
Preparing for Future Heterogeneous Systems Using
Migrating Threads

Peter Kogge
Jayden Vap
Derek Pepple
kogge@nd.edu
jvap2@nd.edu

dpepple@nd.edu
University of Notre Dame
Notre Dame, Indiana, USA

Abstract
Heterogeneity in computing systems is clearly increasing,
especially as “accelerators” burrow deeper and deeper into
different parts of an architecture. What is new, however, is a
rapid change in not only the number of such heterogeneous
processors, but in their connectivity to other structures, such
as cores with different ISAs or smart memory interfaces.
Technologies such as chiplets are accelerating this trend.
This paper is focused on the problem of how to architect effi-
cient systems that combine multiple heterogeneous concur-
rent threads, especially when the underlying heterogeneous
cores are separated by networks or have no shared-memory
access paths. The goal is to eliminate today’s need to invoke
significant software stacks to cross any of these boundaries.
A suggestion is made of using migrating threads as the glue.
Two experiments are described: using a heterogeneous plat-
form where all threads share the same memory to solve a
rich ML problem, and a fast PageRank approximation that
mirrors the kind of computation for which thread migration
may be useful. Architectural “lessons learned” are developed
that should help guide future development of such systems.

CCS Concepts: • Computer systems organization→ Ar-
chitectures; Parallel architectures;Multicore architec-
tures; • Networks→ Network protocols;

Keywords: parallel, heterogeneous, multi-threading, migrat-
ing threads

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ExHET ’24, March 02–06, 2024, Edinburgh, United Kingdom
© 2024 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0537-3/24/03
https://doi.org/10.1145/3642961.3643801

ACM Reference Format:
Peter Kogge, Jayden Vap, and Derek Pepple. 2024. Preparing for
Future Heterogeneous Systems Using Migrating Threads. In The 3rd
International Workshop on Extreme Heterogeneity Solutions (ExHET
’24), March 02–06, 2024, Edinburgh, United Kingdom. ACM, New
York, NY, USA, 8 pages. https://doi.org/10.1145/3642961.3643801

1 Introduction
Heterogeneous systems involve multiple architecturally dif-
ferent processing units, each optimized for different function-
ality, that are ganged together to solve compute-intensive
problems. Fig. 1 diagrams an architecture typical of many
of today’s commodity servers. Multiple conventional multi-
core sockets are in the same node with multiple GPU mod-
ules.
Software support for such system architectures is fairly

mature, with languages such as CUDA [2, 20] and OPENCL
[26] providing interfaces between programs in the conven-
tional cores and accelerator routines in the other accelerator
cores. Such interfaces are, however, rather one-directional.
It is pedestrian for conventional cores to launch accelera-
tor cores, but the opposite is still a challenging novel task
[11, 27].

An even more disjointed situation occurs in systems with
potentially thousands of such nodes. Now not only can “ac-
celerator” threads not spawn conventional threads, but a
conventional thread in one node cannot even spawn an ac-
celerator thread in a separate node without traversing multi-
ple software stacks. Such calls then use an entirely separate
protocol to communicate with a thread in the other node
that in turn should do the first thread’s bidding. Completion
acknowledgements must then again be relayed indirectly
back through a similar tortuous path. All of this extra soft-
ware adds significant latency and represents wasted compu-
tational potential on cores on both sides of the interface.

Looking forward, there are two trends: "accelerators" are
coupling even closer to conventional cores, moving on-module
or on-die. Second, they are also dispersing even further away
and deeper into the memory systems or networks of large
parallel systems.

https://orcid.org/0000-0002-3329-547X
https://orcid.org/0000-0003-0416-1699
https://orcid.org/0009-0006-9963-6384
https://doi.org/10.1145/3642961.3643801
https://doi.org/10.1145/3642961.3643801

ExHET ’24, March 02–06, 2024, Edinburgh, United Kingdom Kogge and Vap and Pepple.

General
Purpose
Socket

DDRx

DDRx

General
Purpose
Socket

DDRx

DDRx

.

.

.

.

.

.

General
Purpose
Socket

DDRx

DDRx

General
Purpose
Socket

DDRx

DDRx

.

.

.

.

.

.

Network Interface Chip

GPU

Socket

GDDR

GDDR

.

.

.

GPU

Socket

GDDR

GDDR

.

.

.

HBM

HBM

HBM HBM

HBM

HBM

today

Figure 1. Heterogeneity Today.

