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Abstract. This paper is concerned with the sample efficiency of reinforcement learning, 
assuming access to a generative model (or simulator). We first consider γ-discounted 
infinite-horizon Markov decision processes (MDPs) with state space S and action space A. 
Despite a number of prior works tackling this problem, a complete picture of the trade-offs 
between sample complexity and statistical accuracy has yet to be determined. In particular, 
all prior results suffer from a severe sample size barrier in the sense that their claimed sta-

tistical guarantees hold only when the sample size exceeds at least |S‖A |
(1�γ)2. The current paper 

overcomes this barrier by certifying the minimax optimality of two algorithms—a perturbed 
model-based algorithm and a conservative model-based algorithm—as soon as the sample 

size exceeds the order of |S‖A |
1�γ�(modulo some log factor). Moving beyond infinite-horizon 

MDPs, we further study time-inhomogeneous finite-horizon MDPs and prove that a plain 
model-based planning algorithm suffices to achieve minimax-optimal sample complexity 
given any target accuracy level. To the best of our knowledge, this work delivers the first 
minimax-optimal guarantees that accommodate the entire range of sample sizes (beyond 
which finding a meaningful policy is information theoretically infeasible).
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1. Introduction
Reinforcement learning (RL) (Szepesvári 2010, Sutton 
and Barto 2018), which is frequently modeled as learn-
ing and decision making in a Markov decision process 
(MDP), has garnered growing interest in recent years 
because of its remarkable success in practice. A core 
objective of RL is to search for a policy—based on a col-
lection of noisy data samples—that approximately maxi-
mizes expected cumulative rewards in an MDP without 

direct access to a precise description of the underlying 
model.1 In contemporary applications, it is increasingly 
more common to encounter environments with prohib-
itively large state and action space, thus exacerbating 
the challenge of collecting enough samples to learn the 
model. To enable faithful policy learning in the sample- 
starved regime (i.e., the regime where the model com-
plexity overwhelms the sample size), it is crucial to 
obtain a quantitative picture of the fundamental trade-off 
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between sample complexity and statistical accuracy and 
to design efficient algorithms that provably achieve the 
optimal trade-off.

Broadly speaking, there are at least two common algo-
rithmic approaches: a model-based approach and a 
model-free one. The model-based approach decouples 
model estimation and policy learning tasks; more speci-
fically, one first estimates the unknown model using the 
data samples in hand and then, leverages the fitted 
model to perform planning—a task that can be accom-
plished by resorting to Bellman’s principle of optimality 
(Bellman 1952). A notable advantage of model-based 
algorithms is their flexibility; the learned model can be 
adapted to perform new ad hoc tasks without revisiting 
the data samples. In comparison, the model-free ap-
proach attempts to compute the optimal policy (and the 
optimal value function) without learning the model 
explicitly, which lends itself well to scenarios when a 
model is difficult to estimate or changes on the fly. Char-
acterizing the sample efficiency of both approaches has 
been the focal point of a large body of recent works (e.g., 
Kearns and Singh 1999; Azar et al. 2013; Jin et al. 2018; 
Sidford et al. 2018a, b; Tu and Recht 2019; Wainwright 
2019a, b; Agarwal et al. 2020; Li et al. 2023).

In this paper, we pursue a comprehensive under-
standing of model-based RL given access to a generative 
model—that is, a simulator that produces samples based 
on the transition kernel of the true MDP for each state- 
action pair (Kearns and Singh 1999, Kakade 2003). To 
allow for more precise discussions, we first look at an 
infinite-horizon discounted MDP with state space S, 
action space A, and discount factor 0 < γ < 1 and pay 
particular attention to the scenarios where the sizes of 
the state/action spaces and the effective horizon 1

1�γ�are 
all quite large. We obtain N samples per state-action pair 
by querying the generative model. For an arbitrary target 
accuracy level ε > 0, a desired model-based planning 
algorithm should return an ε-optimal policy with a min-
imal number of calls to the generative model. Particular 
emphasis is placed on the sublinear sampling scenario, 
in which the total sample size is smaller than the total 
number |S |2 |A | of model parameters (so that it is in 
general infeasible to estimate the model accurately).

1.1. Motivation: Sample Size Barriers
Several prior works were dedicated to investigating 
model-based RL for γ-discounted infinite-horizon MDPs 
with a generative model, which uncovered the minimax 
optimality of this approach for an already wide regime 
(Azar et al. 2013, Agarwal et al. 2020). However, the 
results therein often suffered from a sample complexity 
barrier that prevents us from obtaining a complete trade- 
off curve between sample complexity and statistical 
accuracy. For instance, the state-of-the-art result of Agar-
wal et al. (2020) required the total sample size to at least 

exceed |S‖A |
(1�γ)2 (up to some log factor), thus restricting the 

validity of the theory for broader contexts. In truth, this 
is not merely an issue for model-based planning; the 
same barrier already showed up when analyzing the 
simpler task of model-based policy evaluation (Panan-
jady and Wainwright 2019, Agarwal et al. 2020). Further-
more, an even more severe barrier emerged in prior 
theory for model-free methods; for instance, Sidford et al. 
(2018a) and Wainwright (2019b) required the sample 
size to exceed |S‖A |

(1�γ)3 modulo some log factor. In stark con-
trast, however, no lower bounds developed thus far pre-
clude us from attaining reasonable statistical accuracy 
when going below the aforementioned sample complex-
ity barriers, thus resulting in a gap between upper and 
lower bounds in this sample-starved regime. Notewor-
thily, such a sample size barrier is not only present for 
discounted infinite-horizon MDPs; the situation is simi-
lar for finite-horizon MDPs (Yin et al. 2021).

1.2. Our Contributions
The current paper seeks to achieve optimal sample 
complexity even below the aforementioned sample 
size barrier. For γ-discounted infinite-horizon MDPs, 
we propose two model-based algorithms: (i) perturbed 
model-based planning, which performs planning based 
on an empirical MDP learned from samples with mild 
random reward perturbation, and (ii) conservative model- 
based planning, which computes approximately optimal 
policies for the empirical MDP without reward pertur-
bation. These two proposed algorithms provably find 

an ε-optimal policy with an order of |S‖A |
(1�γ)3ε2 

samples 

(up to log factor), thereby matching the minimax lower 
bound (Azar et al. 2013). Our result accommodates the 

full range of accuracy level ε�
�

namely, ε ∈ 0, 1
1�γ

� i�
, 

thus unveiling the minimaxity of our algorithms as 

soon as the sample size exceeds |S‖A |
1�γ�(modulo some log 

factor). Encouragingly, this covers the full range of sam-
ple sizes that enable one to find a policy strictly better 
than a random guess. See Table 1 for detailed compari-
sons with prior literature. Along the way, we also 
derive minimax-optimal statistical guarantees for pol-
icy evaluation, which strengthen state-of-the-art results 
by broadening the applicable sample size range.

Moving beyond discounted infinite-horizon MDPs, we 
further characterize the sample efficiency of model-based 
planning for time-inhomogeneous finite-horizon MDPs, 
which provably achieves minimax-optimal sample com-
plexity as well for the full range of target accuracy levels 
(Domingues et al. 2021). No reward perturbation or con-
servative action selection is needed for this finite-horizon 
scenario. See Table 2 for detailed comparisons with prior 
literature.
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On the technical side, our theory for infinite-horizon 
MDPs is established upon a novel combination of several 
key ideas: (1) a high-order expansion of the estimation error 
for value functions coupled with fine-grained analysis for 
each term in the expansion; (2) the construction of auxiliary 
leave-one-out type (state-action–absorbing) MDPs— 
motivated by Agarwal et al. (2020)—that help decouple 
the complicated statistical dependency between the 
empirically optimal policy (as opposed to value func-
tions) and data samples; and (3) a tiebreaking argument 
guaranteeing that the empirically optimal policy is suffi-
ciently separated from all other policies under reward 
perturbation. The case with finite-horizon MDPs is also 
established based on certain high-order expansion of 
the value estimation errors, in addition to careful vari-
ance control for the terms in the expansion.

1.3. Key Contributions that Extend the Neural 

Information Processing Systems Version
Partial results of this paper have been presented in 
Advances in Neural Information Processing Systems 33 

(Li et al. 2020). Compared with Li et al. (2020), the cur-
rent paper includes the following key extensions. 

• The current version proposes a new variant of 
the model-based approach (i.e., the conservative model- 
based algorithm) for discounted inifinite-horizon MDPs. 
This new approach achieves minimax optimality without 
the need of reward perturbation, with a more stream-
lined analysis.

• We demonstrate how to overcome the sample size 
barrier in finite-horizon Markov decision processes, 
which was not studied in Li et al. (2020).

• Complete proof details of all theoretical findings 
are included and elucidated in the current paper, and 
they consist of highly sophisticated/delicate schemes. 
These proof ideas were only briefly mentioned in Li 
et al. (2020) (and most details were missing therein).

2. Problem Formulation
The current paper studies both discounted infinite- 
horizon MDPs and finite-horizon MDPs, which will be 

Table 1. Comparisons with Prior Results (up to Log Factors) Regarding Finding an ε-Optimal Policy in a γ-Discounted 
Infinite-Horizon MDP with a Generative Model

Algorithm Sample size range Sample complexity ε�range

Phased Q learning (Kearns and Singh 1999) |S | |A |
(1�γ)5 ,∞
h �

|S | |A |
(1�γ)7ε2

0, 1
1�γ

� i

Empirical QVI (Azar et al. 2013) |S | 2 |A |
(1�γ)2 ,∞

h �
|S | |A |
(1�γ)3ε2

0, 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1�γ) |S |

√
� �

Sublinear randomized value iteration (Sidford et al. 2018a) |S | |A |
(1�γ)2 ,∞
h �

|S | |A |
(1�γ)4ε2

0, 1
1�γ

� i

Variance-reduced QVI (Sidford et al. 2018b) |S | |A |
(1�γ)3 ,∞
h �

|S | |A |
(1�γ)3ε2

(0, 1]

Randomized primal-dual method (Wang 2020) |S | |A |
(1�γ)2 ,∞
h �

|S | |A |
(1�γ)4ε2

0, 1
1�γ

� i

Empirical MDP + planning (Agarwal et al. 2020) |S | |A |
(1�γ)2 ,∞
h �

|S | |A |
(1�γ)3ε2

0, 1ffiffiffiffiffiffiffi
1�γ

√
� �

Perturbed empirical MDP + planning (this paper) |S | |A |
1�γ ,∞

h �
|S | |A |
(1�γ)3ε2

0, 1
1�γ

� i

Empirical MDP + conservative planning (this paper) |S | |A |
1�γ ,∞

h �
|S | |A |
(1�γ)3ε2

0, 1
1�γ

� i

Notes. The sample size range and the ε�range stand for the range of sample size and optimality gap (e.g., ε�accuracy) for the claimed sample complexity 
to hold. Note that the results in Kearns and Singh (1999) and Wang (2020) only hold for a restricted family of MDPs satisfying certain ergodicity 
assumptions. In addition, Azar et al. (2013) (Wainwright 2019b) showed that empirical QVI (variance-reduced Q learning) finds an ε-optimal Q-function 

estimate with sample complexity |S | |A |
(1�γ)3ε2 

(ε ∈ (0, 1]) in a sample size range |S | |A |
(1�γ)3 ,∞
h �

, which did not translate directly to an ε-optimal policy.

