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1. Introduction direct access to a precise description of the underlying
Reinforcement learning (RL) (Szepesvari 2010, Sutton model.! In contemporary applications, it is increasingly
and Barto 2018), which is frequently modeled as learn- ~ more common to encounter environments with prohib-

ing and decision making in a Markov decision process itively large state and action space, thus exacerbating
(MDP), has garnered growing interest in recent years  the challenge of collecting enough samples to learn the
because of its remarkable success in practice. A core  model. To enable faithful policy learning in the sample-
objective of RL is to search for a policy—based on a col-  starved regime (i.e., the regime where the model com-
lection of noisy data samples—that approximately maxi-  plexity overwhelms the sample size), it is crucial to
mizes expected cumulative rewards in an MDP without ~ obtain a quantitative picture of the fundamental trade-off
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between sample complexity and statistical accuracy and
to design efficient algorithms that provably achieve the
optimal trade-off.

Broadly speaking, there are at least two common algo-
rithmic approaches: a model-based approach and a
model-free one. The model-based approach decouples
model estimation and policy learning tasks; more speci-
fically, one first estimates the unknown model using the
data samples in hand and then, leverages the fitted
model to perform planning—a task that can be accom-
plished by resorting to Bellman’s principle of optimality
(Bellman 1952). A notable advantage of model-based
algorithms is their flexibility; the learned model can be
adapted to perform new ad hoc tasks without revisiting
the data samples. In comparison, the model-free ap-
proach attempts to compute the optimal policy (and the
optimal value function) without learning the model
explicitly, which lends itself well to scenarios when a
model is difficult to estimate or changes on the fly. Char-
acterizing the sample efficiency of both approaches has
been the focal point of a large body of recent works (e.g.,
Kearns and Singh 1999; Azar et al. 2013; Jin et al. 2018;
Sidford et al. 2018a, b; Tu and Recht 2019; Wainwright
2019a, b; Agarwal et al. 2020; Li et al. 2023).

In this paper, we pursue a comprehensive under-
standing of model-based RL given access to a generative
model—that is, a simulator that produces samples based
on the transition kernel of the true MDP for each state-
action pair (Kearns and Singh 1999, Kakade 2003). To
allow for more precise discussions, we first look at an
infinite-horizon discounted MDP with state space S,
action space A, and discount factor 0 <y <1 and pay
particular attention to the scenarios where the sizes of
the state/action spaces and the effective horizon ;1 are
all quite large. We obtain N samples per state-action pair
by querying the generative model. For an arbitrary target
accuracy level € >0, a desired model-based planning
algorithm should return an e-optimal policy with a min-
imal number of calls to the generative model. Particular
emphasis is placed on the sublinear sampling scenario,
in which the total sample size is smaller than the total
number |S|?|A| of model parameters (so that it is in
general infeasible to estimate the model accurately).

1.1. Motivation: Sample Size Barriers

Several prior works were dedicated to investigating
model-based RL for y-discounted infinite-horizon MDPs
with a generative model, which uncovered the minimax
optimality of this approach for an already wide regime
(Azar et al. 2013, Agarwal et al. 2020). However, the
results therein often suffered from a sample complexity
barrier that prevents us from obtaining a complete trade-
off curve between sample complexity and statistical
accuracy. For instance, the state-of-the-art result of Agar-
wal et al. (2020) required the total sample size to at least

exceed (‘ 15 I (up to some log factor), thus restricting the

|
-7’
validity of the theory for broader contexts. In truth, this
is not merely an issue for model-based planning; the
same barrier already showed up when analyzing the
simpler task of model-based policy evaluation (Panan-
jady and Wainwright 2019, Agarwal et al. 2020). Further-
more, an even more severe barrier emerged in prior
theory for model-free methods; for instance, Sidford et al.
(2018a) and Wainwright (2019b) required the sample
size to exceed % modulo some log factor. In stark con-
trast, however, no lower bounds developed thus far pre-
clude us from attaining reasonable statistical accuracy
when going below the aforementioned sample complex-
ity barriers, thus resulting in a gap between upper and
lower bounds in this sample-starved regime. Notewor-
thily, such a sample size barrier is not only present for
discounted infinite-horizon MDPs; the situation is simi-
lar for finite-horizon MDPs (Yin et al. 2021).

1.2. Our Contributions

The current paper seeks to achieve optimal sample
complexity even below the aforementioned sample
size barrier. For y-discounted infinite-horizon MDPs,
we propose two model-based algorithms: (i) perturbed
model-based planning, which performs planning based
on an empirical MDP learned from samples with mild
random reward perturbation, and (ii) conservative model-
based planning, which computes approximately optimal
policies for the empirical MDP without reward pertur-

bation. These two proposed algorithms provably find
[SIA]
(1)’
(up to log factor), thereby matching the minimax lower
bound (Azar et al. 2013). Our result accommodates the

an ¢-optimal policy with an order of samples

full range of accuracy level ¢ (namely, €€ (O, 1%),} ),

thus unveiling the minimaxity of our algorithms as
soon as the sample size exceeds % (modulo some log

factor). Encouragingly, this covers the full range of sam-
ple sizes that enable one to find a policy strictly better
than a random guess. See Table 1 for detailed compari-
sons with prior literature. Along the way, we also
derive minimax-optimal statistical guarantees for pol-
icy evaluation, which strengthen state-of-the-art results
by broadening the applicable sample size range.

Moving beyond discounted infinite-horizon MDPs, we
further characterize the sample efficiency of model-based
planning for time-inhomogeneous finite-horizon MDPs,
which provably achieves minimax-optimal sample com-
plexity as well for the full range of target accuracy levels
(Domingues et al. 2021). No reward perturbation or con-
servative action selection is needed for this finite-horizon
scenario. See Table 2 for detailed comparisons with prior
literature.
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Table 1. Comparisons with Prior Results (up to Log Factors) Regarding Finding an ¢-Optimal Policy in a y-Discounted
Infinite-Horizon MDP with a Generative Model

Algorithm Sample size range Sample complexity & range
Phased Q learning (Kearns and Singh 1999) “‘i‘;}‘s‘ ,00> (ll‘i‘yl)sz (0, ﬁ}
Empirical QVI (Azar et al. 2013) [\(51:\/,;;\ ,00) (ll‘il)’ilz (O, \/(TJW}
Sublinear randomized value iteration (Sidford et al. 2018a) “‘f!}“;z‘ ,00> (Il”i‘y')“jt'z (O, ﬁ}
Variance-reduced QVI (Sidford et al. 2018b) Hiw ,00) (ll‘i/l)?t lz 0,1]
Randomized primal-dual method (Wang 2020) P(‘]SU)/;Z‘ ,00> (Ili,')itlz (0, ﬁ}
Empirical MDP + planning (Agarwal et al. 2020) “‘f!ﬁz‘ ,00> (Il‘i/l)éilz (0, 11*1/}
Perturbed empirical MDP + planning (this paper) { Sllﬂ’f‘ ,oo) (Il‘i/l)ﬂZ (0, 11),}
Empirical MDP + conservative planning (this paper) P‘il_‘y ‘ ,00> (Iﬁ\yl)ilz (0, ﬁ}

Notes. The sample size range and the ¢ range stand for the range of sample size and optimality gap (e.g., ¢ accuracy) for the claimed sample complexity
to hold. Note that the results in Kearns and Singh (1999) and Wang (2020) only hold for a restricted family of MDPs satisfying certain ergodicity
assumptions. In addition, Azar et al. (2013) (Wainwright 2019b) showed that empirical QVI (variance-reduced Q learning) finds an ¢-optimal Q-function

S| 1A
1-yye

estimate with sample complexity

On the technical side, our theory for infinite-horizon
MDPs is established upon a novel combination of several
key ideas: (1) a high-order expansion of the estimation error
for value functions coupled with fine-grained analysis for
each term in the expansion; (2) the construction of auxiliary
leave-one-out type (state-action-absorbing) MDPs—
motivated by Agarwal et al. (2020)—that help decouple
the complicated statistical dependency between the
empirically optimal policy (as opposed to value func-
tions) and data samples; and (3) a tiebreaking argument
guaranteeing that the empirically optimal policy is suffi-
ciently separated from all other policies under reward
perturbation. The case with finite-horizon MDPs is also
established based on certain high-order expansion of
the value estimation errors, in addition to careful vari-
ance control for the terms in the expansion.

1.3. Key Contributions that Extend the Neural
Information Processing Systems Version
Partial results of this paper have been presented in
Advances in Neural Information Processing Systems 33

(¢ € (0,1]) in a sample size range [

‘Slly“;‘sl , 00) , which did not translate directly to an e-optimal policy.

