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Abstract. Q-learning, which seeks to learn the optimal Q-function of a Markov decision pro-
cess (MDP) in a model-free fashion, lies at the heart of reinforcement learning. When it comes 
to the synchronous setting (such that independent samples for all state–action pairs are drawn 
from a generative model in each iteration), substantial progress has been made toward under-
standing the sample efficiency of Q-learning. Consider a γ-discounted infinite-horizon MDP 
with state space S and action space A: to yield an entry-wise ε-approximation of the optimal 
Q-function, state-of-the-art theory for Q-learning requires a sample size exceeding the order 

of |S||A|
(1�γ)5ε2

, which fails to match existing minimax lower bounds. This gives rise to natural ques-

tions: What is the sharp sample complexity of Q-learning? Is Q-learning provably subopti-
mal? This paper addresses these questions for the synchronous setting: (1) when the action 
space contains a single action (so that Q-learning reduces to TD learning), we prove that the 

sample complexity of TD learning is minimax optimal and scales as |S|
(1�γ)3ε2 

(up to log factor); 

(2) when the action space contains at least two actions, we settle the sample complexity of 

Q-learning to be on the order of |S||A|
(1�γ)4ε2 

(up to log factor). Our theory unveils the strict subop-

timality of Q-learning when the action space contains at least two actions and rigorizes the 
negative impact of overestimation in Q-learning. Finally, we extend our analysis to accommo-
date asynchronous Q-learning (i.e., the case with Markovian samples), sharpening the hori-

zon dependency of its sample complexity to be 1
(1�γ)4.
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1. Introduction
Q-learning is arguably one of the most widely ad-
opted model-free algorithms (Watkins 1989, Watkins 
and Dayan 1992). Characterizing its sample effi-
ciency lies at the core of the statistical foundation of 
reinforcement learning (RL) (Sutton and Barto 2018). 

Whereas classic convergence analyses for Q-learning 
(Jaakkola et al. 1994, Tsitsiklis 1994, Szepesvári 1998, 
Borkar and Meyn 2000) focus primarily on the asymp-
totic regime—in which the number of iterations tends 
to infinity with other problem parameters held fixed— 
recent years have witnessed a paradigm shift from 
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asymptotic analyses toward a finite-sample/-time frame-
work (Kearns and Singh 1999; Even-Dar and Mansour 
2003; Beck and Srikant 2012; Lee and He 2018; Wain-
wright 2019b; Chen et al. 2020, 2021; Qu and Wierman 
2020; Weng et al. 2020a; Xiong et al. 2020; Li et al. 2022b). 
Drawing insights from high-dimensional statistics 
(Wainwright 2019a), a modern nonasymptotic frame-
work unveils more clear and informative impacts of 
salient problem parameters upon the sample complex-
ity, particularly for those applications with an enormous 
state/action space and long horizon. Motivated by its 
practical value, a suite of nonasymptotic theory has 
been recently developed for Q-learning to accommodate 
multiple sampling mechanisms (Even-Dar and Mansour 
2003, Beck and Srikant 2012, Jin et al. 2018, Wainwright 
2019b, Qu and Wierman 2020, Li et al. 2022b).

In this paper, we revisit the sample complexity 
of Q-learning for tabular Markov decision processes 
(MDPs). For concreteness, let us consider the synchro-
nous setting, which assumes access to a generative 
model or a simulator that produces independent sam-
ples for all state–action pairs in each iteration (Kearns 
et al. 2002, Kakade 2003); this setting is termed 
“synchronous” as the estimates with respect to (w.r.t.) 
all state–action pairs are updated at once. We investigate 
the ℓ∞-based sample complexity, namely, the number of 
samples needed for synchronous Q-learning to yield 
an entry-wise ε-accurate estimate of the optimal Q- 
function. Despite a number of prior works tackling this 
setting, the dependence of the sample complexity on 

the effective horizon 1
1�γ�remains unsettled. Take γ-dis-

counted infinite-horizon MDPs for instance: the state-of- 
the-art sample complexity bounds (Wainwright 2019b, 

Chen et al. 2020) scale on the order of |S||A|
(1�γ)5ε2 

(up to 

some log factor), where S and A represent the state 
and action spaces, respectively. However, it is unclear 
whether this scaling is sharp for Q-learning and whether 
it can be further improved via a more refined theory. 
On the one hand, the minimax lower limit for this set-

ting is shown to be on the order of |S||A|
(1�γ)3ε2 

(up to some 

log factor) (Azar et al. 2013); this limit is achievable by 
model-based approaches (Agarwal et al. 2020, Li et al. 
2023b) and apparently smaller than prior sample com-
plexity bounds for Q-learning. On the other hand, Wain-
wright (2019c) argues through numerical experiments 
that “the usual Q-learning suffers from at least worst- 

case fourth-order scaling in the discount complexity 1
1�γ, 

as opposed to the third-order scaling : : :” although no 
rigorous justification is provided therein. Given the gap 
between the achievability bounds and lower bounds in 
the status quo, it is natural to seek answers to the follow-
ing questions: What is the tight sample complexity char-
acterization of Q-learning? How does it compare to the 
minimax sample complexity limit?

1.1. Main Contributions
Focusing on γ-discounted infinite-horizon MDPs with 
state space S and action space A, this paper settles 
the ℓ∞-based sample complexity of synchronous Q- 
learning. Here and throughout, the standard notation 
f (·) � Õ(g(·)) (respectively, f (·) � Ω̃(g(·))) means that 
f (·) is order-wise no larger than (no smaller than) g(·)
modulo some logarithmic factors. Our main contribu-
tions regarding synchronous Q-learning are summa-
rized as follows: 

• When |A| � 1, Q-learning coincides with temporal 
difference (TD) learning in a Markov reward process. 
For any 0 < ε < 1, we prove that a total sample size of

Õ
|S|

(1� γ)3ε2

 !

(1) 

is sufficient for TD learning to guarantee ε-accuracy in 
an ℓ∞ sense; see Theorem 1. This is sharp and mini-
max optimal (up to some log factor).

• Moving on to the case with |A| ≥ 2, we demon-
strate that a sample size of

Õ
|S||A|

(1� γ)4ε2

 !

(2) 

suffices for Q-learning to yield ε-accuracy in an ℓ∞
sense for any 0 < ε < 1; see Theorem 2. Conversely, we 
construct a hard MDP instance with four states and 
two actions for which Q-learning provably requires at 
least

Ω̃
1

(1� γ)4ε2

 !

(3) 

iterations to achieve ε-accuracy in an ℓ∞ sense; see 
Theorem 3. These two theorems taken collectively 
lead to the first sharp characterization of the sample 
complexity of Q-learning, strengthening prior theory 
(Wainwright 2019b, Chen et al. 2020) by a factor of 

1
1�γ. In addition, the discrepancy between our sharp 
characterization and the minimax lower bound makes 
clear that Q-learning is not minimax optimal when |A| ≥ 2 
and is outperformed by, say, the model-based app-
roaches (Agarwal et al. 2020, Li et al. 2023b) in terms of 
the sample efficiency.

Our results cover both rescaled linear and constant 
learning rates; see Table 1 for more detailed compari-
sons with previous literature. On the technical side, (i) 
our analysis for the upper bound relies on a sort of 
crucial error decomposition and variance control that 
are previously unexplored, which might shed light on 
how to pin down the finite-sample efficacy of other var-
iants of Q-learning, such as double Q-learning; (ii) the 
development of our lower bound, which is inspired by 
Azar et al. (2013) and Wainwright (2019c), puts the 
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negative impact of overestimation on sample efficiency 
on a rigorous footing.

Finally, we extend our analysis framework to acc-
ommodate the asynchronous setting, in which the 
samples are non–independent and identically distrib-
uted (i.i.d.) and take the form of a single Markovian 
trajectory. To the best of our knowledge, we show for 
the first time that the sample complexity of asynchro-

nous Q-learning exhibits a 1
(1�γ)4 scaling w.r.t. the 

effective horizon, which is nearly sharp and improves 
upon the prior state of the art Li et al. (2022b).