Table 2. Comparisons with Prior Results (up to Log Factors) Regarding Finding an ε-Optimal 
Policy in a Time-Inhomogeneous Finite-Horizon MDP with a Generative Model

Algorithm Sample size range Sample complexity ε�range

Sublinear randomized value iteration (Sidford et al. 2018a) [ |S | |A |H3,∞) |S | |A |H5

ε2
(0, H]

Variance-reduced QVI (Sidford et al. 2018b) [ |S | |A |H4,∞) |S | |A |H4

ε2
(0, 1]

Empirical MDP + planning (Yin et al. 2021) [ |S | |A |H3,∞) |S | |A |H4

ε2 (0,
ffiffiffiffi
H

√
]

Empirical MDP + planning (this paper) [ |S | |A |H2,∞) |S | |A |H4

ε2
(0, H]

Notes. The sample size range and the ε�range stand for the range of sample size and optimality gap (e.g., ε�accuracy) 
for the claimed sample complexity to hold. The results in Sidford et al. (2018a, b) were originally stated for the time- 
homogeneous case; we translate them into the time-inhomogeneous case with an additional factor of H. In addition, 

Li et al. (2021c) proved that Q learning finds an ε-optimal Q-function estimate with sample complexity |S | |A |H4

ε2 

(ε ∈ (0, 1]) in a sample size range [ |S | |A |H4,∞), which did not translate directly to an ε-optimal policy.

Li et al.: Breaking the Sample Size Barrier in Model-Based Reinforcement Learning 
Operations Research, 2024, vol. 72, no. 1, pp. 203–221, © 2023 The Author(s) 205 

D
o
w

n
lo

ad
ed

 f
ro

m
 i

n
fo

rm
s.

o
rg

 b
y
 [

7
6
.1

2
5
.2

0
2
.1

5
2
] 

o
n
 2

1
 A

p
ri

l 
2
0
2
4
, 
at

 1
6
:5

6
 .
 F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

, 
al

l 
ri

g
h
ts

 r
es

er
v
ed

. 



introduced separately in the sequel. Here and through-
out, we adopt the standard notation [H] :� {1, : : : , H}.

2.1. Discounted Infinite-Horizon Markov 
Decision Processes

2.1.1. Models and Background. Consider a discounted 
infinite-horizon MDP represented by a quintuple M �
(S,A, P, r,γ), where S :� {1, 2, : : : , |S | } denotes a finite 
set of states, A :� {1, 2, : : : , |A | } is a finite set of actions, 
γ ∈ (0, 1) stands for the discount factor, and r : S × A →
[0, 1] represents the reward function, namely that r(s, a) 
is the immediate reward received upon executing ac-
tion a while in state s (here and throughout, we con-
sider the normalized setting where the rewards lie 
within [0, 1]). In addition, P : S × A → ∆(S) represents 
the probability transition kernel of the MDP, where 
P(s′ |s, a) denotes the probability of transiting from state 
s to state s′ when action a is executed and ∆(S) denotes 
the probability simplex over S.

A deterministic policy (or action selection rule) is a 
mapping π : S → A that maps a state to an action. The 
value function Vπ : S → R of a policy π�is defined by

∀s ∈ S : Vπ(s) :� E
X∞

t�0

γtr(st, at)




s

0 � s

" #
, (1) 

which is the expected discounted total reward starting 
from the initial state s0 � s; here, the sample trajectory 
{(st

, at)}t≥0 is generated based on the transition kernel 
(namely, st+1 ~ P(· |st, at)), with the actions taken accord-
ing to policy π�(namely, at � π(st) for all t ≥ 0). It is easily 
seen that 0 ≤ Vπ(s) ≤ 1

1�γ. The corresponding action- 
value function (or Q function) Qπ : S × A → R of a pol-
icy π�is defined by

∀(s, a) ∈ S × A :

Qπ(s, a) :� E
X∞

t�0

γtr(st, at)





s

0 � s, a0 � a

" #
, (2) 

where the actions are taken according to the policy π�
after the initial action (i.e., at � π(st) for all t ≥ 1). It is 
well known that there exists an optimal policy, denoted 
by π?, that simultaneously maximizes Vπ(s) (Qπ(s, a)) 
for all states s ∈ S (state-action pairs (s, a) ∈ (S × A)) (Sut-
ton and Barto 2018). The corresponding value function 
V? :� Vπ

?
(action-value function Q? :� Qπ

?
) is called the 

optimal value function (optimal action-value function).

2.1.2. A Generative Model and an Empirical MDP. The 
current paper focuses on a stylized generative model 
(also called a simulator) as studied in Kearns et al. 
(2002) and Kakade (2003). Assuming access to this gen-
erative model, we collect N independent samples

si
s,a ~

i:i:d:
P(· |s, a), i � 1, : : : , N 

for each state-action pair (s, a) ∈ S × A, which allows us 
to construct an empirical transition kernel bP as follows:

∀s′ ∈ S, bP(s′ |s, a) � 1

N

XN

i�1

1{si
s,a � s′}, (3) 

where 1{·} is the indicator function. In words, bP(s′ |s, a)
counts the empirical frequency of transitions from (s, a) 
to state s′. The total sample size should, therefore, be 
understood as Ntotal :� N |S‖A | . This leads to an empiri-
cal MDP cM � (S,A, bP, r,γ) constructed from the data 
samples. We can define the value function and the 
action-value function of a policy π�for cM analogously, 

which we shall denote by bVπ�and bQπ, respectively. The 

optimal policy of cM is denoted by bπ?, with the optimal 

value function and Q function denoted by bV? :� bV π̂
?

and bQ?
:� bQπ̂

?

, respectively.

2.1.3. Learning the Optimal Policy via Model-Based 

Planning. Given a few data samples in hand, the task of 
policy learning seeks to identify a policy that (approxi-
mately) maximizes the expected discounted reward 
given the data samples. Specifically, for any target level 
ε > 0, the aim is to compute an ε-accurate policy πest 

obeying

∀(s, a) ∈ S × A :

Vπest(s) ≥ V?(s)� ε, Qπest(s, a) ≥ Q?(s, a)� ε: (4) 

Naturally, one would hope to accomplish these tasks 
with as few samples as possible. Recall that for the nor-
malized reward setting with 0 ≤ r ≤ 1, the value func-

tion and Q function fall within the range 0, 1
1�γ

h i
; this 

means that the range of the target accuracy level ε�

should be set to ε ∈ 0, 1
1�γ

h i
. The model-based approach 

typically starts by constructing an empirical MDP cM 

based on all collected samples and then, “plugs in” this 
empirical model directly into the Bellman recursion to 
perform policy evaluation or planning, with prominent 
examples including Q-value iteration (QVI) and policy 
iteration (PI) (Bertsekas 2017).

2.1.4. Aside: Policy Evaluation. A related task is policy 
evaluation, which aims to compute or approximate the 
value function Vπ�under a given policy π. To be precise, 
for any target level ε > 0, the goal is to find an ε-accurate 
estimate Vπ

est 
such that

∀s ∈ S : |Vπ
est
(s)�Vπ(s) | ≤ ε: (5) 

2.2. Finite-Horizon Markov Decision Processes
2.2.1. Models and Background. Another type of model 
considered in this paper is a finite-horizon MDP, which 
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can be represented and denoted by M � (S,A, {Ph}H
h�1, 

{rh}H
h�1, H). Here, S and A denote, respectively, the state 

space and the action space as before, and H represents 
the horizon length of the MDP. For any 1 ≤ h ≤ H, we 
let Ph : S × A → ∆(S) denote the probability transition 
kernel at step h. That is, Ph(s′ |s, a) is the probability of 
transiting to s′ from (s, a) at step h; rh : S × A → [0, 1]
indicates the reward function at step h, namely that 
rh(s, a) is the immediate reward gained at step h in 
response to (s, a). As before, we assume normalized 
rewards throughout the paper, so that all the rh(s, a)’s 
reside within the interval [0, 1].

Let π � {πh}1≤h≤H represent a deterministic policy, 
such that for any 1 ≤ h ≤ H and any s ∈ S, πh(s) specifies 
the action selected at step h in state s. Note that π�could 
be nonstationary, meaning that the πh’s might be differ-
ent across different time steps h. The value function and 
the Q function associated with policy π�are defined, 
respectively, by

Vπh (s) :� E
XH

k�h

rk(sk, ak)





sh � s

" #

for all s ∈ S and all 1 ≤ h ≤ H and

Qπh (s, a) :� E
XH

k�h

rk(sk, ak)





sh � s, ah � a

" #

for all (s, a) ∈ S × A and all 1 ≤ h ≤ H. As usual, the 
expectations are taken over the randomness of the 
MDP trajectory {(sk , ak)}1≤k≤H induced by the transition 
kernel {Ph}H

h�1 when policy π�is adopted. With slight 
abuse of notation, we let QπH+1(s, a) � 0 for every (s, a) ∈
S × A and VπH+1(s) � 0 for every s ∈ S: In view of the 
assumed range of the immediate rewards, it is easily 
seen that

0 ≤ Vπh (s) ≤ H and 0 ≤ Qπh (s, a) ≤ H 

for any π, any state-action pair (s, a), and any step h. Akin 
to the infinite-horizon counterpart, the optimal value 
functions {V?

h}1≤h≤H and optimal Q functions {Q?
h}1≤h≤H 

are defined, respectively, by

V?
h(s) :� max

π
Vπh (s) and Q?

h(s, a) :� max
π

Qπh (s, a)

for any state-action pair (s, a) ∈ S × A and any 1 ≤ h ≤ H. 
It is well known that there exists at least one policy that 
allows one to simultaneously achieve the optimal value 
function and optimal Q functions for all state-action 
pairs and all time steps. Throughout this paper, we shall 
denote by π? � {π?h}1≤h≤H an optimal policy.