(Li et al. 2020). Compared with Li et al. (2020), the cur-
rent paper includes the following key extensions.

e The current version proposes a new variant of
the model-based approach (i.e., the conservative model-
based algorithm) for discounted inifinite-horizon MDPs.
This new approach achieves minimax optimality without
the need of reward perturbation, with a more stream-
lined analysis.

e We demonstrate how to overcome the sample size
barrier in finite-horizon Markov decision processes,
which was not studied in Li et al. (2020).

e Complete proof details of all theoretical findings
are included and elucidated in the current paper, and
they consist of highly sophisticated /delicate schemes.
These proof ideas were only briefly mentioned in Li
et al. (2020) (and most details were missing therein).

2. Problem Formulation
The current paper studies both discounted infinite-
horizon MDPs and finite-horizon MDPs, which will be

Table 2. Comparisons with Prior Results (up to Log Factors) Regarding Finding an ¢-Optimal
Policy in a Time-Inhomogeneous Finite-Horizon MDP with a Generative Model

Algorithm

Sample size range Sample complexity ¢ range

Sublinear randomized value iteration (Sidford et al. 2018a)

Variance-reduced QVI (Sidford et al. 2018b)
Empirical MDP + planning (Yin et al. 2021)
Empirical MDP + planning (this paper)

[ISIIAIH?, e0) ISHAI® (0,H]
[ISI1AH*, o0) ISILAIH ©0,1]

[ISIIAIH?,00) LRI (0, V]
[ISIIA]H?, e0) ISt A (0,H]

Notes. The sample size range and the ¢ range stand for the range of sample size and optimality gap (e.g., ¢ accuracy)
for the claimed sample complexity to hold. The results in Sidford et al. (2018a, b) were originally stated for the time-
homogeneous case; we translate them into the time-inhomogeneous case with an additional factor of H. In addition,

Li et al. (2021c) proved that Q learning finds an e-optimal Q-function estimate with sample complexity I&I{__«;HW
(¢ €(0,1]) in a sample size range [|S||.A|H*, c0), which did not translate directly to an e-optimal policy.
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introduced separately in the sequel. Here and through-
out, we adopt the standard notation [H] := {1,...,H}.

2.1. Discounted Infinite-Horizon Markov
Decision Processes

2.1.1. Models and Background. Consider a discounted
infinite-horizon MDP represented by a quintuple M =
(S, A,P,r,y), where S:={1,2,...,|S|} denotes a finite
set of states, A:={1,2,...,|Al|}is a finite set of actions,
y € (0,1) stands for the discount factor, and r: S x A —
[0,1] represents the reward function, namely that (s, a)
is the immediate reward received upon executing ac-
tion a while in state s (here and throughout, we con-
sider the normalized setting where the rewards lie
within [0,1]). In addition, P: S X A — A(S) represents
the probability transition kernel of the MDP, where
P(s’|s,a) denotes the probability of transiting from state
s to state s’ when action a is executed and A(S) denotes
the probability simplex over S.

A deterministic policy (or action selection rule) is a
mapping 7 : S — A that maps a state to an action. The
value function V™ : S — R of a policy 7 is defined by

)

Z )/tT(St,llt)

t=0

VseS: V™(s):=E

0= s] , @)

which is the expected discounted total reward starting
from the initial state s’ =s; here, the sample trajectory
{(s',a")},50 is generated based on the transition kernel
(namely, ™! ~ P(-|s',a")), with the actions taken accord-
ing to policy 7 (namely, a' = t(s") for all t > 0). It is easily
seen that 0<V7(s) < 11y. The corresponding action-
value function (or Q function) Q™ : S x A — R of a pol-
icy m is defined by

V(s,a) e Sx A:
Q"(s,a):=E Zytr(st,at) s =s,a" = a] , ()
=0

where the actions are taken according to the policy n
after the initial action (i.e., a' = 7t(s') for all ¢ > 1). It is
well known that there exists an optimal policy, denoted
by m*, that simultaneously maximizes V7 (s) (Q™(s,a))
for all states s € S (state-action pairs (s,a) € (S X A)) (Sut-
ton and Barto 2018). The corresponding value function
V*:= V™ (action-value function Q* := Q™) is called the
optimal value function (optimal action-value function).

2.1.2. A Generative Model and an Empirical MDP. The
current paper focuses on a stylized generative model
(also called a simulator) as studied in Kearns et al.
(2002) and Kakade (2003). Assuming access to this gen-
erative model, we collect N independent samples

si 4 p(s,a), i=1,...,N

5,0

for each state-action pair (s,a) € S X A, which allows us
to construct an empirical transition kernel P as follows:

~ 1X ,
Vs'eS, P(s'|s,a)= K]Z]l{s;ﬂ =s'}, (3)
i=1

where 1{-} is the indicator function. In words, 13(5’ |s,a)
counts the empirical frequency of transitions from (s, a)
to state s’. The total sample size should, therefore, be
understood as N := N|S||.A|. This leads to an empiri-
cal MDP M = (S, A,P,r,y) constructed from the data
samples. We can define the value function and the
action-value function of a policy 7 for M analogously,

which we shall denote by V™ and Qr, respectively. The
optimal policy of M is denoted by 7*, with the optimal
value function and Q function denoted by ve=v"
and Q" := Qﬁ*, respectively.

2.1.3. Learning the Optimal Policy via Model-Based
Planning. Given a few data samples in hand, the task of
policy learning seeks to identify a policy that (approxi-
mately) maximizes the expected discounted reward
given the data samples. Specifically, for any target level
e >0, the aim is to compute an &-accurate policy Tlest
obeying

V(s,a)eSxX A:
Viest(s) > V*(s) —e, Q(s,a)>Q*(s,a) —e.  (4)

Naturally, one would hope to accomplish these tasks
with as few samples as possible. Recall that for the nor-
malized reward setting with 0 <r <1, the value func-

tion and Q function fall within the range [0, 1%}/} ; this
means that the range of the target accuracy level ¢

should be setto ¢ € {O, 1%)/} . The model-based approach

typically starts by constructing an empirical MDP M
based on all collected samples and then, “plugs in” this
empirical model directly into the Bellman recursion to
perform policy evaluation or planning, with prominent
examples including Q-value iteration (QVI) and policy
iteration (PI) (Bertsekas 2017).

2.1.4. Aside: Policy Evaluation. A related task is policy
evaluation, which aims to compute or approximate the
value function V™ under a given policy 7. To be precise,
for any target level ¢ > 0, the goal is to find an e-accurate

estimate V; such that

VseS: Vi (s)— V7(s)| <e. ®)

2.2. Finite-Horizon Markov Decision Processes
2.2.1. Models and Background. Another type of model
considered in this paper is a finite-horizon MDP, which
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can be represented and denoted by M = (S, A, {P}1,,
{r )i, H). Here, S and A denote, respectively, the state
space and the action space as before, and H represents
the horizon length of the MDP. For any 1 <h < H, we
let P, : S X A — A(S) denote the probability transition
kernel at step h. That is, Pj,(s"|s,a) is the probability of
transiting to s’ from (s, a) at step I; r,: S x A —[0,1]
indicates the reward function at step /1, namely that
ru(s,a) is the immediate reward gained at step / in
response to (s, a). As before, we assume normalized
rewards throughout the paper, so that all the 7,(s,a)’s
reside within the interval [0, 1].

Let 7= {m}1<u<y represent a deterministic policy,
such that forany 1 </ < H and any s € S, m1;(s) specifies
the action selected at step / in state s. Note that = could
be nonstationary, meaning that the 7t;,'s might be differ-
ent across different time steps /. The value function and
the Q function associated with policy 7 are defined,

respectively, by
Sp = S]

Sp=5s,a, = IZ‘|

7 (s):=E

H
> rilsi, ai)
[

forallseSandalll <h<Hand

H
Qj(s,a):=FE [Z 7k(Sk, ax)

k=h

for all (s,a)e Sx A and all 1<h<H. As usual, the
expectations are taken over the randomness of the
MDP trajectory {(s, ax)}1<x<p induced by the transition
kernel {P,};_, when policy 7 is adopted. With slight
abuse of notation, we let Q7 ,(s,a) = 0 for every (s,a) €
Sx A and Vf,,(s) =0 for every s € S. In view of the
assumed range of the immediate rewards, it is easily
seen that

0<Vji(s)<H and 0<Qj(s,a)<H

for any 7, any state-action pair (s, a), and any step h. Akin
to the infinite-horizon counterpart, the optimal value
functions {V} },<,<y and optimal Q functions {Q}1<;<y
are defined, respectively, by

Vi(s) := max Vii(s) and  Qj(s,a):= max Qji(s,a)
for any state-action pair (s,4) € S X Aandany 1 <h < H.
It is well known that there exists at least one policy that
allows one to simultaneously achieve the optimal value
function and optimal Q functions for all state-action
pairs and all time steps. Throughout this paper, we shall
denote by " = {7} }, <y an optimal policy.