1.2. Related Works
There is a growing literature dedicated to analyzing 
the nonasymptotic behavior of value-based model- 
free RL algorithms in a variety of scenarios. In the dis-
cussion, we subsample the literature and discuss a 
couple of papers that are the closest to ours.

1.2.1. Finite-Sample ‘‘-Based Guarantees for Synchro-

nous Q-Learning and TD Learning. The sample com-
plexities derived in prior literature often rely crucially 
on the choices of learning rates. Even-Dar and Mansour 
(2003) study the sample complexity of Q-learning with 
linear learning rates 1=t or polynomial learning rates 

1=tω, which scale as Õ |S||A|
(1�γ)5ε2:5

� �

when optimized w.r.t. 

the effective horizon (attained when ω � 4=5). The 
resulting sample complexity, however, is suboptimal in 

terms of its dependency on not only 1
1�γ, but also the tar-

get accuracy level ε. Beck and Srikant (2012) investigate 

the case of constant learning rates; however, their result 
suffers from an additional factor of |S||A|, which can be 
prohibitively large in practice. More recently, Wain-
wright (2019b) and Chen et al. (2020) further analyze the 
sample complexity of Q-learning with either constant 
learning rates or linearly rescaled learning rates, leading 

to the state-of-the-art bound Õ |S||A|
(1�γ)5ε2

� �

. However, this 

result remains suboptimal in terms of its scaling with 
1

1�γ. See Table 1 for details. In the special case with 

|A| � 1, the recent works Khamaru et al. (2021b) and 
Mou et al. (2020) develop instance-dependent results for 
TD learning with Polyak–Ruppert averaging and study 
the local (sub)-optimality of TD learning in a different 
local minimax framework.

1.2.2. Finite-Sample ‘‘-Based Guarantees for Asyn-

chronous Q-Learning and TD Learning. Moving be-
yond the synchronous model, Even-Dar and Mansour 
(2003), Beck and Srikant (2012), Qu and Wierman 
(2020), Li et al. (2022b), Shah and Xie (2018), and Chen 
et al. (2021) develop nonasymptotic convergence guar-
antees for the asynchronous setting, in which the data 
samples take the form of a single Markovian trajectory 
(following some behavior policy) and only a single 
state–action pair is updated in each iteration. A simi-

lar scaling of Õ 1
(1�γ)5
� �

also shows up in the state-of- 

the-art sample complexity bounds for asynchronous 
Q-learning (Li et al. 2022b), and our theory is the first 

to sharpen it to Õ 1
(1�γ)4
� �

. When it comes to the special 

Table 1. Comparisons of Existing Sample Complexity Upper Bounds of Synchronous Q-Learning and 
TD Learning for an Infinite-Horizon γ-Discounted MDP with State Space S and Action Space A, Where 
0 < ε < 1 is the Target Accuracy Level

Paper Learning rates Sample complexity

Even-Dar and Mansour (2003) linear: 1
t 2

1
1�γ |S||A|

(1�γ)4ε2

Even-Dar and Mansour (2003) polynomial: 1
tω, ω ∈ (1=2, 1) |S||A| 1

(1�γ)4ε2

� �1=ω
+ 1

1�γ

� � 1
1�ω

� �

Beck and Srikant (2012) constant: (1�γ)
4ε2

|S||A| |S|2 |A|2
(1�γ)5ε2

Wainwright (2019b) rescaled linear: 1
1+(1�γ)t

|S||A|
(1�γ)5ε2

Wainwright (2019b) polynomial: 1
tω , ω ∈ (0, 1) |S||A| 1

(1�γ)4ε2

� �1=ω
+ 1

1�γ

� � 1
1�ω

� �

Chen et al. (2020) rescaled linear: 1
1

(1�γ)2
+(1�γ)t

|S||A|
(1�γ)5ε2

Chen et al. (2020) constant: (1� γ)4ε2 |S||A|
(1�γ)5ε2

This work (Q-learning, |A| ≥ 2) rescaled linear: 1
1+(1�γ)t

|S||A|
(1�γ)4ε2

This work (Q-learning, |A| ≥ 2) constant: (1� γ)3ε2 |S||A|
(1�γ)4ε2

This work (TD learning, |A| � 1) rescaled linear: 1
1+(1�γ)t

|S|
(1�γ)3ε2

This work (TD learning, |A| � 1) constant: (1� γ)3ε2 |S|
(1�γ)3ε2

Notes. Here, sample complexity refers to the total number of samples needed to yield either maxs,a |Q̂(s, a)�Q?(s, a)| ≤ ε�
with high probability or E[maxs,a|Q̂(s, a)�Q?(s, a)|] ≤ ε, where Q̂ is the estimate returned by Q-learning. All logarithmic 
factors are omitted in the table to simplify the expressions.
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case with |A| � 1, the nonasymptotic performance 
guarantees for TD learning with Markovian sample 
trajectories (assuming that the behavior policy coin-
cides with the target policy) are recently derived by 
Bhandari et al. (2021), Srikant and Ying (2019), and 
Mou et al. (2020).

1.2.3. Finite-Sample ‘‘-Based Guarantees of Other Q- 

Learning Variants. With the aim of alleviating the 
suboptimal dependency on the effective horizon in 
vanilla Q-learning and improving sample efficiency, 
several variants of Q-learning are proposed and ana-
lyzed. Azar et al. (2011) propose speedy Q-learning, 

which achieves a sample complexity of Õ |S||A|
(1�γ)4ε2

� �

at 

the expense of doubling the computation and storage 
complexity. Our result on vanilla Q-learning matches 
that of speedy Q-learning in an order-wise sense. In 
addition, Wainwright (2019c) proposes a variance- 
reduced Q-learning algorithm that is shown to be 
minimax optimal in the range ɛ ∈ (0, 1) with a sample 

complexity Õ |S||A|
(1�γ)3ε2

� �

, which is subsequently gener-

alized to the asynchronous setting by Li et al. (2022b). 
The ℓ∞ statistical bounds for variance-reduced TD 
learning are investigated in Khamaru et al. (2021b) for 
the synchronous setting and in Li et al. (2022b) for the 
asynchronous setting. Finally, Xiong et al. (2020) estab-
lish the finite-sample convergence of double Q-learning 
following the framework of Even-Dar and Mansour 
(2003); however, it is unclear whether double Q-learning 
can provably outperform vanilla Q-learning in terms of 
sample efficiency.

1.2.4. Others. There are also several other strands of 
related papers that tackle model-free algorithms but do 
not pursue ℓ∞-based nonasymptotic guarantees. For ins-
tance, Bhandari et al. (2021), Lakshminarayanan and Sze-
pesvari (2018), Srikant and Ying (2019), Gupta et al. 
(2019), Doan et al. (2019), Wu et al. (2020), Xu et al. 
(2019a,b), and Chen et al. (2019) develop finite-sample 
(weighted) ℓ2 convergence guarantees for several model- 
free algorithms, which also allow one to accommodate 
linear function approximation as well as off-policy eval-
uation. Another line of recent work (Jin et al. 2018, Bai 
et al. 2019, Zhang et al. 2020, Li et al. 2023a) considers the 
sample efficiency of Q-learning-type algorithms paired 
with proper exploration strategies (e.g., upper confidence 
bounds) under the framework of regret analysis. The 
asymptotic behaviors of some variants of Q-learning, for 
example, double Q-learning (Weng et al. 2020b) and rela-
tive Q-learning (Devraj and Meyn 2020) are also studied. 
In addition, Q-learning in conjunction with the pessi-
mism principle proves effective in dealing with off-line 
data (Shi et al. 2022, Yan et al. 2022). The effect of more 
general function approximation schemes (e.g., certain 

families of neural network approximations) is studied in 
Fan et al. (2019), Murphy (2005), Cai et al. (2019), Wai 
et al. (2019), and Xu and Gu (2020), whereas the exten-
sion to multiagent scenarios is looked at in Hu and Well-
man (2003) and Li et al. (2022a). These are beyond the 
scope of the present paper.