2.2.2. A Generative Model and an Empirical MDP. Similar 
to the infinite-horizon setting, we assume access to a 
generative model, which is able to generate N indepen-
dent samples for each triple (s, a, h) ∈ S × A × [H] as 

follows:

si
h(s, a) ~

i:i:d:
Ph(· |s, a), i � 1, : : : , N:

The empirical transition kernel {bPh}H
h�1 is thus given by

∀s′ ∈ S, bPh(s′ |s, a) � 1

N

XN

i�1

1 si
h(s, a) � s′

	 

, (6) 

which records the empirical frequency of transitions 
from (s, a) to state s′ at step h. This gives rise to a total 

sample size Ntotal :� NH |S‖A | . We shall let cM � (S,A, 

{bPh}H
h�1, {rh}H

h�1, H) represent the empirical MDP con-
structed from the data samples. The value function and 

the Q function of a policy π�for cM can be defined analo-

gously, which shall be denoted by {bVπh }
H
h�1 and {bQπh }

H
h�1, 

respectively. We denote by bπ? the optimal policy of cM, 
and the resulting optimal value function and Q function 

are denoted by bV?
h :� bVbπ

?

h and bQ?
h :� bQbπ

?

h , respectively.

2.2.3. Learning the Optimal Policy via Model-Based 

Planning. Given the data samples in hand, the task of 
policy learning in the finite-horizon case can be defined 
similarly as the infinite-horizon counterpart. Specifi-
cally, for any target level ε > 0, the aim of policy learn-
ing is to compute an ε-accurate policy πest obeying

∀(s, a, h) ∈ S × A × [H] :

Vπest

h (s) ≥ V?
h(s)� ε, Qπest

h (s, a) ≥ Q?
h(s, a)� ε: (7) 

With the normalized range of the reward function, it 
is easily seen that the value function and the Q func-
tion reside within the interval [0, H], thus implying 
that the range of the target accuracy level should be 
ε ∈ [0, H].

2.3. Notation
Let X :� (|S | , |A | , 1

1�γ , 1
ε). The notation f (X ) � O(g(X ))

means there exists a universal constant C1 > 0 such that 
f ≤ C1g, whereas the notation f (X ) �Ω(g(X )) means 
g(X ) � O(f (X )). In addition, the notation Õ(·) (Ω̃(·)) is 
defined in the same way as O(·) (Ω(·)) except that it 
ignores all logarithmic factors in |S | , |A | , 1

1�γ, and 1ε.

For any vector a � [ai]1≤i≤n ∈ Rn, we overload the 

notation 
ffiffi·√ and | · | in an entry-wise manner such that ffiffiffi

a
√

:� [ ffiffiffiffiai
√ ]1≤i≤n and |a | :� [|ai | ]1≤i≤n. For any vectors 

a � [ai]1≤i≤n and b � [bi]1≤i≤n, the notation a ≥ b (a ≤ b) 
means ai ≥ bi (ai ≤ bi) for all 1 ≤ i ≤ n, and we let a ◦ b :�
[aibi]1≤i≤n represent the Hadamard product. Addition-
ally, we denote by 1 the all-one vector and by I the iden-
tity matrix. For any matrix A, we define the norm 
‖A‖1 :� maxi

P
j |Ai,j | .
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3. Model-Based Planning in Discounted 
Infinite-Horizon MDPs

As summarized in Table 1, the theory of all prior works 
required the sample size per state-action pair to at least 

exceed N ≥Ω 1
(1�γ)2
� �

. In order to break this sample size 

barrier, we develop two model-based algorithms that 
provably overcome such a sample size barrier.

3.1. Model-Based Reinforcement Learning: 

Two Algorithms

Algorithm 1 (Perturbed Model-Based Planning)
The first algorithm applies model-based planning to 

an empirical MDP with randomly perturbed rewards. Spe-
cifically, for each state-action pair (s, a) ∈ S × A, we ran-
domly perturb the immediate reward by

rp(s, a) � r(s, a) + ζ(s, a), ζ(s, a) ~
i:i:d:

Unif(0,ξ), (8) 

where Unif(0,ξ) denotes the uniform distribution be-
tween zero and some parameter ξ > 0 (to be specified 
momentarily).2 For any policy π, we denote by bVπp the 
corresponding value function of the perturbed empirical 
MDP cMp � (S,A, bP, rp,γ) with the probability transi-
tion kernel bP (cf. (3)) and the perturbed reward function 
rp. Let bπ?

p represent the optimal policy of cMp: that is,

bπ?
p :� arg max

π
bVπp : (9) 

Algorithm 2 (Conservative Model-Based Planning)
An alternative approach that eliminates the need of 

reward perturbation is to select approximately optimal 
actions for the empirical MDP instead of the absolute 
optimal actions. To be precise, denote by bQ? (bV?) the 
optimal action-value (value) function of the empirical 
MDP cM � (S,A, bP, r,γ) with the probability transition 
kernel bP (cf. (3)) and the original reward function r. By 
producing a random draw from ς ~ Unif(0,ξ) (with ξ�
specified shortly), we can generate the following pol-
icy bπc:

∀s ∈ S : bπc(s) :� min{a ∈ A : bQ?(s, a) > bV?(s)� ς}:
(10) 

Note that there is an index assigned to each action as 
A � {1, : : : , |A | }, which induces a natural order for all 
actions. In words, this approach is more conservative 
and does not stick to the optimal actions with respect 
to (w.r.t.) the empirical MDP; instead, the policy bπc 

picks out—for each state s ∈ S—the smallest indexed 
action that is within a gap of § from optimal.

Remark 1. The perturbed model-based approach seems 
more natural than the conservative model-based app-
roach in terms of the algorithm design, and we recom-
mend it in practice. Note, however, that the conservative 

model-based approach admits simpler and cleaner anal-
yses, which might shed light on the algorithm design 
and analysis for other settings as well.

3.2. Theoretical Guarantees
Indeed, both the approaches result in a value function 
(Q function) that well approximates the true optimal 
value function V? (optimal Q function Q?). We start by 
presenting our results for the perturbed model-based 
approach.

Theorem 1 (Perturbed Model-Based Planning). There 
exist some universal constants c0, c1 > 0 such that for any 
δ > 0 and any 0 < ε ≤ 1

1�γ, the policy bπ?
p defined in (9) 

obeys

∀(s, a) ∈ S × A,

Vbπ?
p (s) ≥ V?(s)� ε and Qbπ?

p(s, a) ≥ Q?(s, a)� γε,
(11) 

with probability at least 1� δ, provided that the perturbation 
size is ξ � c1(1�γ)ε

|S | 5 |A | 5 and that the sample size per state-action 
pair exceeds

N ≥
c0 log |S‖A |

(1�γ)εδ

� �

(1� γ)3ε2
: (12) 

In addition, both the empirical QVI and PI algorithms 
w.r.t. cMp (cf. Azar et al. 2013, algorithms 1 and 2) are 

able to recover bπ?
p perfectly within O 1

1�γ log |S‖A |
(1�γ)εδ

� �� �

iterations.

Remark 2. Theorem 1 holds unchanged if ξ�is taken to 
be c1(1�γ)ε

|S | α |A | α�for any fixed constant α ≥ 1. This paper 
picks the specific choice α�5 merely to convey that a 
very small degree of perturbation suffices for our 
purpose.

Remark 3. Perturbation brings a side benefit; one can 
recover the optimal policy bπ?

p of the perturbed empiri-

cal MDP cMp exactly in a small number of iterations 

without incurring further optimization errors. To give a 
flavor of the overall computational complexity, let us 
take QVI for example (Azar et al. 2013). Recall that each 
iteration of QVI takes time proportional to the time 

taken to read bP (which is a matrix with at most N |S‖A |
nonzeros); hence, the resulting computational complex-

ity can be as low as O |S‖A |
(1�γ)4ε2

log2 |S‖A |
(1�γ)εδ

� �� �
.

Further, similar performance guarantees can be estab-
lished for the conservative model-based approach with-
out reward perturbation, as stated.

Theorem 2 (Conservative Model-Based Planning). Under 
the same assumptions of Theorem 1 (including both the 
sample size and the choice of ξ), the policy bπc defined in 
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(10) achieves

∀(s, a) ∈ S × A,

Vbπc(s) ≥ V?(s)� ε and Qbπc(s, a) ≥ Q?(s, a)� γε,
(13) 

with probability at least 1� δ.

In a nutshell, the theorems demonstrate that both 
model-based algorithms we introduce succeed in find-
ing an ε-optimal policy as soon as the total sample com-
plexity exceeds the order of |S‖A |

(1�γ)3ε2 
(modulo some log 

factor). It is worth emphasizing that compared with 
prior literature, our result imposes no restriction on the 
range of ε, and in particular, we allow the accuracy 
level ε�to go all the way up to 1

1�γ. Our result is particu-
larly useful in the regime with small to moderate sam-
ple sizes because its validity is guaranteed as long as

N ≥ Ω̃
1

1� γ

� �
: (14) 

Tackling the sample-limited regime 
�

in particular, the 

scenario when N ∈ 1
1�γ , 1

(1�γ)2
h i�

requires us to develop 

new analysis frameworks beyond prior theory, which 
we shall discuss in detail momentarily.

We remark that the work of Azar et al. (2013) estab-
lished a minimax lower bound of the same order as (12) 
(up to some log factor) in the regime ε � O(1). A closer 
inspection of their analysis, however, reveals that their 

argument and bound hold true as long as ε � O 1
1�γ

� �
. 

This in turn corroborates the minimax optimality of our 
perturbed model-based approach for the full ε�range 
(which is previously unavailable) and demonstrates 
the information-theoretic infeasibility to learn a policy 

strictly better than a random guess if N ≤ Õ 1
1�γ

� �
. Put 

another way, Condition (14) contains the full range of 
“meaningful” sample sizes.

Finally, we single out an intermediate result in the 
analysis of our theorems concerning model-based policy 
evaluation, which might be of interest on its own. Specifi-
cally, for any fixed policy π�independent of the data, this 
task concerns value function estimation via the plug-in 
estimate bVπ�(i.e., the value function of the empirical M 

under this policy). However simple as this might seem, 
existing theoretical underpinnings of this approach re-
main suboptimal unless the sample size is already suffi-
ciently large. Our result is the following, which does not 
require enforcing reward perturbation.

