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Abstract. Q-learning, which seeks to learn the optimal Q-function of a Markov decision pro-
cess (MDP) in a model-free fashion, lies at the heart of reinforcement learning. When it comes
to the synchronous setting (such that independent samples for all state—action pairs are drawn
from a generative model in each iteration), substantial progress has been made toward under-
standing the sample efficiency of Q-learning. Consider a y-discounted infinite-horizon MDP
with state space S and action space A: to yield an entry-wise e-approximation of the optimal
Q-function, state-of-the-art theory for Q-learning requires a sample size exceeding the order

of ; 1Iﬂ‘,§|gz' which fails to match existing minimax lower bounds. This gives rise to natural ques-

tions: What is the sharp sample complexity of Q-learning? Is Q-learning provably subopti-
mal? This paper addresses these questions for the synchronous setting: (1) when the action
space contains a single action (so that Q-learning reduces to TD learning), we prove that the

; 1—5)‘352 (up to log factor);

(2) when the action space contains at least two actions, we settle the sample complexity of

Q-learning to be on the order of ; 1@?'{2 (up to log factor). Our theory unveils the strict subop-

timality of Q-learning when the action space contains at least two actions and rigorizes the
negative impact of overestimation in Q-learning. Finally, we extend our analysis to accommo-
date asynchronous Q-learning (i.e., the case with Markovian samples), sharpening the hori-

zon dependency of its sample complexity to be G 1}),)4.

sample complexity of TD learning is minimax optimal and scales as
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1. Introduction

Whereas classic convergence analyses for Q-learning

Q-learning is arguably one of the most widely ad-  (Jaakkola et al. 1994, Tsitsiklis 1994, Szepesvdri 1998,
opted model-free algorithms (Watkins 1989, Watkins ~ Borkar and Meyn 2000) focus primarily on the asymp-

and Dayan 1992). Characterizing its sample effi-  totic regime—in which the number of iterations tends
ciency lies at the core of the statistical foundation of  to infinity with other problem parameters held fixed—
reinforcement learning (RL) (Sutton and Barto 2018). recent years have witnessed a paradigm shift from
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asymptotic analyses toward a finite-sample/-time frame-
work (Kearns and Singh 1999; Even-Dar and Mansour
2003; Beck and Srikant 2012; Lee and He 2018; Wain-
wright 2019b; Chen et al. 2020, 2021; Qu and Wierman
2020; Weng et al. 2020a; Xiong et al. 2020; Li et al. 2022b).
Drawing insights from high-dimensional statistics
(Wainwright 2019a), a modern nonasymptotic frame-
work unveils more clear and informative impacts of
salient problem parameters upon the sample complex-
ity, particularly for those applications with an enormous
state/action space and long horizon. Motivated by its
practical value, a suite of nonasymptotic theory has
been recently developed for Q-learning to accommodate
multiple sampling mechanisms (Even-Dar and Mansour
2003, Beck and Srikant 2012, Jin et al. 2018, Wainwright
2019b, Qu and Wierman 2020, Li et al. 2022b).

In this paper, we revisit the sample complexity
of Q-learning for tabular Markov decision processes
(MDPs). For concreteness, let us consider the synchro-
nous setting, which assumes access to a generative
model or a simulator that produces independent sam-
ples for all state-action pairs in each iteration (Kearns
et al. 2002, Kakade 2003); this setting is termed
“synchronous” as the estimates with respect to (w.r.t.)
all state—action pairs are updated at once. We investigate
the £..-based sample complexity, namely, the number of
samples needed for synchronous Q-learning to yield
an entry-wise e-accurate estimate of the optimal Q-
function. Despite a number of prior works tackling this
setting, the dependence of the sample complexity on
the effective horizon ﬁ remains unsettled. Take y-dis-

counted infinite-horizon MDPs for instance: the state-of-
the-art sample complexity bounds (Wainwright 2019,

Chen et al. 2020) scale on the order of % (up to

some log factor), where S and A represent the state
and action spaces, respectively. However, it is unclear
whether this scaling is sharp for Q-learning and whether
it can be further improved via a more refined theory.
On the one hand, the minimax lower limit for this set-

% (up to some

log factor) (Azar et al. 2013); this limit is achievable by
model-based approaches (Agarwal et al. 2020, Li et al.
2023b) and apparently smaller than prior sample com-
plexity bounds for Q-learning. On the other hand, Wain-
wright (2019¢c) argues through numerical experiments
that “the usual Q-learning suffers from at least worst-
case fourth-order scaling in the discount complexity 1%},,

ting is shown to be on the order of

as opposed to the third-order scaling ...” although no
rigorous justification is provided therein. Given the gap
between the achievability bounds and lower bounds in
the status quo, it is natural to seek answers to the follow-
ing questions: What is the tight sample complexity char-
acterization of Q-learning? How does it compare to the
minimax sample complexity limit?

1.1. Main Contributions
Focusing on y-discounted infinite-horizon MDPs with
state space S and action space A, this paper settles
the f-based sample complexity of synchronous Q-
learning. Here and throughout, the standard notation
f()=0(g(+)) (respectively, f(-)=Q(g(-))) means that
f() is order-wise no larger than (no smaller than) g(:)
modulo some logarithmic factors. Our main contribu-
tions regarding synchronous Q-learning are summa-
rized as follows:

e When |A| =1, Q-learning coincides with temporal
difference (TD) learning in a Markov reward process.
For any 0 < € <1, we prove that a total sample size of

~ [S]
O <7(1 - y)3€2> 1)

is sufficient for TD learning to guarantee e-accuracy in
an (. sense; see Theorem 1. This is sharp and mini-
max optimal (up to some log factor).

e Moving on to the case with |A|>2, we demon-
strate that a sample size of

~ [ ISIA]
O <7(1 — y)482> )

suffices for Q-learning to yield e-accuracy in an (s
sense for any 0 < ¢ < 1; see Theorem 2. Conversely, we
construct a hard MDP instance with four states and
two actions for which Q-learning provably requires at

least
~ 1
Q <7(1 — y)482> 3)

iterations to achieve &-accuracy in an (- sense; see
Theorem 3. These two theorems taken collectively
lead to the first sharp characterization of the sample
complexity of Q-learning, strengthening prior theory
(Wainwright 2019b, Chen et al. 2020) by a factor of
ﬁ. In addition, the discrepancy between our sharp
characterization and the minimax lower bound makes
clear that Q-learning is 7ot minimax optimal when |.A| > 2
and is outperformed by, say, the model-based app-
roaches (Agarwal et al. 2020, Li et al. 2023b) in terms of
the sample efficiency.