2. Background and Algorithms
This paper concentrates on discounted infinite-horizon 
MDPs (Bertsekas 2017). We start by introducing some 
basics of tabular MDPs, followed by a description of 
both Q-learning and TD learning. Throughout this 
paper, we denote by S � {1, : : : , |S|} and A � {1, : : : , |A|}
the state and action spaces of the MDP, respectively, 
and let ∆(S) represent the probability simplex over the 
set S.

2.1. Basics of Discounted Infinite-Horizon MDPs
Consider an infinite-horizon MDP as represented by a 
quintuple M � (S,A, P, r,γ), where γ ∈ (0, 1) indicates 
the discount factor, P : S × A → ∆(S) represents the 
probability transition kernel (i.e., P(s′|s, a) is the proba-
bility of transitioning to state s′ from a state–action 
pair (s, a) ∈ S × A), and r : S × A → [0, 1] stands for the 
reward function (i.e., r(s, a) is the immediate reward 
collected in state s ∈ S when action a ∈ A is taken). 
Note that the immediate rewards are assumed to lie 
within [0, 1] throughout this paper. Moreover, we let 
π : S → ∆(A) represent a policy so that π(·|s) ∈ ∆(A)
specifies the (possibly randomized) action selection 
rule in state s. If π�is a deterministic policy, then we 
denote by π(s) the action selected by π�in state s.

A common objective in RL is to maximize a sort of 
long-term rewards called value functions or Q-functions. 
Specifically, given a policy π, the associated value func-
tion and Q-function of π�are defined, respectively, by

Vπ(s) :� E
X∞

k�0

γkr(sk, ak)








s0 � s

" #

for all s ∈ S, and

Qπ(s, a) :� E
X∞

k�0

γkr(sk, ak)








s0 � s, a0 � a

" #

for all (s, a) ∈ S × A. Here, {(sk , ak)}k≥0 is a trajectory of 
the MDP induced by the policy π�(except a0 when evalu-
ating the Q-function), and the expectations are evaluated 
with respect to the randomness of the MDP trajectory. 
Given that the immediate rewards fall within [0, 1], it 

can be straightforwardly verified that 0 ≤ Vπ(s) ≤ 1
1�γ�

and 0 ≤ Qπ(s, a) ≤ 1
1�γ�for any π�and any state–action 

pair (s,a). The optimal value function V? and optimal 
Q-function Q? are defined, respectively, as

V?(s) :� max
π

Vπ(s), Q?(s, a) :� max
π

Qπ(s, a)
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for any state–action pair (s, a) ∈ S × A. It is well-known 
that there exists a deterministic optimal policy, denoted 
by π?, that attains V?(s) and Q?(s, a) simultaneously for 
all (s, a) ∈ S × A (Sutton and Barto 2018).

2.2. Algorithms: Q-Learning and TD Learning (the 

Synchronous Setting)
The synchronous setting assumes access to a genera-
tive model (Kearns and Singh 1999, Sidford et al. 
2018) such that, in each iteration t, we collect an inde-
pendent sample st(s, a) ~ P(·|s, a) for every state–action 
pair (s, a) ∈ S × A.

With this sampling model in place, the Q-learning algo-
rithm (Watkins and Dayan 1992) maintains a Q-function 
estimate Qt : S × A → R for all t ≥ 0; in each iteration t, 
the algorithm updates all entries of the Q-function esti-
mate at once via the following update rule:

Qt � (1� ηt)Qt�1 + ηtT t(Qt�1): (4) 

Here, ηt ∈ (0, 1] denotes the learning rate or step size 
in the tth iteration, and T t denotes the empirical Bell-
man operator constructed by samples collected in the 
tth iteration, that is,

T t(Q)(s, a) :� r(s, a) + γmax
a′∈A

Q(st, a′),

st ≡ st(s, a) ~ P(·|s, a) (5) 

for each state–action pair (s, a) ∈ S × A. Obviously, T t 

is an unbiased estimate of the celebrated Bellman 
operator T given by

∀(s, a) ∈ S × A :

T (Q)(s, a) :� r(s, a) + γ E
s′~P(·|s,a)

�

max
a′∈A

Q(s′, a′)
�

:

Note that the optimal Q-function Q? is the unique 
fixed point of the Bellman operator (Bellman 1952); 
that is, T (Q?) � Q?. Viewed in this light, synchronous 
Q-learning can be interpreted as a stochastic approxi-
mation scheme (Robbins and Monro 1951) aimed at 
solving this fixed-point equation. Throughout this 
work, we initialize the algorithm in a way that obeys 
0 ≤ Q0(s, a) ≤ 1

1�γ�for every state–action pair (s, a). In 
addition, the corresponding value function estimate 
Vt : S → R in the tth iteration is defined as

∀s ∈ S : Vt(s) :� max
a∈A

Qt(s, a): (6) 

The complete description of Q-learning is summa-
rized in Algorithm 1.

Algorithm 1 (Synchronous Q-Learning for Infinite-Horizon 

Discounted MDPs) 
1: inputs: learning rates {ηt}, number of iterations T, 

discount factor γ, initial estimate Q0.
2: for t � 1, 2, : : : , T do
3: Draw st(s, a) ~ P(·|s, a) for each (s, a) ∈ S × A.

4: Compute Qt according to (4) and (5).
5: end for

As it turns out, TD learning (Sutton 1988, Tsitsiklis 
and Van Roy 1997, Bhandari et al. 2021) in the syn-
chronous setting can be viewed as a special instance 
of Q-learning when the action set A is a singleton (i.e., 
|A| � 1). In such a case, the MDP reduces to a Markov 
reward process (MRP) (Bertsekas 2017), and we abuse 
the notation to use P : S → ∆(S) to describe the proba-
bility transition kernel and employ r : S → [0, 1] to 
represent the reward function (with r(s) indicating the 
immediate reward gained in state s). The TD learning 
algorithm maintains an estimate Vt : S → R of the 
value function in each iteration t,1 and carries out the 
following iterative update rule:

Vt(s) � (1� ηt)Vt�1(s) + ηt(r(s) + γVt�1(st)),
st ≡ st(s) ~ P(·|s) (7) 

for each state s ∈ S. As before, ηt ∈ (0, 1] is the learning 
rate at time t; the initial estimate V0(s) is taken to be 

within 0, 1
1�γ

h i

; and in each iteration, the samples {st(s) |
s ∈ S} are generated independently. The whole algo-
rithm of TD learning is summarized in Algorithm 2.

Algorithm 2 (Synchronous TD Learning for Infinite-Horizon 

Discounted MRPs) 
1: inputs: learning rates {ηt}, number of iterations T, 

discount factor γ, initial estimate V0.
2: for t � 1, 2, : : : , T do
3: Draw st(s) ~ P(·|s) for each s ∈ S.
4: Compute Vt according to (7).
5: end for

Finally, whereas synchronous Q-learning is the main 
focal point of this paper, we also discuss the extension 
to asynchronous Q-learning, which we elaborate on in 
Section 5.

3. Main Results: Sample Complexity of 
Synchronous Q-Learning

With these backgrounds in place, we are in a position 
to state formally our main findings in this section, 
concentrating on the synchronous setting.

3.1. Minimax Optimality of TD Learning
We start with the special |A| � 1 and characterize the 
ℓ∞-based sample complexity of synchronous TD learning.