Theorem 3 (Model-Based Policy Evaluation). Fix any pol-
icy π. There exists some universal constant c0 > 0 such that 
for any 0 < δ < 1 and any 0 < ε ≤ 1

1�γ, one has

∀s ∈ S : | bVπ(s)�Vπ(s) | ≤ ε, (15) 

with probability at least 1� δ, provided that the sample size 
per state-action pair exceeds

N ≥ c0

log
|S | log e

1�γ

δ

� �

(1� γ)3ε2
: (16) 

In words, this theorem reveals that bVπ�begins to outper-

form a random guess as soon as N ≥ Ω̃ 1
1�γ

� �
. The sam-

ple complexity bound (16) enjoys full coverage of the ε�

range 0, 1
1�γ

� i
and matches the minimax lower bound 

derived in Pananjady and Wainwright (2019, theorem 

2(b)) up to only a log log 1
1�γ�factor. In addition, a recent 

line of work investigated instance-dependent guaran-
tees for policy evaluation (Pananjady and Wainwright 
2019, Khamaru et al. 2020). Although this is not our 
focus, our analysis does uncover an instance-dependent 
bound with a broadened sample size range. See Lemma 
1 and the discussion thereafter.

3.3. Comparisons with Prior Works and 

Implications
In order to discuss the novelty of our results in context, 
we take a moment to compare them with prior theory. 
See Table 1 for a more complete list of comparisons.

3.3.1. Prior Bounds for Planning and Policy Learn-

ing. None of the prior results with a generative model 
(including both model-based and model-free approaches) 
were capable of efficiently finding the desired policy while 
accommodating the full sample size range (14). For in-
stance, the state-of-the-art analysis for the model-based 
approach in Agarwal et al. (2020) required the sample size 
to at least exceed

N ≥ Ω̃
1

(1 � γ)2

 !
, (17) 

whereas the theory for the variance-reduced model- 
free approach in Sidford et al. (2018b) and Wainwright 
(2019b) imposed the sample size requirement

N ≥ Ω̃
1

(1 � γ)3

 !
: (18) 

In fact, it was previously unknown what is achievable 

in the sample size range N ∈ 1
1�γ , 1

(1�γ)2
h i

. In contrast, 

our results confirm the minimax-optimal statistical per-
formance of the model-based approach with full cover-
age of the ε�range and the sample size range.

Remark 4. We briefly point out why the sample size bar-
rier (17) appeared in the analysis of Agarwal et al. (2020). 
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Take Agarwal et al. (2020, section 4.3) for example; the 

contraction factor γ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 log( |S‖A |=(1�γ)δ)

N

q
1

1�γ�therein needs 

to be smaller than one, thereby requiring N ≥ Ω̃((1 

�γ)�2).

3.3.2. Prior Bounds for Policy Evaluation. Regarding 
value function estimation for any fixed policy π, the prior 
results in Azar et al. (2013), Pananjady and Wainwright 
(2019), and Agarwal et al. (2020) for the plug-in approach 

all operated under the assumption that N ≥ Ω̃ 1
(1�γ)2
� �

, 

which is more stringent than our result by a factor of at 
least 1

1�γ. In addition, our sample complexity matches the 

state-of-the-art guarantees in the regime where ε ≤ 1ffiffiffiffiffiffiffi
1�γ

√

(Pananjady and Wainwright 2019, Agarwal et al. 2020) 

while extending them to the range ε ∈
h

1ffiffiffiffiffiffiffi
1�γ

√ , 1
1�γ

i
un-

covered in these previous papers.

4. Model-Based Planning in 
Finite-Horizon MDPs

Moving beyond discounted infinite-horizon MDPs, 
our theoretical framework is also able to accommodate 
finite-horizon MDPs, which we detail in this section.

4.1. Algorithm: Model-Based Planning
The algorithm considered in this section is model- 
based planning (without reward perturbation). Specifi-
cally, this model-based approach returns a policy bπ? �
{bπ?

h}1≤h≤H by means of the following two steps. 

1. Construct the empirical MDP cM � (S,A, {bPh}1≤h≤H, 
{rh}1≤h≤H, H) based on the data samples in hand (see (6) 

for the computation of the empirical transition kernel bPh).
2. Run a classical dynamic programming algorithm 

(Bertsekas 2017) to find an optimal policy bπ? of the 
empirical MDP cM.

Note that bπ?
h is an optimal policy of cM at step h, com-

puted by the dynamic programming algorithm calcu-
lated backward from h�H. Because bπ?

h is calculated 

solely based on what happens after step h, bπ?
h is inde-

pendent of the empirical transitions {bPj}1≤j<h.

It is noteworthy that, in contrast to the infinite- 
horizon counterpart in Section 3, we do not need to 
enforce random reward perturbation for this finite- 
horizon case.

4.2. Theoretical Guarantees and Implications
The model-based algorithm described turns out to be 
nearly minimax optimal as asserted by the following 
theorem.

Theorem 4 (Model-Based Planning). There exist some 
universal constants c0, c1 > 0 such that for any δ > 0 and 

any 0 < ε ≤ H, the aforementioned policy bπ? returned by 
model-based planning obeys

∀(s, a, h) ∈ S × A × [H] :
Vπ̂

?

h (s) ≥ V?
h(s)� ε and Qπ̂

?

h (s, a) ≥ Q?
h(s, a)� ε,

(19) 

with probability at least 1� δ, provided that the sample size 
for every triple (s, a, h) exceeds

N ≥
c0H3 log H |S‖A |

δ

� �

ε2
: (20) 

Akin to the discounted infinite-horizon scenario, the 
model-based approach manages to achieve ε�accuracy 
as long as the sample size per (s, a, h) exceeds the order 
of

H3

ε2
(up to some log factor):

This result, which is valid for the full ε�range (0, H], is 
reminiscent of the bound (12), except that the effective 

horizon 1
1�γ�needs to be replaced by the horizon length 

H. Given that there are in total |S‖A |H different combi-
nations of (s, a, h), the total sample complexity is on the 

order of Õ |S‖A |H4

ε2

� �
:

The quadruple scaling H4 of this total sample 
complexity—as opposed to the cubic scaling in the dis-
counted infinite-horizon case—is because of time inho-
mogeneity; that is, the Ph’s might be different across h, 
resulting in an additional H factor. Again, our result 
kicks in as soon as the sample size satisfies

N ≥ Ω̃(H), (21) 

improving upon the sample size requirement

N ≥ Ω̃(H2) (22) 

in the state-of-the-art analysis for the model-based 
approach of Yin et al. (2021).

5. Other Related Works
Classical analyses of reinforcement learning algorithms 
have largely focused on asymptotic performance (e.g., 
Jaakkola et al. 1994, Tsitsiklis 1994, Tsitsiklis and Van 
Roy 1997, Szepesvári 1998). Leveraging the tool kit of 
concentration inequalities, a number of recent papers 
have shifted attention toward understanding the perfor-
mance in the nonasymptotic and finite-time settings. A 
highly incomplete list includes Bradtke and Barto (1996), 
Kearns and Singh (1999), Even-Dar and Mansour (2003), 
Strehl et al. (2006), Beck and Srikant (2012), Azar et al. 
(2017), Bhandari et al. (2018), Dalal et al. (2018), Jin et al. 
(2018), Lakshminarayanan and Szepesvari (2018), Shah 
and Xie (2018), Sidford et al. (2018b), Cai et al. (2019), 
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Fan et al. (2019), Gupta et al. (2019), Srikant and Ying 
(2019), Wainwright (2019b), Xu et al. (2019), Chen et al. 
(2020), Kaledin et al. (2020), Khamaru et al. (2020), Mou 
et al. (2020), Qu and Wierman (2020), Xu and Gu (2020), 
Li et al. (2021b, 2022c, 2023), Shi et al. (2022), and Yan 
et al. (2022b), a large fraction of which is concerned with 
model-free algorithms.

The generative model (or simulator) adopted in this 
paper was first proposed in Kearns and Singh (1999) and 
has been invoked in Kearns and Singh (1999), Kearns et al. 
(2002), Kakade (2003), Azar et al. (2012, 2013), Lattimore 
and Hutter (2012), Sidford et al. (2018a, b), Pananjady and 
Wainwright (2019), Wainwright (2019b), Yang and Wang 
(2019), Agarwal et al. (2020), Khamaru et al. (2020), Wang 
(2020), Wang et al. (2021), and Li et al. (2022a), to name 
just a few. In particular, Azar et al. (2013) developed the 

minimax lower bound on the sample complexity N �

Ω
|S‖A | log( |S‖A | )

(1�γ)3ε2

� �
necessary for finding an ε-optimal pol-

icy and showed that, for any ε ∈ (0, 1), a model-based 
approach (e.g., applying QVI or PI to the empirical MDP) 
can estimate the optimal Q function to within an ε�accu-
racy given near-minimal samples. Note, however, that 
directly translating this result to the policy guarantees 

leads to an additional factor of 1
1�γ�in estimation accuracy 

and of 1
(1�γ)2 in sample complexity. In light of this, Azar 

et al. (2013) further showed that a near-optimal sample 
complexity is possible for policy learning if the sample 

size is at least on the order of |S | 2 |A |
(1�γ)2 , which however, is 

no longer sublinear in the model complexity. A recent 
breakthrough in Agarwal et al. (2020) substantially im-
proved the model-based guarantee with the aid of au-
xiliary state-absorbing MDPs, extending the range of 

sample complexity to 
|S‖A | log( |S‖A | )

(1�γ)2 ,∞
h �

. Our analysis is 

motivated in part by Agarwal et al. (2020) but also relies 
on several other novel techniques to complete the picture.

Finally, we remark that the construction of state- 
absorbing MDPs or state-action–absorbing MDPs falls 
under the category of “leave-one-out”–type analysis, 
which is particularly effective in decoupling compli-
cated statistical dependency in various statistical esti-
mation problems; see El Karoui (2018), Chen et al. 
(2019a, b, 2021), Pananjady and Wainwright (2019), 
Agarwal et al. (2020), Ma et al. (2020), and Yan et al. 
(2021). The application of such an analysis framework 
to MDPs should be attributed to Agarwal et al. (2020). 
Other applications to Markov chains include Chen et al. 
(2019a) and Pananjady and Wainwright (2019). More 
recently, several follow-up works have further general-
ized the leave-one-out analysis idea to accommodate 
broader RL settings, including offline RL (Li et al. 
2022b), RL with linear function approximation (Wang 

et al. 2021), Markov games (Cui and Yang 2021, Yan 
et al. 2022a), and so on.

6. Analysis: Infinite-Horizon MDPs
This section presents the key ideas for proving our main 
results following an introduction of some convenient 
matrix notation.