Our results cover both rescaled linear and constant
learning rates; see Table 1 for more detailed compari-
sons with previous literature. On the technical side, (i)
our analysis for the upper bound relies on a sort of
crucial error decomposition and variance control that
are previously unexplored, which might shed light on
how to pin down the finite-sample efficacy of other var-
iants of Q-learning, such as double Q-learning; (ii) the
development of our lower bound, which is inspired by
Azar et al. (2013) and Wainwright (2019¢), puts the
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Table 1. Comparisons of Existing Sample Complexity Upper Bounds of Synchronous Q-Learning and
TD Learning for an Infinite-Horizon y-Discounted MDP with State Space S and Action Space A, Where

0 < & <1 is the Target Accuracy Level

Paper Learning rates

Sample complexity

Even-Dar and Mansour (2003) linear: % o5 _ISIIA

Even-Dar and Mansour (2003)

polynomial: %, w € (1/2,1)

s i)+ ()}

(1—7/)452

Beck and Srikant (2012) constant: “5n \Slzlé\z
(1=y)ye?
Wainwright (2019b) rescaled linear: m (1‘1‘,?'9
Wainwright (2019b) polynomial: 1, w €(0,1) L \Ve L\
141 () + ()
i . 1 [SIAI
Chen et al. (2020) rescaled linear: m Uore
Chen et al. (2020) constant: (1 — y)*e? (1\5\\«)‘;I .
e
This work (Q-learning, |A| > 2) rescaled linear: m (1‘5‘1‘3‘:'{2
This work (Q-learning, |A| > 2) constant: (1 —y)°e? (JSH;‘}I .
e
This work (TD learning, |A|=1) rescaled linear: ﬁ (Jﬂw
This work (TD learning, |A| =1) constant: (1 — y)3£2 151

(1 —]/)3 &2

Notes. Here, sample complexity refers to the total number of samples needed to yield either maxslulé(s,a) —Q*(s,a)<e
with high probability or E[max,|Q(s,a) — Q*(s,a)|] < &, where Q is the estimate returned by Q-learning. All logarithmic

factors are omitted in the table to simplify the expressions.

negative impact of overestimation on sample efficiency
on a rigorous footing.

Finally, we extend our analysis framework to acc-
ommodate the asynchronous setting, in which the
samples are non-independent and identically distrib-
uted (ii.d.) and take the form of a single Markovian
trajectory. To the best of our knowledge, we show for
the first time that the sample complexity of asynchro-

nous Q-learning exhibits a ﬁ scaling w.r.t. the

effective horizon, which is nearly sharp and improves
upon the prior state of the art Li et al. (2022b).

1.2. Related Works

There is a growing literature dedicated to analyzing
the nonasymptotic behavior of value-based model-
free RL algorithms in a variety of scenarios. In the dis-
cussion, we subsample the literature and discuss a
couple of papers that are the closest to ours.

1.2.1. Finite-Sample ¢..-Based Guarantees for Synchro-
nous Q-Learning and TD Learning. The sample com-
plexities derived in prior literature often rely crucially
on the choices of learning rates. Even-Dar and Mansour
(2003) study the sample complexity of Q-learning with
linear learning rates 1/t or polynomial learning rates

1/t“, which scale as O ( ( 15")“54!25) when optimized w.r.t.

the effective horizon (attained when w =4/5). The
resulting sample complexity, however, is suboptimal in
terms of its dependency on not only %, but also the tar-

get accuracy level ¢. Beck and Srikant (2012) investigate

the case of constant learning rates; however, their result
suffers from an additional factor of |S||.4|, which can be
prohibitively large in practice. More recently, Wain-
wright (2019b) and Chen et al. (2020) further analyze the
sample complexity of Q-learning with either constant
learning rates or linearly rescaled learning rates, leading

to the state-of-the-art bound O ( i 1'f%‘€2). However, this

result remains suboptimal in terms of its scaling with
7=. See Table 1 for details. In the special case with

|A| =1, the recent works Khamaru et al. (2021b) and
Mou et al. (2020) develop instance-dependent results for
TD learning with Polyak-Ruppert averaging and study
the local (sub)-optimality of TD learning in a different
local minimax framework.

1.2.2. Finite-Sample ¢.-Based Guarantees for Asyn-
chronous Q-Learning and TD Learning. Moving be-
yond the synchronous model, Even-Dar and Mansour
(2003), Beck and Srikant (2012), Qu and Wierman
(2020), Li et al. (2022b), Shah and Xie (2018), and Chen
et al. (2021) develop nonasymptotic convergence guar-
antees for the asynchronous setting, in which the data
samples take the form of a single Markovian trajectory
(following some behavior policy) and only a single
state-action pair is updated in each iteration. A simi-

1
(1)
the-art sample complexity bounds for asynchronous
Q-learning (Li et al. 2022b), and our theory is the first

lar scaling of O( ) also shows up in the state-of-

to sharpen it to O ( (1j7,)4) . When it comes to the special
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case with [A|=1, the nonasymptotic performance
guarantees for TD learning with Markovian sample
trajectories (assuming that the behavior policy coin-
cides with the target policy) are recently derived by
Bhandari et al. (2021), Srikant and Ying (2019), and
Mou et al. (2020).

1.2.3. Finite-Sample ¢..-Based Guarantees of Other Q-
Learning Variants. With the aim of alleviating the
suboptimal dependency on the effective horizon in
vanilla Q-learning and improving sample efficiency,
several variants of Q-learning are proposed and ana-
lyzed. Azar et al. (2011) propose speedy Q-learning,

which achieves a sample complexity of O (%) at

the expense of doubling the computation and storage
complexity. Our result on vanilla Q-learning matches
that of speedy Q-learning in an order-wise sense. In
addition, Wainwright (2019c) proposes a variance-
reduced Q-learning algorithm that is shown to be
minimax optimal in the range € € (0,1) with a sample
ISILA|
(1-y)’e?
alized to the asynchronous setting by Li et al. (2022b).
The (. statistical bounds for variance-reduced TD
learning are investigated in Khamaru et al. (2021b) for
the synchronous setting and in Li et al. (2022b) for the
asynchronous setting. Finally, Xiong et al. (2020) estab-
lish the finite-sample convergence of double Q-learning
following the framework of Even-Dar and Mansour
(2003); however, it is unclear whether double Q-learning
can provably outperform vanilla Q-learning in terms of
sample efficiency.

complexity O( ), which is subsequently gener-

1.2.4. Others. There are also several other strands of
related papers that tackle model-free algorithms but do
not pursue {-based nonasymptotic guarantees. For ins-
tance, Bhandari et al. (2021), Lakshminarayanan and Sze-
pesvari (2018), Srikant and Ying (2019), Gupta et al.
(2019), Doan et al. (2019), Wu et al. (2020), Xu et al.
(2019a,b), and Chen et al. (2019) develop finite-sample
(weighted) ¢, convergence guarantees for several model-
free algorithms, which also allow one to accommodate
linear function approximation as well as off-policy eval-
uation. Another line of recent work (Jin et al. 2018, Bai
et al. 2019, Zhang et al. 2020, Li et al. 2023a) considers the
sample efficiency of Q-learning-type algorithms paired
with proper exploration strategies (e.g., upper confidence
bounds) under the framework of regret analysis. The
asymptotic behaviors of some variants of Q-learning, for
example, double Q-learning (Weng et al. 2020b) and rela-
tive Q-learning (Devraj and Meyn 2020) are also studied.
In addition, Q-learning in conjunction with the pessi-
mism principle proves effective in dealing with off-line
data (Shi et al. 2022, Yan et al. 2022). The effect of more
general function approximation schemes (e.g., certain

families of neural network approximations) is studied in
Fan et al. (2019), Murphy (2005), Cai et al. (2019), Wai
et al. (2019), and Xu and Gu (2020), whereas the exten-
sion to multiagent scenarios is looked at in Hu and Well-
man (2003) and Li et al. (2022a). These are beyond the
scope of the present paper.