Theorem 1. Consider any δ ∈ (0, 1), ε ∈ (0, 1], and γ ∈ [1=
2, 1). Suppose that, for any 0 ≤ t ≤ T, the learning rates 
satisfy

1

1+ c1(1�γ)T
log2T

≤ ηt ≤
1

1+ c2(1�γ)t
log2T

(8a) 
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for some small enough universal constants c1 ≥ c2 > 0. 
Assume that the total number of iterations T obeys

T ≥
c3(log3T) log|S|T

δ

� �

(1� γ)3ε2
(8b) 

for some sufficiently large universal constant c3 > 0. If the 
initialization obeys 0 ≤ V0(s) ≤ 1

1�γ�for all s ∈ S, then with 
probability at least 1� δ, Algorithm 2 achieves

max
s∈S

|VT(s)�V?(s)| ≤ ε: (9) 

Remark 1 (Mean Estimation Error). This high-probability 
bound immediately translates to a mean estimation 
error guarantee. Recognizing the crude upper bound 

|VT(s)�V?(s)| ≤ 1
1�γ�(see (EC.49) in Online Section 

E.C.3.1) and taking δ ≤ ε(1� γ), we reach

E max
s

|VT(s)�V?(s)|
� �

≤ ε(1� δ) + δ 1

1� γ
≤ 2ε, (10) 

provided that T ≥
c3(log3T) log |S|T

ε(1�γ)

� �

(1�γ)3ε2
.

Given that each iteration of synchronous TD learn-
ing makes use of |S| samples, Theorem 1 implies that 
the sample complexity of TD learning is at most

Õ
|S|

(1� γ)3ε2

 !

(11) 

for any target accuracy level ε ∈ (0, 1]. This nonasympto-
tic result is valid as long as the learning rates are chosen 
to be either a proper constant or rescaled linear (see 
(8a)). Compared with a large number of prior works 
studying the performance of TD learning (Borkar and 
Meyn 2000, Lakshminarayanan and Szepesvari 2018, 
Wainwright 2019b, Chen et al. 2020, Bhandari et al. 
2021, Khamaru et al. 2021b), Theorem 1 strengthens 

prior results by uncovering an improved scaling 
�

i:e:;

1
(1�γ)3

�

in the effective horizon. In fact, prior results on 

plain TD learning were only able to obtain a scaling as 
1

(1�γ)5 (Wainwright 2019b).

To assess the tightness of this result, we take a 
moment to compare it with the minimax lower bound 
recently established in the context of value function 
estimation. Specifically, Pananjady and Wainwright 
(2020, theorem 2(b)) assert that no algorithm whatso-
ever can obtain an entry-wise ε�approximation of the 
value function—in a minimax sense—unless the total 
sample size exceeds

Ω̃
|S|

(1 � γ)3ε2

 !

: (12) 

In turn, this, taken together with Theorem 1, unveils the 
minimax optimality of the sample complexity (modulo 

some logarithmic factor) of TD learning for the synchro-
nous setting. Whereas prior works demonstrate how to 
attain the minimax limit (12) using model-based meth-
ods or variance-reduced model-free algorithms (e.g., 
Azar et al. 2013, Pananjady and Wainwright 2020, Kha-
maru et al. 2021b, Li et al. 2023b), our theory provides 
the first rigorous evidence that plain TD learning alone 
is already minimax optimal without the need of Polyak– 
Ruppert averaging or variance reduction.

Remark 2 (Runtime-Oblivious Learning Rates). Careful 
readers might remark that the choice (8a) of the learning 
rates might still rely on prior knowledge of T (or log T). 
Fortunately, Theorem 1 immediately leads to conver-
gence guarantees for another choice of ηt selected com-
pletely independent of T. More specifically, suppose that 
the learning rates obey

1

1+ c̃1(1�γ)t
log2(t+1)

≤ ηt ≤
1

1+ c̃2(1�γ)t
log2(t+1)

, ∀t ≥ 1 (13) 

for some universal constants c̃1, c̃2 > 0. Then, Claim (9) 
remains valid under this choice (13), provided that

T ≥
2c3(log3T) log|S|T

δ

� �

(1� γ)3ε2
: (14) 

See Online Appendix EC.3.3 for the proof.

Remark 3 (Polyak-Ruppert Averaging). The results claimed 
in Remark 2 further allow us to control the estimation 
error of TD learning under Polyak–Ruppert averaging 
(Polyak and Juditsky 1992). More precisely, under the 
choice (13) of learning rates, the averaged iterates satisfy

max
s∈S

1

T

XT

t�1

VT(s)� V?(s)





















≤ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c3(log3T) log|S|T
δ

� �

(1 � γ)3T

v
u
u
t

(15) 

with probability exceeding 1� δ. See Online Appen-
dix EC.3.3 for the proof.

Remark 4. It is also noteworthy that: whereas the last 
iterate of plain TD learning is shown to be minimax 
optimal (which concerns worst case optimality), it might 
not necessarily enjoy local optimality. As recently dem-
onstrated by Khamaru et al. (2021a), additional algorith-
mic tricks such as variance reduction might be needed 
in order to ensure local optimality.

3.2. Tight Sample Complexity and Suboptimality of 

Q-Learning
Next, we move on to the more general case with |A| ≥
2 and study the performance of Q-learning. As it turns 
out, Q-learning with |A| ≥ 2 is considerably more chal-
lenging to analyze than the TD learning case because 
of the presence of the nonsmooth max operator. Our 
ℓ∞-based sample complexity bound for Q-learning is 
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summarized as follows, strengthening the state-of-the- 
art results.

Theorem 2. Consider any δ ∈ (0, 1), ε ∈ (0, 1], and γ ∈ [1=
2, 1). Suppose that, for any 0 ≤ t ≤ T, the learning rates 
satisfy

1

1+ c1(1�γ)T
log3T

≤ ηt ≤
1

1+ c2(1�γ)t
log3T

(16a) 

for some small enough universal constants c1 ≥ c2 > 0. 
Assume that the total number of iterations T obeys

T ≥
c3(log4T) log|S||A|T

δ

� �

(1� γ)4ε2
(16b) 

for some sufficiently large universal constant c3 > 0. If the ini-
tialization obeys 0 ≤ Q0(s, a) ≤ 1

1�γ�for any (s, a) ∈ S × A, 
then Algorithm 1 achieves

max
(s,a)∈S×A

|QT(s, a)�Q?(s, a)| ≤ ε (17) 

with probability at least 1� δ.

Remark 5 (Mean Estimation Error). Repeating exactly the 
same argument as in Remark 1, one can readily trans-
late this high-probability bound into the following 
mean estimation error guarantee:

E max
s, a

|QT(s, a)� Q?(s, a)|
� �

≤ ε(1 � δ) + δ 1

1 � γ
≤ 2ε,

(18) 

which holds as long as T ≥
c3(log4T) log|S||A|T

ε(1�γ)

� �

(1�γ)4ε2
.

In a nutshell, Theorem 2 develops a nonasymptotic 
bound on the iteration complexity of Q-learning in the 
presence of the synchronous model. A few remarks 
and implications are in order.

3.2.1. Sample Complexity and Sharpened Dependency 

on 1
12g

. Recognizing that |S||A| independent samples 
are drawn in each iteration, we can see from Theorem 
2 the following sample complexity bound:

Õ
|S||A|

(1� γ)4ε2

 !

(19) 

in order for Q-learning to attain ε-accuracy (0 < ε < 1) 
in an entry-wise sense. To the best of our knowledge, 

this is the first result that breaks the |S||A|
(1�γ)5ε2 

barrier that 

is present in all state-of-the-art analyses for vanilla Q- 
learning (Beck and Srikant 2012, Wainwright 2019b, 
Chen et al. 2020, Qu and Wierman 2020, Li et al. 2022b).