6.1. Matrix Notation and Bellman Equations
It is convenient to present our proof based on some 
matrix notation for MDPs. Denoting by e1, : : : , e |S | ∈
R |S | the standard basis vectors, we can define the 
following. 

• r ∈ R |S‖A | : a vector representing the reward func-
tion r (so that r(s,a) � r(s, a) for all (s, a) ∈ S × A).

• Vπ ∈ R |S | : a vector representing the value function 
Vπ�(so that Vπs � Vπ(s) for all s ∈ S).

• Qπ ∈ R |S‖A | : a vector representing the Q function 
Qπ�(so that Qπ(s,a) � Qπ(s, a) for all (s, a) ∈ S × A).

• V? ∈ R |S | and Q? ∈ R |S‖A | : representing the opti-
mal value function V? and optimal Q function Q?.

• P ∈ R |S‖A | × |S | : a matrix representing the probabil-
ity transition kernel P, where the (s, a)th row of P is a 
probability vector representing P(· |s, a). Denote Ps,a as 
the (s, a)th row of the transition matrix P.

• Pπ ∈ {0, 1} |S | × |S‖A | : a projection matrix associated 
with a given policy π�taking the following form

Pπ �

e⊤π(1) 0⊤ ⋯ 0⊤

0⊤ e⊤π(2) ⋯ 0⊤

⋮ ⋮ ⋱ ⋮

0⊤ 0⊤ ⋯ e⊤π( |S | )

0
BBBBBB@

1
CCCCCCA
: (23) 

• Pπ ∈ R |S‖A | × |S‖A | and Pπ ∈ R |S | × |S | : two square 
probability transition matrices induced by the policy π�
over the state-action pairs and the states, respectively, 
defined by

Pπ :� PPπ and Pπ :� PπP: (24) 

• rπ ∈ R |S | : a reward vector restricted to the actions 
chosen by the policy π, namely rπ(s) � r(s,π(s)) for all 
s ∈ S (or simply, rπ � Pπr).

Armed with the matrix notation, we can write, for 
any policy π, the Bellman consistency equation as

Qπ � r + γPVπ � r + γPπQπ, (25) 

which implies that

Qπ � (I � γPπ)�1
r; (26) 
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Vπ � rπ + γPπVπ and Vπ � (I � γPπ)�1
rπ:

(27) 

For a vector V � [Vi]1≤i≤ |S | ∈ R |S | , we define the vector 
VarP(V) ∈ R |S‖A | whose entries are given by

∀(s, a) ∈ S × A,

[VarP(V)](s,a) :�
X

s′∈S

P(s′ |s, a)V2
s′ �

X

s′∈S

P(s′ |s, a)Vs′

 !2 

(i.e., the variance of V w.r.t. P(· |s, a)). This can be 
expressed using our matrix notation as follows:

VarP(V) � P(V ◦V)� (PV ) ◦ (PV): (28) 

Similarly, for any given policy π, we define

VarPπ(V) � PπVarP(V)
� Pπ(V ◦ V)� (PπV) ◦ (PπV) ∈ R |S | : (29) 

We shall also define bVπ, bQπ, bV ?, bQ?, bP, bPπ, bPπ, VarP̂ 

(V), VarP̂π
(V) w.r.t. the empirical MDP cM in an analo-

gous fashion.

6.2. Analysis: Model-Based Policy Evaluation
We start with the simpler task of policy evaluation, 
which also plays a crucial role in the analysis of plan-
ning. To establish our guarantees in Theorem 3, we aim 
to prove the following result. Here, we recall that the 
true value function under a policy π�and the model- 
based empirical estimate are given, respectively, by

Vπ � (I � γPπ)�1
rπ and bVπ � (I � γbPπ)�1

rπ: (30) 

Lemma 1. Fix any policy π. Consider any 0 < δ < 1, and 

suppose N ≥ 32e2

1�γ log
4 |S | log e

1�γ

� �

δ

� �
. Then, with probability 

at least 1� δ, the vectors defined in (30) obey

‖bVπ�Vπ‖∞ ≤ 4γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 log( 4 |S | log
e

1�γ

� �

δ )
N

vuuuuut
‖(I�γPπ)�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarPπ [Vπ]

p
‖∞ +

2γlog( 4 |S | log
e

1�γ

� �

δ )
(1�γ)N ‖Vπ‖∞

≤ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 log( 4 |S | log
e

1�γ

� �

δ )
N(1�γ)3

vuuuuuut : (31) 

Proof. The key proof idea is to resort to a high-order suc-
cessive expansion of bVπ�Vπ, followed by fine-grained 

analysis of each term up to a certain logarithmic order. 
See Online Appendix EC.2.1. w

Clearly, Theorem 3 is a straightforward consequence 
of Lemma 1. Further, we strengthen the result by provid-
ing an additional instance-dependent bound (see the 
first line of (31) that depends on the true instance 
Pπ, Vπ), which is often tighter than the worst-case bound 
stated in the second line of (31). Our contribution can be 
better understood when compared with Pananjady and 
Wainwright (2019). Assuming that there is no noise in 
the rewards, our instance-dependent guarantee matches 
Pananjady and Wainwright (2019, theorem 1(a)) up to 

some log log 1
1�γ�factor while being capable of covering 

the full sample size range N ≥ Ω̃ 1
1�γ

� �
. In contrast, 

Pananjady and Wainwright (2019, theorem 1) is only 

valid when N ≥ Ω̃ 1
(1�γ)2
� �

.

6.2.1. Proof Ideas. We now briefly and informally de-
scribe the key proof ideas. As a starting point, the elemen-
tary identities (30) allow us to obtain

bVπ � Vπ � (I � γbPπ)�1
rπ � Vπ

� (I � γbPπ)�1(I � γPπ)Vπ � (I � γbPπ)�1

(I � γbPπ)Vπ

� γ(I � γbPπ)�1(bPπ � Pπ)Vπ: (32) 

Because of the complicated dependency between (I�
γbPπ)�1 and (bPπ�Pπ)Vπ, a natural strategy is to con-
trol these two terms separately and then, to combine 
bounds; see Agarwal et al. (2020, lemma 5) for an intro-
duction. This simple approach, however, leads to sub-
optimal statistical guarantees.

In order to refine the statistical analysis, we propose 
to further expand (32) in a similar way to deduce

(32) � γ(I � γPπ)�1(bPπ � Pπ)Vπ + γ{(I � γbPπ)�1

� (I � γPπ)�1}(bPπ � Pπ)Vπ

� γ(I � γPπ)�1(bPπ � Pπ)Vπ + γ2(I � γbPπ)�1

(bPπ � Pπ)(I � γPπ)�1(bPπ � Pπ)Vπ, (33) 

where the last line holds because of the same reason as 
(32) (basically, it can be seen by replacing rπ�with (bPπ�
Pπ)Vπ�in (32)). This can be viewed as a “second-order” 
expansion, with (32) being a “first-order” counterpart. 
The advantage is that the first term in (33) becomes easier 
to cope with than its counterpart (32), owing to the inde-
pendence between (I � γPπ)�1 and (bPπ�Pπ)Vπ. How-
ever, the second term in (33) remains difficult to control 
optimally. To remedy this issue, we shall continue to 
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expand it to higher order (up to some logarithmic 
order), which eventually allows for optimal control of 
the estimation error.

Another crucial issue is that in order to obtain fine- 
grained analyses on each term in the expansion (except for 
the first-order term), a common approach is to combine 
the Bernstein inequality with a classical entry-wise bound 

on a quantity taking the form (I � γPπ)�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarPπ(V)

p

(which dates back to Azar et al. 2013). Such a classical 
bound in prior literature, however, is not sufficiently tight 
for our purpose, which calls for refinement; see Lemma 
EC.2 in the online appendix. Details are deferred to Online 
Appendix EC.2.1.

6.3. Analysis: Perturbed Model-Based Planning
This subsection moves on to establishing our theory for 
model-based planning (cf. Theorem 1) and outlines the 
key ideas. In what follows, we shall start by analyzing 
the unperturbed version, which will elucidate the role 
of reward perturbation in our analysis.

We first make note of the following elementary 
decomposition:

V? � V π̂
? � (bV π̂?

� V π̂
?) + (bVπ? � bV π̂?) + (V? � bVπ?)

≤ (bV π̂?

� V π̂
?) + (Vπ? � bVπ?), (34) 

where the inequality follows from the optimality of bπ?

w.r.t. bV (so that bVπ? ≤ bV π̂?

) and the definition V? � Vπ
?

. 
This leaves us with two terms to control.

Step 1 (Bounding kVp?

2bV p?

k
‘

). Given that π? is inde-
pendent of the data, we can carry out this step using 
Lemma 1. Specifically, taking π � π? in Lemma 1 yields 
that, with probability at least 1� δ,

‖bVπ? �Vπ
?‖∞ ≤ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log

4 |S | log e
1�γ

δ

� �

N(1�γ)3

vuut
: (35) 

Step 2 (Bounding kbV p̂?

2V p̂?

k
‘

). Extending the result in 

Step 1 to ‖bV π̂?

�V π̂
?‖∞ is considerably more challeng-

ing, primarily because of the complicated statistical 

dependency between (V π̂?

, bV π̂?) and the data matrix bP. 
The recent work by Agarwal et al. (2020) developed a 
clever “leave-one-out”–type argument by constructing 
some auxiliary state-absorbing MDPs to decouple the 

statistical dependency when ε < 1=
ffiffiffiffiffiffiffiffiffiffiffi
1� γ

p
. However, 

their argument falls short of accommodating the full 
range of ε. To address this challenge, our analysis con-
sists of the following two steps, both of which require 
new ideas beyond Agarwal et al. (2020). 

• Decoupling statistical dependency between bπ? and 
bP. Instead of attempting to decouple the statistical dep-

endency between bV π̂?

and bP as in Agarwal et al. (2020), 

we focus on decoupling the statistical dependency be-
tween the policy bπ? and bP. If this can be achieved, then 
the proof strategy adopted in Step 1 for a fixed policy 
becomes applicable (see Section 6.3.1). A key ingredient 
of this step lies in the construction of a collection of auxil-
iary state-action–absorbing MDPs (motivated by Agar-

wal et al. 2020), which allows us to get hold of ‖Vbπ?

� bV π̂?‖∞. See Section 6.3.2 for details, with a formal 
bound delivered in Lemma 5.

• Tiebreaking via reward perturbation. A shortcom-
ing of the approach, however, is that it relies crucially 
on the separability of bπ? from other policies; in other 
words, the proof might fail if bπ? is nonunique or not 
sufficiently distinguishable from others. Consequently, 
it remains to ensure that the optimal policy bπ? stands 
out from all the rest for all MDPs of interest. As it turns 
out, this can be guaranteed with high probability by 
slightly perturbing the reward function so as to break 
the ties. See Section 6.3.3 for details.