2. Background and Algorithms

This paper concentrates on discounted infinite-horizon
MDPs (Bertsekas 2017). We start by introducing some
basics of tabular MDPs, followed by a description of
both Q-learning and TD learning. Throughout this
paper, we denote by S ={1,...,[S|} and A ={1,...,|Al}
the state and action spaces of the MDP, respectively,
and let A(S) represent the probability simplex over the
set S.

2.1. Basics of Discounted Infinite-Horizon MDPs
Consider an infinite-horizon MDP as represented by a
quintuple M = (S, A, P,r,y), where y € (0,1) indicates
the discount factor, P:S x A — A(S) represents the
probability transition kernel (i.e., P(s’|s,a) is the proba-
bility of transitioning to state s’ from a state-action
pair (s,a) € Sx A), and r: S X A — [0, 1] stands for the
reward function (i.e., 7(s,a) is the immediate reward
collected in state s € S when action a € A is taken).
Note that the immediate rewards are assumed to lie
within [0,1] throughout this paper. Moreover, we let
1:S — A(A) represent a policy so that n(:|s) € A(A)
specifies the (possibly randomized) action selection
rule in state s. If 7 is a deterministic policy, then we
denote by 71(s) the action selected by m in state s.

A common objective in RL is to maximize a sort of
long-term rewards called value functions or Q-functions.
Specifically, given a policy 7, the associated value func-
tion and Q-function of 7t are defined, respectively, by

S0 =S‘|

Sop =8,00 = ﬂ]

o]

S (s )

k=0

Vi(s) = E

forallse S, and

e

> Vrisea)

k=0

Q™(s,a):=E

for all (s,a) € S X A. Here, {(s, ax)}i>o is a trajectory of
the MDP induced by the policy 7 (except 2o when evalu-
ating the Q-function), and the expectations are evaluated
with respect to the randomness of the MDP trajectory.
Given that the immediate rewards fall within [0,1], it

can be straightforwardly verified that 0 < V7(s) < 11)/

and 0<Q"(s,a) < 11}, for any m and any state-action

pair (s,a). The optimal value function V* and optimal
Q-function Q* are defined, respectively, as

V*(s) := max V™s), Q%(s,a):= max Q" (s,a)




Downloaded from informs.org by [76.125.202.152] on 21 April 2024, at 16:53 . For personal use only, all rights reserved.

226

Li et al.: Tight Sample Complexity Analysis for Q-Learning
Operations Research, 2024, vol. 72, no. 1, pp. 222-236, © 2023 The Author(s)

for any state-action pair (s,a) € S X A. It is well-known
that there exists a deterministic optimal policy, denoted
by 7*, that attains V*(s) and Q*(s,a) simultaneously for
all (s,a) € S x A (Sutton and Barto 2018).

2.2. Algorithms: Q-Learning and TD Learning (the
Synchronous Setting)

The synchronous setting assumes access to a genera-

tive model (Kearns and Singh 1999, Sidford et al.

2018) such that, in each iteration t, we collect an inde-

pendent sample s;(s,a) ~ P(-|s,a) for every state-action

pair (s,a) € S X A.

With this sampling model in place, the Q-learning algo-
rithm (Watkins and Dayan 1992) maintains a Q-function
estimate Q; : S X A — R for all t > 0; in each iteration f,
the algorithm updates all entries of the Q-function esti-
mate at once via the following update rule:

Q=1 —=n,)Qt—1 +1n,T1(Qs-1). 4)

Here, 1, € (0,1] denotes the learning rate or step size
in the tth iteration, and 7; denotes the empirical Bell-
man operator constructed by samples collected in the
tth iteration, that is,

TU(Q)s,0) 1= rls,) + y max Qlsy,a'),
sy =s4(s,a) ~ P(-|s,a) (5)

for each state—action pair (s,a) € S X A. Obviously, 7,
is an unbiased estimate of the celebrated Bellman
operator 7 given by

V(s,a) e Sx A:

TQ)(s,a):=r(s,a)+y E {maxQ(s’,a’)].

§'~P(|s,a) | a’eA

Note that the optimal Q-function Q* is the unique
fixed point of the Bellman operator (Bellman 1952);
that is, 7(Q*) = Q*. Viewed in this light, synchronous
Q-learning can be interpreted as a stochastic approxi-
mation scheme (Robbins and Monro 1951) aimed at
solving this fixed-point equation. Throughout this
work, we initialize the algorithm in a way that obeys
0 < Qols,a) Sl%y for every state-action pair (s,a). In
addition, the corresponding value function estimate
Vi : S — R in the tth iteration is defined as

VseS: Vi(s) := max Qi(s,a). (6)

The complete description of Q-learning is summa-
rized in Algorithm 1.

Algorithm 1 (Synchronous Q-Learning for Infinite-Horizon
Discounted MDPs)
1: inputs: learning rates {,}, number of iterations T,
discount factor y, initial estimate Q.
2: fort=1,2,...,Tdo
3:  Draw s(s,a) ~ P(-|s,a) for each (s,a) € S X A.

4:  Compute Q; according to (4) and (5).
5: end for

As it turns out, TD learning (Sutton 1988, Tsitsiklis
and Van Roy 1997, Bhandari et al. 2021) in the syn-
chronous setting can be viewed as a special instance
of Q-learning when the action set A is a singleton (i.e.,
|A] =1). In such a case, the MDP reduces to a Markov
reward process (MRP) (Bertsekas 2017), and we abuse
the notation to use P : S — A(S) to describe the proba-
bility transition kernel and employ r:S — [0,1] to
represent the reward function (with r(s) indicating the
immediate reward gained in state s). The TD learning
algorithm maintains an estimate V;:S — R of the
value function in each iteration t,' and carries out the
following iterative update rule:

Vi(s) = (1 =n)Viea(s) +1,(r(s) + yViea(se),
st = 5¢(s) ~ P(|s) @)

for each state s € S. As before, 1, € (0,1] is the learning
rate at time t; the initial estimate V(s) is taken to be

within {0, 1%)/} ; and in each iteration, the samples {s(s)|

s€ S} are generated independently. The whole algo-
rithm of TD learning is summarized in Algorithm 2.