All of these cases are the focus of this paper, where poten-
tially huge numbers of accelerators may be found in a system,
and where conventional processors capable of running so-
phisticated runtimes may not be “nearby” the accelerators.
It is clear that in such cases, unless there is a change in ar-
chitectures, the cost of spawning and managing activities in
heterogeneous cores will become more and more onerous. In
such cases, the software costs of deciding where data resides,
what is the appropriate accelerator to perform the desired
function, and where is the processor that is close enough to
manage the computation request will become enormous.
This paper explores the beginnings of an architecture

where communication intended to start remote operations
“elsewhere” in a system does not require any, let alone deep,
software stacks, nor even any particular program-level knowl-
edge as to onwhich node particular data objects live. Threads
are not constrained to live out their existence on specific
nodes, but can “migrate” freely as needed without software
intervention throughout the system.
To explore what kind of, and how much, functionality

might have to be carried by such migrations, and what might
be the nature of the “controllers’ for such accelerators, this
paper draws observations from two experiments. The first
explores a parallel machine learning application where lo-
calized training happens on accelerators (GPUs) and the
exchange of model vector updates must be handled by a
functionality with a bigger system view. The second explores
a fast PageRank application that has significant remote func-
tion invocation.
Section 2 discusses the two problems used in the experi-

ments discussed here. Section 3 describes the setup for the
experiments. Section 4 reviews the lessons observed from the
two experiments. Section 5 discusses a proposed architecture
that remediates the major issues found. Section 6 discusses

ExHET24:wildebeest

Training
Set

ŵ

Train

Local
Update

w

-

Cluster j-1

Training
Set

ŵ

Train

Local
Update

w

-

Cluster j+1

Training
Set

Local
Update

Cluster j

ŵ

Train

w

- QueueQueue

Red: Training Blue: Local Update Green: Remote Update
Yellow: Processing triggered by arrival of token at Cluster j

Figure 2. Hogwild++ Data flow Associated with Cluster j.

the semantics of cross-border function invocations. Section
7 concludes.

2 Example Heterogeneous Problems
2.1 Hogwild! Overview
Machine learning (ML) is an essential part of modern comput-
ing. The inferencing part of ML is often straightforward to
perform efficiently, especially by purpose-built hardware (cf.
Google’s TPU [12]). However, learning is far more complex.
One well known technique is Stochastic Gradient Descent
(SGD) that repeatedly uses training data against an evolv-
ing model vector. When a projection (inference) is incorrect,
the “direction” of the error is used to modify the model vec-
tor slightly. A series of studies have explored a wide range
of different parallel SGD algorithms [8, 24, 29, 30], largely
on multi-core chips, with at best limited scalability. Mem-
ory issues such as inter-socket coherency traffic and false
sharing have been primary. Perhaps the most influential of
these algorithms was Hogwild! [17, 18] - a multi-threaded
implementation where independent trainers could update
the same model vector at the same time with a feature-at-a-
time atomic update. This algorithm demonstrated scaling of
up to 4.5X on 10 core systems for sparse problems. A follow-
on, Hogwild++ [30], provided better speedups (up to 9.5X on
40 cores for problems for which the conventional algorithms
do poorly) by creating “clusters” of cores where each cluster
had an affinity to a distinct memory channel (cf. Fig. 2). Each
cluster ran a separate training session using Hogwild! on
just local data, but with a rotating “token” whose arrival on
a cluster caused it to exchange changes in its model vector
with the next cluster.

2.2 Frogwild! Overview
An important metric in graph processing is “vertex impor-
tance” as computed by techniques such as PageRank [6].

Preparing for Future Heterogeneous Systems Using Migrating Threads ExHET ’24, March 02–06, 2024, Edinburgh, United Kingdom

i

i

i

Cluster j

Cluster nCluster m

Legend:

Gather
Sync
Scatter
Apply

K(i), C(i)

Km(i)
Cm(i)

Kn(i)
Cn(i)

Mirror for Node i

Master for Node i

K(i)-=1
C(i)+=1

K(i)-=1
C(i)+=1

Kn(i)=K(i)

K(i)+=Kn(i)K(i)+=Km(i)

Km(i)+=K(i)/NR(i) Km(i)+=K(i)/NR(i)

Figure 3. Frogwild! Data flow Associated with Cluster J.

Evaluation via power method techniques puts a large de-
mand on memory as the order of the graph increases. Fur-
ther, precisely ranking all vertices by importance is computa-
tionally intensive, and unnecessary for certain applications.
Approximation techniques bypass complexity to quickly and
efficiently evaluate the PageRank vector [3, 5, 7, 15]. An
example is Frogwild! [16] (Fig. 3), a distributed PageRank
approximation to capture the top-k vertices with a slightly
altered GraphLab engine, by initializing multiple random
walks across the graph, and tracking their traversals across
each vertex.

2.3 Heterogeneity
Hogwild++ (Fig. 2) has a natural implementation as a multi-
node heterogeneous system, where each node executes a sin-
gle cluster. The main training loop is an excellent match for
a GPU-like engine, whereas the inter-cluster token-passing
is more appropriate for a conventional core, with the local
updates being supported by either aperiodic GPU or conven-
tional operations.
Frogwild (Fig. 3) is also a candidate for heterogeneity,

but with much more irregularity than Hogwild++. GPU-
like cores with wide vector capability are a good match for
processing vertices when visited, and following all outgoing
edges when visited. More conventional cores are then needed
when the graphs are bigger than one node, and traversals
between nodes become necessary.

