Computer Methods in Applied Mechanics and Engineering 419 (2024) 116686

Contents lists available at ScienceDirect

Computer
Methods
in Applied

Mechanics and

Comput. Methods Appl. Mech. Engrg.

journal homepage: www.elsevier.com/locate/cma

Check for
updates

Optimal surrogate boundary selection and scalability studies for the
shifted boundary method on octree meshes

Cheng-Hau Yang !, Kumar Saurabh !, Guglielmo Scovazzi®, Claudio Canuto ¢,
Adarsh Krishnamurthy #*, Baskar Ganapathysubramanian **

2 Department of Mechanical Engineering, Iowa State University, Ames, IA, USA
b Department of Civil and Environmental Engineering, Duke University, Durham, NC 27708, USA
¢ Dipartimento di Scienze Matematiche, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy

ARTICLE INFO ABSTRACT

Keywords: The accurate and efficient simulation of Partial Differential Equations (PDEs) in and around
Immersed boundary method arbitrarily defined geometries is critical for many application domains. Immersed boundary
Incomplete octree methods (IBMs) alleviate the usually laborious and time-consuming process of creating body-

Optimal surrogate boundary

. . fitted meshes around complex geometry models (described by CAD or other representations,
Massively parallel algorithm

e.g., STL, point clouds), especially when high levels of mesh adaptivity are required. In
this work, we advance the field of IBM in the context of the recently developed Shifted
Boundary Method (SBM). In the SBM, the location where boundary conditions are enforced is
shifted from the actual boundary of the immersed object to a nearby surrogate boundary, and
boundary conditions are corrected utilizing Taylor expansions. This approach allows choosing
surrogate boundaries that conform to a Cartesian mesh without losing accuracy or stability.
Our contributions in this work are as follows: (a) we show that the SBM numerical error can
be greatly reduced by an optimal choice of the surrogate boundary, (b) we mathematically
prove the optimal convergence of the SBM for this optimal choice of the surrogate boundary,
(c) we deploy the SBM on massively parallel octree meshes, including algorithmic advances to
handle incomplete octrees, and (d) we showcase the applicability of these approaches with a
wide variety of simulations involving complex shapes, sharp corners, and different topologies.
Specific emphasis is given to Poisson’s equation and the linear elasticity equations.

1. Introduction

Accurate numerical solution of PDEs in and around complex objects has a significant impact on various problems in science
and technology. Examples include structural analysis of complex architectures, thermal analysis over complex geometries in
semiconductor electronics, and flow analysis over complex geometries in aerodynamics. Standard numerical approaches for solving
these PDEs on complex geometries—finite difference method (FDM), finite element method (FEM), or finite volume method (FVM)-
usually rely on the generation of body-fitted meshes. This is a major bottleneck, as creating an analysis-suitable body-fitted mesh
with appropriate refinement around the complex geometry is usually time-consuming and labor-intensive. This issue is exacerbated

* Corresponding authors.
E-mail addresses: chenghau@iastate.edu (C.-H. Yang), maksbh@iastate.edu (K. Saurabh), guglielmo.scovazzi@duke.edu (G. Scovazzi),
claudio.canuto@polito.it (C. Canuto), adarsh@iastate.edu (A. Krishnamurthy), baskarg@iastate.edu (B. Ganapathysubramanian).
1 These author contributed equally.

https://doi.org/10.1016/j.cma.2023.116686
Received 1 September 2023; Received in revised form 17 November 2023; Accepted 5 December 2023

Available online 20 December 2023
0045-7825/© 2023 Elsevier B.V. All rights reserved.



C.-H. Yang et al. Computer Methods in Applied Mechanics and Engineering 419 (2024) 116686

in problems involving moving bodies or multiphysics couplings, for which deforming meshes or re-meshing is often required
(sometimes at every time step).

Immersed boundary methods (IBM) alleviate the requirement of body-fitted meshes by relaxing the requirement that the
mesh conforms to the object [1,2]. IBM allowed scalable mesh generation, such as a Cartesian grid or tree-based approaches
(quadtree/octree), to be deployed for simulating PDEs in and around complex objects. In this work, we concentrate on IBM in
the context of FEM-based discretizations. Two main flavors of IBMs exist in this FEM context: immersogeometric analysis (IMGA, an
acronym that will also refer, in what follows, to cutFEMs, the Finite Cell Method, and related approaches) and the Shifted Boundary
Method (SBM).

In immersogeometric analysis (IMGA), the boundary representation of the body (B-rep, NURBS, or STL) is immersed into a
non-body-fitted spatial discretization. The Dirichlet boundary conditions are enforced weakly on the immersed boundary surfaces
using Nitsche’s method, which proved a flexible, robust and consistent approach. Interested readers are referred to [3-20] for a
detailed discussion of the mathematical formulation and practical deployment of the IMGA. The IMGA has been deployed to solve
several industrial-scale complex problems [7], but suffers from the following drawbacks:

« Sliver cut-cells: The presence of sliver cut-cells (i.e., elements intersected by the object boundary that contain a very
small volume of the object) may significantly deteriorate the conditioning of the algebraic system of equations. Literature
suggests removing these so-formed sliver cut cells from the global assembly can prevent such deterioration in conditioning.
However, this comes at the cost of accuracy. Alternatively, there have been studies demonstrating the design of preconditioners
to alleviate this issue [5]. But, this has been limited to simpler operators such as Poisson’s and Stokes and requires the
development of preconditioners for other PDEs. Sliver-cut cells can even produce a loss of numerical stability [14,15].

Load balancing: The accuracy of the IMGA is strongly contingent upon the accurate integration of cut cells. Accurate
integration is performed by increasing the number of quadrature points in the cut elements. However, this leads to the issue
of load balancing when performing parallel (distributed memory) simulations, as different elements end up having different
amounts of computations. Furthermore, it also invalidates the tensor structure of the basis function that can be exploited to
optimize the matrix and vector assembly [7,21].