2.2.2. A Generative Model and an Empirical MDP. Similar
to the infinite-horizon setting, we assume access to a
generative model, which is able to generate N indepen-
dent samples for each triple (s,a,h) € S x Ax [H] as

follows:
s}fl(s,a)i‘i»‘«d'Ph(~ |s,a), i=1,...,N.

The empirical transition kernel {P;}/, is thus given by
~ 1N ,
Vs'eS,  Pus'|s,a) :N;]l{s;l(s,a) =s'},  (6)

which records the empirical frequency of transitions
from (s, a) to state s at step h. This gives rise to a total

sample size N©@ := NH|S||A|. We shall let M = (S, A,
(P}, {r ML, H) represent the empirical MDP con-
structed from the data samples. The value function and

the Q function of a policy 7 for M can be defined analo-
gously, which shall be denoted by {V7}/ | and {Q}/,,

respectively. We denote by 7t* the optimal policy of M,
and the resulting optimal value function and Q function

are denoted by V; := VI and Qj := Q"' respectively.

2.2.3. Learning the Optimal Policy via Model-Based
Planning. Given the data samples in hand, the task of
policy learning in the finite-horizon case can be defined
similarly as the infinite-horizon counterpart. Specifi-
cally, for any target level ¢ > 0, the aim of policy learn-
ing is to compute an e-accurate policy 7test Obeying

V(s,a,h)e Sx AX[H]:
Vi) 2 Vi(s) —e, Q= (s,a) 2 Qj(s,a) . (7)

With the normalized range of the reward function, it
is easily seen that the value function and the Q func-
tion reside within the interval [0,H], thus implying
that the range of the target accuracy level should be
e €[0,H].

2.3. Notation

Let X:=(|S|,|Al, X, ). The notation f(X) = O(g(X))
means there exists a universal constant C; > 0 such that
f <Cig, whereas the notation f(X)=Q(g(X)) means
g(X) = O(f(X)). In addition, the notation O() (Q()) is
defined in the same way as O(-) (Q(-)) except that it
ignores all logarithmic factors in |S], | A, £, and .
For any vector a = [a;],;, € R", we overload the

notation 4/ and | - | in an entry-wise manner such that
Va =[], and |a| :=[|a;|],<;<,. For any vectors
a = [ai]1 <<, and b = [b;],<;,,, the notation a > b (a < b)
means a; > b; (a; <b;)forall1 <i<n,and weletaob :=

[2:bi]1<i<, represent the Hadamard product. Addition-
ally, we denote by 1 the all-one vector and by I the iden-
tity matrix. For any matrix A, we define the norm
Al = max; 37 Ayl
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3. Model-Based Planning in Discounted
Infinite-Horizon MDPs

As summarized in Table 1, the theory of all prior works

required the sample size per state-action pair to at least

exceed N > Q) ( i 1})/)2) .In order to break this sample size

barrier, we develop two model-based algorithms that
provably overcome such a sample size barrier.

3.1. Model-Based Reinforcement Learning:
Two Algorithms

Algorithm 1 (Perturbed Model-Based Planning)

The first algorithm applies model-based planning to
an empirical MDP with randomly perturbed rewards. Spe-
cifically, for each state-action pair (s,4) € S X A, we ran-
domly perturb the immediate reward by

rp(s,a) =1(s,a) + C(s,a),  C(s,a) i uUnif(0,&), (8)

where Unif(0,&) denotes the uniform distribution be-
tween zero and some parameter & >0 (to be spec1f1ed
momentarily).” For any policy 7, we denote by V7§ the
corresponding value function of the perturbed empirical
MDP M,, = (S, A, P, 7p,y) with the probability transi-
tion kernel P (cf. (3)) and the perturbed reward function
rp. Let 7T} represent the optimal policy of M, that is,

ﬁ; = arg max \A/g )
Algorithm 2 (Conservative Model-Based Planning)

An alternative approach that eliminates the need of
reward perturbation is to select approximately optimal
actions for the empirical MDP instead of the absolute
optimal actions. To be precise, denote by Q* (V") the
optimal action-value (value) function of the empirical
MDP M = (S, A, P,7,7) with the probability transition
kernel P (cf. (3)) and the original reward function r. By
producing a random draw from ¢ ~ Unif(0, &) (with &
specified shortly), we can generate the following pol-
icy Tt

7ie(s) :=min{a € A: Q*(s,a) > V*(s) — ¢}
(10)

VseS:

Note that there is an index assigned to each action as
A={1,...,|Al}, which induces a natural order for all
actions. In words, this approach is more conservative
and does not stick to the optimal actions with respect
to (w.r.t.) the empirical MDP; instead, the policy 7.
picks out—for each state s € S—the smallest indexed
action that is within a gap of s from optimal.

Remark 1. The perturbed model-based approach seems
more natural than the conservative model-based app-
roach in terms of the algorithm design, and we recom-
mend it in practice. Note, however, that the conservative

model-based approach admits simpler and cleaner anal-
yses, which might shed light on the algorithm design
and analysis for other settings as well.

3.2. Theoretical Guarantees

Indeed, both the approaches result in a value function
(Q function) that well approximates the true optimal
value function V* (optimal Q function Q*). We start by
presenting our results for the perturbed model-based
approach.

Theorem 1 (Perturbed Model-Based Planning). There
exist some universal constants co,c1 > 0 such that for any
0>0 and any 0<e< the policy 7}, defined in (9)

<t
obeys "

V(s,a) e SX A,

V(s) > Vis)—e  and QU (s,a) > Q(s,a) — ye,

(11)

with probability at least 1 — 6, provided that the perturbation

size is & = |C39(|15|Zl)|2 and that the sample size per state-action

pair exceeds

co log (d‘s‘)‘j;lsl b)
(1—y)e?
In addition, both the empirical QVI and PI algorithms
w.r.t. Mp (¢f. Azar et al. 2013, algorithms 1 and 2) are

[SIIA]
able to recover Tty perfectly within O(1 ylog((l_yMD

iterations.

N> (12)

Remark 2. Theorem 1 holds unchanged if £ is taken to
be ﬁls(ll |32f - for any fixed constant a >1. This paper
picks the specific choice a =5 merely to convey that a
very small degree of perturbation suffices for our

purpose.

Remark 3. Perturbation brings a side benefit; one can
recover the optimal policy 7 of the perturbed empiri-

cal MDP ﬂp exactly in a small number of iterations
without incurring further optimization errors. To give a
flavor of the overall computational complexity, let us
take QVI for example (Azar et al. 2013). Recall that each
iteration of QVI takes time proportional to the time

taken to read P (which is a matrix with at most N|SJ|A|
nonzeros); hence, the resulting computational complex-

ity can be as low as O( Ll log ((E“y“;lg@ )

Further, similar performance guarantees can be estab-
lished for the conservative model-based approach with-
out reward perturbation, as stated.

Theorem 2 (Conservative Model-Based Planning). Under
the same assumptions of Theorem 1 (including both the
sample size and the choice of &), the policy Ti. defined in
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(10) achieves
V(s,a) e SX A,
V;C(s) >V*(s)—¢ and Qa(s,a) > Q*(s,a) —ve,
(13)
with probability at least 1 — 6.

In a nutshell, the theorems demonstrate that both
model-based algorithms we introduce succeed in find-
ing an e-optimal policy as soon as the total sample com-
plexity exceeds the order of 'SHA‘ ; (modulo some log
factor). It is worth emphas1z1ng gchat compared with
prior literature, our result imposes no restriction on the
range of ¢, and in particular, we allow the accuracy
level ¢ to go all the way up to ;1
larly useful in the regime with small to moderate sam-

ple sizes because its validity is guaranteed as long as

N>Q( ! ) (14)
1—y

Tackling the sample-limited regime (in particular, the

scenario when N € [ } ) requires us to develop

=77 1y
new analysis frameworks beyond prior theory, which
we shall discuss in detail momentarily.

We remark that the work of Azar et al. (2013) estab-
lished a minimax lower bound of the same order as (12)
(up to some log factor) in the regime ¢ = O(1). A closer
inspection of their analysis, however, reveals that their

argument and bound hold true as long as ¢ = O (11 y).

This in turn corroborates the minimax optimality of our
perturbed model-based approach for the full ¢ range
(which is previously unavailable) and demonstrates
the information-theoretic infeasibility to learn a policy

strictly better than a random guess if N < O( ) Put

another way, Condition (14) contains the full range of
“meaningful” sample sizes.

Finally, we single out an intermediate result in the
analysis of our theorems concerning model-based policy
evaluation, which might be of interest on its own. Specifi-
cally, for any fixed policy m independent of the data, this
task concerns value function estimation via the plug-in
estimate V™ (i.e., the value function of the empirical M
under this policy). However simple as this might seem,
existing theoretical underpinnings of this approach re-
main suboptimal unless the sample size is already suffi-
ciently large. Our result is the following, which does not
require enforcing reward perturbation.