The Appendix summarizes a list of similarities and differ-
ences.

3 Experimental Setup
A good image to justify the following experiments is that a
future system to support them may very well be constructed
from a “sea” of 3D memory stacks where a logic die on each
module supports networking with other modules, and there
is one of more “accelerators” included on each stack, but

Figure 4. The heterogeneous Hogwild++ configuration.

in nowhere the numbers found on today’s 300W Goliaths.
Also any conventional cores present on the stacks may them-
selves be quite limited, and not what one would use to run
conventional system software or robust runtimes.

The following sections describe experiments constructed
with such future architectures in mind. First in each is a de-
scription of an experimental platform, and what components
of the platform relate to different aspects of heterogeneity.
In neither case could the experimental code be consid-

ered optimally designed for today’s GPU execution. Rather,
these codes were engineered as if specifically for accelerator
cores on a future platform, with various forms of processors
providing assistance. By designing these algorithms in such
fashion, it permits an examination of a variety of questions
including:
• What kinds of remote interactions are needed,
• how much processing is triggered by a remote “spawn,”
• how long is the lifetime of such computations,
• how many operands accompany such remote spawns,
• how much other data must be transferred?

3.1 Hogwild Experiment
To implement theHogwild++ experiment, we used anNVIDIA
Jetson [19] that was composed of a Tegra X1 (TX1) processor
with a small GPU and 4 ARM cores, all of which share the
same physical memory. Each of the Jetson’s GPU cores was
teamed with an ARM and a slice of the available memory as
if they were independent “clusters” as discussed in Section
2.1, but implemented on the bottom of its own 3D memory
stack.
Fig. 4 diagrams the partitioning of the components of

the algorithm for the experiment onto the Jetson platform.
A CUDA program running in each ARM core sets up in-
dependent training sets, with the paired GPU core tasked
to perform the training process on one of those sets as an
independent cluster as in Fig. 4.
After initiating these training loops asynchronously, the

ARM acts as the token thread handler by interacting with

ExHET ’24, March 02–06, 2024, Edinburgh, United Kingdom Kogge and Vap and Pepple.

GPU

K (Global Memory)

C (Global Memory)

Cluster j Cluster k Cluster l

Cluster q Cluster m

Cluster p Cluster o Cluster n

K K

K K K

K K

A: K(i)-=1;C(i)+=1;

i i i

i a

b
i

i i i

c

G: Update Global K
after local changes

Sy: Kn(i)=K(i);
_syncthreads;
S: Kn(c)+=
Kn(i)/NR(i);

Sy: Kq(i)=K(i);
_syncthreads;
S:
Kq(a),Kq(b)+=
Kq(i)/NR(i);

K

Order:
1. Gather(G)
2. Apply(A)
3. Sync (Sy)
4. Scatter(S)
Perform τ
iterations

Figure 5. GPU Frogwild! For Vertex i

each model vector, and uses the access to shared memory
to perform its processing. Actual migration was not needed
to be simulated as the ARM thread had access to the GPU
memory, but the equivalent of the shifting of attention hap-
pened naturally by the change in which chunks of memory
were accessed.

In Hogwild++, each cluster has two copies of the model
vector. The first, 𝑤 𝑗 (“active weights” in Fig. 4), is directly
updated by the cluster while performing the SGD training.
The second, 𝑤 𝑗 ("snapshot weights" in Fig. 4), stores the
result of the most recent synchronization step. These vectors
were stored contiguously in the Jetson’s global memory (as
shown in Fig. 4) and each thread was provided a pointer to
the start of its block of memory. Additionally, each cluster
had its own copy of a bias term, which was updated and
synchronized in a mostly similar way to the model vectors.

Two variables were used to synchronize the data between
CPU and GPU. First, the “token” described in the Hogwild++
algorithm is stored as an integer value of the index of the clus-
ter currently performing synchronization. Second, a "sync"
variable is used to allow the CPU and GPU to communicate
their present state to each other. This is used to signal when
a token has arrived and updates needed, and when it is time
to “pass” the token.

3.2 Frogwild! Experiment
To reproduce Frogwild! in a heterogeneous environment, a
discrete system made up of an Intel Core i9-13900KF pro-
cessor and NVIDIA RTX 4080 was used. This system was
employed for twomain reasons. The first is the large memory
on the GPU, able to better support the memory requirements
for storing large graph structures. Second, the large number
of CUDA cores enabled quick vertex-parallel programming.
As with the Hogwild! experiment, each of the SM blocks
in the GPU was programmed to act as if it was alone with
its chunk of memory, and needed to interact with the other
blocks as if they were “distant.”