The Shifted Boundary Method (SBM) [22-30] alleviates the aforementioned IMGA issues. The central idea of SBM is to impose the
boundary conditions not on the true boundary (I', see Fig. 1) but rather on a surrogate boundary in proximity of the true boundary (I, see
again Fig. 1). The appropriate value of the applied boundary condition is determined by performing a Taylor series expansion. The
surrogate boundary and associated shifted boundary conditions essentially transform the problem of solving the PDE in the complex
original domain (denoted as £2) into a body-fitted problem in the surrogate domain (denoted as ;). This strategy overcomes the
challenges associated with IMGA approaches. The SBM differs from the IMGA in the following aspects:

« In IMGA, the volume integration is performed over £; whereas in SBM it is performed over £,. Therefore, IMGA requires
a classification test (to classify if a Gauss quadrature point belongs to 2 or —~2) for each Gauss quadrature point in the cut
elements. In contrast, SBM does not require any such test. The integration for SBM is done over all Gauss points that belong
to elements within the surrogate domain £2;,.

» The integration over all Gauss points in SBM eliminates the poor conditioning of discrete operators due to the sliver cut cells
arising in IMGA.

+ Additionally, SBM requires no adaptive quadrature for maintaining accuracy. This obviates the need for special algorithmic
treatments (like weighted partitioning [7]) to ensure load balancing. In addition, the tensor nature of the basis function is
retained, which can be leveraged for performance enhancement using fast vector-matrix assembly.

SBM, therefore, appears to be a promising numerical method for solving PDEs over complex domains. In this work, we seek to
address some of the relevant questions for the practical adoption of SBM - especially for simulations over complex CAD geometry
domains - that are important and yet somewhat missing from the existing literature. Specifically, we address the following:

1. We extend the numerical analysis of SBM to cover cases when the true domain is a subset of the surrogate domain (£ C _(},,).

2. Different (cartesian aligned) surrogate boundaries can be constructed for a complex domain. However, some of these
boundaries can be invalid, leading to disconnected surrogate domains. In this work, we codify the requirements for the
set of edges/faces (in two/three dimensions) to form a valid surrogate boundary.

3. Among these possible candidate surrogate domains, we identify the optimal surrogate domain, with boundary [, that exhibits
the best accuracy. We define a simple, scalable strategy to identify this optimal surrogate boundary.

4. We develop the data structures and algorithms required for the scalable deployment of SBM on adaptive, incomplete octree
grids. We illustrate good scaling behavior of the framework and showcase the utility of the framework by simulating a wide
variety of complex three-dimensional shapes.

The present work focuses on a particular class of PDEs, namely elliptic PDEs with applications involving diffusion (Poisson’s
equation) and structural mechanics (linear elasticity) problems. The remaining paper is organized as follows: In Section 2, we
describe the mathematics of the SBM along with a description of the surrogate boundary. In Section 3 we outline the definition,
approach, and algorithms for identifying the optimal surrogate boundary. In Section 4 we provide the details of the algorithms for
the scalable deployment of SBM. In Section 5, we illustrate this framework with extensive numerical examples in two and three
dimensions. We summarize conclusions in Section 6.



C.-H. Yang et al. Computer Methods in Applied Mechanics and Engineering 419 (2024) 116686
2. Mathematical formulations
2.1. The immersed variational formulation over the physical domain

Consider the non-homogeneous elliptic equation

—Au=f on Q,
M
u=up on Ip,
where we are interested in solving for the scalar field, u, over the (immersed) domain of interest £ with boundary 002 = I'j,. Defining
the appropriate functional spaces for test and trial functions, the weak formulation for Poisson’s problem can be written as:

(Vup, Vwp)g, = (fswp)g, +(Vup -1, wy)r, , +uy —up, Vwy -n)py = ah™ @y —up), wy)ry 2

“

Consistency term Adjoint consistency term Penalty term

where « is the penalty parameter for the Dirichlet boundary condition of the Poisson’s equation, n indicates the unit outward-pointing
normal to the I', and A is the element size.

The last three terms in Eq. (2)—consistency, adjoint consistency, and penalty terms are the result of weakly applying the Dirichlet
boundary condition as a surface integral. These extra terms result in surface integration over the true geometry, assuming that the
finite element interpolation space can describe it exactly (otherwise a geometric discretization error may be introduced).

In addition to the scalar elliptic equation (Poisson equation), we also consider the equations of linear elasticity. Here, we are
interested in solving for the displacement vector field, u. There are three essential equations for static linear elasticity. First, the
equilibrium equation (and associated boundary conditions):

V-eo+b=0, on Q,

u=u;, on I, (3)
where ¢ is the stress tensor, b is the body force, and again 02 = I';,. Second, the kinematics equation:
e) = Viu= %(Vu + Vw7, 4
where &(u) is the strain tensor and u is the displacement vector. Third, the constitutive equation:
o =Ceu), 5)

where C is the elastic stiffness tensor. For isotropic materials, C can be written as a combination of Young’s modulus E and Poisson’s
ratio v. Integrating by parts and using Nitsche’s method to weakly enforce the Dirichlet boundary conditions, the variational form
of linear elasticity can be stated as:

(Cew). V'wy)g, = (b, wy)g, +(Ce@) - n, wy)p, —(uy —up. (CVwy)-n)p, —(rh™ (wy—up), wy)r,, . (6)

Consistency term Adjoint consistency term Penalty term

where the y is the penalty parameter for the Dirichlet boundary condition of the linear elasticity, and 4 is the element size. The
appropriate function spaces are used for the solution u and test function w.

2.2. The variational formulation for the shifted boundary method over the surrogate domain

The SBM introduced in Main and Scovazzi [22] discretizes the governing equations on a surrogate domain €2, of boundary
I, (rather than @ and I'), where Q, and I, do not contain any cut elements or cut element sides, respectively. For example,
looking at the sketches in Fig. 1, 2 is enclosed by I" (the black curve), while &, is enclosed by I, (the red segmented curve). The
SBM resorts to a Taylor expansion of the solution variable at the surrogate boundary to shift the value of the boundary condition
from I to . It is important to note that the choices of 2, and I, are not independent but must satisfy certain constraints, later
discussed in Section 3.1. Enforcing the Dirichlet boundary condition u = u, on I';, through the SBM, we deduce the following
Galerkin discretization of the Poisson equation as shown below. Here, V, represents the appropriate function space, and subscript
h represents the finite dimensional analogue of operators/domains after discretization with a tessellation of size A.

