns (Figure S9 in Supporting Information S1). While both studies used similar training data 
(ISCN observations) and machine learning models (RF and QRF), they operated at different scales and Guevara 
et al. (2020) did not utilize MGC as we have here.

While our calculated SOC stocks at the CONUS scale are generally comparable to other estimates, they have the 
advantage of revealing heterogeneous spatial patterns of the drivers of SOC stocks, as well as highlighting regions 
of high uncertainty/low representativeness. Nevertheless, it is interesting that such large discrepancies exist in 
SOC estimates across the US among different upscaling methods and at different scales. Future studies should 
more deeply explore the root cause of this, probing both scale uncertainties and method uncertainties, in order to 
harmonize and reconcile community efforts toward the prediction of SOC.

4.4.  Limitations and Perspectives

We acknowledge that there were certain limitations in this study. First, the selection of the 30 arc second (∼1 km) 
resolution was primarily based on its status as the most commonly employed finest resolution in ESMs for 
modeling SOC. It is also a common resolution for large-scale SOC mapping efforts. For example, HWSD and 
GSOCmap also adopted the 1 km resolution. However, we fully recognize that the estimation of SOC might be 
influenced by variations in pixel sizes, potentially introducing uncertainties and impacting the magnitudes and 
trends of the estimated SOC stocks. As demonstrated in prior studies (Adhikari et al., 2020), the key predictors of 
SOC stocks display variability across spatial scales throughout the CONUS. Understanding the scaling behavior 
of SOC stocks and their environmental controls is important. Future studies should explore uncertainties, includ-
ing scaling uncertainties, in estimated SOC stocks.

Second, we aimed to evaluate the current “baseline” SOC stock and its spatial distribution across the US. 
The scope of the new map encompasses contemporary and general conditions in the US. However, the soil 
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observational database (ISCN) we used consists of soil profiles collected over several decades, ranging from the 
1910s to the 2010s. Although total SOC stocks are expected to be fairly stable over time, such a diverse time range 
of data is likely to introduce additional uncertainties, considering potential variations in soil conditions over the 
years. Thus, using legacy data may limit the full potential of our approach to accurately represent baseline SOC 
stocks (Guevara et al., 2020). In future research, further exploration of time series and time-dependent estimates 
should be considered.

Third, this study utilized a single pedotransfer function for estimating bulk density in cases where BD data for 
certain soil observations were missing. Precise bulk density data are crucial for obtaining realistic SOC estimates 
and minimizing uncertainties. Recently, several studies have adopted machine learning-based models, achieving 
R 2 values exceeding 0.5 for more accurate bulk density estimations (Jalabert et al., 2010; Zihao et al., 2022). 
Nonetheless, the scarcity of accurate bulk density data remains a significant challenge in current country-to-global 
SOC assessments. The soil community should increase efforts to provide bulk density data along with estimates 
of SOC concentrations (Billings et al., 2021).

5.  Conclusions
This study presents a novel framework integrating MGC with machine learning to produce robust estimates of 
SOC stocks on a continental scale across the United States. Our approach effectively captured the diverse rela-
tionships between environmental covariates and SOC stocks across different SOC regions. We identified regions 
with low representativeness and high uncertainty, where additional measurements are required to produce more 
accurate SOC maps. We generated gridded SOC stock estimates for the United States at a 30 arc-second (∼1 km) 
spatial resolution. These estimates, with quantified uncertainties, indicated SOC stocks of 52.6 ± 3.2 Pg and 
108.3 ± 8.2 Pg for 0–30 cm and 0–100 cm depths, respectively. Our work has provided valuable insights into the 
complex relationships between SOC and predictor variables in different regions. Furthermore, our approach can 
contribute to model benchmarking activities by improving continental-scale SOC estimates and informing Earth 
system models to accurately represent terrestrial C pools and processes.
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