To properly partition graphs, degree-based vertex cuts
were performed on the GPU. Once edges are assigned clus-
ters, the main data structures formed by the host to represent
the partitioned graph were created in a CSR (Compressed
Sparse Row) format. These data structures were intention-
ally designed for better cache utilization on the GPU, and for
mirroring near-memory computing in a future architectures.
To emulate the relation between master and mirror ver-

tices described in Section 2.2, K and C acted as the master
for all mirrors, while all vertices distributed among clusters
were treated as mirrors. For initialization, a sublinear num-
ber M (compared to the degree of the graph) walkers were
initialized on the M vertices with the largest out degrees to
promote propagation of walkers. These initial walkers were
then stored in the array K as integer values prior to execu-
tion of Frogwild!. To adhere to the distributed nature of this
algorithm, the specified clusters are modeled with CUDA
blocks via intentional selection of execution configuration
parameters.

This CUDA variant involved four different kernels to mir-
ror the original experiment as outlined in Section 2.2 and
summarized in Table 1 which were performed iteratively.

Table 1. Frogwild Kernel Description

Kernel Utility Operations
Gather Threads of each cluster send

its vertex’s local updates to
the master

Mirror threads synchronized
in the last iteration send up-
dates to the master data set.
All remaining threads lay dor-
mant.

Apply Grid of threads is launched
s.t. each thread is responsible
with updating a specific entry
of K and C

Master threads are spawned,
while mirror threads are
asleep. Atomic operations of
addition and subtraction are
applied to entries of C and K,
respectively

Sync 𝐾𝑚 (𝑖) of Mirror vertices se-
lected for synchronization
are updated to match global
K(i)

Mirror threads are spawned
to evaluate if they will be syn-
chronized, and if so go to the
master data to fetch K(i). Non-
synchronized mirror threads
will become dormant.

Scatter Intra-cluster Successors of
synchronized mirrors are
sent a number of frogs equal
to K(i)/NR(i), where NR(i) is
the number of synchronized
peer mirror threads corre-
sponding to vertex i

Non-synchronized mirror
threads remain dormant.
Synchronized mirror threads
go to the master data to fetch
NR(i).

4 Results and Issues
Table 2 outlines the primary observations and issues identi-
fied from implementing Hogwild++ and Frogwild!.

The key issues involve memory and thread spawning. The
state of the art CUDA for GPUs ([1]) and GASNet have reme-
diated the said memory issues for systems by providing an

Preparing for Future Heterogeneous Systems Using Migrating Threads ExHET ’24, March 02–06, 2024, Edinburgh, United Kingdom

Table 2. Lessons and Observations

Experiment
Components

Observations

Malloc (HF) Due to non-homogenous memory models between
host and device, Malloc consumes a large amount of
time. Memory mapping should be more controlled.

Memory
Caching (H)

Managed Memory allows caching, but the CPU and
GPU cannot simulatenously access the data during
runtime. Pinned Memory allows simulatenous mem-
ory accesses for the CPU and GPU, but this memory
cannot be cached.

One-
Directional
Spawning
(H)

CPU must perform a spin lock while waiting on the
GPU to give any signals. Leads to complications with
Inter-Kernel Interaction and Synchronization.

One-
Directional
Spawning (F)

During the execution of Apply, iterating through all
the walkers on a vertex is a major bottleneck. Could
be remediated by offloading computation to the CPU
or another processor.

CUDA
Shared Mem-
ory (H)

Improved performance due to less memory latency as
opposed to fetching global memory. Required careful
timing of data transfers to the global memory for
synchronization

CUDA
Shared Mem-
ory (F)

Due to the networks demands’ inverse relation to the
number of clusters, shared memory could only be
applied in the presence of a larger number of clusters,
limiting the opportunity for optimization.

Process
Grouping (F)

There is no efficient way to define process groups
with NVIDIA GPUs for this type of problem with-
out introducing block divergence (even with block
synchronization with compute capability 9.0). This
necessitates additional memory by creating global
versions of K and C, in addition to K arrays for each
cluster.

“H” stands for Hogwild++ and “F” for Frogwild!

interface with memory that can extend across multiple phys-
ical nodes. Intel’s CAPI interface [28], and HSA architectures
[23] have both provided a comparable memory interfaces
to what the Jetson provided, with the added benefit of en-
hanced address translation. All these systems’ capabilities
would abate the issues of token passing and inter-kernel syn-
chronization in Hogwild!. For Frogwild!, these paradigms
would allow the use of pointer-based structures, e.g. linked
lists, to better traverse partitioned graphs. GASNet’s active
messaging or RMA capabilities would subside the memory
latency incurred by the large volume of atomic updates seen
within Frogwild!. The issue of additional thread spawns could
have been managed via CUDA’s dynamic parallelism, but
this would only consume more hardware resources on the
GPU. Neither would this address the asymmetry of cross-
ing architecture boundaries to either "conventional" or al-
ternative accelerator cores. Rather, both the experiments
studied here would see performance benefits from spawning
threads on an alternative processor. Currently, the concept
of multi-directional thread spawns only exist as a thought
experiment.

