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Abstract—We study age of information (Aol) minimization in
an ad hoc network consisting of energy harvesting transmitters
that are scheduled to send status updates to their intended
receivers. The transmission scheduling with power allocation
problem over a communication session is first studied assuming
apriori knowledge of channel state information, harvested energy,
and update packet arrivals, i.e., the offline setting. The global
optimal scheduling policy in this case is the solution of a mixed
integer linear program which is known to be computation-
ally hard. We propose a supervised-learning-based algorithm
to mitigate the high computational complexity. A bidirectional
recurrent neural network that interprets user scheduling as
a time-series classification problem is trained and tested to
achieve near-optimal Aol. Next, we consider online scheduling
and power allocation with causal knowledge of the system
state, which is an infinite-state Markov decision problem. In
this case, the related reinforcement learning problem is solved
by a model-free on-policy deep reinforcement learning, where
the actor-critic algorithm with deep neural network function
approximation is implemented. Comparable Aol to the optimal is
demonstrated and faster runtime of learning solvers is observed,
verifying the efficacy of learning in terms of both optimality and
computational energy efficiency for Aol-focused scheduling and
resource allocation problems in wireless networks.

Index Terms—Age of information, information freshness, en-
ergy harvesting, user scheduling, mixed integer programming,
machine learning, BiLSTM, actor-critic deep reinforcement
learning.

I. INTRODUCTION

Timely information exchange is crucial for many of forth-
coming wireless networking applications, including vehicular
networks, unmanned aerial vehicle networks, and IoT net-
works [3]-[5]. Maintaining freshness of information in such
networks brings about the need for a new network design
metric, i.e., age of information (Aol) [6], [7]. Aol quantifies
the time elapsed since the generation of the latest successfully
received update. Distinct from metrics of delay or latency, Aol
thus captures the timeliness of information from a receiver’s
perspective.

Aol has been studied widely in various system setups
since its introduction, see for example [8]-[16]. Reference [7]
has analyzed Aol from a queuing theoretic perspective, and
characterized Aol for single-source M/M/1, M/D/1, and D/M/1
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queues with first-come-first-served (FCFS) service, revealing
that Aol minimization offers different insights than delay min-
imization. The authors have next considered last-come-first-
served (LCFS) service for M/M/1 with and without preemption
in [8], and concluded that Aol can be potentially reduced by
LCFS and preemption. Extensive studies on the analysis of
Aol has subsequently been carried out for multiple sources [9],
multiple servers [10], with packet deadlines [11], for multi-hop
networks [12]. General arrival and service time distributions
have been considered in reference [13], where the stationary
distributions of Aol for FCFS and LCFS service disciplines are
characterized, considering M/G/1, G/M/1, and G/G/1 queuing
models. The exact age for G/G/1/1 systems with and without
service preemption are derived in [14]. Packet generation at-
will has been considered in [15], and general nonnegative, non-
decreasing age penalty functions are proposed. For arbitrary
packet generation times and arrival times, the preemptive Last-
Generated-First-Serve (LGFS) policy is shown to be age-
optimal in [16] in a stochastic ordering sense for multi-server
systems with exponential service times. This paper focuses on
wireless ad hoc networks through which timely information
needs to be sent.

User scheduling, i.e., scheduling transmissions in a (wire-
less) ad hoc network, is a classical resource allocation problem
with a decades-long history, often with throughput as the
metric, see for example [17], [18]. Recent references have
considered user scheduling for minimum Aol. In [19], the
multi-source scheduling problem is identified as NP-hard as
an integer linear program, and a suboptimal algorithm is
proposed to reduce complexity. User scheduling in broadcast
wireless networks is considered in [20], where the base station
transmits updates to users scheduling one user at a time.
Interference constraints are considered in [21] when a subset of
links can be active simultaneously. Extensions on time-varying
channels with perfect CSI and CSI statistics are studied in
[22] and [23], respectively. Decentralized scheduling in multi-
access uplink channels is investigated in [24], where round-
robin scheduling with newest-packet buffer is proved to be
asymptotically optimal with a massive number of terminals.

In energy harvesting communication networks, where com-
munication is powered by intermittently acquired energy,
energy availability has to be explicitly taken into account to
ensure the information freshness. Consequently, Aol-optimal
update policies under energy harvesting constraints have gen-
erated significant recent interest. Aol minimization for an en-
ergy harvesting source has been considered in references [25],
[26]. In [27], asymptotically optimal update policies based on
system statistics are derived. In particular, for a unit battery,
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a threshold policy is shown to be optimal. Reference [28] has
further considered the full battery recharge and incremental
battery recharge models for a finite battery. In the class of
renewal policies, the optimal policy is proved to have an
energy-dependent multi-threshold structure. Aol minimization
for energy harvesting nodes is further investigated in [29]-[31]
considering energy-controlled delays, two-hop systems, and
erasure channels, respectively. Update failure due to channel
noise is also considered in [32]. In our earlier work [33], online
Aol minimization in cognitive radio networks is studied by
formulating Markov decision processes (MDPs) taking into
account opportunistic spectrum access by an energy harvesting
Aol-focused secondary user. In [34], a non-linear function of
Aol is analyzed considering randomness in update generation,
transmission, and energy arrival. Aol in wireless powered
networks, where nodes obtain energy from dedicated wireless
energy signals, has been studied in [35]-[38]. For a recent
comprehensive survey in Aol, see [39].