3.2.2. Learning Rates. Akin to the TD learning case, 
our result accommodates two commonly adopted learn-
ing rate schemes (cf. (16a)): (i) linearly rescaled learning 

rates 1

1+c2 (1�γ)
log2T

t 
and (ii) iteration-invariant learning rates 

1

1+c1(1�γ)T
log2T 

(which depend on the total number of iterations 

T but not the iteration number t). In particular, when 

T � c3(log4T) log|S||A|T
δ( )

(1�γ)4ε2
, the constant learning rates can be 

taken to be on the order of

ηt ≡ Õ((1� γ)3ε2), 0 ≤ t ≤ T, 

which depends almost solely on the discount factor γ�
and the target accuracy ε. Interestingly, both learning 
rate schedules lead to the same ℓ∞-based sample com-
plexity bound (in an order-wise sense), making them 
appealing for practical use.

Remark 6 (Runtime-Oblivious Learning Rates and Polyak– 

Ruppert Averaging). Akin to Remark 2, Theorem 2 can 
be easily extended to accommodate a family of learn-
ing rates chosen without prior knowledge of T. More 
concretely, suppose that the learning rates obey

1

1 + c̃1(1�γ)t
log3(t+1)

≤ ηt ≤
1

1 + c̃2(1�γ)t
log3(t+1)

, ∀t ≥ 1 (20) 

for some suitable constants c̃1, c̃2 > 0. Then, Claim (17) 
continues to hold under this choice (20) provided that 

T=2 ≥ c3(log4T) log|S||A|T
δ( )

(1�γ)4ε2
: Additionally, similar to Remark 

3, we can demonstrate that the averaged Q-learning 
iterates under the choice (20) of learning rates obey

max
(s,a)∈S×A

1

T

XT

t�1

QT(s, a)�Q?(s, a)





















≤

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c3(log4T) log|S||A|T
δ

� �

(1� γ)4T

v
u
u
t

(21) 

with probability exceeding 1� δ. The proofs of these 
results are identical to those of Remarks 2 and 3 (see 
Online Appendix EC.3.3) and are, hence, omitted.

3.2.3. A Matching Lower Bound and Suboptimality. The 
careful reader might remark that there remains a 
gap between our sample complexity bound for Q- 
learning and the minimax lower bound (Azar et al. 
2013). More specifically, the minimax lower bound 

scales on the order of |S||A|
(1�γ)3ε2 

and is achievable—up to 

some logarithmic factor—by the model-based app-
roach and variance-reduced methods (Azar et al. 2013, 
Wainwright 2019c, Agarwal et al. 2020, Li et al. 2023b). 
This raises natural questions regarding whether our 
sample complexity bound can be further improved and 
whether there is any intrinsic bottleneck that prevents 
vanilla Q-learning from attaining optimal performance. 
To answer these questions, we develop the following 
lower bound for plain Q-learning with the aim of 
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confirming the sharpness of Theorem 2 and revealing 
the suboptimality of Q-learning.

Theorem 3. Assume that 3=4 ≤ γ < 1 and T ≥ c3

(1�γ)2 for 

some sufficiently large constant c3 > 0. Suppose that the 
initialization is Q0 ≡ 0 and the learning rates are taken to 

be either (i) ηt � 1
1+cη(1�γ)t for all t ≥ 0 or (ii) ηt ≡ η�for all 

t ≥ 0. There exists a γ-discounted MDP with |S| � 4 and 
|A| � 2 such that Algorithm 1—with any cη > 0 and any 

η ∈ (0, 1)—obeys

max
s∈S

E[|VT(s)�V?(s)|2] ≥ clb

(1� γ)4T log2T
, (22) 

where clb > 0 is some universal constant.

Remark 7. This theorem constructs a hard MDP ins-
tance with no more than four states and two actions 
with the emphasis on unveiling the suboptimality of 
horizon dependency. It can be generalized to accom-
modate larger state/action space as we elucidate in 
Section 4.3.

Remark 8. Theorem 3 concentrates on two families of 
learning rates—rescaled linear and constant learning 
rates—that are most widely used in practice. Note, 
however, that our current analysis does not readily 
generalize to arbitrary learning rates, which we leave 
for future investigation.

Theorem 3 provides an algorithm-dependent lower 
bound for vanilla Q-learning. As asserted by this theo-
rem, it is impossible for Q-learning to attain ε-accuracy 

(in the sense that maxsE[|VT(s)�V?(s)|2] ≤ ε2) unless 
the number of iterations exceeds the order of

1

(1� γ)4ε2 

up to some logarithmic factor. Consequently, the per-
formance guarantees for Q-learning derived in Theo-
rem 2 are sharp in terms of the dependency on the 

effective horizon 1
1�γ. On the other hand, it is shown in 

prior literature that the minimax sample complexity 
limit with a generative model is on the order of (Azar 
et al. 2013, Li et al. 2022b)

|S||A|
(1� γ)3ε2

(up to log factor); (23) 

this, in turn, reveals the suboptimality of plain Q- 
learning, whose horizon scaling is larger than the 

minimax limit by a factor of 1
1�γ. Hence, more sophisti-

cated algorithmic tricks are necessary in order to fur-
ther reduce the sample complexity. For instance, a 
variance-reduced variant of Q-learning—namely, lever-
aging the idea of variance reduction originating from 
stochastic optimization (Johnson and Zhang 2013) to 
accelerate convergence of Q-learning—is shown to attain 

minimax optimality (23) for any ε ∈ (0, 1]; see Wain-
wright (2019c) for more details.

4. Key Analysis Ideas (the 
Synchronous Case)

This section outlines the key ideas for the establish-
ment of our main results of Q-learning for the syn-
chronous case, namely, Theorems 2 and 3. The proof 
for TD learning is deferred to Online Appendix EC.3. 
Before delving into the proof details, we first intro-
duce convenient vector and matrix notations that are 
used frequently.

4.1. Vector and Matrix Notation
To begin, for any matrix M, the notation ‖M‖1 :�
maxi

P

j|Mi,j| is defined as the largest row-wise ℓ1 

norm of M. For any vector a � [ai]n
i�1 ∈ Rn, we define 

ffiffi·√ and | · | in a coordinate-wise manner, that is, 
ffiffiffi
a

√
:�

[ ffiffiffiffiai
√ ]n

i�1 ∈ Rn and |a| :� [|ai|]n
i�1 ∈ Rn. For a set of vectors 

a1, : : : , am ∈ Rn with ak � [ak,j]n
j�1 (1 ≤ k ≤ m), we define 

the max operator in an entry-wise fashion such that 

max1≤k≤mak :� [maxkak,j]n
j�1. For any vectors a � [ai]n

i�1 

∈ Rn and b � [bi]n
i�1 ∈ Rn, the notation a ≤ b (a ≥ b) 

means ai ≤ bi (ai ≥ bi) for all 1 ≤ i ≤ n. We also let a ◦
b � [aibi]n

i�1 denote the Hadamard product. In addi-
tion, we denote by 1 (ei) the all-one vector (ith stan-
dard basis vector), and let I be the identity matrix.