Find u,, € V;,(2,,) such that, Vw, € V,(2,)

Vuy, Vwy)g, = (f, wp)g, +(Vuy, - i, wh)fb,h +Spup —up, Vwy, - )p )
Consistency term Adjoint consistency term
-1
—(ah™ Spuy —up), Spwp)py,, 5 ®

<

Penalty term

where 7i indicates the unit outward-pointing normal to the I, and S,v is the boundary shift operator:

S,vi=v+Vuv-d, OnfD,h’ )



C.-H. Yang et al. Computer Methods in Applied Mechanics and Engineering 419 (2024) 116686

(a) Qand I = 4Q (b) Q, O, and Quy

Fig. 1. Domain definitions for the SBM numerical analysis. The domains are classified into three types, with a corresponding color scheme: (a) The physical (or
true) domain € (1), enclosed by the physical (or true) boundary I' (—); (b) The surrogate domain €2, (i), enclosed by the surrogate boundary I}, (—); (c)
The extended domain &, enclosed by the blue circle (—). The extended domain €, > £ will only be used in mathematical proofs. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

where d is the distance function from Gauss points on surrogate boundary (I’,) to the true boundary (I").

Similarly, the SBM Galerkin discretization for static linear elasticity with Dirichlet boundary condition u = u; on I';, can be
stated as:

Find u,, € V},(2,) such that, Vw,, € V,(2,)

(Ce(w), Viwy)g, = (b, wy)g, +{(Ce) A, wy)p,  —(Spup —up, (CVwy)-f)p,

Consistency term Adjoint Consistency term

» (10
— (v h™ Spup —up), Spwp)r, , -

Penalty term

The adjoint consistency and penalty terms in Eqgs. (7) and (10) are modified in the SBM formulation using Taylor expansions.
We refer the interested reader to the detailed derivation of the formulation by Atallah et al. [26].

Remark. We limit ourselves to problems with the Dirichlet boundary condition. However, it is conceptually straightforward to
extend the formulation of SBM for Neumann boundary conditions. Suppose our flux boundary condition is —S—Z =ty on Iy, the
weak form of SBM for the Poisson equation is:

Find u,, € V,,(2,,) such that, Vw, € V,(2,)

Vuy,, Vwg)g, = (f . wp)g, an
+ (( - n)(—tn — Vuy, - n), wh>f1v.h +(Vuy, - 1, wh)f}v.h‘

Considering the use of linear basis functions for our FEM, we do not require any shift operator (S,) as in the case of the Dirichlet
boundary condition. The primary distinction between directly enforcing Neumann BC and using the Shifted Boundary Method with
Neumann BC lies in the area correction term (7 - n).

Similarly, the SBM Galerkin discretization for static linear elasticity with Neumann (traction) boundary condition on =ty on
I'y can be written as:

Find u,, € V},(2,) such that, Vw,, € V},(2,)
(Ceup), Vwp)g, = (b, wy)g,
+{(@ - )ty - Cewpn), wy)r, | 12)

+ (Ce(uy)n, wh)fN.h.



C.-H. Yang et al. Computer Methods in Applied Mechanics and Engineering 419 (2024) 116686

2.3. Numerical analysis of the shifted boundary method over extended surrogate domains

In order to identify the surrogate domain €, that leads to the most accurate results, we need to first understand the behavior of
the SBM approximation when the surrogate domain extends beyond the physical domain £2, as shown, for example, in the sketch
on the right of Fig. 1. As a starting point in the numerical analysis, we will need a number of definitions and assumptions.

The true domain £ is assumed to have Lipschitz boundary I = Q. The surrogate domain ), - in contrast with previous versions
of the SBM - is not necessarily contained in £, but may include elements that are cut by I" (called intercepted elements in the sequel).
Its boundary is indicated by I7,.

We then introduce two collections of elements: (a) the collection, fh, of all the elements T of the grid that are contained in
3,; and (b) the collection, 7, of all the elements T of the grid that are contained in £, where @, is the union of the elements
cut by Q or strictly contained in Q. Hence, 2, C £, but it is not necessarily true that 3, = ,,. Here, £, can be thought of as
the circumscribing cartesian mesh of Q. We next define a domain £,,, with smooth boundary and such that cl(22,) c £, where
cl(2,,) indicates the closure of . Observe that £, and ., are needed only in the mathematical analysis and are not needed in
computations. For simplicity, the mathematical analysis will be developed only in the case of the Poisson problem, but conclusions
similar to the ones outlined in what follows can be applied to the elasticity equations.

Consider the Poisson problem with non-homogeneous Dirichlet boundary conditions, that is, the problem of finding a u € H'(£2)
that solves Eq. (1) for a given f € L*(2). We assume that either f is defined directly over @, or that we can construct a linear
continuous extension operator E : L*(2) — L*(2,,) such that Ef,, = f and IEfl 2@, < ClIflli2), for any f € L*(Q). For
example, f can be extended by zero outside £2, but we use more advanced prolongation strategies in the numerical experiments.
We denote by f = Ef the extension of f that we choose, and our goal is now to extend u to @ in Q. The following result holds,
the proof of which is provided in Appendix:

Proposition 1. There exists an extension i of u in Q.,,, such that:

(®) -dia=fin Q,; and

®) if u € H*(Q), then i € H*(2y,), with llall 2,y < C llull 2y

The importance of having extensions i and f of u and f that satisfy conditions (a) and (b) above is needed when studying the
convergence of the SBM for a surrogate domain €, that is not completely contained in the physical domain . Observe that the
numerical stability of the SBM is not affected by the particular choice of surrogate domain, as long as d goes to zero as the grid
size h is refined. We state then the following result without proof, since the derivations will not differ from the ones already found
in the existing literature on SBM [25].

Theorem 1 (Coercivity). Consider the bilinear form a,(u,, , w;,) defined in (16a) and assume there exist constants ¢, > 0 and ¢ > 0 such
that

ldG) |l < cghr b, Vxel,nT, TeJ,, (13)
where
hy = 12,7 hy. 14

Then, if the parameter « is sufficiently large and h r, sufficiently small, there exists a constant C, > 0 independent of the mesh size, such
that

ap(uy , up) 2 Cy lluy |12 Vu, € Vy(2p) , (15)
where || uy, |12 = || Vuy, ”iz(-éh) + A2 Syuy, ”iz(fh) .