Most works on Aol-focused energy harvesting communica-
tions study optimal update policies and their properties for
simple network structures, e.g., point-to-point transmission,
which are amenable to model-based analytic approaches. In
this paper, we take a different view point and consider a
network formation model that is unlikely to admit a simple
solution, but could benefit from learning-based approaches.
Specifically, we consider a wireless network consisting of
nodes capable of energy harvesting to send status updates,
each wanting to update their intended receivers. The goal is
to enable all users to reliably update their status information in
a timely and energy efficient manner over a common channel,
by selecting their transmission times and their transmit powers.
We consider time division as in [19], [20], while taking into
account energy constraints, channels, as well as the packet
arrival process. User scheduling in both offline and online
settings are investigated with different levels of system state
information. The problem is solved in a centralized manner
by the proposed approaches, where the scheduling decision
is signaled to the wireless nodes in control messages. The
signaling overhead for control signaling and node status report
and the corresponding energy consumption are considered as
normal system operation cost.

In the offline setting with full apriori knowledge of the
system state, user scheduling is formulated as a mixed integer
program with the objective of Aol minimization, whose solu-
tion complexity is a critical issue due to the binary variables
of transmitter activation. The typical approach to address this
challenge has been to either solve a computationally easier op-
timization problem related to the original one, i.e., a relaxation,
or identify a near-optimal solution by some other means. Re-
cent advent of machine learning in wireless communications
[40], [41] provides a new avenue. For the offline problem, we
utilize machine learning with the express purpose of solving
a computationally hard optimization problem, and assess the
potential of utilizing such an approach for problem sizes where
computation cost of the optimal solution maybe prohibitive.
We propose a learning-based algorithm that solves the offline
problem as a time series classification problem. Recurrent
neural networks are particularly successful in processing time
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series data for sequence-to-sequence learning [42], and that is
the approach we take. In particular, we implement a multi-
layered neural network with bidirectional long short-term
memory (BiLSTM) to map the system state input vector to the
user scheduling output vector, which performs near-optimally.
This is meant to be a benchmark for any system with causal
knowledge and is typically a first step in scheduling problems.

We next turn our attention to the more realistic online
setting where only causal information of the system state
is available. We aim to develop an online scheduling policy
based on the current and the past observations. Unlike classical
model-based approaches, here, we aim to do so without the
knowledge of any statistics of the system state on energy,
channel, or packet arrivals. In this case, the associated MDP
formulation lacks the transition model rendering a model-
free reinforcement learning problem. Among diverse learning
approaches, deep reinforcement learning (DRL) [43]-[45], is
a powerful technique for dynamic control design and has
been applied in solving challenging problems in wireless
networks due to its capability of dealing with model-free and
large dimensional systems. In [46], update policy for Aol
minimization is learned via reinforcement learning algorithms
when the successful update probability is unknown. In [47],
a multi-agent deep reinforcement learning algorithm based
on the deep recurrent Q-network is proposed to solve the
Aol-oriented online user scheduling in wireless (non-energy
harvesting) ad hoc networks. Recent reference [48] imple-
ments a deep Q-network (DQN) learning to jointly optimize
wireless energy transfer and scheduling of update packets in
an MDP formulation with a large dimensional state space.
For our model-free system with continuous-valued states, we
address the online user scheduling leveraging DRL. An actor-
critic algorithm with neural network function approximations
is utilized, which is an on-policy algorithm and does not
require large memory for experience replay in contrast to
DOQON.

We highlight our main contributions in this paper as follows.

o We formulate the user scheduling and power allocation
for Aol minimization in energy harvesting ad hoc net-
works as a mixed integer linear program.

« We propose a learning-based near-optimal algorithm that
transforms the offline problem to a time series classifica-
tion problem and design a recurrent neural network with
BiLSTM layers to compute the user scheduling.

e We formulate the online user scheduling and power
allocation as a reinforcement learning problem and solve
it using the actor-critic DRL algorithm.

o The optimality and energy efficiency of the proposed
learning solvers are verified by experimental results
which demonstrates near-optimal Aol performance and
significant reduction in runtime as compared to the opti-
mization solver.

The remainder of the paper is organized as follows. Section
IT presents the system model. In Section III, we focus on
offline Aol minimization. The online Aol minimization is
studied in Section IV. In Section V, we show the experimental
results. Section VI concludes the paper.
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Fig. 1. System model. hj; denotes the channel gain of user k in time slot j.