Migrating‐arch

Figure 6. A generic migrating thread architecture.

5 A Proposed Architecture
The prior section suggests a variety of mechanisms that
address some of the issues raised by the two experiments.
However, none address the longer range issues of remote
and reverse spawning and the cost of deep software stacks
to handle them.

Fig. 6 diagrams one such possible architecture that avoids
much of the software overhead by placing all memory in all
nodes in a single logical Partitioned Global Address Space
(PGAS), and supporting hardware-based spawning and migration
of threads to alternative physical partitions if the memory
they wish to access is not local [13]. To support the varying
number of threads that may be resident in the same node at
the same time, the cores in such a system (termed MT cores
here) must become heavily multi-threaded. Thus a program
thread may work with memory anywhere in the system
without needing program-level awareness of where the data
resides and where the thread is currently located.
Prototypes of such an architecture exist1 [9]. The archi-

tecture also uses cheap thread spawning coupled with the
migration mechanism to support very fast light weight re-
mote memory operations for very inexpensive “action at a
distance”. The processing logic for such remote operation
resides in the memory controllers (Memory Front End (MFE)
in Fig. 6). A tool chain based on the Cilk language2 [4], plus
a rich library of intrinsic functions to perform both local
and remote atomics, is an extraordinarily efficient match to
the architecture. The combination has proven highly effec-
tive (cf. [21]) in scaling codes that normally involve large
amounts of inter-node communication to handle irregular
or dynamic execution profiles such as the updates due to
walkers crossing nodes in Frogwild!.

While an architecture such as Fig. 6 has many desirable
properties, it doesn’t currently support integration with het-
erogeneous accelerators larger than simple remote opera-
tions performed in an MFE, especially when a “node” is
greatly simplified, such as on the bottom of a 3D DRAM
stack. In contrast, Fig. 7 gives a notional picture of a possible
basic node to serve as the glue for a more heterogeneous
1See the Pathfinder system of 32 nodes, each with 16 MT cores, from the
Lucata Corp. and located in Georgia Tech’s CRNCH Center
2C plus the ability to specify a function call to be performed asynchronously.

ExHET ’24, March 02–06, 2024, Edinburgh, United Kingdom Kogge and Vap and Pepple.

Memory

Memory Side Processing

Migrating
Thread

Multi-Threaded
Core(s)

Accelerator
Core(s)

Network
Interface:

H/W
Transport

Thread States

Spawn

Interface
Accelerator

Core(s)
Accelerator

Core(s)

ExHet2024: MG-GLUE

Figure 7. A migrating thread-based heterogeneous node.

system. As with Fig. 6 all memory is “logically” part of a
common address space. A physical “node” as pictured in Fig.
7 has perhaps just a few cores, of potentially different types,
that are optimized for specific processing. One of more MT
cores sits at the interface between the network and the other
cores. Both the accelerators and the MT cores have access
to the local memory, although only the MT core need have
knowledge of the memory in the rest of the system (it needs
this to be able to determine where to migrate when neces-
sary). The combination of the MT core(s), the accelerator
core(s), the MFE, and the network interface could make a
viable chiplet, with different chiplet designs differing only
in what accelerators are present.
The ability to spawn new threads can also be more sym-

metric here. The MT core can spawn new MT threads (as
in Cilk and the Lucata systems, and of both heavy and light
weight), and accelerator threads (as in CUDA). Also, the ac-
celerator cores may also spawn MT threads in the MT core3.
As with both CUDA and Cilk, at a spawn in the MT core, the
parent thread’s registers form the basis for the registers for
either a new MT thread or an accelerator thread.

6 Spawning Options
Prior work [14] has discussed some of the semantics of such
border crossings, but have not suggested a matching hard-
ware architecture. Going from the MT to the accelerator,
there are at least two possibilities to consider. First is where
the accelerator can performmultiple concurrent independent
computations. This may be because it is multi-threaded or it
has multiple cores, as in SM cores in modern GPUs. In either
case, the spawn may look like that of an MT core spawning
another MT thread. A register set on the accelerator side
receives all necessary arguments, and then is released for
execution.
An extension that allows multiple such register sets to

be created, each with some different arguments, would also
be useful. This would mirror either a CUDA call in a GPU
program today, or a cilk_for loop in the Cilk programming
language.
In either case, it may be that when an MT thread arrives

and tries to spawn an accelerator thread, there is no space
3In the Lucata design such a reverse spawn happens between the conven-
tional hosts and the MT cores to initiate computation.

on the accelerator side for the new accelerator thread. An ap-
proach implemented in the Pathfinder prototype returns an
indication that a spawn was not possible. The parent thread
can try again, enqueue itself, or spawn a a child migrating
thread that waits for the accelerator to be available while
the parent continues.
A second model of MT to accelerator spawning is where

the accelerator functions must be done atomically, one at a
time, as in some sort of producer/consumer process. Here
an Actor-like model is appropriate [10, 22]. If the accelerator
is not busy, the MT thread can spawn an accelerator thread.
If busy, the MT thread can enqueue either itself or the state
for the desired accelerator call on a memory or hardware
queue, which would be tested by the accelerator code when
it completes an operation. Either the MT thread would be
restarted (to try initiating the accelerator thread again), or
the enqueued accelerator state would become active.