Theorem 3 (Model-Based Policy Evaluation). Fix any pol-
icy . There exists some universal constant cy > 0 such that
forany0<6<1andany0<esﬁ,onehas

VseS: |V(s)— V(s)| <e, (15)

with probability at least 1 — 0, provided that the sample size
per state-action pair exceeds

log (|S|1§gl+,/)
N>cp——n?. (16)
(I—y)e?

In words, this theorem reveals that V™ begins to outper-
form a random guess as soon as N > Q( ) The sam-
ple complexity bound (16) enjoys full coverage of the ¢
range (0, 1 y} and matches the minimax lower bound

derived in Pananjady and Wainwright (2019, theorem
2(b)) up to only a log logﬁ factor. In addition, a recent

line of work investigated instance-dependent guaran-
tees for policy evaluation (Pananjady and Wainwright
2019, Khamaru et al. 2020). Although this is not our
focus, our analysis does uncover an instance-dependent
bound with a broadened sample size range. See Lemma
1 and the discussion thereafter.

3.3. Comparisons with Prior Works and
Implications

In order to discuss the novelty of our results in context,

we take a moment to compare them with prior theory.

See Table 1 for a more complete list of comparisons.

3.3.1. Prior Bounds for Planning and Policy Learn-
ing. None of the prior results with a generative model
(including both model-based and model-free approaches)
were capable of efficiently finding the desired policy while
accommodating the full sample size range (14). For in-
stance, the state-of-the-art analysis for the model-based
approach in Agarwal et al. (2020) required the sample size

to at least exceed
N>QO <#> (17)
—o\a-»)

whereas the theory for the variance-reduced model-
free approach in Sidford et al. (2018b) and Wainwright
(2019b) imposed the sample size requirement

N>Q (ﬁ) . (18)

In fact, it was previously unknown what is achievable

in the sample size range N € { 7 } In contrast,

=y a-
our results confirm the mlmmax—optlmal statistical per-
formance of the model-based approach with full cover-
age of the ¢ range and the sample size range.

Remark 4. We briefly point out why the sample size bar-
rier (17) appeared in the analysis of Agarwal et al. (2020).
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Take Agarwal et al. (2020, section 4.3) for example; the

contraction factor y4/ w

to be smaller than one, thereby requlrmg N>Q((1

-7

3.3.2. Prior Bounds for Policy Evaluation. Regarding
value function estimation for any fixed policy 7, the prior
results in Azar et al. (2013), Pananjady and Wainwright
(2019), and Agarwal et al. (2020) for the plug-in approach

all operated under the assumption that N > Q ( . y)z>,

therem needs

Wthh is more stringent than our result by a factor of at
least —; ) . In addition, our sample complex1ty matches the

state-of the-

\/_
(Pananjady and Wainwright 2019, Agarwal et al. 2020)
while extending them to the range ¢ € [ = } un-

V1= y’l Y

covered in these previous papers.

4. Model-Based Planning in

Finite-Horizon MDPs
Moving beyond discounted infinite-horizon MDPs,
our theoretical framework is also able to accommodate
finite-horizon MDPs, which we detail in this section.

4.1. Algorithm: Model-Based Planning

The algorithm considered in this section is model-
based planning (without reward perturbation). Specifi-
cally, this model-based approach returns a policy 7+ =
{7t} }1<n<n by means of the following two steps.

1. Construct the empirical MDP M= (S, A, {ﬁh}lsth,
{rn}1<n<n, H) based on the data samples in hand (see (6)

for the computation of the empirical transition kernel Py).

2. Run a classical dynamic programming algorithm
(Bertsekas 2017) to find an optimal policy 7i* of the
empirical MDP M.

Note that 7t} is an optimal policy of M at step h, com-
puted by the dynamic programming algorithm calcu-
lated backward from h=H. Because 7} is calculated
solely based on what happens after step h, 7t} is inde-

pendent of the empirical transitions {P h<j<h-

It is noteworthy that, in contrast to the infinite-
horizon counterpart in Section 3, we do not need to
enforce random reward perturbation for this finite-
horizon case.

4.2. Theoretical Guarantees and Implications

The model-based algorithm described turns out to be
nearly minimax optimal as asserted by the following
theorem.

Theorem 4 (Model-Based Planning). There exist some
universal constants cy,c1 >0 such that for any 6 >0 and

any 0 < e < H, the aforementioned policy 7* returned by
model-based planning obeys

V(s,a,h)e SX AX[H]:
Vi?*(s) >V,(s)—¢ and QZ*(s,a) >Qp(s,a)—¢,
19)

with probability at least 1 — 0, provided that the sample size
for every triple (s, a, h) exceeds

coH? log (H|S||A\>

&2

N> (20)

Akin to the discounted infinite-horizon scenario, the
model-based approach manages to achieve ¢ accuracy
as long as the sample size per (s, a, h) exceeds the order
of

H3

2 (up to some log factor).

This result, which is valid for the full ¢ range (0, H], is
reminiscent of the bound (12), except that the effective
horizon 1})/ needs to be replaced by the horizon length
H. Given that there are in total |S||.A|H different combi-
nations of (s, 4, h), the total sample complexity is on the

order of O (|S||A|H4) .

The quadruple scaling H* of this total sample
complexity—as opposed to the cubic scaling in the dis-
counted infinite-horizon case—is because of time inho-
mogeneity; that is, the P;,’s might be different across £,
resulting in an additional H factor. Again, our result
kicks in as soon as the sample size satisfies

N > Q(H), (21)

improving upon the sample size requirement
N > Q(H?) (22)

in the state-of-the-art analysis for the model-based
approach of Yin et al. (2021).

5. Other Related Works

Classical analyses of reinforcement learning algorithms
have largely focused on asymptotic performance (e.g.,
Jaakkola et al. 1994, Tsitsiklis 1994, Tsitsiklis and Van
Roy 1997, Szepesvari 1998). Leveraging the tool kit of
concentration inequalities, a number of recent papers
have shifted attention toward understanding the perfor-
mance in the nonasymptotic and finite-time settings. A
highly incomplete list includes Bradtke and Barto (1996),
Kearns and Singh (1999), Even-Dar and Mansour (2003),
Strehl et al. (2006), Beck and Srikant (2012), Azar et al.
(2017), Bhandari et al. (2018), Dalal et al. (2018), Jin et al.
(2018), Lakshminarayanan and Szepesvari (2018), Shah
and Xie (2018), Sidford et al. (2018b), Cai et al. (2019),
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Fan et al. (2019), Gupta et al. (2019), Srikant and Ying
(2019), Wainwright (2019b), Xu et al. (2019), Chen et al.
(2020), Kaledin et al. (2020), Khamaru et al. (2020), Mou
et al. (2020), Qu and Wierman (2020), Xu and Gu (2020),
Li et al. (2021b, 2022¢, 2023), Shi et al. (2022), and Yan
et al. (2022b), a large fraction of which is concerned with
model-free algorithms.

The generative model (or simulator) adopted in this
paper was first proposed in Kearns and Singh (1999) and
has been invoked in Kearns and Singh (1999), Kearns et al.
(2002), Kakade (2003), Azar et al. (2012, 2013), Lattimore
and Hutter (2012), Sidford et al. (2018a, b), Pananjady and
Wainwright (2019), Wainwright (2019b), Yang and Wang
(2019), Agarwal et al. (2020), Khamaru et al. (2020), Wang
(2020), Wang et al. (2021), and Li et al. (2022a), to name
just a few. In particular, Azar et al. (2013) developed the
minimax lower bound on the sample complexity N =

[SIIA|log(| SIlA])
QI
icy and showed that, for any ¢ € (0,1), a model-based
approach (e.g., applying QVI or PI to the empirical MDP)
can estimate the optimal Q function to within an ¢ accu-
racy given near-minimal samples. Note, however, that
directly translating this result to the policy guarantees
leads to an additional factor of ﬁ in estimation accuracy

) necessary for finding an e-optimal pol-

and of ﬁ in sample complexity. In light of this, Azar
et al. (2013) further showed that a near-optimal sample
complexity is possible for policy learning if the sample
size is at least on the order of %L’é', which however, is

no longer sublinear in the model complexity. A recent
breakthrough in Agarwal et al. (2020) substantially im-
proved the model-based guarantee with the aid of au-
xiliary state-absorbing MDPs, extending the range of
[SllAllog(ISIAL
(1-y7?

motivated in part by Agarwal et al. (2020) but also relies
on several other novel techniques to complete the picture.