II. SYSTEM MODEL

We consider a system consisting of K users and their
intended receivers. Each user wants to send status updates,
e.g., of a physical process, and would like to keep the infor-
mation fresh at its intended receiver, as shown in Fig. 1. The
transmitter-receiver pairs are fixed throughout the session'.
The user index is denoted by k € {1,2,..., K}. The users
harvest energy from ambient energy sources and transmit
update packets consuming the harvested energy. The battery
capacity at each user is assumed to be sufficiently large so
that energy overflow need not be considered; this simplifies
the energy state formulation. Each node is assumed to harvest
energy independently, i.e., correlation of harvested energy at
different nodes is not considered in our formulation. Time is
slotted and the duration of each slot is normalized 1 second for
simplicity. The jth slot indicates the time interval [t;_1,%;),
where j = 1,2,... and {3 = 0. The channel between each
user and its receiver is assumed to be flat-fading. The path
loss and Rayleigh multipath fading are taken into account for
the channel gain, which is denoted by hy; for user & in slot j.
At most one user is scheduled to transmit in each slot. Each
user either transmits to its receiver or harvests energy in each
slot so that idle users harvest and accumulate energy. Let py;
denote the transmission power and e; denote the energy that
user k can harvest in slot j.

Each user sends update packets that are generated by itself
or received from an external source. Either scenario is referred
to as packet arrivals in the paper. The timestamp for the
arrival of the wuth update at user k is denoted by 7x,, for
u=1,2,..., Uy, where Uy, is the total number of updates in
T slots. The new update packet replaces the old one that has
not been sent out. Thus, only the newest packet is buffered at
each user for the sake of information freshness. We assume
that the size of the update packet is uniform and small, for
which the transmission takes one slot. An update is delivered
successfully by user k if the received signal-to-noise ratio
(SNR) is larger than a target SNR ~;, that is,

Dhjhij

LH 2 o, ()

'Multiple transmitters may have the same intended receiver.
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Fig. 2. A sample path of Aol. Dashed lines indicate the packet waiting time
at the user and the solid stair-shaped lines indicate the Aol counted discretely
at the end of each slot by the receiver. The first and the third packet are
delivered. The second update is replaced by the third one.

where o2 is the noise power.

We adopt a linear Aol model [6], [7]. Aol is defined as
the time elapsed since the most recently received update is
generated. Let ay; denote the Aol for the user k at t;, which
indicates the age of the received packets at the end of slot j. At
each slot, the scheduled user is enabled to transmit an update
packet. If the delivery is successful, i.e., the received SNR is
above the target, the age drops to t; — 7, for the delivery of
packet u;, where u; is the newest packet by ¢;_;. Otherwise,
the age grows by 1, as shown in Fig. 2. Aol evolves as follows
for all k, j.

tj — Tru;,  if user k delivers packet u; at ¢;
agj = successfully, 2)
ar,j—1+ 1, otherwise,

where ayg is the Aol at ¢y for user k. the The objective is to
minimize the average Aol of the system. Next, we consider
the Aol minimization problem in offline and online settings.

III. OFFLINE AOI MINIMIZATION

In the offline setting, we consider the Aol minimization
problem with channel states, energy states, and packet arrival
timestamps for T slots known apriori to the scheduler. Optimal
transmission policy of user scheduling and power allocation
in this case is the solution to a mixed integer linear program
(MILP).

A. Mixed Integer Linear Program

We first define binary scheduling variables. Let y;; € {0,1}
denote the update scheduling variable, where y;; = 1 indicates
user k is scheduled to send an update in slot j and yz; = 0
indicates it is idle and harvesting energy. Let x,; € {0,1}
denote the packet scheduling variable, that xy,; = 1 indicates
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the uth packet of user k is sent in slot j and successfully
delivered at ¢;, and xy,; = O otherwise. That is,

, if user k is scheduled at jth slot,
Ykj = . 3)
0, otherwise.

1, if user k delivers packet u at t;,
Thuj = . “4)
0, otherwise.
The energy state at ¢; is expressed in terms of the update
scheduling variable y; and the transmission power py;, which
is given by

i J
ST VTP SRR
i=1 i=1
= By -1+ enj(1 — yrj) — prj- (6)

where ey is the initial energy of user k.

The average Aol over all users and 7" slots is minimized
over the scheduling variables, as well as the transmission
powers. The MILP formulation is given by

1 T K
A=gg 2 2

min (7a)
Tuj, Ykj €{0,1}, akj, Prj o1 k=1
K
S.t. Zykj <1, V], (7b)
k=1
0 < prj < Pmax¥rj, kK, J, (7¢)
Ey; >0, Vk, j, (7d)
pk;if;kj > VZykjv Vkvja (7e)
arj > agj—1+ 1 —yrjlaro +T), VK, j, (7)
Uk
akj >t — Y TkuTkus — (1= yes)ty, K, J, (72)
u=1

xkuj(tj_l - [Tku])(LTk,u—i-lJ - tj_l) Z O, Vk‘,u,j, (71’1)