In the sequel, we shall flesh out these key ideas.

6.3.1. Value Function Estimation for a Policy Obeying 

Bernstein-Type Conditions. Before discussing how to 
decouple statistical dependency, we record a useful 
result that plays an important role in the analysis. 
Specifically, Lemma 1 can be generalized beyond the 
family of fixed policies (namely, those independent 
of bP) as long as a certain Bernstein-type condition— 
to be formalized in (37)—is satisfied. To make it pre-
cise, we need to introduce a set of auxiliary vectors as 
follows:

r(0) :� rπ, V (0) :� (I � γPπ)�1
r(0),

r(l) :�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarPπ[V (l�1)]

q
, V (l) :� (I � γPπ)�1

r(l), l ≥ 1:

(36) 

Our generalization of Lemma 1 is as follows, which does 
not require statistical independence between the policy 
π�and the data bP. Here, we remind the reader of the 
notation |z | :� [|z1| ,: : : , |zn| ]⊤ and 

ffiffiffi
z

√
:� [ ffiffiffiffiffiz1

√
,: : : ,

ffiffiffiffiffi
zn

√ ]⊤
for any vector z ∈ Rn.

Lemma 2. Suppose that there exists some quantity β1 > 0 
such that {V (l)} (cf. (36)) obeys

(bPπ�Pπ)V (l)








 ≤
ffiffiffiffiffi
β1

N

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarPπ[V (l)]

q
+ β1‖V (l)‖∞

N
1,

for all 0 ≤ l ≤ log
e

1� γ

� �
: (37) 

Suppose that N >
16e2

1�γβ1. Then, the vectors Vπ � (I � γPπ)�1 

rπ�and bVπ � (I � γbPπ)�1
rπ�satisfy

‖bVπ�Vπ‖∞ ≤ 6

1� γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β1

N(1� γ)

s
: (38) 
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Although the Bernstein-type condition (37) clearly 
holds for some reasonably small β1 if π�is independent of 
bP, it might remain valid if π�exhibits fairly “weak” statis-
tical dependency on the data samples. This is a key step 
that paves the way for our subsequent analysis of bπ?.

6.3.2. Decoupling Statistical Dependency via (s, a)- 

Absorbing MDPs. We are now positioned to demon-

strate how to control ‖bVbπ?

�Vbπ?‖∞ w.r.t. the optimal 

policy bπ? to bV : A crucial technical challenge lies in how 
to decouple the complicated statistical dependency 

between the optimal policy bπ? and the bV ? (which 
heavily relies on the data samples). Toward this, we 
resort to a leave-one-row-out argument built upon a 
collection of auxiliary MDPs, largely motivated by the 
novel construction in Agarwal et al. (2020, section 4.2). 
In comparison with Agarwal et al. (2020), which intro-
duces state-absorbing MDPs (so that a state s is absorb-
ing regardless of the subsequent actions chosen), our 
construction is a set of state-action–absorbing MDPs, in 
which a state s is absorbing only when a designated 
action a is always executed at the state s.

6.3.2.1. Construction of (s, a)-Absorbing MDPs. For 
each state-action pair (s, a) and each scalar u with 
|u | ≤ 1=(1� γ), we construct an auxiliary MDP Ms,a,u; it 
is identical to the original M except that it is absorbing in 
state s if we always choose action a in state s. More specifi-
cally, the probability transition kernel associated with 
Ms,a,u (denoted by PMs,a,u ) can be specified by

PMs,a,u (s |s, a) � 1,

PMs,a,u (s′ |s, a) � 0, for all s′ ≠ s,

PMs,a,u (· |s′, a′) � PM(· |s′, a′), for all (s′, a′) ≠ (s, a),
(39) 

where PM is the probability transition kernel w.r.t. the 
original M: Meanwhile, the instant reward received at 
(s, a) in Ms,a,u is set to be u, whereas the rewards at all 
other state-action pairs stay unchanged. We can define 
cMs,a,u analogously (so that its probability transition 
matrix is identical to bP except that the (s, a)th row 
becomes absorbing). The main advantage of this con-

struction is that for any fixed u, the MDP cMs,a,u is statis-

tically independent of bPs,a (the row of bP corresponding 
to the state-action pair (s, a) determined by the samples 
collected for the (s, a) pair).

To streamline notation, we let Qπs,a,u represent the Q 
function of Ms,a,u under a policy π, denote by π?s,a,u the 

optimal policy associated with Ms,a,u, and let Q?
s,a,u be 

the Q function under this optimal policy π?s,a,u. The 

notations Vπs,a,u and V?
s,a,u regarding value functions 

as well as their counterparts (i.e., bQπs,a,u, bQ?
s,a,u, bVπs,a,u, 

bV ?
s,a,u, bπ?

s,a,u) in the empirical MDP cM can be defined in 

an analogous fashion.

Remark 5. The careful reader will remark that the in-

stant reward u is constrained to reside within 
h
� 1

1�γ , 

1
1�γ

i
rather than the usual range [0, 1]. Fortunately, none 

of the subsequent steps that involve u require u to lie 
within [0, 1].

6.3.2.2. Intimate Connections between the Auxiliary 

MDPs and the Original MDP. In the following, we 
introduce a result that connects the Q function and the 
value function of the absorbing MDP with those of the 
original MDP. The idea is motivated by Agarwal et al. 
(2020, lemma 7), and its proof is deferred to Online 
Appendix EC.2.2.

Lemma 3. Setting u? :� r(s, a) + γ(PV?)s,a � γV?(s), one 
has

Q?
s,a,u? � Q? and V?

s,a,u? � V?: (40) 

Remark 6. Lemma 3 does not rely on the particular form 
of P and can be directly generalized to the empirical 
model bP and the auxiliary MDPs built upon bP:

In words, by properly setting the instant reward u �
u?
�

which can be easily shown to reside within 
h
� 1

1�γ , 

1
1�γ

i�
, one guarantees that the (s, a)-absorbing MDP and 

the original MDP have the same Q function and value 
function under the respective optimal policies.

6.3.2.3. Representing bp? via a Small Set of Policies 

Independent of bPs,a. With Lemma 3 in place, it is 
tempting to use cM

s,a,bu? with bu? :� r(s, a) + γ(bP bV ?)s,a �
γbV?(s) to replace the original cM. The rationale is simple; 

given that the probability transition matrix of cM
s,a,bu?

does not rely upon bPs,a, the statistical dependency 
between cM

s,a,bu? and bPs,a is now fully embedded into a 
single parameter bu?. This motivates us to decouple the 
statistical dependency effectively by constructing an ε�
net (see, e.g., Vershynin 2018) w.r.t. this single parame-
ter. The aim is to locate a point u0 over a small fixed set 
such that (i) it is close to bu? and (ii) its associated optimal 
policy is identical to the original optimal policy bπ?.

It turns out that this aim can be accomplished as long 
as the original Q function bQ? satisfies a sort of separa-
tion condition (which indicates that there is no tie when 
it comes to the optimal policy). To make it precise, 
given any 0 < ω < 1, our separation condition is charac-
terized through the following event:

Bω :� {bQ?(s, bπ?(s))� max
a:a≠bπ?(s)

bQ?(s, a) ≥ ω for all s ∈ S}:

(41) 
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Clearly, on the event Bω, the optimal policy bπ? is unique 
because for each s, the action bπ?(s) results in a strictly 
higher Q value compared with any other action. With 
this separation condition in mind, our result is stated. 
Here and throughout, we define an ε�net of the interval 
� 1

1�γ , 1
1�γ

h i
as follows:

N ɛ :� {�nɛɛ, : : : , � ɛ, 0,ɛ, : : : , nɛɛ},

for the largest integer nɛ obeying nɛɛ <
1

1� γ
,

(42) 

which has cardinality at most 2
(1�γ)ɛ.

Lemma 4. Consider any ω > 0, and suppose the event Bω�
(cf. (41)) holds. Then, for any pair (s, a) ∈ S × A, there 
exists a point u0 ∈ N (1�γ)ω=4, such that

bπ? � bπ?
s,a,u0

: (43) 

Proof. See Online Appendix EC.2.3. w

6.3.2.4. Deriving an Optimal Error Bound Under the 

Separation Condition. Armed with these bounds, we 
are ready to derive the desired error bound by combin-
ing Lemmas 2 and 4.

Lemma 5. Given 0 < ω < 1 and δ > 0, suppose that Bω�

(defined in (41)) occurs with probability at least 1� δ. 
Then, with probability at least 1� 3δ,

‖bV π̂?

�V π̂
?‖∞ ≤ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log 32 |S‖A |

(1�γ)3ωδ

� �

N(1� γ)3

vuut
and

V? �V π̂
? ≤ 12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log 32 |S‖A |

(1�γ)3ωδ

� �

N(1� γ)3

vuut
1, (44) 

provided that N ≥ c0log
�

| S‖A |
(1�γ)δω

�

1�γ� for some sufficiently large con-

stant c0 > 0.

Proof. See Online Appendix EC.2.4. w

6.3.3. A Tiebreaking Argument. Unfortunately, the se-
paration condition specified in Bω�(cf. (41)) does not 
always hold. In order to accommodate all possible MDPs 
of interest without imposing such a special separation 
condition, we put forward a perturbation argument al-
lowing one to generate a new MDP that (i) satisfies the 
separation condition and that (ii) is sufficiently close to 
the original MDP.

Specifically, let us represent the proposed reward 
perturbation (8) in a vector form as follows:

rp :� r + z, (45) 

where z � [ζ(s, a)](s,a)∈S×A is an |S‖A |-dimensional vec-
tor composed of independent entries with each ζ(s, a) ~

i:i:d:

Unif(0,ξ). We aim to show that by randomly perturbing 
the reward function, we can “break the tie” in the Q func-
tion and ensure sufficient separation of Q values associ-
ated with different actions.

To formalize our result, we find it convenient to intro-
duce additional notation. Denote by π?p the optimal pol-

icy of the MDP Mp � (S,A, P, rp,γ) and by Q?
p its 

optimal state-action value function. We can define bQ?
p 

and bπ?
p analogously for the MDP cMp � (S,A, bP, rp,γ). 

Our result is phrased as follows.