Algorithm 2 (Synchronous TD Learning for Infinite-Horizon
Discounted MRPs)

1: inputs: learning rates {n,}, number of iterations T,

discount factor y, initial estimate V.

2: fort=1,2,...,Tdo

3:  Draw s(s) ~ P(:|s) for each s € S.

4:  Compute V; according to (7).

5: end for

Finally, whereas synchronous Q-learning is the main
focal point of this paper, we also discuss the extension
to asynchronous Q-learning, which we elaborate on in
Section 5.

3. Main Results: Sample Complexity of

Synchronous Q-Learning
With these backgrounds in place, we are in a position
to state formally our main findings in this section,
concentrating on the synchronous setting.

3.1. Minimax Optimality of TD Learning
We start with the special |A| =1 and characterize the
{-based sample complexity of synchronous TD learning,.

Theorem 1. Consider any 6 € (0,1), ¢ €(0,1], and y € [1/
2,1). Suppose that, for any 0 <t <T, the learning rates

satisfy

1
<< (8a)
ca(1-y)T t o(1-y)t
1+ long 1+ logZT
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for some small enough universal constants ci >cp > 0.
Assume that the total number of iterations T obeys

c3(logT) (log¥)
2 3
(I—y)e

for some sufficiently large universal constant cz > 0. If the
initialization obeys 0 < Vo(s) < 1L for all s € S, then with

(8b)

probability at least 1 — 9, Algorith;;i 2 achieves
m%x|VT(s) —V*@s)| <e. 9)
se

Remark 1 (Mean Estimation Error). This high-probability
bound immediately translates to a mean estimation
error guarantee. Recognizing the crude upper bound
[Vi(s) — V*(s)| < ﬁ (see (EC.49) in Online Section
E.C.3.1) and taking 6 < ¢(1 — y), we reach

E mSaXIVT(s) — V*(s)l} <e(1-0)+ 6% <2¢, (10)

c3(10g°T) <10gé (‘f‘fy))
e

Given that each iteration of synchronous TD learn-
ing makes use of |S| samples, Theorem 1 implies that
the sample complexity of TD learning is at most

~ S

for any target accuracy level ¢ € (0,1]. This nonasympto-
tic result is valid as long as the learning rates are chosen
to be either a proper constant or rescaled linear (see
(8a)). Compared with a large number of prior works
studying the performance of TD learning (Borkar and
Meyn 2000, Lakshminarayanan and Szepesvari 2018,
Wainwright 2019b, Chen et al. 2020, Bhandari et al.
2021, Khamaru et al. 2021b), Theorem 1 strengthens

prior results by uncovering an improved scaling (i.e.,

provided that T >

1
-y
plain TD learning were only able to obtain a scaling as

i (Wainwright 2019b).

To assess the tightness of this result, we take a
moment to compare it with the minimax lower bound
recently established in the context of value function
estimation. Specifically, Pananjady and Wainwright
(2020, theorem 2(b)) assert that no algorithm whatso-
ever can obtain an entry-wise ¢ approximation of the
value function—in a minimax sense—unless the total
sample size exceeds

. S
0 (ﬁ) . (12)

In turn, this, taken together with Theorem 1, unveils the
minimax optimality of the sample complexity (modulo

) in the effective horizon. In fact, prior results on

some logarithmic factor) of TD learning for the synchro-
nous setting. Whereas prior works demonstrate how to
attain the minimax limit (12) using model-based meth-
ods or variance-reduced model-free algorithms (e.g.,
Azar et al. 2013, Pananjady and Wainwright 2020, Kha-
maru et al. 2021b, Li et al. 2023b), our theory provides
the first rigorous evidence that plain TD learning alone
is already minimax optimal without the need of Polyak-
Ruppert averaging or variance reduction.

Remark 2 (Runtime-Oblivious Learning Rates). Careful
readers might remark that the choice (8a) of the learning
rates might still rely on prior knowledge of T (or log T).
Fortunately, Theorem 1 immediately leads to conver-
gence guarantees for another choice of 7, selected com-
pletely independent of T. More specifically, suppose that
the learning rates obey

1
aap s ST aap izl (13)
log?(t+1) log?(t+1)

for some universal constants ¢1,¢, > 0. Then, Claim (9)
remains valid under this choice (13), provided that

2¢5(10g°T) (logll!
T> sllog (gé)

(1—y) e
See Online Appendix EC.3.3 for the proof.

(14)

Remark 3 (Polyak-Ruppert Averaging). The results claimed
in Remark 2 further allow us to control the estimation
error of TD learning under Polyak-Ruppert averaging
(Polyak and Juditsky 1992). More precisely, under the
choice (13) of learning rates, the averaged iterates satisfy

log™T) (log!sLt
s4JC3(Og )(:gé) (15)
A=y)rT

with probability exceeding 1 — 6. See Online Appen-
dix EC.3.3 for the proof.

max
seS

1 T
T VI = V')
t=1

Remark 4. It is also noteworthy that: whereas the last
iterate of plain TD learning is shown to be minimax
optimal (which concerns worst case optimality), it might
not necessarily enjoy local optimality. As recently dem-
onstrated by Khamaru et al. (2021a), additional algorith-
mic tricks such as variance reduction might be needed
in order to ensure local optimality.

3.2. Tight Sample Complexity and Suboptimality of
Q-Learning

Next, we move on to the more general case with [A4]| >
2 and study the performance of Q-learning. As it turns
out, Q-learning with |.A| > 2 is considerably more chal-
lenging to analyze than the TD learning case because
of the presence of the nonsmooth max operator. Our
{«-based sample complexity bound for Q-learning is
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summarized as follows, strengthening the state-of-the-
art results.

Theorem 2. Consider any 6 € (0,1), e €(0,1], and y €[1/
2,1). Suppose that, for any 0<t<T, the learning rates
satisfy

1

al—T = ST ST oa
1+ log®T 1+ log®T

(16a)

for some small enough universal constants ci >cp > 0.
Assume that the total number of iterations T obeys

C3(log T) (longHA‘T)
T Ay
for some sufficiently large unwersal constant c3 > 0. If the ini-
tialization obeys 0 < Qo(s,a) < — for any (s,a) € S X A,
then Algorithm 1 achieves
max |Qr(s,a) —Q"(s,a)| < ¢ 17)

(s,a)eSx A

(16b)

<t —

with probability at least 1 — 0.

Remark 5 (Mean Estimation Error). Repeating exactly the
same argument as in Remark 1, one can readily trans-
late this high-probability bound into the following
mean estimation error guarantee:

E|max|Qr(s,a) — Q*(s,a)l] <el-0)+ 61 ! < 2¢,
s,a _

(18)
s(l0g'T) (bggsy‘f))
(1-p)'e?