T
> wky <1, Vk,u, (7i)
j=1

Uy
ki = Y Thuj» k. J, (7))
u=1

The optimization objective of the average Aol over time
and users is given by (7a). Constraint (7b) indicates that at
most one user is scheduled to update in each slot. Constraint
(7c) imposes that the power is no larger than pyax if the
user is scheduled, and py; = 0 if not. In (7d), we specify
the energy causality constraint that the consumed energy by
t; is no larger than the harvested energy. The constraint in
(7e) dictates that the update by the user k is successful if
the received SNR is at least v; when the user is scheduled.
The inequalities in (7f) and (7g) specify the Aol of user k,
which are linear variations of (2) [19]. Specifically, if user k
is idle, i.e., yx; = 0, (7f) becomes ay; > ax,;—1 + 1 and (7g)
becomes aj; > — Zgil TruTkuj- Thus, (7T) must be satisfied
with equality due to the minimization of the objective and the
nonnegative age. For y;; = 1, the RHS of (7f) is negative since
the age cannot be larger than ayo + 7', where apg > 0 is the
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initial Aol of user k. Then, only (7g) is active, which implies
that ax; > t; —Zg; 1 TkuZky;- Constraint (7h) ensures that the
uth packet can only be scheduled after its arrival and before
the replacement of the next packet. That is, ;_1, the beginning
of the scheduled slot for packet u has to be within the interval
[[Tku s | Th,ut1]] to satisfy the nonnegativity expressed in (7h).
By (7i), each packet is transmitted only once or dropped.
Constraint (7)) implies the relationship between y;; and 2.,
that an user must be scheduled if one of its packet is to be
sent.

The solution of the MILP in (7) can be found by using
the off-the-shelf optimization solver CPLEX [49], which im-
plements algorithms like branch-and-bound and cutting planes
[50]. As MILP is known to be computationally hard to solve
[50], we next utilize a learning-based algorithm to obtain
scheduling policies.

B. Learning-based Algorithm

We propose a learning-based near-optimal algorithm in or-
der to alleviate the computational burden of the MILP for large
K. In particular, the original problem in (7) is decomposed
into two steps: determining the update scheduling variables
and calculating the transmission power. We utilize supervised
learning and design a neural network (NN) to solve the
scheduling subproblem as a time series classification problem,
where each time step of the sequence input is classified into
one of the output classes [42], [S1]. The training input for the
sequence to sequence learning is the system state information
over T steps, and the training output is the sequence of the
optimal update scheduling variables obtained by solving the
MILP in (7). For our system with K users and only one update
in each slot, the output of the NN at each time step is one of
the K +1 classes, where class k indicates user k is scheduled
to update, i.e., yr; = 1,ym; = 0,Vm # k, and class K + 1
denotes that no one is scheduled, i.e., yz; = 0, Vk.

We construct a multi-layered bidirectional recurrent neural
network mapping the input system state sequence to a vector
of update scheduling variables. Since user scheduling is de-
termined by exploiting the dependencies of the system states
over time slots, the bidirectional long short-term memory
(BiLSTM) layer is deployed as the core of the NN to learn
these dependencies in both forward and backward directions
[52], [53]. An LSTM block consists of a cell, a forget gate, an
input gate, and an output gate. The cell tracks the information
of the time series input. At each block (time step), based on the
output of the last block and the current time step of the input
sequence, the three gates control the level of information to
forget, update, and output for the cell state. The unidirectional
LSTM structure helps maintain an internal state and aggregate
the history of observations [54], [55], while BILSTM preserves
information from both the past and the future by letting cell
states flow both forwards and backward, as shown in Fig. 3.

Based on the MILP in (7), we extract the state information
of the system as input features, Wl;iCh are the energy harvesting
oh]:/j;i , the maximum available
energy min{pmax, Zgzo erit, and the age at a successful

state ey, the required energy
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Fig. 3. A general structure of a BiLSTM layer shown unfolded in time for
three time steps [52].
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Fig. 4. The structure of the BILSTM NN.

update instant, i.e., t; — Ty, Hence, one input sequence
sample is represented by a K-by-T matrix given by

X1

Xo

XK
where X}, is the 4-by-T block matrix for user k:

log,, (62;@
o
log,., e

logCS (mln {pma)m Eg:() eki})

tj — Thu,

X, =

©))

We take the logarithmic representation to normalize the values
of the states that could vary by orders of magnitude. The loga-
rithmic bases, c1, ¢, c3, are chosen to normalize the numerical
values in a proper range. The output sequence, denoted by Y is
a T-dimensional vector with categorical elements from K + 1
classes. The structure of the NN is illustrated in Fig. 4, where
the input sequence feeds into the two BiLSTM layers, and a
fully connected layer with a softmax activation function before
the classification output.

With a well-trained NN, the user scheduling output can be
easily obtained by inputting the system state sequence. The
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classification output Y gives the prescheduling variable gy,
Vk,j. For yi; = 1, a packet availability variable v;; can be
determined by checking if an update packet is available at
t;_1, based on the constraints that the packet arrival timestamp
needs to be smaller than ¢;_; and each packet can be either
sent only once or dropped. vi; = 1 indicates there is an update
to send at slot j and vy; = 0 otherwise. Then, the actual
scheduling variable at each time slot is obtained by further
checking the energy causality constraint (7d), and the power
allocation py; can be calculated by the SNR constraint (7e).