Understanding the reverse direction is also important. An
accelerator code must also be capable of spawning an MT
thread, which could travel anywhere in the system and start
new computation. In addition, however, it should also be
possible for an accelerator thread to be given a key that can
be used to restart a waiting MT thread that spawned it.
Also note that the same mechanism that allows a node’s

hardware to know where to route an MT thread when it tries
to access a non-local address is also useful for supporting
RDMA operations that perform memory-to-memory trans-
fers.
What is important about this model is the significant re-

duction in software complexity and runtime cost. There is
no need for an inter-node messaging protocol, and only one
set of drivers need to be written for each new accelerator
type - namely between an MT core and each accelerator type.
Further, such drivers can take advantage of hardware spawn-
ing mechanisms, and worry only about assembling the right
parameters in the right “registers” for the accelerator thread.
Finally, the asynchronous options within MT threads allow
the code written for accelerators to be blind to how their
functionality will play with that of other computations. Cur-
rently, there exists a commutable multi-threaded software,
OpenCilk [25], mirroring aspects of the proposed model,
with support for optimized compilers and work schedulers
to ensure proper work-load balance and procedural schedul-
ing. This allows developers to avoid bromidic tasks such as
memory transfers, message passing, etc. seen in current in-
terfaces, via underlying mechanisms, such as work-stealing,
for optimal execution. A future extension of this which sup-
ports heterogeneous systems consisting of varying cores,
will help a proposed model like Fig. 7 become attainable.

7 Conclusions
With the growth of chiplet and 3D technology, the expansion
of systems with heterogeneous core designs can only go into

Preparing for Future Heterogeneous Systems Using Migrating Threads ExHET ’24, March 02–06, 2024, Edinburgh, United Kingdom

overdrive, with the concurrent need to devise architectures
that simplify the software complexity of communicating
between cores of different types. The intent of this paper
was not to fully design a new architecture for such systems
but to run some experiments that had many of the aspects we
would expect from such systems, and use that to articulate
what observations (both positive and negative) we saw that
ought be considered in such an architectural definition.
Future explorations would involve constructing simula-

tors for Fig; 7 where better implementations of apps such as
Hogwild! and Frogwild! can be built to emulate larger sys-
tems such as seas of 3D stacks. In addition, given that threads
are not bound to particular cores, it is worth investigating
extensions to allow significant multi-tenancy (multiple sep-
arate applications sharing the same data sets and the same
accelerators). Finally, such architectures resonate well with
alternative programming models such as Actors.

Acknowledgments
This material was supported in part by the National Science
Foundation Grant No. 1822939 and in part by the Univ. of
Notre Dame, with collaborationwith Vivek Sarkar of Georgia
Tech.

References
[1] [n. d.]. https://resources.nvidia.com/en-us-grace-cpu/nvidia-grace-

hopper
[2] 2023. https://docs.nvidia.com/cuda/cuda-c-programming-guide/

index.html
[3] K. Avrachenkov and et al. 2010. Monte carlo methods for top-k per-

sonalized pagerank lists and name disambiguation. arXiv preprint
arXiv:1008.3775 (2010).

[4] Robert D. Blumofe and et al. 1995. Cilk: An Efficient Multithreaded
Runtime System. In Proc. of the Fifth ACM SIGPLAN Symp. on Principles
and Practice of Parallel Programming (Santa Barbara, California, USA)
(PPOPP ’95). ACM, New York, NY, USA, 207–216. https://doi.org/10.
1145/209936.209958

[5] Christian Borgs, Michael Brautbar, Jennifer Chayes, and Shang-Hua
Teng. 2012. A sublinear time algorithm for pagerank computations. In
Int. Workshop on Algorithms and Models for the Web-Graph. Springer,
41–53.

[6] Sergey Brin and Lawrence Page. 1998. The anatomy of a large-scale
hypertextual web search engine. Computer networks and ISDN systems
30, 1-7 (1998), 107–117.

[7] Atish Das Sarma, Anisur Rahaman Molla, Gopal Pandurangan, and
Eli Upfal. 2013. Fast distributed pagerank computation. In Int. Conf.
on Distributed Computing and Networking. Springer, 11–26.