Remark. Condition (13) is just a technical condition for the proofs. In fact, we take || d(X) || ~ h; in all computations presented in
this work, that is, mesh refinement is obtained by just subdividing every edge of the discretization into two equal-size sub-edges.

The convergence analysis, which follows the same general strategy developed in [25,27,29], needs to be considered with more
care. In particular a convergence proof is achieved using Strang’s lemma, which in turn requires a result of asymptotic consistency
of the SBM. Because most of the derivations are substantially similar to the ones in [25,27,29], we will only focus on the differences,
notably the asymptotic consistency estimate. In the present case, recasting Eq. (7) as

ap(up, wy) = Cp(wy) (16a)

with
ap(up wy) = (Vuy, Vwy)g, = (Vup - i, w) 5, = (Spuy s Vwy - ), + (@b~ Spuy, Spwy)p, (16b)
Chwp) = (f  wy)g, = (up, Ywy - i)p, +{(ah™ up, Sywy)r, (16¢0)



C.-H. Yang et al. Computer Methods in Applied Mechanics and Engineering 419 (2024) 116686

and replacing in Eq. (16) f with the extension f and u,, with the extension # of the exact solution u, we have:

ap@, wy) = €pwy) = (=i + [, Vwy)g, = (Spii—up, Vo, -fi—ah™ Sywp)p,

——
=0 Ry

where Rji = S,i — up denotes the residual of the Taylor expansion. From this, using appropriate trace inequalities, we deduce

lap @, wp) = €4wp)| < ClRill 2, 1wplly(a,:. 7,) -
where

2 _ 2 2

1012 g, = 012+ 1RO a7
is the norm associated with the infinite dimensional space

V(@4 Ty = V(@) + HX(Z)) € HX( 2,3 T) . (18)

Here V (2,; .7;) is an extension of the finite dimensional space V,,(2;,) of globally continuous, piecewise-linear polynomials, which
contains the extension of the exact solution &, that is & € V(2;;.;). Here H*(2,:.9;) = [lre 7, H 2(T') with ‘broken’ norm
Il ||H2(Qh;9.h) = ZTE% I e a{ld ‘tiroken’ sgminorm |- |H2<ﬂh;9h) = ZTeﬁ'h | - l2ry- 1t is easily checked that the form a(-, ) is
well-defined also on the space V(£2,;.7,) X V,(£).

If we assume u € H*(£2), then according to Proposition 1, i has regularity H? around I, and the norm of the reminder R, i can
be estimated as in the standard case, in which Q,, C Q (see, e.g., [25]), leading to:

Theorem 2 (Optimal Convergence in the Natural Norm). Assume that u € H*(£2). Under the assumption of Theorem 1, and the condition
that hy, is sufficiently small, the numerical solution u, satisfies the following error estimate:

la—uplly@,. 7, < Cha, | VIV@) ll 2q) » 19
where C > 0 is a constant independent of the mesh size and the solution.

In addition, duality estimates can be derived to show that the L?(£,)-error of the discrete solution converges with rate 3/2,
which suboptimal by an order 1/2. Note however that optimal L?-error convergence rates have been observed in all computations
performed to date with the SBM, for a variety of problems and differential operators. This might indicate that the available L2-error
estimates are not sharp.

3. Optimal surrogate boundary

As already discussed at length, the key aspect of the SBM is the correction of the boundary conditions on the surrogate boundary,
obtained by performing a Taylor series expansion. Previous literature [22,31] has shown that convergence in the L>-norm reduces
to first order, when using linear basis functions without this correction, for instance. In this section, we answer the question of
constructing the optimal surrogate boundary, which gives minimal error while retaining all the expected properties of SBM.

It is rather intuitive to recognize that the surrogate boundary with minimum distance d (in some sense) from the true boundary
should be optimal. Using a wide variety of canonical examples exhibiting complex shapes and topology, we show that solving the
PDE using an optimal surrogate boundary (i.e., with minimal d) can produce significantly more accurate solutions compared to a
non-optimal surrogate. Given a background adaptive Cartesian mesh (octree or quadtree), identification of the optimal surrogate
can be stated as an optimization problem, where the goal is to minimize the distance between the true boundary and the surrogate
boundary (Eq. (20)):

argming, || — 0, = a.rgminfh/f |d - a|dT), , (20)
h

which corresponds to the measure of the gap between I" and I7,. Performing a global optimization on the surrogate boundary is a
non-trivial task. We recast this global optimization into a set of element-level optimization as:

D / |d-aldF,| . 21)
5 JoT

argminf, / |d - fi|dl, = argminz, .
i, nr;
TeT,), h

where we recall that .7, is the collection of elements in £2,. Converting the global optimization into a set of element-level
optimizations is algorithmically useful, both from a complexity standpoint and a communication/data structure standpoint. However,
performing the optimization at the local elemental level does not guarantee the satisfaction of constraints of the surrogate boundary
(described in detail in Section 3.1). To alleviate this issue, we modify the problem represented by Eq. (20): Instead of asking the
question “how close is the surrogate boundary to the true boundary?” we ask the question “how close is the surrogate volume to the true
volume?” Basically we approximate Eq. (20) as:

argming, / |d - Al dl, ~ argming, [(2\ QU (@2, )\ Q). (22)
I



C.-H. Yang et al. Computer Methods in Applied Mechanics and Engineering 419 (2024) 116686

Fig. 2. Color scheme depicting four different types of elements in the SBM algorithms and the four types of associated domains: INtErioR elements (W),
TrueInTerRcePTED elements (1), FaiseInterceptep elements (M), and Exterior elements (- ). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

3.1. Algorithmic description of the surrogate domain and its boundary

Main and Scovazzi [22] proposed to define the surrogate boundary as the closest projection of the true boundary. However,
the surrogate domain (£2,) was constructed using only elements that are completely contained in the true domain. We formu-
late the requirements of the surrogate domain (£2,) and surrogate boundary (I},) more formally, and limit our discussion to
quadrilateral/hexahedral elements. This is motivated by the fact that scalable adaptive algorithms exist for creating quad/octree
meshes [32-35]. Simulation strategies based on quad/octree have been very successful in modeling complex flow and multi-physics
phenomena [7,21,36-41].