Let gi; denote the required energy for a successful update,

*
— k9

ie., qr; = Ty Therefore, we have

Ukj]‘EijO’ if gk?j =1 and qkj < Pmax;

Yes = 0, otherwise, (10
Dkj = Yk;jlkj (11)
where
Ekj =FErj-1— Qkj (12)
j-1
=epo + Z (eki(l — Yki) *PM) — Qkj» (13)
i=1

and 1, denotes the indicator function of «, that 1, = 1 if «
is true and 1, = 0 otherwise. Hence, the Aol can be obtained
by

akj = Yrj(t; — Thu;) + (1 — yrj)(ak,j—1 + 1). s

By this learning-based algorithm, we are able to determine
near-optimal schedules and achieve computational energy effi-
ciency by avoiding the branch-and-bound search implemented
by the optimization solver, as will be demonstrated in Sec-
tion V.

IV. ONLINE AOI MINIMIZATION

In the online setting, we consider user scheduling for Aol
minimization based on the causal knowledge of the system
state information. In contrast with knowing the channel gain,
the harvested energy, and the packet time stamps for 7' slots
apriori as in offline optimization, the user scheduling decision
is made at each slot with the past and the current states
available. Assuming the well-defined transition probabilities,
we first formulate the sequential decision making problem as a
Markov decision process (MDP). The MDP formulation serves
as a benchmark and helps motivate the proposed approach in
the sequel that is based on the actor-critic method.

A. Markov Decision Process

We aim to derive an online policy that sequentially sched-
ules status updates over time to minimize the long-term aver-
age Aol of the system. MDP is defined by a tuple (S, A, P, r),
where S is the state space, A denotes the set of actions, P
is the transition model that specifies the probability from the
one state to another given an action is taken, and r is the
immediate reward for taking an action at a certain state. These
are specified for our system as follows.
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State: The system state at the beginning of each time slot,
denoted by S; € S, consists of the Aol, the packet waiting
time, the required energy, and the available energy for all users,
ie., S; = (aj_1,w;,q;,Ej_1), where a;_; and E;_; are the
vectors with entries ay ;1 and Ej ;1 for k = 1,2,..., K
given in (2) and (5), respectively. w; defines the vector of
packet waiting times at the beginning of slot j, whose entries
are

tj_1 — Tku;, if an update packet is buffered
B atuser k at t;_q,
ki = -1, if no update packet is available
at user k at t;_q,
(15)
for £ = 1,2,..., K. Vector q; denotes the required energy

by all users for successful updates at slot j, i.e., gx; = 7,’;; .
Note that the state space S is infinite (the states are continuous-
valued).

Action: A; in each slot is the index of the scheduled user,
ie, 4; ¢ A=1{0,1,2,...,K}; A; = 0 implies no one is
scheduled as we consider at most one user is scheduled per
slot.

Reward: The immediate reward is the negative of the user-
averaged Aol of the system, since we aim to minimize Aol.
More specifically, given state S = (a,w,q,E) € S, if action
A € A is taken and the next state is S’ = (a’,w', ¢/, E’) € S,
the immediate reward is defined as

K

r(S,A) = —% Za%.

k=1

(16)

Transition Probability: The transition probability of reach-
ing state S’ from state S by taking action A, denoted by
P(S’|S, A), defines the dynamics of the system, where the
transition depends only on .S but not the history of the earlier
states. Note that action A; at slot j gives the pre-scheduling
variables §,; for k =1,2,..., K, as defined in Section III-B.
Taking action A; on the system results in going through the
steps in (10)-(14) so that the next state is determined.

The goal is to maximize the cumulative reward in the long
run. Here, we consider the sum of the discounted rewards from
a starting slot onward, i.e., G; = Z:ij B*=Ir(8Sy, Ar), where
B € (0,1) is the discount rate. As § approaches 1, the future
rewards are more relevant and the discounted return becomes
more farsighted [44]. For any given state, the policy specifies
the action, i.e., the mapping from the state space to the action
space, denoted by m : & — A. The value function is the
measure of “how good” to be in a state or to perform an action
in a state under a given policy. Mathematically, the state-value
function is the expected return given an initial state, and the
action-value function is the expected return taking an action at
a given state, which are defined as V(S) = E;[G;|S; = 5]
and Q(S,A4) = E;[G,|S; = S,A; = A], respectively.
The objective is to find the optimal policy 7* that enables
the system to act in the way that maximizes the expected
discounted return, i.e.,

" = argmax V. (S5), VS € S.

™

a7
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The optimal value functions, V;+(S) and Q.~(S,A), are
the values achieved by the optimal policy, which satisfy the
Bellman equations [44].