In a nutshell, Theorem 2 develops a nonasymptotic
bound on the iteration complexity of Q-learning in the
presence of the synchronous model. A few remarks
and implications are in order.

which holds as long as T >

3.2 1 Sample Complexity and Sharpened Dependency
on ;2. Recognizing that |S||.A| independent samples
are drawn in each iteration, we can see from Theorem
2 the following sample complexity bound:

~ S||A
o)

in order for Q-learning to attain e-accuracy (0 < e <1)
in an entry-wise sense. To the best of our knowledge,

this is the first result that breaks the ‘5”"”

—y)e
is present in all state-of-the-art analyses for vanilla Q-
learning (Beck and Srikant 2012, Wainwright 2019b,
Chen et al. 2020, Qu and Wierman 2020, Li et al. 2022b).

barrier that

3.2.2. Learning Rates. Akin to the TD learning case,
our result accommodates two commonly adopted learn-
ing rate schemes (cf. (16a)): (i) linearly rescaled learning

rates ﬁ and (ii) iteration-invariant learning rates
2T long t
m (which depend on the total number of iterations
long

T but not the iteration number t). In particular, when
T= C3(10g4T)(log%)
Tapte
taken to be on the order of

n=0(1-7)e),
which depends almost solely on the discount factor y
and the target accuracy ¢. Interestingly, both learning
rate schedules lead to the same {-based sample com-
plexity bound (in an order-wise sense), making them
appealing for practical use.

, the constant learning rates can be

0<t<T,

Remark 6 (Runtime-Oblivious Learmning Rates and Polyak—
Ruppert Averaging). Akin to Remark 2, Theorem 2 can
be easily extended to accommodate a family of learn-
ing rates chosen without prior knowledge of T. More
concretely, suppose that the learning rates obey

1
Sntsm, Vi>1 (20)
log®(t+1)

C1 (17)/)1’
log?(t+1)

for some suitable constants ¢1,¢, > 0. Then, Claim (17)
continues to hold under this choice (20) provided that

4 |SILAIT
T/2> %. Additionally, similar to Remark

3, we can demonstrate that the averaged Q-learning
iterates under the choice (20) of learning rates obey

ZQT(S a) — Q*(s,a)| <

\l c3(log*T) (loglsllAlT)
4
(1=p)'T

with probability exceeding 1 — 6. The proofs of these
results are identical to those of Remarks 2 and 3 (see
Online Appendix EC.3.3) and are, hence, omitted.

(s, n)eSxA

(21)

3.2.3. A Matching Lower Bound and Suboptimality. The
careful reader might remark that there remains a
gap between our sample complexity bound for Q-
learning and the minimax lower bound (Azar et al.

2013). More specifically, the minimax lower bound
ISIIA\

—p)e
some logarithmic factor—by the model-based app-

roach and variance-reduced methods (Azar et al. 2013,
Wainwright 2019¢, Agarwal et al. 2020, Li et al. 2023b).
This raises natural questions regarding whether our
sample complexity bound can be further improved and
whether there is any intrinsic bottleneck that prevents
vanilla Q-learning from attaining optimal performance.
To answer these questions, we develop the following
lower bound for plain Q-learning with the aim of

scales on the order of

s and is achievable—up to
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confirming the sharpness of Theorem 2 and revealing
the suboptimality of Q-learning.

Theorem 3. Assume that 3/4<y <1 and T > (13)2 for
some sufficiently large constant cz >0. Suppose that the
initialization is Qo = O and the learning rates are taken to
be either (i) n, = 1 (1 > Trea oy for all t >0 or (it) 1, = n for all
t > 0. There exists a y-discounted MDP with |S| =4 and
|A| =2 such that Algorithm 1—with any c, >0 and any
n € (0,1)—obeys

O U S
VieIrT= (1- 7/)4Tlog2T’ @)

where ¢y, > 0 is some universal constant.

maxE[|Vr(s) —
seS

Remark 7. This theorem constructs a hard MDP ins-
tance with no more than four states and two actions
with the emphasis on unveiling the suboptimality of
horizon dependency. It can be generalized to accom-
modate larger state/action space as we elucidate in
Section 4.3.

Remark 8. Theorem 3 concentrates on two families of
learning rates—rescaled linear and constant learning
rates—that are most widely used in practice. Note,
however, that our current analysis does not readily
generalize to arbitrary learning rates, which we leave
for future investigation.

Theorem 3 provides an algorithm-dependent lower
bound for vanilla Q-learning. As asserted by this theo-
rem, it is impossible for Q-learning to attain e-accuracy
(in the sense that max;E[|Vr(s) — V*(s)*] < ¢?) unless
the number of iterations exceeds the order of

1
(1—yp)'e
up to some logarithmic factor. Consequently, the per-
formance guarantees for Q-learning derived in Theo-
rem 2 are sharp in terms of the dependency on the
effective horizon —. On the other hand, it is shown in
prior literature that the minimax sample complexity
limit with a generative model is on the order of (Azar
et al. 2013, Li et al. 2022b)
ISILA|
(1-y)e
this, in turn, reveals the suboptimality of plain Q-
learning, whose horizon scaling is larger than the
minimax limit by a factor of ;1. Hence, more sophisti-

(up to log factor); (23)

cated algorithmic tricks are necessary in order to fur-
ther reduce the sample complexity. For instance, a
variance-reduced variant of Q-learning—namely, lever-
aging the idea of variance reduction originating from
stochastic optimization (Johnson and Zhang 2013) to
accelerate convergence of Q-learning—is shown to attain

minimax optimality (23) for any ¢ € (0,1]; see Wain-
wright (2019¢) for more details.

4. Key Analysis Ideas (the
Synchronous Case)

This section outlines the key ideas for the establish-
ment of our main results of Q-learning for the syn-
chronous case, namely, Theorems 2 and 3. The proof
for TD learning is deferred to Online Appendix EC.3.
Before delving into the proof details, we first intro-
duce convenient vector and matrix notations that are
used frequently.

4.1. Vector and Matrix Notation

To begin, for any matrix M, the notation ||M||; :=
max;y [M;j| is defined as the largest row-wise £
norm of M. For any vector a = [a;]i_; € R", we define
v and |-] in a coordinate-wise manner, that is, va :=
[vai ], € R" and |a| := [|a;|]i.; € R". For a set of vectors
ai,..., a, €R" with a; = [ak,]-]f=1 (1 <k <m), we define
the max operator in an entry-wise fashion such that
maxi gk k := [maxa|_;. For any vectors a = [a;];
€R" and b=[b], €R", the notation a<b (a>Db)
means a; < b; (a; > b;) for all 1<i<n. We also let ao
b =[a;b;]’, denote the Hadamard product. In addi-
tion, we denote by 1 (e;) the all-one vector (ith stan-
dard basis vector), and let I be the identity matrix.