We start with some terminology that we will use throughout the manuscript. We encourage the reader to familiarize with
Fig. 2 before moving on to the definitions below. The figure illustrates all the domains defined in earlier sections (true, surrogate,
circumscribing, extension) and relates them to the corresponding mesh elements. Namely:

+ InTerRIOR elements (J): the elements whose nodes are inside the physical boundary (I").

+ Exterior elements ( ): the elements whose four nodal points are outside the physical boundary (I').

« InTErcEPTED elements (1] U [l): elements whose nodal points are partially within and partially outside of the physical boundary
I'. We further subdivide InTeErcePTED elements into two sub-categories, by means of an optimal strategy that will be presented
later in this section:

- TrueInTERCEPTED elements (1): the INTErcEPTED elements that are inside the surrogate domain €, and are part of the SBM
calculation.

- FauseInTercepTED elements (M): the InTercepTED elements that are outside the surrogate domain £, and are not part of the
SBM calculation.

The sketch also shows the three different domains considered in what follows:

+ The physical (or true) domain Q: the domain enclosed by the physical (or true) boundary I' (—).

+ The surrogate domain 2 = ll U |: the domain enclosed by the surrogate boundary I" (—), that is the union of the INTERIOR
elements (M) and the TrueInTercePTED elements (/). This is the domain over which the SBM calculations are performed.

+ The extended domain Q,,,: the domain enclosed by the blue square (—). This domain contains INTERIOR elements (),
TrueINTERCEPTED elements (1), FaLsEINTERCEPTED elements (), and Exterior elements ().

We refer the reader to Section 4, which contains algorithmic details of how to perform the classification of the various element
types. We next state formal definitions that allow rigorous algorithmic developments of scalable strategies for constructing these
optimal surrogate domains:

Definition 3.1 (Node). A node is defined as a point ¥ € #™, where dim is the domain dimensionality (2, or 3).

Definition 3.2 (Node Classification). A node is classified as InTerior if it lies within the true domain (2, otherwise is classified as
EXTERIOR



C.-H. Yang et al. Computer Methods in Applied Mechanics and Engineering 419 (2024) 116686

@1=0 (b)1=05 @©a=1

Fig. 3. Surrogate boundary and the marker with varying A: Figure showing the classification of (a) INTerior (M); (b) IntERcEPTED (1 ); (c) FALSEINTERCEPTED ()
with varying A. Inactive elements do not form the incomplete octree and are not present. Note that (—) indicates the surrogate boundary whereas (—-) denotes
the true boundary.

Definition 3.3 (Element Node Relation). Each octant or element in the mesh comprises a certain number of nodes. The actual number
of nodes that comprise an element depends on the order of the basis function and the dimension and varies as (p + 1)¢, where p
is the basis function order, and dim is the dimensionality.

Definition 3.4 (Element Classification). The elements/octants of the octree are categorized into three categories: INTERIOR, EXTERIOR,
InTERCEPTED. An element is classified as Exterior if all the nodes of the element are classified as Exrterior. Similarly, the element is
classified as InTeriOR if all the nodes of the element are InTerior. When the nodes of the element have some nodes classified as INTERIOR
and some as ExTERrIOR, the elements are classified as INTERCEPTED.

Remark. We note that Definition 3.4 is consistent. Given our ability to adaptively refine, we assume that the elements along the
domain boundary (i.e. the intersected elements) are sufficiently refined to prevent the pathological case of a boundary that crosses
an edge (in 2D) or face (in 3D) of an element multiple times. These are cases that are fundamentally due to under-resolution of the
grid with respect to the geometrical details of I'. These cases can generally be resolved by refining the grids in regions where I" has
high curvature.

Remark. The classification of Interior and Exterior regions depend on the domain of interest for the PDEs. It can be the inside or
outside of the enclosed geometry. For instance, if one is interested in the effect of inclusions/voids then the domain of interest is
the outside of the geometry defining these voids.

In practical terms, Eq. (22) boils down to looping over all IntercerteD elements and deciding whether that INTERcEPTED element
should be retained in the surrogate domain (£2,). A simple and effective strategy is to retain an INTercepTED element if it encloses
enough of the true domain. To formalize this, we define an additional classification of an element, FALSEINTERCEPTED.

Definition 3.5 (FALSEINTERCEPTED). An INTERCEPTED element is classified as FALseINTERCEPTED if the ratio of the element volume exterior
to Q to the total element volume is greater (>) than the threshold factor A.

We note that the classification of the element as FarseINTERCEPTED is contingent on the choice of the user-defined parameter A.
When we choose A = 0, all the InTercerTED elements are classified as FarseInTercepTeD, which produces a surrogate domain that fully
inscribes (i.e., is inside) the true domain. On the other hand, choosing 4 = 1 leads to the inclusion of all the INTErcEPTED elements
producing a surrogate domain that fully circumscribes the true domain. Fig. 3 illustrates various surrogate boundaries as a function
of varying A. Intuitively, 4 = 0.5 produces an optimal surrogate that minimizes Eq. (20).

The surrogate domain 3, of size h is defined as a set of elements with element size ||Ax|| < & such that when any extra element
(of size ||Ax|| < h) that belongs to the complement QZ of O, is added, it must be classified as either EXTERIOR or FALSEINTERCEPTED. A
surrogate domain can be constructed as circumscribing (4 = 1) or inscribing (1 = 0) the true domain, or “something in between”
(4 € (0,1)) these two extreme cases. A surrogate boundary is the set of faces/edges that traverses the surrogate domain £,. Fig. 3
illustrates a variety of surrogate domains and associated surrogate boundaries for a given geometry. We design algorithms such that
the surrogate domain satisfies the following conditions to ensure correct computations:

» Watertightness: Ideally, the true boundary must be watertight or 2-manifold as nothing can enter or leave the domain. In
practice, however, the SBM approach is robust to small gaps/overlaps.



C.-H. Yang et al. Computer Methods in Applied Mechanics and Engineering 419 (2024) 116686

» Single-cycle condition: The set of edges or faces that form the surrogate boundary must form one and exactly one cycle that
traverses the surrogate domain ,,. In other words, there should not be any self-intersections in the surrogate boundary.