We also introduce the matrix P ∈ R|S||A|×|S| to repre-
sent the probability transition kernel P, whose (s, a)th 
row Ps,a is a probability vector representing P(·|s, a). 
Additionally, we define the square probability transi-

tion matrix Pπ ∈ R|S||A|×|S||A| (Pπ ∈ R|S|×|S|) induced by a 
deterministic policy π�over the state–action pairs (states) 
as follows:

Pπ :� PPπ and Pπ :� PπP, (24) 

where Pπ ∈ {0, 1}|S|×|S||A| is a projection matrix associ-
ated with the deterministic policy π:

Pπ �

e⊤π(1)
e⊤π(2)

⋱

e⊤π(|S|)

0

B
B
@

1

C
C
A

(25) 

with ei the ith standard basis vector. Moreover, for 

any vector V ∈ R|S|, we define VarP(V) ∈ R|S||A| as 
follows:

VarP(V) � P(V ◦V)� (PV) ◦ (PV): (26) 

In other words, the (s, a)th entry of VarP(V) corre-
sponds to the variance Vars′~P(·|s,a)(V(s′)) w.r.t. the dis-

tribution P(·|s, a).
Moreover, we use the vector r ∈ R|S||A| to represent 

the reward function r so that, for any (s, a) ∈ S × A, the 
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(s, a)th entry of r is given by r(s, a). Analogously, we 

employ the vectors Vπ ∈ R|S|, V? ∈ R|S|, V t ∈ R|S|, Qπ ∈
R|S||A|, Q? ∈ R|S||A|, and Qt ∈ R|S||A| to represent Vπ, V?, 
Vt, Qπ, Q?, and Qt, respectively. Additionally, we 
define πt to be the policy associated with Qt such that, 
for any state–action pair (s, a),

πt(s) � min a′|Qt(s, a′) � max
a′′

Qt(s, a′′)
� �

: (27) 

In other words, for any s ∈ S, the policy πt picks out 
the smallest indexed action that attains the largest 
Q-value in the estimate Qt(s, ·). As an immediate con-
sequence, one can easily verify

Qt(s,πt(s))� Vt(s) and PV t � Pπt Qt ≥ PπQt (28) 

for any π, where Pπ�is defined in (24). Further, we 

introduce a matrix Pt ∈ {0, 1}|S||A|×|S| such that

Pt((s, a), s′) :� 1, if s′ � st(s, a)
0, otherwise

�

(29) 

for any (s, a), which is an empirical transition matrix 
constructed using samples collected in the tth iteration.

Finally, let X :� (|S|, |A|, 1
1�γ , 1

ε). The notation f (X ) �
O(g(X )) or f (X )≲g(X ) (f (X )≳g(X )) means that there 
exists a universal constant C0 > 0 such that |f (X )| ≤
C0|g(X )| (|f (X )| ≥ C0|g(X )|). The notation f (X ) ≍ g(X )
means f (X )≲g(X ) and f (X )≳g(X ) hold simulta-

neously. We define Õ(·) in the same way as O(·)
except that it hides logarithmic factors.

4.2. Proof Outline for Theorem 2
We are now positioned to describe how to establish The-
orem 2, toward which we first express the Q-learning 
update rules (4) and (5) using the preceding matrix nota-
tion. As can be easily verified, Q-learning employs the 
samples in Pt (cf. (29)) to perform the following update:

Qt � (1� ηt)Qt�1 + ηt(r + γPtV t�1) (30) 

in the tth iteration. In the sequel, we denote by

Dt :� Qt �Q? (31) 

the error of the Q-function estimate in the tth iteration.

4.2.1. Basic Decomposition. We start by decomposing 
the estimation error term Dt. In view of the update rule 
(30), we arrive at the following elementary decomposi-
tion:

Dt � Qt �Q? � (1� ηt)Qt�1 + ηt(r + γPtV t�1)�Q?

� (1� ηt)(Qt�1 �Q?) + ηt(r + γPtV t�1 �Q?)
� (1� ηt)Dt�1 + ηtγ(PtV t�1 �PV?)
� (1� ηt)Dt�1 + ηtγ{P(V t�1 �V?) + (Pt �P)V t�1},

(32) 

where the third line exploits the Bellman equation 

Q? � r + γPV?. Further, the term P(V t�1 �V?) can be 
linked with Dt�1 using the definition (27) of πt as follows:

P(V t�1 �V?) � Pπt�1 Qt�1 �Pπ
?

Q?

≤ Pπt�1 Qt�1 �Pπt�1 Q? � Pπt�1 Dt�1,

(33a) 

P(V t�1 �V?) � Pπt�1 Qt�1 �Pπ
?

Q?

≥ Pπ
?

Qt�1 �Pπ
?

Q? � Pπ
?

Dt�1, (33b) 

where we have made use of Relation (28). Substitute 
(33) into (32) to reach

Dt ≤ (1� ηt)Dt�1 + ηtγ{Pπt�1 Dt�1 + (Pt �P)V t�1};
Dt ≥ (1� ηt)Dt�1 + ηtγ{Pπ

?

Dt�1 + (Pt �P)V t�1}:
(34) 

Applying these relations recursively, we obtain

Dt ≤ η(t)0 D0 +
Xt

i�1

η(t)i γ{Pπi�1 Di�1 + (Pi � P)V i�1},

Dt ≥ η(t)0 D0 +
Xt

i�1

η(t)i γ{Pπ
?

Di�1 + (Pi � P)V i�1},

(35) 

where we define

η(t)i :�

Yt

j�1

(1 � ηj), if i � 0,

ηi

Yt

j�i+1

(1 � ηj), if 0 < i < t,

ηt, if i � t:

8

>>>>>><

>>>>>>:

(36) 

4.2.1.1. Comparisons to Prior Approaches. We take 
a moment to discuss how prior analyses handle the 
preceding elementary decomposition. Several prior 
works (e.g., Wainwright 2019b, Li et al. 2022b) tackle 
the second term on the right-hand side of Relation 
(34) via the following crude bounds:

Pπi�1 Di�1 ≤ ‖Pπi�1‖1‖Di�1‖∞1 � ‖Di�1‖∞1,

Pπ
?

Di�1 ≥ �‖Pπ?‖1‖Di�1‖∞1 � �‖Di�1‖∞1, 

which, however, are too loose when characterizing 

the dependency on 1
1�γ. By contrast, expanding terms 

recursively without this type of crude bounding and 

carefully analyzing the aggregate terms (e.g., 
Pt

i�1 η
(t)
i 

Pπi�1 Di�1) play a major role in sharpening the depen-
dence of sample complexity on the effective horizon.

4.2.2. Key Intertwined Relations Underlying {‖Dt‖‘}. By 
exploiting the crucial relations (35) derived earlier, we 
proceed to upper and lower bound Dt separately. To 
be more specific, defining

β :� c4(1� γ)
log T

(37) 
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for some constant c4 > 0, one can further decompose 
the upper bound in (35) into several terms:

Dt ≤ η(t)0 D0 +
X(1�β)t

i�1

η(t)i γ(Pπi�1 Di�1 + (Pi �P)V i�1)
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

≕zt

(38) 

+
Xt

i�(1�β)t+1

η(t)i γ(Pi �P)V i�1

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

≕ jt

+
Xt

i�(1�β)t+1

η(t)i γPπi�1 Di�1:

(39) 

Let us briefly remark on the effect of the first two 
terms: 

• Each component in the first term zt is fairly small 

given that η(t)i is sufficiently small for any i ≤ (1� β)t 
(meaning that each component has undergone 
contraction—the ones taking the form of 1� ηj—for 

sufficiently many times). As a result, the influence of 
zt becomes somewhat negligible.

• The second term jt, which can be controlled via 
Freedman’s (1975) inequality because of its martingale 
structure, contributes to the main variance term in the 
recursion. Note, however, that the resulting variance 
term also depends on {Di}.

In summary, the right-hand side of the preceding 
inequality can be further decomposed into some weighted 
superposition of {Di} in addition to some negligible 
effect. This is formalized in the following two lemmas, 
which make apparent the key intertwined relations 
underlying {Di}.
Lemma 1. Suppose that c1c2 ≤ c4=8. With probability at 
least 1� δ,

Dt ≤ 30

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(log4T) log|S||A|T
δ

� �

γ2(1� γ)4T
1+max

t
2≤i<t

‖Di‖∞

 !

v
u
u
u
t 1 

holds simultaneously for all t ≥ T
c2 logT.

Lemma 2. Suppose that c1c2 ≤ c4=8. With probability at 
least 1� δ,

Dt ≥�30

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(log4T) log|S||A|T
δ

� �

γ2(1� γ)4T
1+max

t
2≤i<t

‖Di‖∞

 !

v
u
u
u
t 1 

holds simultaneously for all t ≥ T
c2 logT.