Lemma 6. Consider the perturbed reward vector defined in 
Expression (45). With probability at least 1� δ,

∀(s, a) ∈ S × A with a ≠ π?p(s) :

Q?
p(s,π?p(s))�Q?

p(s, a) > ξδ(1� γ)
3 |S‖A | 2 : (46) 

This result holds unchanged if (Q?
p,π?p) is replaced by 

(bQ?
p, bπ?

p).
Proof. See Online Appendix EC.2.5. w

Lemma 6 reveals that at least a polynomially small 

degree of separation 
�
ω � ξδ(1�γ)

3 |S‖A | 2

�
arises upon random 

perturbation (with size ξ) of the reward function. As 
we shall see momentarily, this level of separation suf-
fices for our purpose.

6.3.4. Proof of Theorem 1. Proof of Theorem 1. Let us 
consider the randomly perturbed reward function as in 
(45). For any policy π, we denote by Vπp (bVπp) the corre-
sponding value function vector in the MDP with proba-
bility transition matrix P (bP) and reward vector rp. 
Note that π?p (bπ?

p) denotes the optimal policy that maxi-

mizes Vπp (
bVπp).

In view of Lemma 6, with probability at least 1� δ, 
one has the separation

bQ?
p(s, bπ?

p(s))� bQ?
p(s, a)








 >
ξδ(1� γ)
3 |S‖A |2 (47) 

uniformly over all s and a ≠ bπ?
p(s). With this separation 

in place, taking ω :� ξδ(1�γ)
3 |S‖A | 2 in Lemma 5 yields

‖Vπ
?
p

p �V
π̂?

p
p ‖∞ ≤ 12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log 96 |S | 2 |A | 3

(1�γ)4ξδ2

� �

N(1� γ)3

vuut
: (48) 

In addition, the value functions under any policy π�obey

Vπ � Vπp � Pπ (I � Pπ)�1
r � (I � Pπ)�1

rp

� �
, 

which taken collectively with the facts ‖r � rp‖∞ ≤ ξ�
and ‖(I � γPπ)�1‖1 ≤ 1

1�γ, gives

‖Vπ�Vπp‖∞ ≤ ‖(I � γPπ)�1‖1‖r � rp‖∞ ≤ 1

1� γ
ξ:
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Specializing the relation to π? and bπ?
p gives

‖Vπ? �Vπ
?

p ‖∞ ≤ 1

1� γ
ξ and

‖V π̂?
p �V

π̂?
p

p ‖∞ ≤ 1

1� γ
ξ: (49) 

Now, let us consider the following decomposition:

V π̂
?
p � V? � (V π̂?

p � V
π̂?

p
p ) + (V π̂

?
p

p � V
π?p
p )

+ (Vπ
?
p

p � Vπ
?

p ) + (Vπ?p � V?)

≥ (V π̂?
p � V

π̂?
p

p ) + (V π̂
?
p

p � V
π?p
p ) + (Vπ?p � V?), 

where the last step follows from the optimality of π?p 

w.r.t. Vp. Taking this collectively with Inequalities (48) 

and (49), one shows that with probability greater than 
1� 3δ,

V π̂
?
p �V? ≥�

2

1� γ
ξ+ 12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log 96 |S | 2 |A | 3

ξ(1�γ)4δ2

� �

N(1� γ)3

vuut
0
B@

1
CA1:

By taking ξ � (1�γ)ε
3 |S | 5 |A | 5 and N ≥ c0log

�
| S‖A |
(1�γ)δε

�

(1�γ)3ε2 
for some 

constant c0 > 0 large enough, we can ensure that 0 ≥
Vbπ?

p �V? ≥�ε1 as claimed. Regarding the Q func-
tions, the Bellman equation gives

Qπ̂
?
p �Q? � r + γPV π̂

?
p � (r + γPV?) � γP(V π̂?

p �V?):

Consequently, one has

Qπ̂
?
p � Q? ≥ �(γ‖P‖1‖V π̂

?
p � V?‖∞) 1 ≥ �γε1:

Finally, we demonstrate that both the empirical QVI 
and PI w.r.t. cMp are guaranteed to find bπ?

p in a few 
iterations. Suppose for the moment that we can obtain 
a policy πk obeying

‖bQπk
p � bQ?

p‖∞ <
ξδ(1� γ)
8 |S‖A |2 : (50) 

Then, for any s ∈ S and any action a ≠ bπ?
p(s), one has

bQπk
p (s, bπ?

p(s))� bQπk
p (s, a)

� bQ?
p(s, bπ?

p(s))� bQ?
p(s, a) + ( bQπk

p (s, bπ?
p(s))

� bQ?
p(s, bπ?

p(s)))� (bQπk
p (s, a)� bQ?

p(s, a))

≥ bQ?
p(s, bπ?

p(s))� bQ?
p(s, a)� 2‖bQπk

p � bQ?
p‖∞

>
ξδ(1� γ)
4 |S‖A |2 � 2 · ξδ(1� γ)

8 |S‖A |2 � 0, 

where the last line results from (47) and (50). In other 
words, we can perfectly recover the policy bπ?

p from the 

estimate bQπk
p , provided that (50) is satisfied. In addition, 

it has been shown that (Azar et al. 2013, lemma 2) the 
greedy policy induced by the kth iteration of both 

algorithms—denoted by πk—satisfies ‖ bQπk
p � bQ?

p‖∞ ≤
2γk+1

(1�γ)2. Taking ξ � c1(1�γ)ε
|S | 5 |A | 5 and k � c2

1�γ log |S‖A |
(1�γ)εδ

� �
for 

some constant c2 > 0 large enough, one guarantees that 
πk satisfies (50), which in turn, ensures perfect recovery 
of bπ?

p. w

6.4. Analysis: Conservative Model-Based Planning
In view of the conservative model-based planning (10), 
we begin with the following decomposition:

V? � V π̂c � (Vπ? � bVπ?) + (bVπ? � bV π̂c) + (bV π̂c � V π̂c):
(51) 

In order to control the second term on the right-hand 
side of the identity, we resort to the following lemma, 
whose proof is postponed to Online Appendix EC.2.6.

Lemma 7. It holds that

bVπ? � bV π̂c ≤ ξ

1 � γ
1: (52) 

Combining Lemma 7 with (51), we arrive at

V? � V π̂c � (Vπ? � bVπ?) + (bVπ? � bV π̂c) + (bV π̂c � V π̂c)

≤ (Vπ? � bVπ?) + ξ

1 � γ
1 + (bV π̂c � V π̂c):

(53) 

Clearly, the first term of (53) has already been con-
trolled in Section 6.2, whereas the second term of (53) is 

extremely small when we take ξ � O (1�γ)ε
|S | 5 |A | 5

� �
. It thus 

suffices to bound the third term of (53), which again 
requires decoupling the statistical dependence between 

bπc and bP.

6.4.1. Representing bpc via a Small Set of Policies Inde-

pendent of bPs,a. Akin to our analysis for the perturbed 
model-based planning algorithm in Section 6.3, a key 
step lies in demonstrating the connection between bπc 

and a reasonably small collection of leave-one-out aux-
iliary MDPs. Toward this, we are in need of the follow-
ing lemma, which characterizes certain “stability” of 
our conservative model-based strategy and lies at the 
core of our analysis. The proof is deferred to Online 
Appendix EC.2.7.

Lemma 8. Consider any given Q function bQ : S × A → R 
and its associated value function bV : S → R (i.e., bV(s) �
maxa

bQ(s, a) for all s). Generate an independent random 
variable ς ~ Unif(0,ξ). Then, with probability at least 
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1� δ,

∀s ∈ S, {a ∈ A : bQ(s, a) > bV(s)� ς}

� {a ∈ A : Q(s, a) > V(s)� ς} (54) 

holds simultaneously for all Q function Q : S × A → R (and 
its associated value function V : S → R) obeying

max
s,a

|Q(s, a)� bQ(s, a) | ≤ ξδ

8 |S‖A | : (55) 

As an important implication of this lemma, the pol-
icy bπc computed in (10) remains unchanged upon 
slight perturbation of the Q-function estimates. Armed 
with Lemma 8 and the leave-one-out auxiliary MDPs 
{cMs,a,u} constructed in Section 6.3, our analysis pro-
ceeds as follows. 

• For each (s, a) ∈ S × A, there exists a point u0 ∈
N (1�γ)ω�(cf. (42)) such that the optimal Q function of bQ?

s,a,u0 

of cMs,a,u0 
obeys

‖bQ?
s,a,u0

� bQ?‖∞ ≤ ω: (56) 

This is a fact that has already been established in the 
proof of Lemma 4; see (EC.21) in the online appendix. 

• Define a conservative policy for cMs,a,u0 
as follows:

∀s′ ∈ S : bπs,a,u0,c(s′) � min{a′ ∈ A : bQ?
s,a,u0

(s′, a′)

> bV?
s,a,u0

(s′)� ς}, 

where bQ?
s,a,u0 

and bV?
s,a,u0 

denote the optimal Q function 
and optimal value function of cMs,a,u0 , respectively. 
Taking ω � ξδ

8 |S‖A | and invoking Lemma 8 and (56), we 
arrive at

bπc � bπs,a,u0,c: (57) 

This result (57) parallels Lemma 4 for the perturbed 
model-based planning algorithm, revealing that bπc is 
representable using a policy independent of the ran-
domness associated with (s, a). The remaining proof of 
Theorem 2 then follows from an identical argument as 
in the proof of Theorem 1 and is hence omitted here.

7. Analysis: Finite-Horizon MDPs
In this section, we outline the proof of Theorem 4. We 
shall start by introducing a set of convenient matrix 
notations before embarking on the main proof.

7.1. Matrix Notation and Bellman Equations
Akin to the infinite-horizon case, we introduce some 
matrix notation for finite-horizon MDPs. Analogous to 
Section 6.1, we introduce the following set of notation. 

• rh ∈ R |S‖A | : a vector representing the reward func-
tion rh at step h.

• Vπh ∈ R |S | : a vector representing the value function 
Vπh of π�at step h.

• V?
h ∈ R |S | : a vector representing the optimal value 

function V?
h at step h.

• Qπh ∈ R |S‖A | : a vector representing the Q function 
Qπh of π�at step h.

• Q?
h ∈ R |S‖A | : a vector representing the optimal Q 

function Q?
h at step h.

• Ph ∈ R |S‖A | × |S | : a matrix representing the proba-
bility transition kernel Ph at step h.

• Ph,π ∈ R |S | × |S | : a submatrix of Ph, which consists 
of the rows with indices coming from {(s,πh(s)) |s ∈ S}.

• rπh ∈ R |S | : a subvector of rh, which consists of the 
rows with indices coming from {(s,πh(s)) |s ∈ S}.