We also introduce the matrix P € RSIMXIS| o repre-
sent the probability transition kernel P, whose (s, a)th
row P;, is a probability vector representing P(:s,a).
Additionally, we define the square probability transi-
tion matrix P™ € RSMMSIAL (p e RISXSY induced by a
deterministic policy 7t over the state-action pairs (states)
as follows:

P :=PII" and P,:=1I"P, (24)

where II" € {0, 1}*"¥M s a projection matrix associ-
ated with the deterministic policy m:

e;(l)
n e;(z)
I = . (25)

.
€risi)

with e; the ith standard basis vector. Moreover, for

any vector VeRSl, we define Varp(V)eRSM as
follows:

Varp(V) = P(Vo V) — (PV) o (PV). (26)

In other words, the (s,a)th entry of Varp(V) corre-

sponds to the variance Vary _p.j; o) (V(s")) w.r.t. the dis-
tribution P(:|s,a).

Moreover, we use the vector r € RISMI ¢ represent

the reward function  so that, for any (s,a) € S X A, the
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(s, a)th entry of r is given by r(s, a). Analogously, we
employ the vectors V™ e RIS, v* e R, v, e RIS, Q" e
RIS Qe RISMI and Q€ RISMI o represent V™, V*,
Vi, QF, Q%, and Q, respectively. Additionally, we
define 7; to be the policy associated with Q; such that,
for any state—action pair (s, a),

() =min{ ¥1Q(s.) =mpx Qs | @)

In other words, for any s € S, the policy n; picks out
the smallest indexed action that attains the largest
Q-value in the estimate Q(s,-). As an immediate con-
sequence, one can easily verify

Qt(S, T[t(S))= Vt(S) and PVt = PT[tQt > Pth (28)

for any ©, where P™ is defined in (24). Further, we
introduce a matrix P; € {0, 1}'5HA|X|S| such that

1, if s’ =s(s,a)

Py((s,a),8") := {0, otherwise (29)

for any (s, a), which is an empirical transition matrix
constructed using samples collected in the tth iteration.

Finally, let X := (|S|,|A4], 1%)/, 1). The notation f(X) =
O(g(X)) or f(X) <g(X) (f(X) 2 g(X)) means that there
exists a universal constant Cp >0 such that [f(X)| <
Colg(X)l (f(X)] = Colg(X)]). The notation f(X) = g(X)
means f(X)Sg(X) and f(X)2g(X) hold simulta-
neously. We define O(-) in the same way as O(:)
except that it hides logarithmic factors.

4.2. Proof Outline for Theorem 2

We are now positioned to describe how to establish The-
orem 2, toward which we first express the Q-learning
update rules (4) and (5) using the preceding matrix nota-
tion. As can be easily verified, Q-learning employs the
samples in P; (cf. (29)) to perform the following update:

Qt = (1 - nt)Qtfl + T]t(T + yPtthl) (30)
in the tth iteration. In the sequel, we denote by
Ar=Q, - Q" (31)

the error of the Q-function estimate in the tth iteration.

4.2.1. Basic Decomposition. We start by decomposing
the estimation error term A;. In view of the update rule
(30), we arrive at the following elementary decomposi-
tion:
A=Q-Q =01-n)Q +n(r+yPVi) - Q"

= (1 =n)(Qiy = Q) +1,(r+yPi Vi1 — Q)

= (1 —n)A1 +1,y(P:Vi_1 — PV¥)

=1 =n)Ar1 + 0,y {P(Viea = V) + (P = P)Vi1},

(32)

where the third line exploits the Bellman equation

Q* =r+yPV*. Further, the term P(V;_1 — V*) can be
linked with A;_; using the definition (27) of t; as follows:

*

P(Viq—V)=P"iQ, ~P"Q"
< Pnt—l Qtfl _ Pni—l Q* — Pnt—l At—l/
(33a)
P(V, - V*)=P"'Q, , — P Q"
>P"Q, ,—P"Q"=P"A;;, (33b)
where we have made use of Relation (28). Substitute
(33) into (32) to reach
A <(1—n A +n,y{P" A1 + (P — P)V,_1};
Ar>(1—n)A1 +0,{P" A1 + (P — P)V,_1}.
(34)
Applying these relations recursively, we obtain
t
A < T]g)AO + ant))/{Pn“lAifl + (P, — P)Vi,l},

i=1

t
A2 1080+ Y P {PT AL+ (P~ PV},
i=1

(35)
where we define
t
[Ta-mn), if i =0,
® =
i = t (36)
1 niH(l—r]j), if0<i<t,
j=i+1
N, ifi=t.

4.2.1.1. Comparisons to Prior Approaches. We take
a moment to discuss how prior analyses handle the
preceding elementary decomposition. Several prior
works (e.g., Wainwright 2019b, Li et al. 2022b) tackle
the second term on the right-hand side of Relation
(34) via the following crude bounds:

P Ay < [[PT[Av ]l = (Al 1,
PPAiy 2 1P [ l1Ai]lol = —llA1lle1,

which, however, are too loose when characterizing
the dependency on ﬁ By contrast, expanding terms
recursively without this type of crude bounding and
carefully analyzing the aggregate terms (e.g., >_; ngt)
P™'A;_1) play a major role in sharpening the depen-
dence of sample complexity on the effective horizon.

4.2.2. Key Intertwined Relations Underlying {||A{/|..}. By
exploiting the crucial relations (35) derived earlier, we
proceed to upper and lower bound A; separately. To
be more specific, defining

_a(l—y)
B:= TlogT (37)
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for some constant c4 >0, one can further decompose
the upper bound in (35) into several terms:

a-pt
A <A+ Z 10y(P 1A +(P;—P)V,y)  (38)

i=1

=4

+ Z r](t))/(P PV, |+ Z T](t)yP”"*lAi,l.
i=(1-p)t+1 i=(1-p)t+1

=&
(39)

Let us briefly remark on the effect of the first two
terms:
e Each component in the first term ¢, is fairly small

given that 171(.” is sufficiently small for any i < (1 — )t
(meaning that each component has undergone
contraction—the ones taking the form of 1 —n,—for

sufficiently many times). As a result, the influence of
{; becomes somewhat negligible.

e The second term §,, which can be controlled via
Freedman’s (1975) inequality because of its martingale
structure, contributes to the main variance term in the
recursion. Note, however, that the resulting variance
term also depends on {A;}.

In summary, the right-hand side of the preceding
inequality canbe further decomposed into some weighted
superposition of {A;} in addition to some negligible
effect. This is formalized in the following two lemmas,
which make apparent the key intertwined relations
underlying{A;}.