In the next section, we describe the algorithms to construct the surrogate boundary for arbitrary choices of 1 in a massively
parallel environment.

4. Algorithms and implementation details
4.1. Algorithms

To start the discussion of the algorithms for the efficient and accurate construction of surrogate domain and surrogate boundary
for the SBM computations, we clarify some assumptions and motivations behind the choices described in what follows.

4.1.1. Assumptions regarding meshes
Before proceeding to the algorithm sections, we make the following assumption regarding the data structures.

1. No neighbor information: We assume that the mesh elements do not have access neighborhood information. Tagging
neighbors is particularly challenging with unstructured meshes, as elements can have varying neighbors with no plausible
upper limits.

2. Partitioned from get-go : The octree-based mesh data structure is partitioned right from the construction stage using
distributed memory parallelism. This aspect has made octrees possible to scale to thousands of processors. This is in contrast
to the traditional unstructured mesh generation, where the mesh is first generated on a single processor and later partitioned
through a graph partitioning library such as ParMEeris. This is an important aspect to consider while developing algorithms
that retain the scalability of octree meshes.

3. Massively parallel environment: The algorithm proposed should scale to thousands of processors. We are not only interested
in the accurate solution of PDEs but also in an efficient and scalable solution.

4. Different element sizes: Octrees can have different element sizes. We consider 2:1 balanced octrees during our algorithmic
development [42]. Additionally, we assume that the INTErcerTED elements and InTeriorR elements that are neighbors of the
InTERCEPTED elements (elements that share at least one node of the INTERcEPTED elements) are at the same level. This is done
to ensure that there are no hanging nodes, which retains the simplicity of algorithms without too much extra computational
cost.

4.1.2. Algorithm for determining surrogate boundary for arbitrary boundary

With the above assumption in Section 4.1.1, we can define the algorithms for determining the surrogate boundary for any
arbitrary choice of 1. The basic idea of the proposed algorithm is to rely on the connection between the elements through the nodes.
We note that the nodes are shared across the elements in the Continuous Galerkin (CG) Finite element method. Other researchers
have leveraged this to implement several graph-based algorithms for unstructured meshes, even without any neighbor information
stored in the mesh data structure [43]. This can be efficiently performed as a series of maTvEC operations—a key component in FEM
libraries and can be performed in a highly efficient and scalable manner [31,32,34,44]. maTvec operation typically involves looping
over the local elements locally owned by the processors followed by sharing the nodal values at the processor boundaries - typically
known as ghost exchange. First, the ghosted values from each of the processors are duplicated (GHosTREAD) so that each processor
can now independently execute MATVEC operations. Finally, matvec ghosted values are copied to the processor that owns the node
at the processor boundaries (GuostWriTe). We would refer the interested reader to our prior papers [7,21,33,34,45] for additional
details on ghost exchange.

Algorithm 1 briefs the major step required to identify the surrogate boundary. We begin with identifying markers for each
element (Algorithm 2). At this stage, each element is classified as INTErIOR, ExTERIOR, Or INTERCEPTED. Next, each INTERCEPTED element
is classified as FaiseInTercerTED depending on the value of A. For accurate evaluation of the volume term within 2, we use 59"
Gauss-Legendre points; i.e., each element is filled with 5 Gauss points in each dimension. This computational choice works well for
all our results but can be easily changed at compile time.

Removing FaiseInNTERCEPTED elements from the domain requires a change of surrogate boundary. To identify the surrogate
boundary, we generate the markers for neighbors of FarseInterceptep. Without the neighbor information within the mesh data

Algorithm 1 SurrocaTEBouNnDARYIDENTIFICATION: Identify the surrogate boundary

Require: Incomplete octree mesh &,Threshold factor i
Ensure: Surrogate boundary (I")

1: Marker .#, < GENERATEMARKERS(O, A) > Algorithm 2.

2: Marker .#,, FALSEINTERCEPTED NODES (.A") < GENERATENEIGHBORSOFFALSEINTERCEPTED( O, 2| ) > Algorithm 3

3: Boundary I', Marker Ay < GETBOUNDARY( O, 2 ,) > Algorithm 4
return (1)




C.-H. Yang et al.

Computer Methods in Applied Mechanics and Engineering 419 (2024) 116686

Algorithm 2 GeneratEMARrkERs: Generate Marker classification :EXTERIOR, INTERIOR, INTERCEPTED, FALSEINTERCEPTED

Require: Octree &,Threshold factor A
Ensure: Marker M

1. <1
2: for element € & do > Loop over the elements of octree
3: count < 0
4: for node € element do > Loop over the nodes of each element
5: if node == InTErIOR then > Classify nodes as EXTERIOR Or INTERIOR
6: count+-+ > Increment for INtErIOR nodes of element
7: if count == num_nodes then
8: # [element] « INTERIOR
9: else if count == 0 then
10: A [element] < EXTERIOR
11: else
12: A [element] < INTERCEPTED
13: count gp < 0 > Counter for number of Gauss points that are INTERIOR
14: for gp € GaussPoints do
15: if gp < INTERIOR then
16: count_gp ++
17: A, < count_gp/num_gp > Fraction of Gauss point that are INTERIOR
18: if A, > 4 then > Classify elements on the basis of the threshold 4
19:  [element] < FALSEINTERCEPTED

return ()

Algorithm 3 GeneraTENEIGHBORSOFFALSEINTERCEPTED: Generate neighbors of FALSEINTERCEPTED

Require: Octree &, Element marker .#
Ensure: Marker M with element marker for NeiGuBorsFaLseINTERCEPTED, Nodal False Intercepted nodes A

1: A _ghosted < [0] > Vector of zeros with size of ghosted nodal vectors
2: for element € & do

3: if element == FaiseINTERCEPTED then

4: for nodes € element do

5: A _ghosted[nodes] « 1 > Assign value of 1 to all the nodes of the element tagged as FALSEINTERCEPTED
6: A « GhostWrite(.4"_ghosted) > Ghost write
7: A _ghosted < GhostRead(.4") > Ghost read
8: for element € & and .# € InteriOR dO

9: if anyof(nodes) € element == 1 then > If any of the nodes is marked as 1
10: 2 [element] < NEIGHBORSFALSEINTERCEPTED

return (4, N)

structure, we rely on the efficient maTvec computation to achieve this task (Algorithm 3). This step can also be considered a scatters-
to-gather transformation. Each FarseINTERCEPTED element scatter the information by assigning the value of 1 to the incident nodes on
that given element. In the second pass, each element gathers the data by looking into the values of the nodes that are incident on
it. Once we have the nodal and elemental information about the NEiGHBoRSFALSEINTERCEPTED, We can compute the faces that form the
new [7,. Two distinct cases exist:

1. If an element is marked as InTErcerTED, We proceed as usual. The face(s) of the element with all the nodes marked as Exterior
is added to the surrogate boundary faces.