Vs (S) = mgXQW*(S, A) (18)
= m{gx%P(SﬂS, A) [7‘(5, A) + ﬁVW*(S/)],
19)
Q- (5, 4) = Y P(S']S, A)[r(S, A) + fmax Qr- (5", A')].
Sl
(20)

The optimal action-value function, namely Q-function, deter-
mines the optimal action at each state directly by

7 (S) = argmax Q .~ (S5, A), VS € S.
A€eA

2y

Aside from the curse of dimensionality that MDP suffers
from, we note that this approach relies on the statistics of the
state variables. We wish to consider the general case that does
not assume any statistics of the random processes of the energy
harvesting nor the packet arrivals. Without an explicit model of
the system dynamics, the agent, which is the controller of the
system, can learn from the interaction with the environment,
i.e., the system, over a sequence of time slots. Hence, a
reinforcement learning problem with the need for model-free
methods naturally arises. Additionally, the infinite states force
us to approximate the value function using the more com-
pact parameterized function representations, especially the NN
function approximation. The NN with layers of neurons and
connections ensures the approximate input-output mapping for
the value functions due to its universal nature. Reinforcement
learning with the NN function approximation approach leads
to the framework of deep reinforcement learning (DRL). Next,
we address the online scheduling problem using DRL.

B. Actor-Critic Deep Reinforcement Learning Algorithm

We use actor-critic deep reinforcement learning [44], which
is a model-free on-policy method combining the learning tech-
niques of both the value-based and the policy-based methods.
In value-based reinforcement learning methods, for instance,
SARSA [44], the Q-function is learned as an approximate
solution to the Bellman equation and the policy is derived from
the Q-function as given in (21). On the other hand, in policy-
based learning algorithms, a policy function that maps the
state observations to actions is directly learned to identify the
probability of taking action A at state S, denoted 7(A|S; @),
where 0 is the parameter of the policy function. The method
seeks to maximize the expected return E[G] of the policy, and
thus updates the parameter in the direction that increases the
probabilities of actions that achieve higher rewards.

The value function can be viewed as a critic to evaluate the
quality of the policy, while the policy function is the actor that
indicates how to act in a certain state. The actor-critic methods
merge the two classes in the way that the policy function and
the value function are learned simultaneously, and the policy
is improved from the feedback given by the value-function
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Fig. 5. The schematics of the actor-critic deep reinforcement learning
algorithm. The dashed lines indicate the parameter update of the actor and
the critic network.

instead of the rewards directly. Thus, it inherits the advantage
of low-variance gradients and accelerates learning [56].

Here, we focus on the advantage actor-critic (A2C) algo-
rithm [44], [57]. As shown in Fig. 5, the actor is a network
parameterized by 8,, which consists of an input layer of 4K
neurons and a softmax output layer with hidden layers in
between. The actor network maps the system state observation
S; to the action probability distribution 7(A,|S;;6,), and
schedules an user based on the estimated probabilities at each
slot. The critic is a second network that approximates the state-
value function with parameter 6. Its input layer has the same
number of neurons for the 4K -dimensional state input, and
the estimated state value is given by the output layer with
one neuron. In the training stage, at each step, the agent first
interacts with the environment for j.x slots following the
current policy given by the actor, which generates jy,ax States,
actions, and rewards from the current slot looking ahead. Then,
the critic evaluates the policy by the ja.x-step temporary-
difference (TD) error of the value function:

5.7 = G7]+]max - V(Sj; 00) (22)

Specifically, Gj.jj,... is the sum of the discounted rewards
for jmax steps and the estimated value for the future steps,
which is given by

JtJimax—1

> BEIN(Sk, Ak) B V(S g s Oc)-

k=j

(23)
The parameters of the actor and the critic networks, 8, and
6., are updated in the direction of maximizing the expected
return and minimizing the TD error, respectively, where the
gradients are given by

Gjijtjmax =

jmax

0, = 6;Ve, Inm(4;]S;;6.), (24)
j=1
jmax

0. = 6;Va V(S;;6.), (25)

j=1
The pseudocode for the training procedure is summarized
in Algorithm 1. With a well-trained actor-critic agent, the
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user scheduling action A; is determined by the actor alone
based on the input state .S;, and performing the action on the
system gives the next state. The favorable performance of the
proposed approach is demonstrated in Section V.