[8] Jeffrey Dean, Greg Corrado, and et al. 2012. Large Scale Distributed
Deep Networks. In Advances in Neural Information Processing Systems
25, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger (Eds.).
Curran Associates, Inc., 1223–1231. http://papers.nips.cc/paper/4687-
large-scale-distributed-deep-networks.pdf

[9] Timothy Dysart, Peter Kogge, Martin Deneroff, and et al. 2016. Highly
Scalable Near Memory Processing with Migrating Threads on the Emu
System Architecture. In 2016 6th Workshop on Irregular Applications:
Architecture and Algorithms (IA3). 2–9. https://doi.org/10.1109/IA3.
2016.007

[10] Carl Hewitt, Peter Bishop, and Richard Steiger. 1973. A Universal
Modular ACTOR Formalism for Artificial Intelligence. In Proc. of the

3rd Int. Joint Conf. on Artificial Intelligence (Stanford, USA) (IJCAI’73).
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 235–245.

[11] Joseph Huber and Jon Chesterfield. 2023. OpenMP Reverse Offloading
Using Shared Memory Remote Procedure Calls. In Int. Workshop on
OpenMP. Springer, 226–238.

[12] Norman P. Jouppi and et al. 2017. In-Datacenter Performance Analysis
of a Tensor Processing Unit. SIGARCH Comput. Archit. News 45, 2 (jun
2017), 1–12. https://doi.org/10.1145/3140659.3080246

[13] P.M. Kogge. 2004. Of Piglets and Threadlets: Architectures for Self-
Contained, Mobile, Memory Programming. In Innovative Architec-
ture for Future Generation High-Performance Processors and Systems
(IWIA’04). 130–138. https://doi.org/10.1109/IWIA.2004.10005

[14] Peter M. Kogge. 2019. Multi-threading Semantics for Highly Hetero-
geneous Systems Using Mobile Threads (nominated for best paper).
In 2019 Int. Conf.on High Performance Computing Simulation (HPCS)
(Dublin, Ireland). 281–289. https://doi.org/10.1109/HPCS48598.2019.
9188165

[15] Wenting Liu, Guangxia Li, and James Cheng. 2015. Fast PageRank
approximation by adaptive sampling. Knowledge and Information
Systems 42 (2015), 127–146.

[16] Ioannis Mitliagkas, Michael Borokhovich, Alexandros G Dimakis, and
Constantine Caramanis. 2015. FrogWild!–fast PageRank approxima-
tions on graph engines. arXiv preprint arXiv:1502.04281 (2015).

[17] Lam M. Nguyen, Phuong Ha Nguyen, and et al. 2018. SGD and
Hogwild! Convergence Without the Bounded Gradients Assumption.
(2018). https://doi.org/10.48550/ARXIV.1802.03801

[18] Feng Niu, Benjamin Recht, Christopher Re, and Stephen J. Wright.
2011. HOGWILD!: A Lock-free Approach to Parallelizing Stochastic
Gradient Descent. In Proc. of the 24th Int. Conf. on Neural Information
Processing Systems (Granada, Spain) (NIPS’11). Curran Associates Inc.,
USA, 693–701. http://dl.acm.org/citation.cfm?id=2986459.2986537

[19] NVIDIA. [n. d.]. Jetson TX1 module. https://developer.nvidia.com/
embedded/jetson-tx1

[20] NVIDIA. 2023. https://docs.nvidia.com/cuda/cuda-c-best-practices-
guide/index.html#

[21] Brian A. Page and Peter Kogge. 2022. The Evolution of a New Model
of Computation. In 2022 IEEE/ACMWorkshop on Irregular Applications:
Architectures and Algorithms (IA3). 9–18. https://doi.org/10.1109/
IA356718.2022.00008

[22] Sri Raj Paul, Akihiro Hayashi, Kun Chen, and Vivek Sarkar. 2022. A
Productive and Scalable Actor-Based Programming System for PGAS
Applications. In Computational Science – ICCS 2022, Derek Groen,
Clélia de Mulatier, Maciej Paszynski, Valeria V. Krzhizhanovskaya,
Jack J. Dongarra, and Peter M. A. Sloot (Eds.). Springer Int. Publishing,
Cham, 233–247.

[23] P Rogers. 2016. HSA overview. In Hetero. System Architecture. Elsevier,
7–18.

[24] Christopher De Sa, Ce Zhang, Kunle Olukotun, and Christopher Ré.
2015. Taming the Wild: A Unified Analysis of HOG WILD! -Style
Algorithms. In Proc. of the 28th Int. Conf. on Neural Information Pro-
cessing Systems - Volume 2 (Montreal, Canada) (NIPS’15). MIT Press,
Cambridge, MA, USA, 2674–2682.