2. For the element marked NeiGHBORSFALSEINTERCEPTED, We loop through the faces of the element. If all the nodes on a given face
are either FaiseINTERCEPTED Or ExTERIOR, then and only then, they form the part of I7,.

In some cases, we observe a cycle being formed where the opposite faces (X . ¢ t+l = 1--- dim) of a given element are both
chosen to be part of the surrogate boundary. This violates the second condition of the surrogate boundary described in Section 3.1.
We mark such elements as FavseINTERCEPTED to resolve this issue. This ensures that only one of the sides X or X;" is selected to be
part of the surrogate boundary depending on the side of NeiGHBoRSFALSEINTERCEPTED (Algorithm 4). Fig. 3 shows the variation of the
surrogate domain and surrogate boundary for different choices of 1. We note that all the steps in Algorithm 1 can be done efficiently
in O(N) steps and require a small number of passes over the elements of the octree.

4.1.3. SBM computation

Once we set up the surrogate domain (£2,) and resultant surrogate boundary (I’,) along with the associated markers, we proceed
with the steps for the deployment of the SBM. Algorithm 5 briefs the major step for the SBM computation. We note that the
elements marked as FarseIntercepTED (and ExTERIOR, if not using incomplete octree) are skipped over, whereas the volume integration
is performed on other elements. Each face of the InTercerteD and NEeigHBorsFALSEINTERCEPTED element is checked to see if it belongs
to the surrogate boundary I’,. If a given face belongs to I, the required surface integration (as given in Eq. (7)) computation is

10



C.-H. Yang et al. Computer Methods in Applied Mechanics and Engineering 419 (2024) 116686

Algorithm 4 GerBounpary: Get surrogate boundary

Require: Octree &, Element marker .#
Ensure: Surrogate boundary I, Marker .#

1: for element € & do

2 FaceBits « [false]

3: for face € element do > Loop over the faces of the element
4: if _# [element] == IntercepTED and allof(nodes € face == Exterior) then > Condition for INTERcEPTEDElement
5: FaceBits[face] < True

6: else if .7 [element] == NEiGHBORSFALSEINTERCEPTED then > Condition for NeiGHBORSFALSEINTERCEPTEDElements
7: BoundaryFace < True

8: for nodes € face do

9: if (nodes == Exterior) or (nodes == FALSEINTERCEPTEDNODE) then > Each node should be either ExTeriOrR or FALSEINTERCEPTED
10: continue

11: else

12: BoundaryFace « False

13: break

14: if cycle(faceBits) then > If opposite face of the same element forms the part of I
15:  [element] <« FALSEINTERCEPTED

16: else

17: for face € element do > Add faces to the surrogate domain I
18: if faceBits[face] « true then

19: I' « I'.push_back(face)

return (I",.#)

Algorithm 5 SBM: Shifted Boundary method

Require: Octree &, Element marker .# ,Surrogate boundary I", PDE (% () = f)
Ensure: Solution of PDE: u"

1: for element € & do

2 if element == FaiseINTERCEPTED U  ExTERIOR then

3 continue

4 else

5: Assemble matrix (o¢) and right hand side vector (b)

6 if (element == INTERCEPTED) Or (element == NEiGHBORSFALSEINTERCEPTED) then

7 for face € element do

8 if face € I" then

9: Assemble surface contribution to matrix (o) and right hand side vector (b)

10: Solve ou” = b > Solve system of linear equation

return u"

Algorithm 6 Overview: Calculation of distance functions

Require: Gauss point positions on the surrogate boundary (GaussPoints), geometry, and mapping between Gauss points and distance functions
Ensure: Distance function corresponding to each Gauss point

1: for P € GaussPoints do

2 if P is already in the mapping then

3: Use the precomputed distance function for P

4: else

5 Find the distance function from P to the nearest triangle using NormaLDistCALC > Algorithm 7
6 Save the mapping between P and its distance function

7:

return distance functions for all Gauss points

performed and assembled to the global matrix and vector. Once the global matrix < and global vector b are assembled, we solve

the system of equations to obtain the solution u".

4.2. Distance function calculation

Note that the SBM computations require evaluating the distance, d, of Gauss points on the surrogate boundary to the closest
point on the true boundary. This section focuses on calculating distance functions for intricate three-dimensional geometries. We
consider the geometries to be represented in STL files, which are, in turn, represented by sets of triangles. SBM computation requires
computing the distance function by finding the normal distance from the Gauss point to the nearest triangle. We store information
about Gauss points and their corresponding distance functions to avoid repeated distance function calculations. This is particularly
important for time-dependent problems on the static mesh as it prevents repetitive computation at the cost of extra memory.

11



C.-H. Yang et al. Computer Methods in Applied Mechanics and Engineering 419 (2024) 116686

P closest to
the edge is
inside the

3D triangle?

P projection is
inside the
3D triangle?

(a) Flowchart of distance calculation procedure.

A A PA

. PA P

P DP
} 1)7\ PI project
Pproject . projec
i PPpr()jéct B “ B
C C
(b) Case A:P,jecrion falls inside the 3D triangle. (¢) Case B:P . jeciion lies outside the 3D triangle.

A A

(d) Case C:The shortest distance from the point  (e) Case D:The shortest distance from the point  (f) Case E:The shortest distance from the point
to the triangle edges. to the triangle edges, and the closest point to the triangle vertices.

(Pclosest) fall outside of the triangle.