Armed with this notation, the Bellman equation here 
is given by

Qπh � rh + PhVπh+1, 1 ≤ h ≤ H, (58) 

where we recall that for all s ∈ S,

Vπh (s) � Qπh s,πh(s)( ) and VπH+1(s) � 0: (59) 

This also allows one to derive

Vπh � rπh + Ph,πVπh+1: (60) 

We shall also define bVπh , bQπh , bV ?
h, bQ?

h, bPh, bPh,π�w.r.t. the 
empirical MDP cM in an analogous fashion.

7.2. An Auxiliary Value Function Sequence 

Obeying Bernstein-Type Conditions
Similar to the infinite-horizon case (in particular, Sec-
tion 6.3.1), we find it convenient to introduce a col-
lection of auxiliary vectors as follows. For any l ≥ 0, 
define

V
(l)
H+1 :� 0 and bV (l)

H+1 :� 0; (61) 

for any 1 ≤ h ≤ H and any policy π, define the following 
sequences recursively:

r
(0)
h :� rπh , V

(0)
h :� r

(0)
h +Ph,πV

(0)
h+1,

bV (0)
h :� r

(0)
h + bPh,π

bV (0)
h+1,

r
(l)
h :�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarPh,π[V

(l�1)
h+1 ]

q
, V

(l)
h :� r

(l)
h +Ph,πV

(l)
h+1,

bV (l)
h :� r

(l)
h + bPh,π

bV (l)
h+1, l ≥ 1: (62) 

As can be easily verified, {V (0)
h } coincides with the value 

function of policy π�in the true MDP M, whereas {bV (0)
h }

corresponds to the value function of policy π�in the 
empirical MDP cM.

As it turns out, if the auxiliary sequence satisfies certain 
Bernstein-type conditions, then we can establish a useful 
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upper bound on the entry-wise difference between V
(0)
h 

and bV (0)
h , as stated. The proof of this lemma is deferred to 

Online Appendix EC.3.1.

Lemma 9. Suppose that there exists some quantity β1 > 0 
such that the sequence {V (l)

h+1} constructed in (62) obeys

(bPh,π�Ph,π)V (l)
h+1








 ≤

ffiffiffiffiffi
β1

N

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarPh,π[V

(l)
h+1]

q
+ β1‖V

(l)
h+1‖∞

N
1,

∀0 ≤ l ≤ log2H, 1 ≤ h ≤ H � 1:

(63) 

In addition, assume that N > 12Hβ1. Then, we have

‖bV (0)
h �V

(0)
h ‖∞ ≤ 6H

ffiffiffiffiffiffiffiffiffiffiffi
3β1H

N

r
(64) 

for all 1 ≤ h ≤ H.

7.3. Proof of Theorem 4

Proof of Theorem 4. Let us begin with the following 
elementary decomposition:

V?
h � Vbπ?

h � (bVbπ?

h � Vbπ?

h ) + (bVπ?h � bVbπ?

h ) + (V?
h �

bVπ?h )

≤ (bVbπ?

h � Vbπ?

h ) + (Vπ?h � bVπ?h ): (65) 

Here, the inequality follows from the definition V?
h �

Vπ
?

h , as well as the fact that bVπ?h ≤ bVbπ?

h (because bπ? is the 
optimal policy of the empirical MDP). In light of (65), 
there are two terms that need to be controlled.

We intend to bound both bVbπ?

h �Vbπ?

h and Vπ
?

h � bVπ?h 

by means of Lemma 9. Toward this, we first note that 
for any policy π, the associated value functions of the 
MDP and the empirical MDP obey the following Bell-
man equations:

Vπh :� rπh +Ph,πVπh+1, bVπh :� rπh + bPh,π
bVπh+1, 

along with the boundary conditions VπH+1 � bVπH+1 � 0. 

This indicates that the vector V (0)
h (bV (0)

h ) constructed in 

(62) is precisely the value function of policy π�at step h in 
the true MDP (empirical MDP). As a result, in order to 
invoke Lemma 9, it is sufficient to verify the Bernstein- 
type Condition (63) w.r.t. policies π? and bπ? for some 
sufficiently small quantity β1. 

• Let us begin with the optimal policy π?, which is 
fixed and statistically independent of the data samples. 
As a result, if we take π � π? during the construction of 
(62), then it is clearly seen that bPh is statistically inde-
pendent of V

(l)
h+1. Applying the Bernstein inequality 

together with the union bound then guarantees that 
with probability exceeding 1� δ,

(bPh �Ph)V (l)
h+1








 ≤

ffiffiffiffiffi
β1

N

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarPh

[V (l)
h+1]

q
+ β1‖V

(l)
h+1‖∞

N
1

(66) 

holds uniformly over all 0 ≤ l ≤ log2H, 1 ≤ h ≤ H � 1, 
(s, a) ∈ S × A, where β1 is given by

β1 :� 4 log
H |S‖A |
δ

� �
: (67) 

Armed with Condition (66), we can readily invoke 
Lemma 9 to reach

‖bVπ?h �Vπ
?

h ‖∞ � ‖bV (0)
h �V

(0)
h ‖∞ ≤ 6H

ffiffiffiffiffiffiffiffiffiffiffi
3β1H

N

r

≤ 6H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12H log H |S‖A |

δ

� �

N

vuut

with probability at least 1� δ.
• Next, we move on to the policy bπ? by taking π �

bπ? during the construction (62). Note that V (l)
h+1 depends 

only on bπ?
j (j ≥ h+ 1). In view of our assumption on bπ?

(i.e., it is computed backward via dynamic program-

ming), bπ?
i is independent of any bPj with j< i, and hence, 

V
(l)
h+1 is statistically independent from bPh. Consequently, 

the preceding bounds (66) and (67) continue to hold. All 
of this immediately results in

‖bVbπ?

h �Vbπ?

h ‖∞ ≤ 6H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12H log H |S‖A |

δ

� �

N

vuut

with probability exceeding 1� δ.
Substituting the bounds into (65), we arrive at

0 ≤ V?
h � Vbπ?

h ≤ 12H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12H log H |S‖A |

δ

� �

N

vuut
1, (68) 

with probability greater than 1� 2δ, provided that 

N ≥ 48H log H |S‖A |
δ

� �
. By taking the right-hand side of 

(68) to be smaller than ε1, we immediately conclude 
the proof. w

8. Discussion
This paper has demonstrated that (some variants of) 
model-based planning algorithms achieve the minimax 
sample complexity in the presence of a generative model 

as soon as the sample size exceeds the order of |S‖A |
1�γ�for 

γ-discounted infinite-horizon MDPs and |S‖A |H2 for 
time-inhomogeneous finite-horizon MDPs (modulo some 
log factor). Compared with prior literature, our result has 
considerably broadened the sample size range, allowing 
us to pin down a complete trade-off curve between sam-
ple complexity and statistical accuracy.

The present work opens up several directions for fu-
ture investigation, which we discuss in passing. 

• Is perturbation or conservative action selection 
necessary for infinite-horizon MDPs? The planning 
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algorithm analyzed here for infinite-horizon MDPs is 
either applied to a perturbed variant of the empirical 
MDP (as in perturbed model-based planning) or run 
in a conservative manner (as in conservative model- 
based planning). This, however, gives rise to a natural 
question regarding the necessity of perturbation or 
conservative action selection. Can we achieve optimal 
performance directly using plain model-based plan-
ning on the empirical MDP? Although we conjecture 
that the answer is affirmative, settling this conjecture 
requires new techniques beyond the analysis frame-
work of this paper.

• Improved analysis for model-free algorithms. As 
mentioned previously, an even more severe sample 
complexity barrier is present in all prior theory regard-
ing model-free approaches (e.g., Sidford et al. 2018b, 
Wainwright 2019b, Li et al. 2022c). Our analysis might 
shed light on how to overcome such barriers for model- 
free approaches.

• Time-homogeneous finite-horizon MDPs. When it 
comes to finite-horizon MDPs, the present work con-
centrates on time-inhomogeneous MDPs, where the 
probability transition kernels may vary across time 
steps. Another important scenario is concerned with 
time-homogeneous MDPs, where P1 � P2 �⋯� PH. It 
remains unclear how to develop tight sample analysis 
for time-homogeneous MDPs because of the lack of sta-
tistical independence across time steps (namely, we 
shall use all samples to estimate the kernels across time 
steps as they are identical).

• Markovian sample trajectories. Going beyond the 
generative model, another common form of data sam-
ples takes the form of a Markovian sample trajectory, 
which is generated by taking actions according to a sta-
tionary behavior policy in the MDP. This is also referred 
to as the asynchronous setting in the context of Q learn-
ing (Tsitsiklis 1994). Although the sample complexity of 
several RL algorithms under this data-generating mech-
anism has been studied in prior literature (e.g., Qu and 
Wierman 2020; Li et al. 2022c, 2023), it remains unclear 
how to achieve minimax optimality for the full ε�range 
because of the complicated statistical dependency across 
time. The recent work by Li et al. (2022b) demonstrated 
the plausibility of converting a finite-horizon Markovian 
trajectory into independent samples via twofold sample 
splitting in the context of offline RL. It would be interest-
ing to investigate whether one could employ a similar 
idea—in conjunction with a proper leave-one-out analy-
sis framework—to settle the sample complexity in the 
presence of Markovian samples.

• Online exploratory RL. In practice, there is no short-
age of applications where the learner acquires data sam-
ples by executing the MDP in real time. This corresponds 
to an important setting, called online RL, that requires 
careful managing of the exploration-exploitation trade- 
off (Jin et al. 2018, Bai et al. 2019, Li et al. 2021b). 

Interestingly, the model-based approach—with pro-
per modification to implement optimism in the face 
of uncertainty—achieves minimax-optimal regret asymp-
totically (Azar et al. 2017), although its performance in 
the sample-starved regime remains largely unknown. It 
would be of great interest to see whether the analysis 
ideas developed herein could help characterize the sam-
ple efficiency of model-based online RL for the entire 
ε�range.

• Beyond the tabular setting. The current paper fo-
cuses on the tabular setting with finite state and action 
spaces. Although we improve the sample size range, the 
sample complexities might still be prohibitively large 
when |S | and |A | are enormous. Therefore, it is desirable 
to further investigate settings where low-complexity func-
tion approximation is employed to improve the efficiency 
(e.g., Yang and Wang 2019, Jin et al. 2020, Li et al. 2021a).
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Endnotes
1 Here and throughout, the “model” refers to the transition kernel 
and the rewards of the MDP taken collectively.
2 Note that perturbation is only invoked when running the plan-
ning algorithms and does not require collecting new samples.
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