Algorithm 1 The Training Procedure of the Actor-Critic Deep
Reinforcement Learning Agent for User scheduling

Set the episode number N, the episode length 7', the looking
ahead step number j,.x, and the learning rate 7, 7.
Initialize the parameters for the actor network and the critic
network, 8,, 6.
for episode n =1,..., N do
Reset the environment and initialize state S
for step 7 =1,...,7 do
for step i =75,...,7 + Jmax — 1 do
Generate an user pre-scheduling action A; by fol-
lowing the current policy 7(-|S;; 6,);
Take the action A;, observe the next state S;;1 ac-
cording to (10)-(14), and obtain the reward r(A;, S;)
by (16);
Compute the estimated value V'(S;; 6..) of the critic
network.
end for o
Based on {S;, A;,r(A;, Si),Sm}iij-“‘“‘l, calculate
the the return G5 .. given by (23).
Compute the jmax-step TD error: 0; = Gjj.. —
V(S 53 OC)
Calculate the accumulated gradients df, and d@. by
(24) and (25).
Update the parameter of the actor network: 6, < 6, +
Mg dBq.
Update the parameter of the critic network: 8, < 0.+
N dO..
end for
end for

V. EXPERIMENTAL RESULTS

In this section, we demonstrate the Aol performance of
the proposed algorithms for different system parameters. Each
user and its associated receiver are located randomly and
separated by a uniformly distributed distance in [10,200]
meters. The path loss exponent is assumed to be 4. The channel
gain is considered to be the product of the path loss and the
Rayleigh fading, where the fading coefficients are complex
Gaussian variables with zero mean and unit variance, i.e.,
CN(0,1). The noise power is —71 dBm. The maximum power
is set to be pmax = 0.1 watt. The initial age and the initial
energy are the same for all users, which are agg = 1 and
exo = 0.01 joule for all k. The harvested energy for each
user k in slot j ey; is exponential with mean 1 mJ, and is
ii.d. for all users and slots. Each user switches between the
energy harvesting period and the energy unavailable period,
where the durations are exponential with mean 5 and 2 slots,
respectively. The update packet arrival at each user is a Poisson
process and the inter-arrival time between successive packets is
exponential. We vary the mean of the inter-arrival time, x, and
the SNR threshold for successful updates, v*, to investigate
their impact on the performance.
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Fig. 6. The training progress of the BiLSTM network for K = 5, u = 4
slots, and v* = 15 dB.

A. Offline Performance

We first present the Aol performance of the offline case for
a duration of 7" = 50 slots. The optimal solution is obtained
by the CPLEX solver, which provides the performance upper
bound for comparison. For the learning-based algorithm, we
train the BiLSTM network shown in Fig. 4, where each
BiLSTM layer has 60 hidden units and the fully connected
layer has K + 1 neurons. The stochastic gradient descent with
momentum (SGDM) optimizer is adopted with momentum 0.9
and the learning rate 0.01. Fig. 6 shows the training process
for the offline user scheduling for K = 5, u = 4 slots,
and v* = 15 dB. The logarithmic bases are chosen to be
cy = ¢; = c3 = 10 for data normalization in (9) and the
log of zero is set to be a small value, e.g., le — 20. The
network is trained on 800 samples with a mini-batch size
of 64. The validation is taking on 100 samples for every
60 iteration. The training ends when the validation accuracy
cannot be improved anymore, which approaches about 85% in
this case. We compare the performance of the learning-based
user scheduling with the optimal Aol in Fig. 7 for different
values of v* and p. For this case of K = 5, the learning-
based algorithm achieves the near-optimal performance with
a gap of about one slot to the optimum. The Aol increases
with the growing SNR threshold since the users wait longer to
accumulate sufficient energy for a successful update and thus
update less promptly. Similarly, when the packet inter-arrival
time becomes larger, the updates are sent less frequently which
results in a higher Aol.

B. Online Performance

We next focus on the Aol performance for online user
scheduling by the actor-critic DRL algorithm. The actor-critic
network is trained by the simulated data as in the offline
case. We choose the episode length to be 7' = 50 intended
to compare with the offline results, and the number of steps to
look ahead for the TD error is jiax = 50. The discount factor
B is 0.99. The actor network consists of three fully connected
layers, the first layer with 4K neurons for the input vector
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Fig. 7. The offline average Aol versus the update SNR threshold for K = 5.
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Fig. 8. The training progress of the actor-critic DRL agent for K = 3, p = 4
slots, and v* = 3 dB.

of the system state, the second layer with 64 neurons and the
ReLU activation function, and the third layer of K +1 neurons
with the softmax activation function to output the probability
distribution of the action space. For the critic network, the
input and the hidden layer have the same structure as the
actor, followed by the output layer of one neuron to compute
the state value. The two networks are trained simultaneously,
while the actor evaluates its policy based on the state value
learned by the critic. Thus, the learning rate of the actor is set
to be 7, = 0.001, which is smaller than the learning rate of
the critic n. = 0.005, to allow the actor to converge slower.
We use the Adam optimizer. To stabilize the learning process,
the gradient is clipped to 1 if it exceeds this threshold. Fig. 8
records the training process for the first 30000 episodes, where
the reward is averaged over 100 episodes for illustration. We
notice that the agent usually learns fast with a rapidly growing
average reward at the beginning stage and then improves the
reward gradually and stably with small fluctuations over long
training time. We next show the Aol results of the online user
scheduling solved by the actor-critic agent trained over 50000
to 80000 episodes for each system setup.