Finally, we remark that the construction of state-
absorbing MDPs or state-action-absorbing MDPs falls
under the category of “leave-one-out”’—type analysis,
which is particularly effective in decoupling compli-
cated statistical dependency in various statistical esti-
mation problems; see El Karoui (2018), Chen et al.
(2019a, b, 2021), Pananjady and Wainwright (2019),
Agarwal et al. (2020), Ma et al. (2020), and Yan et al.
(2021). The application of such an analysis framework
to MDPs should be attributed to Agarwal et al. (2020).
Other applications to Markov chains include Chen et al.
(2019a) and Pananjady and Wainwright (2019). More
recently, several follow-up works have further general-
ized the leave-one-out analysis idea to accommodate
broader RL settings, including offline RL (Li et al.
2022b), RL with linear function approximation (Wang

sample complexity to , oo) . Our analysis is

et al. 2021), Markov games (Cui and Yang 2021, Yan
etal. 2022a), and so on.

6. Analysis: Infinite-Horizon MDPs

This section presents the key ideas for proving our main
results following an introduction of some convenient
matrix notation.

6.1. Matrix Notation and Bellman Equations

It is convenient to present our proof based on some
matrix notation for MDPs. Denoting by ey, ...,e|s €
R!Sl the standard basis vectors, we can define the
following.

e reR!SMI: a vector representing the reward func-
tion 7 (so that 7(; ;) = r(s,a) for all (s,a) € S X A).

e V" e RISI: a vector representing the value function
V7™ (so that VI = V7(s) for all s € S).

e Q" e RISMI: a vector representing the Q function
Q™ (so that QF; ) = Q™(s,a) for all (s,a) € S x A).

e V*eRISI and Q* e RISMI: representing the opti-
mal value function V* and optimal Q function Q*.

o P e RISMIXISI: 3 matrix representing the probabil-
ity transition kernel P, where the (s, a)th row of P is a
probability vector representing P(:|s,a). Denote P;, as
the (s, a)th row of the transition matrix P.

o IT" € {0, 1}“S|X|‘SHA|: a projection matrix associated
with a given policy 7 taking the following form

el 07 0
0T eT 0T
= | (23)
T T T
00 0 ey

o PTeRISHIXISIAL and P, e RISXISI: two square
probability transition matrices induced by the policy n
over the state-action pairs and the states, respectively,
defined by

P":=PII" and P,:=1I"P. (24)

e 7, € RISl: a reward vector restricted to the actions
chosen by the policy m, namely r(s) = r(s, 7t(s)) for all
s € S (or simply, r, = I1"r).

Armed with the matrix notation, we can write, for
any policy 7, the Bellman consistency equation as

Q" =r+yPV" =r+yP"Q", (25)
which implies that
Q" =(I—yP")'r; (26)
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=(I- yPn)_lrn.
(27)

For a vector V =[Vi]i |5 € R!S!, we define the vector
Varp(V) € RISMI whose entries are given by

V(s,a) e S X A,

2
[Varp(V)] s = S P(s'[s,)V2 — (Z P(s'|s, a)VS,>

V=1 +yP V" and

s’eS s’eS

(i.e., the variance of V w.r.t. P(:|s,a)). This can be
expressed using our matrix notation as follows:

Varp(V)=P(VoV)—(PV)o(PV). (28)
Similarly, for any given policy 7, we define
Varp_(V) = I"Varp(V)
=P,(VoV)—(P,V)o (P,V)eRISl. (29)

We shall also define ‘7”, Q", ‘7*, Q*, 13, P, f’n, Varp
(V), Varp (V) w.r.t. the empirical MDP M in an analo-
gous fashion.

6.2. Analysis: Model-Based Policy Evaluation

We start with the simpler task of policy evaluation,
which also plays a crucial role in the analysis of plan-
ning. To establish our guarantees in Theorem 3, we aim
to prove the following result. Here, we recall that the
true value function under a policy 7 and the model-
based empirical estimate are given, respectively, by

=(I- )/Pn)_lrn and V'=(- ylA’n)_lrn. (30)
Lemma 1. Fix any policy n. Consider any 0 <6 <1, and

suppose N >3 o1 g(%). Then, with probability
at least 1 — 0, the vectors defined in (30) obey

4|$\log(1L)
210g %

N

T —yPo)!

e
4|S|log (T)
2ylog — 7V

o
VVarr IVl + gVl

4|S|10g<1%>
2log| ————1~

N(1—y)’

[V~ V7, <4y

< (31)

Proof. The key proof idea is to resort to a high-order suc-
cessive expansion of V™ — V7, followed by fine-grained

analysis of each term up to a certain logarithmic order.
See Online Appendix EC2.1. O

Clearly, Theorem 3 is a straightforward consequence
of Lemma 1. Further, we strengthen the result by provid-
ing an additional instance-dependent bound (see the
first line of (31) that depends on the true instance
P, V™), which is often tighter than the worst-case bound
stated in the second line of (31). Our contribution can be
better understood when compared with Pananjady and
Wainwright (2019). Assuming that there is no noise in
the rewards, our instance-dependent guarantee matches
Pananjady and Wainwright (2019, theorem 1(a)) up to
some log log -

the full sample size range N > Q( ) In contrast,
Pananjady and Wainwright (2019, theorem 1) is only
valid when N > Q<(1 7 )

6.2.1. Proof Ideas. We now briefly and informally de-
scribe the key proof ideas. As a starting point, the elemen-
tary identities (30) allow us to obtain

Vi — V= —yPy) 'ty — V"
=(I—yP) I —yP)V" — (I—yPy) "
(I - yPo)V"
=y(I —yPy) ' (Pr — Py)V". (32)

Because of the complicated dependency between (I —
)/Pn) and (P — P,)V", a natural strategy is to con-
trol these two terms separately and then, to combine
bounds; see Agarwal et al. (2020, lemma 5) for an intro-
duction. This simple approach, however, leads to sub-
optimal statistical guarantees.

In order to refine the statistical analysis, we propose
to further expand (32) in a similar way to deduce

(32) = y(I — yPy) (Pr — P)V™ + p{(I — yP) "’
— (= yPy) '}(Py — Pr)V"
= y(I — yPx) (P — Po)V™ + (I — yP) "
(P — PR)(I = yPy) ' (Pr — P)V", (33)

where the last line holds because of the same reason as
(32) (basically, it can be seen by replacing r. with (P, —
P, )V™ in (32)). This can be viewed as a “second-order”
expansion, with (32) being a “first-order” counterpart.
The advantage is that the first term in (33) becomes easier
to cope with than its counterpart (32), owing to the inde-
pendence between (I — yPn) and (P, — P,))V". How-
ever, the second term in (33) remains difficult to control
optimally. To remedy this issue, we shall continue to
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expand it to higher order (up to some logarithmic
order), which eventually allows for optimal control of
the estimation error.

Another crucial issue is that in order to obtain fine-
grained analyses on each term in the expansion (except for
the first-order term), a common approach is to combine
the Bernstein inequality with a classical entry-wise bound
on a quantity taking the form (I—yPn)_lx/Varpn(V)
(which dates back to Azar et al. 2013). Such a classical
bound in prior literature, however, is not sufficiently tight
for our purpose, which calls for refinement; see Lemma
EC.2 in the online appendix. Details are deferred to Online
Appendix EC.2.1.

6.3. Analysis: Perturbed Model-Based Planning
This subsection moves on to establishing our theory for
model-based planning (cf. Theorem 1) and outlines the
key ideas. In what follows, we shall start by analyzing
the unperturbed version, which will elucidate the role
of reward perturbation in our analysis.

We first make note of the following elementary
decomposition:
~VE)+ (v - V)

V- VE = (VT V) (VT

<(VF — VY4 (VT — V™), (34)

where the inequality follows from the optimality of 7*
w.r.t. V (so that V" < V') and the definition V* = V7.
This leaves us with two terms to control.

Step 1 (Bounding ||V™ =V ™||,,). Given that 7* is inde-
pendent of the data, we can carry out this step using
Lemma 1. Specifically, taking 77 = n* in Lemma 1 yields
that, with probability at least 1 — 9,

2 log (4 151 ?gﬁ)

N(1-y)’

v —v© (35)

lleo <

Step 2 (Bounding ||V™
Step 1 to ||1A/ﬁ* — V7|, is considerably more challeng-
ing, primarily because of the complicated statistical

dependency between (V*', V") and the data matrix P.
The recent work by Agarwal et al. (2020) developed a
clever “leave-one-out”’—type argument by constructing
some auxiliary state-absorbing MDPs to decouple the
statistical dependency when ¢ <1/,/1—y. However,
their argument falls short of accommodating the full
range of ¢. To address this challenge, our analysis con-
sists of the following two steps, both of which require
new ideas beyond Agarwal et al. (2020).