Proof. The proofs of Lemmas 1 and 2 are deferred to 
Online Appendices EC.2.2 and EC.2.3, respectively. As 
a remark, our analysis collects all the error terms accrued 
through the iterations—instead of bounding them 
individually—by conducting a high-order nonlinear 
expansion of the estimation error through recursion, 

followed by careful control of the main variance term 
leveraging the structure of the discounted MDP. w

Putting the preceding bounds in Lemmas 1 and 2
together, we arrive at

‖Dt‖∞ ≤ 30

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(log4T) log|S||A|T
δ

� �

γ2(1 � γ)4T
1 + max

t
2≤i<t

‖Di‖∞

 !

v
u
u
u
t

(40) 

for all t ≥ T
c2 log T with probability exceeding 1� 2δ, 

which forms the crux of our analysis. Employing ele-
mentary analysis tailored to the preceding recursive 
relation, one can demonstrate that

‖DT‖∞ ≤ O

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(log4T) log|S||A|T
δ

� �

(1� γ)4T

v
u
u
t +

(log4T) log|S||A|T
δ

� �

(1� γ)4T

0

B
@

1

C
A

(41) 

with probability at least 1� 2δ, which, in turn, allows 
us to establish the advertised result under the assumed 
sample size condition. The details are deferred to 
Online Appendix EC.2.4.

4.3. Proof Outline for Theorem 3
4.3.1. Construction of a Hard Instance with Four States 

and Two Actions. Let us construct an MDP Mhard 

with state space S � {0, 1, 2, 3} (see a pictorial illustra-
tion in Figure 1). We denote by As the action space 
associated with state s. The probability transition ker-
nel and reward function of Mhard are specified as fol-
lows:

A0 � {1}, P(0 |0, 1) � 1, r(0, 1) � 0,

(42a) 

A1 � {1, 2}, P(1 |1, 1) � p, P(0 |1, 1) � 1� p, r(1, 1) � 1,

(42b) 

P(1 |1, 2) � p, P(0 |1, 2) � 1� p, r(1, 2) � 1,

(42c) 

A2 � {1}, P(2 |2, 1) � p, P(0 |2, 1) � 1� p, r(2, 1) � 1,

(42d) 

A3 � {1}, P(3 |3, 1) � 1, r(3, 1) � 1,

(42e) 

where the parameter p is taken to be

p � 4γ� 1

3γ
: (43) 

Before moving forward to analyze the behavior of 
Q-learning, we first characterize the optimal value 
function and Q-function of this MDP; the proof is 
postponed to Online Section EC.4.4.
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Lemma 3. Consider the MDP Mhard constructed in (42). 
One has

V?(0) � Q?(0, 1) � 0; (44a) 

V?(1) � Q?(1, 1) � Q?(1, 2) � V?(2) � Q?(2, 1)

� 1

1� γp
� 3

4(1� γ) ; (44b) 

V?(3) � Q?(3, 1) � 1

1� γ
: (44c) 

Recognizing the elementary decomposition

E (V?(s)� VT(s))2
h i

� (E[V?(s)� VT(s)])2 + Var(VT(s))
(45) 

for any state s, our proof consists of lower bounding 

either the squared bias term (E[V?(s)�VT(s)])2 or the 
variance term Var(VT(s)). In short, we primarily ana-
lyze the dynamics w.r.t. state 2 to handle the case 
when the learning rates are either too small or too 
large and analyze the dynamics w.r.t. state 1 to cope 
with the case with medium learning rates (with state 3 
serving as a helper state to simplify the analysis). The 
latter case—corresponding to the learning rates adopted 
in establishing the upper bounds—is the most challeng-
ing: critically, from state 1, the agent can take one of two 
identical actions, whose value tends to be estimated 
with a high positive bias because of maximizing over 
the empirical state–action values, highlighting the well- 
recognized “overestimation” issue of Q-learning in prac-
tice (Hasselt 2010). The complete proof is deferred to 
Online Appendix EC.4.

4.3.2. Extension: Lower Bounds for Larger |S| and 

|A|. For pedagogical reasons, the hard instance (42) 
constructed contains no more than four states and two 
actions (as the focus has been to unveil suboptimal 
dependency on the effective horizon). As it turns out, 
one can straightforwardly extend it to cover larger 
state and action spaces with a more general hard 
instance constructed as follows. 

• We begin by generating the following sub-MDP, 
denoted by Msub, which comprises four states {1, 2, 3, 4}
and no more than |A| ≥ 2 actions:

A0 � {1}, P(0|0, 1) � 1, r(0, 1) � 0, (46a) 

A1 � {1, : : : , |A|}, P(1|1, a) � p, P(0|1, a) � 1� p,

r(1, a) � 1, ∀a ∈ A1,

(46b) 

A2 � {1}, P(2|2, 1) � p, P(0|2, 1) � 1� p,

r(2, 1) � 1, (46c) 

A3 � {1}, P(3|3, 1) � 1, r(3, 1) � 1, (46d) 

where p is still set according to (43).
• The full MDP Mfull is then constructed by generat-

ing |S|=4 independent copies of Msub.
As can be easily verified (which we omit here for 

the sake of brevity), our analysis developed for the 
smaller MDP (42) is directly applicable to studying 
the more general Mfull, revealing that the lower bound 
(55) w.r.t. the iteration number T remains valid. Rec-
ognizing that the total sample size scales as |S||A|T, 
we establish a general sample complexity lower 

bound |S||A|
(1�γ)4ε2 

for synchronous Q-learning to yield 

ε-accuracy.

5. Extension: Sample Complexity of 
Asynchronous Q-Learning

Moving beyond the synchronous setting, another sce-
nario of practical importance is the case in which the 
acquired samples take the form of a single Markovian 
trajectory (Tsitsiklis 1994). In this section, we extend 
our analysis framework for synchronous Q-learning 
to accommodate Markovian non–i.i.d. samples.

5.1. Markovian Samples and Asynchronous 

Q-Learning

5.1.1. Markovian Sample Trajectory. Suppose that we 

obtain a Markovian sample trajectory {(st,at,rt)}∞t�0, which 
is generated by the MDP of interest when a stationary 

Figure 1. (Color online) The Constructed Hard MDP Instance Used in the Analysis of Theorem 3, Where p � 4γ�1
3γ�and the Speci-

fications are Described in (42) 
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behavior policy πb is employed; in other words,

at ~ πb(·|st), rt � r(st, at), st+1 ~ P(·|st, at), t ≥ 0: (47) 

When πb is stationary, the trajectory {(st, at)}∞t�0 can be 
viewed as a sample path of a time-homogeneous Mar-
kov chain; in what follows, we denote by µπb 

the sta-

tionary distribution of this Markov chain. Note that 
the behavior policy πb can often be quite different 
from the target optimal policy π?.

5.1.2. Asynchronous Q-Learning. In the presence of a 
single Markovian sample trajectory, the Q-learning algo-
rithm implements the following iterative update rule:

Qt(st�1, at�1) � (1 � ηt)Qt�1(st�1, at�1)

+ ηt r(st�1, at�1) + γmax
a′∈A

Qt�1(st, a′)
� �

,

(48a) 

Qt(s, a) � Qt�1(s, a)for all (s, a) ≠ (st�1, at�1)
(48b) 

for all t ≥ 1, where 0 < ηt ≤ 1 stands for the learning rate 

at time t. It is often referred to as asynchronous Q- 
learning as only a single state–action pair is updated in 
each iteration (in contrast, synchronous Q-learning up-
dates all state–action pairs simultaneously in each itera-
tion). This also leads to the following estimate for the 
value function at time t:

Vt(s) :� max
a∈A

Qt(s, a) for all s ∈ S: (49) 

As can be expected, the presence of Markovian non–i.i.d. 
data considerably complicates the analysis for asynchro-
nous Q-learning.