Lemma 1. Suppose that cico < c4/8. With probability at
least 1 — 9,

A <30

(log4 T) (log%> (

1 1+max|Afl, |1
yA=y'T ;

§Sl<t

holds simultaneously for all t > - logT

Lemma 2. Suppose that cic, <c4/8. With probability at
least 1 -9,

(10g4T) (logl‘S”AlT)
A > 30 1 +max|Afle |1
f<i<t

Y21 —p)'T

holds simultaneously for all t > logT

Proof. The proofs of Lemmas 1 and 2 are deferred to
Online Appendices EC.2.2 and EC.2.3, respectively. As
a remark, our analysis collects all the error terms accrued
through the iterations—instead of bounding them
individually—by conducting a high-order nonlinear
expansion of the estimation error through recursion,

followed by careful control of the main variance term
leveraging the structure of the discounted MDP. O

Putting the preceding bounds in Lemmas 1 and 2
together, we arrive at

(log T) (log‘SHAlT)
Y21 = )'T (

Al <30 1+ max 4, ||oo>

(40)

for all t>_ IOgT with probability exceeding 1 — 206,

which forms the crux of our analysis. Employing ele-
mentary analysis tailored to the preceding recursive
relation, one can demonstrate that

A7l <O J (10g'T) (log's”f‘”) (og'T) (10g|sHA|T)

(41)

with probability at least 1 — 26, which, in turn, allows
us to establish the advertised result under the assumed

sample size condition. The details are deferred to
Online Appendix EC.2.4.

4.3. Proof Outline for Theorem 3

4.3.1. Construction of a Hard Instance with Four States
and Two Actions. Let us construct an MDP Mz
with state space S ={0,1,2,3} (see a pictorial illustra-
tion in Figure 1). We denote by A the action space
associated with state s. The probability transition ker-
nel and reward function of Mparq are specified as fol-
lows:

Ao ={1}, P(0]0,1)=1, r(0,1) =0,
(42a)
A1 ={1,2}, P(111,1)=p, P(O|L,1)=1-p, r(1,1)=1,
(42b)
P(111,2)=p, PO|L,2)=1-p, r(1,2)=1,
(42¢)
A, ={1}, P2]2,1)=p, P(0|2,1)=1-p, r(2,1)=1,
(42d)
A;={1}, P@3|3,1)=1, r(3,1)=1,
(42e)

where the parameter p is taken to be

4y -1

- Vsy . (43)

Before moving forward to analyze the behavior of
Q-learning, we first characterize the optimal value
function and Q-function of this MDP; the proof is
postponed to Online Section EC.4.4.
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Figure 1. (Color online) The Constructed Hard MDP Instance Used in the Analysis of Theorem 3, Where p =

fications are Described in (42)

4y-1
3y

and the Speci-

Lemma 3. Consider the MDP Mparg constructed in (42).
One has

V*(0) = Q0,1) = ; (44a)
V(1) = Q11,1 = Q(1,2) = V*(2) = Q*(2,1)
1 3
C1-yp 4(1-y) (440)
V'3 =Q3 )= (440)

1—y°

Recognizing the elementary decomposition
E(V(s) - VT(S))Z} = (E[V*(s) — Vr(s)]) + Var(Vr(s))

(45)
for any state s, our proof consists of lower bounding
either the squared bias term (E[V*(s) — Vr(s)])? or the
variance term Var(Vr(s)). In short, we primarily ana-
lyze the dynamics w.r.t. state 2 to handle the case
when the learning rates are either too small or too
large and analyze the dynamics w.r.t. state 1 to cope
with the case with medium learning rates (with state 3
serving as a helper state to simplify the analysis). The
latter case—corresponding to the learning rates adopted
in establishing the upper bounds—is the most challeng-
ing: critically, from state 1, the agent can take one of two
identical actions, whose value tends to be estimated
with a high positive bias because of maximizing over
the empirical state-action values, highlighting the well-
recognized “overestimation” issue of Q-learning in prac-

tice (Hasselt 2010). The complete proof is deferred to
Online Appendix EC.4.

4.3.2. Extension: Lower Bounds for Larger |S| and
|A|. For pedagogical reasons, the hard instance (42)
constructed contains no more than four states and two
actions (as the focus has been to unveil suboptimal
dependency on the effective horizon). As it turns out,
one can straightforwardly extend it to cover larger
state and action spaces with a more general hard
instance constructed as follows.

e We begin by generating the following sub-MDP,
denoted by Mgy, which comprises four states {1,2,3,4}
and no more than |A| > 2 actions:

-AO = {1}1 P(0|O/ 1) = 1/ T'(O, 1) = Or (468)
Al = {1/ . /|A|}I P(1|1,ﬂ) =p, P(0|1,ﬂ) =1 —p,
r(l,a)=1, Vae A,

(46b)

A ={1}, P(22,1)=p, P(02,1)=1-p,
r2,1)=1, (46¢)
A ={1}, P3B,1)=1, r(3,1)=1, (46d)

where p is still set according to (43).

e The full MDP My is then constructed by generat-
ing |S|/4 independent copies of Mgyp.

As can be easily verified (which we omit here for
the sake of brevity), our analysis developed for the
smaller MDP (42) is directly applicable to studying
the more general My, revealing that the lower bound
(55) w.r.t. the iteration number T remains valid. Rec-
ognizing that the total sample size scales as |S||A|T,

we establish a general sample complexity lower
ISILA]
(1-y)'e?
e-accuracy.

bound for synchronous Q-learning to yield

5. Extension: Sample Complexity of

Asynchronous Q-Learning
Moving beyond the synchronous setting, another sce-
nario of practical importance is the case in which the
acquired samples take the form of a single Markovian
trajectory (Tsitsiklis 1994). In this section, we extend
our analysis framework for synchronous Q-learning
to accommodate Markovian non-i.i.d. samples.

5.1. Markovian Samples and Asynchronous
Q-Learning

5.1.1. Markovian Sample Trajectory. Suppose that we

obtain a Markovian sample trajectory {(s;,a;,7:)},-, which

is generated by the MDP of interest when a stationary
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behavior policy mp is employed; in other words,

~1p(-lsy), 1 =7r(ss,a;), Si1~P(lsy,ap), £=0. (47)

When 1y, is stationary, the trajectory {(s, a;)},-, can be
viewed as a sample path of a time-homogeneous Mar-
kov chain; in what follows, we denote by . the sta-
tionary distribution of this Markov chain. Note that
the behavior policy mp can often be quite different
from the target optimal policy 7*.

5.1.2. Asynchronous Q-Learning. In the presence of a
single Markovian sample trajectory, the Q-learning algo-
rithm implements the following iterative update rule:

Qi(st-1,a-1) = (1 — m)Qt—l(St—lzat—l)
+n{ﬂa1ﬂto+y%thﬂ%dﬁ,

(48a)
= Qs 1(s,a)for all (s,a) # (s;_1,a:-1)
(48b)

for all t > 1, where 0 < 1, <1 stands for the learning rate
at time f. It is often referred to as asynchronous Q-
learning as only a single state-action pair is updated in
each iteration (in contrast, synchronous Q-learning up-
dates all state—action pairs simultaneously in each itera-
tion). This also leads to the following estimate for the
value function at time #:

Vi(s) 1= maxQi(s, a)

Qt(sl a)

forallseS. (49)

As can be expected, the presence of Markovian non—i.i.d.
data considerably complicates the analysis for asynchro-
nous Q-learning.