__® Decoupling statistical dependency between 7* and
P. Instead of attempting to decouple the statistical dep-

endency between V™ and P as in Agarwal et al. (2020),

—V™||..). Extending the result in

we focus on decouplmg the statistical dependency be-
tween the policy 7* and P. If this can be achieved, then
the proof strategy adopted in Step 1 for a fixed policy
becomes applicable (see Section 6.3.1). A key ingredient
of this step lies in the construction of a collection of auxil-
iary state-action-absorbing MDPs (motivated by Agar-
wal et al. 2020), which allows us to get hold of (v

—V7||. See Section 632 for details, with a formal
bound delivered in Lemma 5.

o Tiebreaking via reward perturbation. A shortcom-
ing of the approach, however, is that it relies crucially
on the separability of 7t* from other policies; in other
words, the proof might fail if 7* is nonunique or not
sufficiently distinguishable from others. Consequently,
it remains to ensure that the optimal policy 7* stands
out from all the rest for all MDPs of interest. As it turns
out, this can be guaranteed with high probability by
slightly perturbing the reward function so as to break
the ties. See Section 6.3.3 for details.

In the sequel, we shall flesh out these key ideas.

6.3.1. Value Function Estimation for a Policy Obeying
Bernstein-Type Conditions. Before discussing how to
decouple statistical dependency, we record a useful
result that plays an important role in the analysis.
Specifically, Lemma 1 can be generalized beyond the
family of fixed policies (namely, those independent
of P) as long as a certain Bernstein-type condition—
to be formalized in (37)—is satisfied. To make it pre-
cise, we need to introduce a set of auxiliary vectors as
follows:

0=z, VO =1 —yp,) O,

= /Varp [VID], VO .= @-yP) 0, 1>1.
(36)

Our generalization of Lemma 1 is as follows, which does
not require statistical independence between the policy
7 and the data P. Here, we remind the reader of the

notation |z|:=[|z]....,|z,]" and Vz:=[yz1...\za]"

for any vector z € R".

Lemma 2. Suppose that there exists some quantity 5, >0
such that {V"} (cf. (36)) obeys

v
(Pr— PV < \/7 Varp [V<’>]+51”N”°°,

Suppose that N > % B, Then, the vectors V'* = (I — yPy) !
7 and V= I- ylgn)flrn satisfy

v 6 [ B
V-V <7 38
- Viesi oSy 8
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Although the Bernstein-type condition (37) clearly
holds for some reasonably small g if 7 is independent of
P, it might remain valid if 77 exhibits fairly “weak” statis-
tical dependency on the data samples. This is a key step
that paves the way for our subsequent analysis of 7*.

6.3.2. Decoupling Statistical Dependency via (s, a)-
Absorbing MDPs. We are now positioned to demon-

strate how to control ||V — V||, w.rt. the optimal

policy 7t* to V. A crucial technical challenge lies in how
to decouple the complicated statistical dependency

between the optimal policy 7* and the V* (which
heavily relies on the data samples). Toward this, we
resort to a leave-one-row-out argument built upon a
collection of auxiliary MDPs, largely motivated by the
novel construction in Agarwal et al. (2020, section 4.2).
In comparison with Agarwal et al. (2020), which intro-
duces state-absorbing MDPs (so that a state s is absorb-
ing regardless of the subsequent actions chosen), our
construction is a set of state-action—absorbing MDPs, in
which a state s is absorbing only when a designated
action a is always executed at the state s.

6.3.2.1. Construction of (s, a)-Absorbing MDPs. For
each state-action pair (s, a) and each scalar u with
|u| <1/(1 —1y), we construct an auxiliary MDP M, ,;; it
is identical to the original M except that it is absorbing in
state s if we always choose action a in state s. More specifi-
cally, the probability transition kernel associated with
M 4, (denoted by P, , ) can be specified by

Py, (sls,a) =1,
PMs,n,u (S, |SI ﬂ) = 0/

P, (1s",a") = Pp(]s’,a"),

forall s’ #s,

for all (s,a") # (s,a),
39)

where P is the probability transition kernel w.r.t. the
original M. Meanwhile, the instant reward received at
(s, a) in M, is set to be u, whereas the rewards at all
other state-action pairs stay unchanged. We can define
M, analogously (so_that its probability transition
matrix is identical to P except that the (s, a)th row
becomes absorbing). The main advantage of this con-

struction is that for any fixed u, the MDP M s.0,u 15 Statis-

tically independent of P., (the row of P corresponding
to the state-action pair (s, 4) determined by the samples
collected for the (s, a) pair).

To streamline notation, we let QF, , represent the Q
function of M,,, under a policy 7, denote by T g the
optimal policy associated with M;,,, and let Q7 , be
the Q function under this optimal policy 77, ,. The

T *
notations V¢, and V[, regarding value functions

as well as their counterparts (ie., QF,,, QF, ., V?a W

‘7;1,”, T, ) in the empirical MDP M can be defined in

an analogous fashion.

Remark 5. The careful reader will remark that the in-

1

stant reward u is constrained to reside within | — T

ﬁ} rather than the usual range [0, 1]. Fortunately, none

of the subsequent steps that involve u require u to lie
within [0, 1].

6.3.2.2. Intimate Connections between the Auxiliary
MDPs and the Original MDP. In the following, we
introduce a result that connects the Q function and the
value function of the absorbing MDP with those of the
original MDP. The idea is motivated by Agarwal et al.
(2020, lemma 7), and its proof is deferred to Online
Appendix EC.2.2.

Lemma 3. Setting u*:=1(s,a) +y(PV*),,
has

—yV*(s), one

Q;,fl,u* = Q* and suu* - W (40)

Remark 6. Lemma 3 does not rely on the particular form
of P and can be directly generalized to the empirical
model P and the auxiliary MDPs built upon P.

In words, by properly setting the instant reward u =

1

u* (which can be easily shown to reside within | — =,

-
the original MDP have the same Q function and value
function under the respective optimal policies.

1), one guarantees that the (s, a)-absorbing MDP and
gu &

6.3.2.3. Representing = =" via a Small Set of Policies
Independent of Psa With Lemma 3 in place it is
tempting to use M s with 1% :=r(s,a) +y(PV*)Sa

yV*(s) to replace the original M. The rationale is sunple,
given that the probability transition matrix of M~

s,a,u*
does not_rely uponAIA’s,a, the statistical dependency
between ./\/l o and P;, is now fully embedded into a
single parameter u*. This motivates us to decouple the
statistical dependency effectively by constructing an ¢
net (see, e.g., Vershynin 2018) w.r.t. this single parame-
ter. The aim is to locate a point 1, over a small fixed set
such that (i) it is close to #* and (ii) its associated optimal
policy is identical to the original optimal policy 7t*.

It turns out that this aim can be accomplished as long
as the original Q function Q" satisfies a sort of separa-
tion condition (which indicates that there is no tie when
it comes to the optimal policy). To make it precise,
given any 0 < w < 1, our separation condition is charac-
terized through the following event:

B, == {0*(s,7*(s)) — max Q*(s,a)>w for all s € S}.
a:a#7*(s)

(41)
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Clearly, on the event B,,, the optimal policy 7t* is unique
because for each s, the action 7t*(s) results in a strictly
higher Q value compared with any other action. With
this separation condition in mind, our result is stated.
Here and throughout, we define an ¢ net of the interval

1 1 .
T 1| aS follows:

Ne:={-nce,

., —€,0,€,...,nc€},

1
for the largest integer 1. obeying n.e < =y

(42)
which has cardinality at most =5 V) -

Lemma 4. Consider any w > 0, and suppose the event B,
(cf. (41)) holds. Then, for any pair (s,a) € S X A, there
exists a point 1y € N (1—y)w/4, SUch that

=T (43)

S,a,Up "
Proof. See Online Appendix EC.2.3. O

6.3.2.4. Deriving an Optimal Error Bound Under the
Separation Condition. Armed with these bounds, we
are ready to derive the desired error bound by combin-
ing Lemmas 2 and 4.

Lemma 5. Given 0 <w <1 and 0> 0, suppose that B,
(defined in (41)) occurs with probability at least 1— 0.
Then, with probability at least 1 — 30,

32|S|lA
2 log({55)

3 and
N1 —-7y)

IV —v¥l, <6

(44)

[SIA]

provided that N > M for some sufficiently large con-
stant ¢y > 0.

Proof. See Online Appendix EC.2.4. O

6.3.3. A Tiebreaking Argument. Unfortunately, the se-
paration condition specified in B, (cf. (41)) does not
always hold. In order to accommodate all possible MDPs
of interest without imposing such a special separation
condition, we put forward a perturbation argument al-
lowing one to generate a new MDP that (i) satisfies the
separation condition and that (ii) is sufficiently close to
the original MDP.