5.1.3. Assumptions. In order to ensure sufficient cover-
age of the sample trajectory over the state/action space, 
we make the following assumption throughout this sec-
tion, which is also commonly imposed in prior literature.

Assumption 1. The Markov chain induced by the behavior 
policy πb is uniformly ergodic.2

In addition, there are two crucial quantities con-
cerning the sample trajectory that dictate the perfor-
mance of asynchronous Q-learning. The first one is 
the minimum state–action occupancy probability of 
the sample trajectory, defined formally as

µ
min

:� min
(s, a)∈S×A

µπb
(s, a): (50) 

This metric captures the information bottleneck incurred 
by the least visited state–action pair. The second key 
quantity is the mixing time associated with the sample 
trajectory, denoted by

tmix :� min t max
(s, a)∈S×A

dTV

�

Pt(·|s, a),µπb

�

≤ 1

4










�

:

�

(51) 

Here, dTV(µ,ν) :� 1
2

P

x∈X
|µ(x)� ν(x)| indicates the total 

variation distance between two measures µ and ν�

over X (Tsybakov and Zaiats 2009), whereas Pt(·|s, a)
stands for the distribution of (st, at) when the sample 
trajectory is initialized at (s0, a0) � (s, a). In words, the 
mixing time reflects the time required for the Markov 
chain to become nearly independent of the initial 
states. See Li et al. (2022b, section 2) for a more 
detailed account of these quantities and assumptions.

5.2. Sample Complexity of Asynchronous Q-Learning
Whereas a number of previous works are dedicated to 
understanding the performance of asynchronous Q- 
learning, its sample complexity bound remains loose 
when it comes to the dependency on the effective 

horizon 1
1�γ. Encouragingly, the analysis framework 

laid out in this paper allows us to tighten the depen-

dency on 1
1�γ�as stated.

Theorem 4. Consider any δ ∈ (0, 1), ε ∈ (0, 1], and γ ∈ [1=
2, 1). Suppose that, for any 0 ≤ t ≤ T, the learning rates sat-
isfy

ηt ≡ η �
c1log3T

(1� γ)Tµ
min

(52a) 

for some universal constants 0 < c1 ≤ 1. Assume that the 
total number of iterations T obeys

T ≥ c2 log2 |S||A|T
δ

µ
min

max
log3T

(1� γ)4ε2
,

tmix

1� γ

( )

(52b) 

for some sufficiently large universal constant c2 > 0. If the 

initialization obeys 0 ≤ Q0(s, a) ≤ 1
1�γ�for all (s, a) ∈ S × A, 

then asynchronous Q-learning (cf. (48)) satisfies

max
(s,a)∈S×A

|QT(s, a)�Q?(s, a)| ≤ ε�

with probability at least 1� δ.

Remark 9. Similar to Remarks 1 and 5, one can imme-
diately translate this high-probability result into the 
following mean estimation error bound:

E max
s, a

|QT(s, a)� Q?(s, a)|
� �

≤ ε(1 � δ) + δ 1

1 � γ
≤ 2ε,

(53) 

which holds as long as T ≥ c2 log2 |S||A|T
ε(1�γ)

µ
min

max
log3T

(1�γ)4ε2
, tmix

1�γ

n o

for some large enough constant c2 > 0.
This theorem demonstrates that, with high proba-

bility, the total sample size needed for asynchronous 
Q-learning to yield entry-wise ε�accuracy is

Õ
1

µ
min

(1 � γ)4ε2
+ tmix

µ
min

(1 � γ)

 !

, (54) 
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provided that the learning rates are taken to be some 
proper constant (see (52a)). The first term in (54) resem-
bles our sample complexity characterization of synchro-
nous Q-learning (cf. (19)) except that we replace the 
number |S||A| of state–action pairs in (19) with 1=µ

min 
in 

order to account for nonuniformity across state–action 
pairs. The second term in (54) is nearly independent of 
the target accuracy (except for some logarithmic scaling) 
and can be viewed as the burn-in time taken for asyn-
chronous Q-learning to mimic synchronous Q-learning 
despite Markovian data.

We now pause to compare Theorem 4 with prior non-
asymptotic theory for asynchronous Q-learning. As far 
as we know, all existing sample complexity bounds 
(Even-Dar and Mansour 2003, Beck and Srikant 2012, 
Qu and Wierman 2020, Chen et al. 2021, Li et al. 2022b) 

scale at least as 1
(1�γ)5 in terms of the dependency on the 

effective horizon with Theorem 4 being the first result to 

sharpen this dependency to 1
(1�γ)4. In particular, our sam-

ple complexity bound strengthens the state-of-the-art 

result Li et al. (2022b) by a factor up to 1
1�γ�and improves 

upon Qu and Wierman (2020) by a factor of at least 
|S||A|
1�γ min tmix, 1

(1�γ)3ε2

n o

.3

Before concluding this section, we note that, for a 

large enough sample size, the first term 1
µ

min
(1�γ)4ε2 

in 

(54) is essentially unimprovable (up to logarithmic 
factor). To make precise this statement, we develop a 
matching algorithm-dependent lower bound as fol-
lows, which parallels Theorem 3 previously devel-
oped for the synchronous case.

Theorem 5. Consider any 0:95 ≤ γ < 1. Suppose that µ
min

≤
1

c3 log2T 
and T ≥ c3 log3T

µ
min

(1�γ)7 for some sufficiently large constant 

c3 > 0. Assume that the initialization is Q0 ≡ 0 and the learn-
ing rates are taken to be ηt ≡ η�for all t ≥ 0. Then, there exists 

a γ-discounted MDP with |S| � 4 and |A| � 3 and a behavior 
policy such that (i) the minimum state–action occupancy prob-
ability of the sample trajectory is given by µ

min 
and (ii) the 

asynchronous Q-learning update rule (48)—for any η ∈ (0, 
1)—obeys

max
s,a

E[|QT(s, a)�Q?(s, a)|2] ≥ clb

µ
min

(1� γ)4T log3T
,

(55) 

where clb > 0 is some universal constant.

In words, Theorem 5 asserts that, for large enough 
sample size T, in general, one cannot hope to achieve 

ℓ∞-based ε-accuracy using fewer than Õ 1
µ

min
(1�γ)4ε2

� �

samples, thus confirming the sharpness of our upper 
bound. The proof of this theorem can be found in 
Online Appendix EC.6.

6. Concluding Remarks
In this paper, we settle the sample complexity of syn-
chronous Q-learning in γ-discounted infinite-horizon 

MDPs, which is shown to be on the order of Õ |S|
(1�γ)3ε2

� �

when |A| � 1 and Õ |S||A|
(1�γ)4ε2

� �

when |A| ≥ 2. A matching 

lower bound is developed when |A| ≥ 2 through study-
ing the dynamics of Q-learning on a hard MDP ins-
tance, which unveils the negative impact of an inevitable 
overestimation issue. Our theory is further extended to 
accommodate asynchronous Q-learning, resulting in 
tight dependency of the sample complexity on the 
effective horizon. The analysis framework developed 
herein—which exploits novel error decompositions and 
variance control that differ substantially from prior 
approaches—might suggest a plausible path toward 
sharpening the sample complexity of as well as under-
standing the algorithmic bottlenecks for other model- 
free algorithms (e.g., double Q-learning; Hasselt 2010).
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Endnotes
1 There is no need to maintain additional Q-estimates as the 

Q-function and value function coincide when |A| � 1.
2 See Paulin (2015, section 1.2) for the definition of uniform 

ergodicity.

3 The sample complexity of Li et al. (2022b) scales as Õ
�

1
µ

min
(1�γ)5ε2

+
tmix

µ
min

(1�γ)

�

, whereas the sample complexity of Qu and Wierman 

(2020) scales as Õ tmix

µ2
min

(1�γ)5ε2

� �

. It is worth noting that 1=µ
min

≥ |S||A|

and is, therefore, a large factor.
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