5.1.3. Assumptions. In order to ensure sufficient cover-
age of the sample trajectory over the state/action space,
we make the following assumption throughout this sec-
tion, which is also commonly imposed in prior literature.

Assumption 1. The Markov chain induced by the behavior
policy uy, is uniformly ergodic.”

In addition, there are two crucial quantities con-
cerning the sample trajectory that dictate the perfor-
mance of asynchronous Q-learning. The first one is
the minimum state-action occupancy probability of
the sample trajectory, defined formally as

Huin *= (s, a)eSxA Hr, (S El) (50)
This metric captures the information bottleneck incurred
by the least visited state-action pair. The second key
quantity is the mixing time associated with the sample
trajectory, denoted by

max dTV<P(|s a), by, ) < 31} (51)

tmix := min{t
(s,a)eSxA

Here, drv(u,v) := 3> vlu(x) — v(x)| indicates the total
variation distance between two measures uy and v
over X (Tsybakov and Zaiats 2009), whereas P'(:s,a)
stands for the distribution of (s;, 4;) when the sample
trajectory is initialized at (so,a0) = (s,a). In words, the
mixing time reflects the time required for the Markov
chain to become nearly independent of the initial
states. See Li et al. (2022b, section 2) for a more
detailed account of these quantities and assumptions.

5.2. Sample Complexity of Asynchronous Q-Learning
Whereas a number of previous works are dedicated to
understanding the performance of asynchronous Q-
learning, its sample complexity bound remains loose
when it comes to the dependency on the effective
the analysis framework

laid out in this paper allows us to tighten the depen-
1

Theorem 4. Consider any 6 € (0,1), e € (0,1], and y €[1/
2,1). Suppose that, for any 0 < t < T, the learning rates sat-
isfy
c1log’T
) Ty,
for some universal constants 0 <cy <1. Assume that the
total number of iterations T obeys

) log2SIAT 3 ,
; 8 max 710‘% E , fmix (52b)
Hmin (1- V) 21—y

for some sufficiently large universal constant c > 0. If the
initialization obeys 0 < Qo(s,a) < ﬁ for all (s,a) e SX A,
then asynchronous Q-learning (cf. (48)) satisfies

max |Qr(s,a) - Q"(s,a)| < ¢

(s,a)eSxA

(52a)

with probability at least 1 — 0.

Remark 9. Similar to Remarks 1 and 5, one can imme-
diately translate this high-probability result into the
following mean estimation error bound:

E|max|Qr(s,a) — Q*(s,a)l} <e1-9)+ 61 ! < 2e,
s,a _

(53)
2log? L 3 v
o max{ 5 o)
for some large enough constant c; > 0.
This theorem demonstrates that, with high proba-
bility, the total sample size needed for asynchronous
Q-learning to yield entry-wise ¢ accuracy is

~ 1 Fmix
© (Hmin(l - 7/)452 Hanin(1 = 7/)>, 4

which holds as long as T >
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provided that the learning rates are taken to be some
proper constant (see (52a)). The first term in (54) resem-
bles our sample complexity characterization of synchro-
nous Q-learning (cf. (19)) except that we replace the
number |SJ|A| of state-action pairs in (19) with 1/p_,. in
order to account for nonuniformity across state-action
pairs. The second term in (54) is nearly independent of
the target accuracy (except for some logarithmic scaling)
and can be viewed as the burn-in time taken for asyn-
chronous Q-learning to mimic synchronous Q-learning
despite Markovian data.

We now pause to compare Theorem 4 with prior non-
asymptotic theory for asynchronous Q-learning. As far
as we know, all existing sample complexity bounds
(Even-Dar and Mansour 2003, Beck and Srikant 2012,
Qu and Wierman 2020 Chen et al. 2021, Li et al. 2022b)

scale at least as a ))5 in terms of the dependency on the

effective horizon with Theorem 4 being the first result to
sharpen this dependency oG5 7. In particular, our sam-

ple complexity bound strengthens the state-of-the-art
result Li et al. (2022b) by a factor up to - and improves

upon Qu and Wierman (2020) by a factor of at least

ISIIA] {t }3
T—y mix s a- V) 2

Before concluding this section, we note that for a

large enough sample size, the first term W in

(54) is essentially unimprovable (up to logarithmic
factor). To make precise this statement, we develop a
matching algorithm-dependent lower bound as fol-
lows, which parallels Theorem 3 previously devel-

oped for the synchronous case.

Theorem 5. Consider any 0.95 <y < 1. Suppose that i, <

1 c3 log T
ofT and 4n o7 for some sufficiently large constant

c3 > 0. Assume that the initialization is Qo = 0 and the learn-
ing rates are taken to be 1, = 1 for all t > 0. Then, there exists
a y-discounted MDP with |S| = 4 and |A| = 3 and a behavior
policy such that (i) the minimum state—action occupancy prob-
ability of the sample trajectory is given by .. and (ii) the
asynchronous Q-learning update rule (48)—for any n € (0,
1)—obeys

maxE[|Qr(s,a) — Q(s,a)’] 2

Cib
Hein(1 =)' Tlog’T
(55)

where ¢, > 0 is some universal constant.

In words, Theorem 5 asserts that, for large enough
sample size T, in general, one cannot hope to achieve

_ - i O(— 1

{-based e-accuracy using fewer than O<#min ( 17”482)
samples, thus confirming the sharpness of our upper
bound. The proof of this theorem can be found in

Online Appendix EC.6.

6. Concluding Remarks
In this paper, we settle the sample complexity of syn-
chronous Q-learning in y-discounted infinite-horizon

MDPs, which is shown to be on the order of O ( (1JS|; )

yre
when |A| =1 and O( ‘S”“‘}ll 2) when |A| > 2. A matching

lower bound is developed when |A| > 2 through study-
ing the dynamics of Q-learning on a hard MDP ins-
tance, which unveils the negative impact of an inevitable
overestimation issue. Our theory is further extended to
accommodate asynchronous Q-learning, resulting in
tight dependency of the sample complexity on the
effective horizon. The analysis framework developed
herein—which exploits novel error decompositions and
variance control that differ substantially from prior
approaches—might suggest a plausible path toward
sharpening the sample complexity of as well as under-
standing the algorithmic bottlenecks for other model-
free algorithms (e.g., double Q-learning; Hasselt 2010).
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Endnotes

" There is no need to maintain additional Q-estimates as the
Q-function and value function coincide when |A| =

2Gee Paulin (2015, section 1.2) for the definition of uniform
ergodicity.
3 The sample complexity of Li et al. (2022b) scales as O (m+

%), whereas the sample complexity of Qu and Wierman

(2020) scales as O (W) It is worth noting that 1/, > |SI|.A|l

and is, therefore, a large factor.
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