Specifically, let us represent the proposed reward
perturbation (8) in a vector form as follows:

rpi=r+{, (45)

where {=[C(s, )]s zesx i an |S]|A|-dimensional vec-
tor composed of independent entries with each (s, a) Hd

Unif(0, £). We aim to show that by randomly perturbing
the reward function, we can “break the tie” in the Q func-
tion and ensure sufficient separation of Q values associ-
ated with different actions.

To formalize our result, we find it convenient to intro-
duce additional notation. Denote by 7 the optimal pol-

icy of the MDP M, =(S,A,P,r,,7) and by QE its
optimal state-action value function. We can define @;
and ﬁ; analogously for the MDP ﬂp =(S, A, P, p,7).
Our result is phrased as follows.

Lemma 6. Consider the perturbed reward vector defined in
Expression (45). With probability at least 1 — 6,

V(s,a) € S x Awith a # 1(s) :

x " co(1
Qs (s~ Qylsn) > ST,

This result holds unchanged if (Qg, 1) is replaced by
(Qp 7i5)-
Proof. See Online Appendix EC.2.5. O

(46)

Lemma 6 reveals that at least a polynomially small
E0(1—y)
3 [SIAT?
perturbation (with size &) of the reward function. As
we shall see momentarily, this level of separation suf-

fices for our purpose.

degree of separation (w = ) arises upon random

6.3.4. Proof of Theorem 1. Proof of Theorem 1. Let us
consider the randomly perturbed reward function as in
(45). For any policy 7, we denote by V7 (V”) the corre-
sponding value function vector in the MDP w1th proba-
bility transition matrix P (P) and reward vector rp.
Note that 75 (n*) denotes the optimal policy that maxi-
mizes Vg (‘7;).

In view of Lemma 6, with probability at least 1 — 9,
one has the separation

61 —y)

Qp6s (o) ~ Qo) > S gT7

uniformly over all s and a # 7t;(s). With this separation

(47)

in place, taking w := ;ﬁ(gh ATZ in Lemma 5 yields
. 2 log %I51%1 42
V5~ Vil < 12J 2o () = ). (48)
NI -»)

In addition, the value functions under any policy @ obey
V”—ngnﬁQI—Pﬂ”r—a—JﬂyHQ,

which taken Collectlvely with the facts [[r —rpll, <&
and [|[(I—yP™) ||, < 1y, gives

IV = Vil < I =y P hllr = rpll <

1
1—)/5'
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Specializing the relation to 7* and 7}, gives

1

V" = Villasy—¢  and
1- y

Ve —v P||oo_l 3 (49)

Now, let us consider the following decomposition:

Vi V= (VS — VRt + (Ve — V)
o Tt e *
+(Vp" = VD) +(Vp = V")

> (VA — V') + (V! = Vi) + (VT = V),

where the last step follows from the optimality of 7
w.r.t. V.. Taking this collectively with Inequalities (48)

and (49), one shows that with probability greater than
1-30,

A 2 log (%LSELAL
Vi —vis | 2 i1 —( 5(1”);’2)
1- N(1-y)

pe los (245
By taking &= W and N >ﬁ for some
constant ¢y > 0 large enough, we can ensure that 0>

V™ —V*> —¢1 as claimed. Regarding the Q func-
tions, the Bellman equation gives

Q™ — Q* =r+yPV™ — (r+yPV*) = yP(V"> — V*).

Consequently, one has
Q% — Q" = ~(VIPILIVT — V*Il) 1> —yel.

Finally, we demonstrate that both the empirical QVI
and PI w.rt. M, are guaranteed to find 7} in a few
iterations. Suppose for the moment that we can obtain
a policy 7, obeying

E6(1—y)
8|SIlAI2

Then, for any s € S and any action a # 7t} (s), one has
QT (s, 75(5)) — QR (s,a)
= Q;(5,75(5) — Qp(s,a) + (QE (s, 75 (5))
— Q} (5, 75(5) — (Qp(s,8) — Qj(5,2)

107 — Qjllu < (50)

> Q}(s,75(5) — Qp(5,0) — 2 Q% — Qs
&(-y) , &l-y)_,
AlS[AR 7 s[SIAE T

where the last line results from (47) and (50). In other
words, we can perfectly recover the policy 7, from the

estimate ng, provided that (50) is satisfied. In addition,

it has been shown that (Azar et al. 2013, lemma 2) the
greedy policy induced by the kth iteration of both

algorithms—denoted by m—satisfies ||Q”k - Q;IIM <
k+1 17},) SllA
(1 ;. Taking &= ‘Cfg(‘s‘ 4 and k=% log((llilly)é!ﬁ) for

some constant ¢, > 0 large enough, one guarantees that
71, satisfies (50), which in turn, ensures perfect recovery
of . O

6.4. Analysis: Conservative Model-Based Planning
In view of the conservative model-based planning (10),
we begin with the following decomposition:

— V) 4 (Ve - V),
(51)

Vi V= (VT V) 4+ (VT

In order to control the second term on the right-hand
side of the identity, we resort to the following lemma,
whose proof is postponed to Online Appendix EC.2.6.

Lemma 7. It holds that

v _prec €

1. (52)

Combining Lemma 7 with (51), we arrive at
— V) + (VT — V) 4 (Ve — vy

<(VT VT + %1 + (Ve — vy,

vV — VﬁC — (Vn*

(33)

Clearly, the first term of (53) has already been con-
trolled in Section 6.2, whereas the second term of (53) is

extremely small when we take & = O(%). It thus

suffices to bound the third term of (53), which again
requires decoupling the statistical dependence between

Ticand P.

6.4.1. Representing 7 via a Small Set of Policies Inde-
pendent of Ps 5. Akin to our analysis for the perturbed
model-based planning algorithm in Section 6.3, a key
step lies in demonstrating the connection between 7.
and a reasonably small collection of leave-one-out aux-
iliary MDPs. Toward this, we are in need of the follow-
ing lemma, which characterizes certain “stability” of
our conservative model-based strategy and lies at the
core of our analysis. The proof is deferred to Online
Appendix EC.2.7.

Lemma 8. Consider any given Q function Q:8x A—R
and its associated value function V:S — R (ie., V(s) =

mang(s a) for all s). Generate an independent random
variable ¢ ~Unif(0,&). Then, with probability at least
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1-56,

{ae A:Q(s,a)>V(s)—c}
={ae A:Q(s,a)>V(s)— ¢} (54)

VseS,

holds simultaneously for all Q function Q : S X A — R (and
its associated value function V : S — R) obeying

&6

(S,ﬂ)| SW (55)

max |Q(s,a) ~ Q
As an important implication of this lemma, the pol-
icy . computed in (10) remains unchanged upon
slight perturbation of the Q-function estimates. Armed
with Lemma 8 and the leave-one-out auxiliary MDPs
{./\/l sau} constructed in Section 6.3, our analysis pro-
ceeds as follows.
e For each (s,a) € SX A, there exists a point ug €
Na- 1y (cf. (42)) such that the optimal Q function of Q

of /\/ls,a,u0 obeys

5,,100

”Q:,a,ug - Q*”m < w. (56)

This is a fact that has already been established in the
proof of Lemma 4; see (EC.21) in the online appendix.
e Define a conservative policy for M, ,, as follows:

Vs'€S:  Tsaupc(s’) =min{a’ € A: Q7 (s,a")

> V:a uo( ,) - C,_},

where Qb o, AN Vsa ., denote the optimal Q function
and opt1ma1 value function of M., respectively.
Taking w = and invoking Lemma 8 and (56), we

arrive at

&0
8[SIIA]

7/T\c = ﬁs,a,uo,c . (57)

This result (57) parallels Lemma 4 for the perturbed
model-based planning algorithm, revealing that 7. is
representable using a policy independent of the ran-
domness associated with (s, 4). The remaining proof of
Theorem 2 then follows from an identical argument as
in the proof of Theorem 1 and is hence omitted here.

7. Analysis: Finite-Horizon MDPs

In this section, we outline the proof of Theorem 4. We
shall start by introducing a set of convenient matrix
notations before embarking on the main proof.

7.1. Matrix Notation and Bellman Equations
Akin to the infinite-horizon case, we introduce some
matrix notation for finite-horizon MDPs. Analogous to
Section 6.1, we introduce the following set of notation.

® 1, € R"S”Al a vector representing the reward func-
tion ry, at step h.

e V7 e R!Sl: avector representing the value function
V7' of rt at step h.

e V; e RISI: a vector representing the optimal value
functlon V at step h.

o Qf e R'S”A‘ a vector representing the Q function
Qj of m at step h.

e Q; eRISMI: 3 vector representing the optimal Q
function Q at step h.

o P, e RISMIXISI: 3 matrix representing the proba-
bility transition kernel Py, at step h.

o Py, e RISIXISI: 3 submatrix of P,, which consists
of the rows with indices coming from {(s, 7t,(s))|s € S}.

o1/ € R!S!: a subvector of ,, which consists of the
rows with indices coming from {(s, 7t (s)) |s € S}.