In Fig. 9, the online performance is compared to the
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Fig. 9. The average Aol versus the update SNR threshold for K = 3 and
© = 2 slots.

offline results. Varying the update SNR threshold, we show
the average Aol obtained by the offline MILP optimization,
the offline learning-based algorithm, the offline rate-optimal
policy, and the online DRL algorithm in Fig. 9 for K = 3 and
i = 2. For the online result, the user scheduling action A;
is determined by the trained actor given the current state S
at each slot, and the agent, i.e., the scheduler of the system,
performs the action. We mimic the interaction with the system
by going through (10)-(14), where 9y, is directly given by the
action A;. As shown in Fig. 9, the Aol for the online user
scheduling is comparable to the results of the offline optimal
and the offline BiLSTM supervised learning even based on the
causal system state observations.

In Table. I, the Aol for different number of users, K, are
presented given fixed values for p and *. We observe that
the learning algorithms for both the offline and the online
scheduling are more likely to achieve the near-optimal per-
formance for the system with a small number of users. This is
expected, as the number of users grows, the size of the system
state vector is larger, which challenges learning approaches.
In particular, for K = 10, the number of hidden units of the
BiLSTM layers is increased to 90 for the offline learning-
based user scheduling. For K = 1 and K = 3, the hidden
layer of the actor network for the online scheduling agent
is also omitted to simplify the structure of the network and
shorten the training process. However, we also note that for
larger networks, the learning based approaches offer feasibility
of near-optimal policies.

The average test runtime (seconds) for an episode of 50 slots
is also listed in Table. I. The average computation time for
the offline MILP optimization by the CPLEX solver increases
significantly with the number of users since the complexity
increases exponentially with the size of the optimization
problem. On the other hand, the average testing time by the
BiLSTM solver or the actor-critic DRL solver does not vary
much.

Online scheduling by the actor-critic DRL solver takes
longer for the interactions over slots as expected, while the
offline scheduling by the BiLSTM solver is obtained faster
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TABLE I
AVERAGE PERFORMANCE FOR DIFFERENT NUMBERS OF USERS

K CPLEX Solver | BiLSTM solver AC DRL solver

Aol | Runtime | Aol | Runtime Aol Runtime
1 5.89 0.0972 6.39 0.0017 6.90 0.0372
3 6.02 0.9181 6.71 0.0035 7.54 0.0388
5 6.40 2.4279 7.42 0.0054 9.05 0.0407
10 | 7.26 | 11.7344 | 9.55 0.0100 13.62 0.0518

at one shot for the whole episode. Both machine learning
methods are orders of magnitude faster compared to CPLEX.
Although the computation task of learning solvers is dom-
inated by the training process which could take hundred
times of testing time, in contrast to the optimal solver which
would need to run at every instance the system state changes,
learning-based solvers only need to be trained occasionally
to adjust the mapping relationship between the input system
state and the output transmission policy. The relative insensi-
tivity of the algorithm performance to precise knowledge in
the offline system knowledge suggests coarse estimates may
suffice to result in comparable age-based policies to those with
perfect knowledge. Overall, the proposed machine learning
approaches provide more robust and energy efficient solvers
with less sensitivity to system variations and less computation
time for comparable system performance.

VI. CONCLUSION

In this paper, we have considered user scheduling, i.e.,
transmission times and powers, for Aol minimization in energy
harvesting networks. Both problems are computationally hard
to solve and make excellent candidates to utilize machine
learning approaches. In the offline setting, we have provided
the MILP formulation for the optimal scheduling policy and
proposed a learning-based near-optimal algorithm by imple-
menting a recurrent neural network. The BiLSTM network
that can learn from the time series data bidirectionally is
employed to solve the scheduling subproblem. The near-
optimal performance of the proposed algorithm verifies the
effectiveness of the BILSTM network on user scheduling. The
proposed near-optimal algorithm also shows better scalability
in terms of runtime.

For the online setting, we have proposed a model-free
reinforcement learning problem for sequential user scheduling
based on the MDP formulation. The actor-critic DRL algo-
rithm is adopted to solve the online scheduling, where the
actor network and the critic network are trained to approximate
the policy function and the value function, respectively. The
online scheduling by the DRL algorithm is shown to achieve
comparable performance to the offline results with a stable
runtime. Furthermore, the runtime is orders of magnitude
better than the optimization solver, which suggests energy
efficiency of the DRL based solution.

We have shown in this paper that learning can be a viable
alternative to optimization relaxation or approximation meth-
ods in order to find near-optimal solutions to computationally
hard MILP problems, by demonstrating the efficacy of two
machine learning approaches in user scheduling for Aol mini-
mization in energy harvesting networks. The proposed learning
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approach can be applied to moderate-size wireless systems to
achieve near-optimality with modest computational time. For
very large scale systems (the feature space of system state
grows as the number of nodes increases), distributed learning
facilitated by wireless edge devices [58] may need to be
considered. Future directions in learning and freshness infor-
mation include, explicitly incorporating the computation times
into the problem of learning to transmit fresh information,
considering systems where nodes have correlated harvested
energy, and investigating decentralized learning for the user
scheduling problem with Aol as a metric.
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