[25] Tao B. Schardl and I-Ting Angelina Lee. 2023. OpenCilk: A Modular
and Extensible Software Infrastructure for Fast Task-Parallel Code. In
Proc. of the 28th ACM SIGPLAN Annual Symp. on Principles and Practice
of Parallel Programming (Montreal, QC, Canada) (PPoPP ’23). ACM,
New York, NY, USA, 189–203. https://doi.org/10.1145/3572848.3577509

[26] John E. Stone, David Gohara, and Guochun Shi. 2010. OpenCL:
A Parallel Programming Standard for Heterogeneous Computing
Systems. Computing in Science & Engineering 12, 3 (2010), 66–73.
https://doi.org/10.1109/MCSE.2010.69

[27] Ján Veselỳ, Arkaprava Basu, Abhishek Bhattacharjee, Gabriel H Loh,
Mark Oskin, and Steven K Reinhardt. 2018. Generic system calls
for GPUs. In 2018 ACM/IEEE 45th Annual Int. Symp. on Computer

https://resources.nvidia.com/en-us-grace-cpu/nvidia-grace-hopper
https://resources.nvidia.com/en-us-grace-cpu/nvidia-grace-hopper
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://doi.org/10.1145/209936.209958
https://doi.org/10.1145/209936.209958
http://papers.nips.cc/paper/4687-large-scale-distributed-deep-networks.pdf
http://papers.nips.cc/paper/4687-large-scale-distributed-deep-networks.pdf
https://doi.org/10.1109/IA3.2016.007
https://doi.org/10.1109/IA3.2016.007
https://doi.org/10.1145/3140659.3080246
https://doi.org/10.1109/IWIA.2004.10005
https://doi.org/10.1109/HPCS48598.2019.9188165
https://doi.org/10.1109/HPCS48598.2019.9188165
https://doi.org/10.48550/ARXIV.1802.03801
http://dl.acm.org/citation.cfm?id=2986459.2986537
https://developer.nvidia.com/embedded/jetson-tx1
https://developer.nvidia.com/embedded/jetson-tx1
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#
https://doi.org/10.1109/IA356718.2022.00008
https://doi.org/10.1109/IA356718.2022.00008
https://doi.org/10.1145/3572848.3577509
https://doi.org/10.1109/MCSE.2010.69

ExHET ’24, March 02–06, 2024, Edinburgh, United Kingdom Kogge and Vap and Pepple.

Table 4. Differences between Hogwild! and Frogwild!

Attribute Hogwild! Frogwild!
Parallelization
Style

Data Parallel Object/Vertex Parallel

Non-local memory
updates

Infrequent, expensive Frequent, cheap

Order of Updates Deterministic Ordering Stochastic Ordering
Perf. Bottleneck Computationally Bound Memory Bound
Network Con-
straints

Bandwidth Large Volume of Short
Messages

Payload
Size/Transaction

O(n) O(1)

Network Demands Independent of node
count

Inversely related to
node count

Architecture (ISCA). IEEE, 843–856.
[28] Bruce Wile. 2014. Coherent Accelerator Processor Interface (CAPI) for

POWER8 systems. Technical Report.
[29] Ce Zhang and Christopher Ré. 2014. DimmWitted: A Study of Main-

Memory Statistical Analytics. Proc. VLDB Endow. 7, 12 (Aug. 2014),
1283–1294. https://doi.org/10.14778/2732977.2733001

[30] H. Zhang, C. J. Hsieh, and V. Akella. 2016. HogWild++: A New
Mechanism for Decentralized Asynchronous Stochastic Gradient De-
scent. In 2016 IEEE 16th Int. Conf. on Data Mining (ICDM). 629–638.
https://doi.org/10.1109/ICDM.2016.0074

A Appendix
A.1 Similarities and Differences
|Tables 3 and 4 outline the similarities and differences be-
tween these two algorithms as implemented on heteroge-
neous platforms. Parallel computations in Hogwild! primar-
ily involve vector-vector multiplication and vector addition,

whereas Frogwild! involves atomic additions and subtrac-
tions done simultaneously by different threads. The updates
to the model vector in Hogwild! are predictable w.r.t to the
order of clusters. These involve a large payload of size n,
which capitalizes on contiguous memory accesses, but places
a demand on the network’s bandwidth. The updates in Frog-
wild! are frequent and sporadic, done by threads randomly
accessing singular memory locations in different clusters.

Table 3. Similarities between Hogwild! and Frogwild!

Attribute Similarities
Implementation
Environ-
ment

Distributed

Heterogeneity Core computations accelerator-friendly, but with need
for “conventional” glue

Network
Conse-
quences

Reduced Traffic w.r.t Original Implementation

Function
spawn

Main accelerator code spawned once at start

Performance
Conse-
quences

Lower Execution Time

Accuracy
Conse-
quences

Comparable Accuracy w.r.t Original Implementation

https://doi.org/10.14778/2732977.2733001
https://doi.org/10.1109/ICDM.2016.0074

	Abstract
	1 Introduction
	2 Example Heterogeneous Problems
	2.1 Hogwild! Overview
	2.2 Frogwild! Overview
	2.3 Heterogeneity

	3 Experimental Setup
	3.1 Hogwild Experiment
	3.2 Frogwild! Experiment

	4 Results and Issues
	5 A Proposed Architecture
	6 Spawning Options
	7 Conclusions
	Acknowledgments
	References
	A Appendix
	A.1 Similarities and Differences