Armed with this notation, the Bellman equation here
is given by

Qp=m+PVy,,  1<hs<H, (58)
where we recall that forall s € S,
VE(s) = Qf(s,m(s) and Vi,y(s)=0.  (59)
This also allows one to derive
=1+ Py VL. (60)

We shall also define ‘A/}f, QZ, AZ, Q;, 13;1, 13,1,71 w.r.t. the
empirical MDP M in an analogous fashion.

7.2. An Auxiliary Value Function Sequence
Obeying Bernstein-Type Conditions

Similar to the infinite-horizon case (in particular, Sec-
tion 6.3.1), we find it convenient to introduce a col-
lection of auxiliary vectors as follows. For any />0,
define

V}?H =0 and ‘A/gl)ﬂ =0 (61)
forany 1 </ < H and any policy 7, define the following
sequences recursively:

1O =, V0= p, VO,
VO =0 4 P,

e\ Narn VEDL V= e,
V=4 p,, V0, Ix1. (62)

As can be easily verified, {V( )} coincides with the value
function of policy 7t in the true MDP M, whereas {V(O) }
corresponds to the value function of policy 7 in the
empirical MDP M.

As it turns out, if the auxiliary sequence satisfies certain
Bernstein-type conditions, then we can establish a useful
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upper bound on the entry-wise difference between V(O)
and V! h 0 as stated. The proof of this lemma is deferred to
Online Appendix EC.3.1.

Lemma 9. Suppose that there exists some quantity f; >0
such that the sequence {Vh +1} constructed in (62) obeys

1%
<\ B v Bl

V0<I<log,H,1<h<H-1.

!
(Phn _Ph n)Vg,L

(63)
In addition, assume that N > 12Hp, . Then, we have
~ 38,H
VO - v, <6H —ﬁl\ll (64)

forall1 <h <H.

7.3. Proof of Theorem 4

Proof of Theorem 4. Let us begin with the following
elementary decomposition:

V- Vi = (VE — Vi) + (VE = V) + (V- V)

< (Vi Vi) + (V) = V). (65)

Here, the inequality follows from the definition Vj, =

VI, as well as the fact that VI < VI (because 7* is the
optimal policy of the empirical MDP). In light of (65),
there are two terms that need to be controlled.

We intend to bound both 17}: — VI and V[ — ‘7Z
by means of Lemma 9. Toward this, we first note that
for any policy 7, the associated value functions of the
MDP and the empirical MDP obey the following Bell-
man equations:

. S ~ ~
h = r]71-[ + Ph,nV;’l-[+1’ V/717 = r;;[ +P]1,7'!V}7Z+1/

along with the boundary conditions V} ; = Vi, =0.

This indicates that the vector V,SO) (‘7,(10)) constructed in
(62) is precisely the value function of policy 7t at step h in
the true MDP (empirical MDP). As a result, in order to
invoke Lemma 9, it is sufficient to verify the Bernstein-
type Condition (63) w.r.t. policies 7* and 7t* for some
sufficiently small quantity f.

e Let us begin with the optimal policy 7*, which is
fixed and statistically independent of the data samples.
As aresult, if we take 7 = 77* during the construction of
(62), then it is Clearly seen that P), is statistically inde-
pendent of Vh +1- Applying the Bernstein inequality
together with the union bound then guarantees that
with probability exceeding 1 — 9,

B BV,
(66)

(P, — PV | <

h+1

holds uniformly over all 0</<log,H,1<h<H-1,
(s,a) € S x A, where f; is given by

B, ::4log(H|86”A|>. (67)

Armed with Condition (66), we can readily invoke
Lemma 9 to reach

N ~ 38.H
Vo = VO - VO, <6Hy /2

Vi - N
12H log (HISIAL
< 6H¢ w

N

with probability at least 1 — 0.

e Next, we move on to the policy 7* by taking 7 =
71* during the construction (62). Note that Vgll depends
only on 7;(j > /i +1). In view of our assumption on 7*
(ie., it is computed backward via dynamic program-
ming), 7 is independent of any 13 with j<1i, and hence,
V(l) 1 is statistically independent from P;. Consequently,
the preceding bounds (66) and (67) continue to hold. All
of this immediately results in

e 12H log ("1341)
V7 Vil s6HY

with probability exceeding 1 — 6.
Substituting the bounds into (65), we arrive at

12H 105;25%) y

0< V-V < 12H¢ (68)

with probability greater than 1—25, provided that
N >48H log (%) By taking the right-hand side of

(68) to be smaller than €1, we immediately conclude
the proof. O

8. Discussion

This paper has demonstrated that (some variants of)
model-based planning algorithms achieve the minimax
sample complexity in the presence of a generative model
as soon as the sample size exceeds the order of % for

y-discounted infinite-horizon MDPs and |S||.A|H? for
time-inhomogeneous finite-horizon MDPs (modulo some
log factor). Compared with prior literature, our result has
considerably broadened the sample size range, allowing
us to pin down a complete trade-off curve between sam-
ple complexity and statistical accuracy.

The present work opens up several directions for fu-
ture investigation, which we discuss in passing.

e [s perturbation or conservative action selection
necessary for infinite-horizon MDPs? The planning
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algorithm analyzed here for infinite-horizon MDPs is
either applied to a perturbed variant of the empirical
MDP (as in perturbed model-based planning) or run
in a conservative manner (as in conservative model-
based planning). This, however, gives rise to a natural
question regarding the necessity of perturbation or
conservative action selection. Can we achieve optimal
performance directly using plain model-based plan-
ning on the empirical MDP? Although we conjecture
that the answer is affirmative, settling this conjecture
requires new techniques beyond the analysis frame-
work of this paper.

e Improved analysis for model-free algorithms. As
mentioned previously, an even more severe sample
complexity barrier is present in all prior theory regard-
ing model-free approaches (e.g., Sidford et al. 2018b,
Wainwright 2019b, Li et al. 2022c). Our analysis might
shed light on how to overcome such barriers for model-
free approaches.

e Time-homogeneous finite-horizon MDPs. When it
comes to finite-horizon MDPs, the present work con-
centrates on time-inhomogeneous MDPs, where the
probability transition kernels may vary across time
steps. Another important scenario is concerned with
time-homogeneous MDPs, where P; =P, =---=Pp. It
remains unclear how to develop tight sample analysis
for time-homogeneous MDPs because of the lack of sta-
tistical independence across time steps (namely, we
shall use all samples to estimate the kernels across time
steps as they are identical).

e Markovian sample trajectories. Going beyond the
generative model, another common form of data sam-
ples takes the form of a Markovian sample trajectory,
which is generated by taking actions according to a sta-
tionary behavior policy in the MDP. This is also referred
to as the asynchronous setting in the context of Q learn-
ing (Tsitsiklis 1994). Although the sample complexity of
several RL algorithms under this data-generating mech-
anism has been studied in prior literature (e.g., Qu and
Wierman 2020; Li et al. 2022¢, 2023), it remains unclear
how to achieve minimax optimality for the full ¢ range
because of the complicated statistical dependency across
time. The recent work by Li et al. (2022b) demonstrated
the plausibility of converting a finite-horizon Markovian
trajectory into independent samples via twofold sample
splitting in the context of offline RL. It would be interest-
ing to investigate whether one could employ a similar
idea—in conjunction with a proper leave-one-out analy-
sis framework—to settle the sample complexity in the
presence of Markovian samples.

e Online exploratory RL. In practice, there is no short-
age of applications where the learner acquires data sam-
ples by executing the MDP in real time. This corresponds
to an important setting, called online RL, that requires
careful managing of the exploration-exploitation trade-
off (Jin et al. 2018, Bai et al. 2019, Li et al. 2021b).

Interestingly, the model-based approach—with pro-
per modification to implement optimism in the face
of uncertainty—achieves minimax-optimal regret asymp-
totically (Azar et al. 2017), although its performance in
the sample-starved regime remains largely unknown. It
would be of great interest to see whether the analysis
ideas developed herein could help characterize the sam-
ple efficiency of model-based online RL for the entire
€ range.

e Beyond the tabular setting. The current paper fo-
cuses on the tabular setting with finite state and action
spaces. Although we improve the sample size range, the
sample complexities might still be prohibitively large
when | S| and | A| are enormous. Therefore, it is desirable
to further investigate settings where low-complexity func-
tion approximation is employed to improve the efficiency
(e.g., Yang and Wang 2019, Jin et al. 2020, Li et al. 2021a).
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Endnotes

T Here and throughout, the “model” refers to the transition kernel
and the rewards of the MDP taken collectively.

2 Note that perturbation is only invoked when running the plan-
ning algorithms and does not require collecting new samples.
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