Fig. 4. Distance function calculation. As shown in the flowchart in (a), the projection of the point into the plane of the triangle can be inside or outside. If it
falls outside, the point is projected to the three edges. If the closest of the edge projections is outside the triangle, then the closest point is computed to the
vertices.

Algorithm 7 NormarDistCaLc: Calculation of normal distance to nearest triangle

Require: k-d tree built from triangle centroids, Gauss point position (P), and geometry information
Ensure: Distance function corresponding to the Gauss point

1: Use the k-d tree to find the ID of the nearest triangle to the Gauss point P
2: Calculate the normal vector from P to the nearest triangle by projecting the vector PA onto the triangle’s normal vector n: (
position of the triangle

: project point « P+(P:';‘) ‘n

: if the projection point is inside the 3D triangle then > Algorithm 8
Set the distance function as the normal vector to the nearest triangle

else
Calculate the shortest distance from P to the nearest triangle edge as the distance function > Algorithm 9

PAn
In|2

)-n, where A is one vertex

: return distance function

12



C.-H. Yang et al. Computer Methods in Applied Mechanics and Engineering 419 (2024) 116686

Algorithm 8 CueckInsipE3DTriaNGLE: Check if point is inside 3D triangle

Require: Projection point position (P,,.) and vertex positions of triangle (4, B, C)
Ensure: Whether the projection point is inside the 3D triangle

1: Calculate cross products u = AB x AP, v=BC xBP w = CA x CP,
2:ifu-v<O0oru-w<O0 then

3: return false
4
S5

project > project > project

: else
return true

Algorithm 9 SHortesTDIsT2TRIEDGE: Calculate the shortest distance to a triangle edge

Require: Gauss point position P, and vertices of a triangle A, B, and C
Ensure: Shortest distance vector from P to a triangle edge
AP-AB BP-BC CP-CA

1: Compute the projection of P onto each triangle edge, i.e., PP,z = TABE AB — AP, PPy = T BC - BP, PP, = TCAT CA — CP, where P,g, Py, Pc, denote

the closest points on edges AB, BC, CA to P

Calculate the shortest distance function from P to the nearest triangle vertex, PP,

2: Compute the minimum distance from P to each edge, i.e., |PP,g|, |[PPyc|, [PPc4| and find the closest point (P,,,,) to P within P,, Pye, Py

3: if the P, is inside the 3D triangle then > Algorithm 8
4: Set the distance function as the PP .

5: else

6:

7

: return distance function

The procedure for calculating the distance function is outlined in Algorithm 6 and Fig. 4(a). We utilize the algorithm presented
in Algorithm 7 to compute the normal distance between Gauss points and the nearest triangle, as depicted in Fig. 4(b). To expedite
this process, we leverage a k-d tree to efficiently search the closest triangle using nanoflann library [46]. Constructing the k-d
tree data structure is not compute-intensive. Even for intricate 3D scenarios (like the 3D Stanford bunny model), the time required
for building the k-d tree is < 1 s (0.01 s). Additionally, we use memory-efficient C++ constructs (reference and pointer) to access
the data. In our implementation, every processor undertakes the k-d tree construction independently and in parallel, ensuring this
process needs zero communication and, thus, does not become a performance bottleneck.

The distance calculation process is embedded within the vector assembly procedure shown in Section 5.5. Using a k-d tree over
the conventional method of looping through the surface triangles in the STL file, we noticed a significant speed enhancement, nearly
tenfold, in the 3D Stanford bunny example shown in Section 5.3. This significant boost in efficiency underscores our choice of the
k-d tree data structure in this context. Specifically, the k-d tree is constructed from the triangle centroids, and during the Gauss point
iteration, the k-d tree assists in identifying the nearest triangle and obtaining its ID for each Gauss point. Nonetheless, in certain
instances, the projection points from Gauss points to triangles may fall outside the triangle, as illustrated in Fig. 4(c). To handle such
situations, we have incorporated two additional procedures. Firstly, Algorithm 8 verifies whether the projection points lie within
the nearest triangle. Secondly, Algorithm 9 determines the shortest distance between the point and the edges of the triangle, as
shown in Fig. 4(d). It is worth noting that the projection method we use to find the closest point on the triangle edges to the Gauss
point may not always result in a point inside the triangle in three dimensions, as shown in Fig. 4(e). In such cases, we search for
the closest vertex of the triangle and calculate the distance function based on it (see Fig. 4(f)) and Algorithm 9.

5. Numerical results

This section presents numerical results for the simulation of Poisson equation and the equations of linear elasticity, over domains
of complex geometry. We note the following important points for the readers to interpret the results:

+ The integration for the weak form is performed using standard (p + 1)?" Gauss quadrature points in all the elements, where p
is the order of the polynomial finite element interpolation basis. We use the linear basis function (p = 1) in all reported results.
+ We report accuracy by comparing the numerical solution against analytical solutions. This post-processing operation to
compute the L2-error is performed on each element using five Gauss points per dimension. The reported L*-error is computed

as
h
||e||L2(Q) = [l = uexact||L2(!2) = V /z(uh - uExact)zd‘Q .
£

Note that the error is computed on the true domain Q. In particular, the SBM solution is smoothly extended over elements
that intersect 2 but are not part of the SBM active domain Q,,.
Besides L?-error, we also report H'-error in some test cases. H!-error is computed as

”e”Hl(Q) = “uh - uexact”Hl(.Q) = \/,/_Q [(uh - uexuct)z + L2(Vu - Vuexact) : (Vll - Vuexact)] aQ,

13



C.-H. Yang et al. Computer Methods in Applied Mechanics and Engineering 419 (2024) 116686

where L represents the largest dimension of the bounding box of I’

Given that the true domain £ is embedded within a Cartesian grid, we have devised a method to accurately compute the
integrals over £2. We integrate over 2 and implement an In-Out test for the Gauss points within the intercepted elements.
This ensures that only the contributions from the quadrature points inside £ are considered. We utilize five quadrature points
per direction for these elements, translating to 25 points for 2D scenarios and 125 for 3D. Please note that when 1 = 0, Q is
invariably smaller than £; only the 4 = 1 scenario can accurately integrate over £2. This prompts us to introduce our specialized
L,y and H,y error norms, as the integration areas vary between As.

In order to compare errors from different simulations, for which the sizes of the domains (2 may differ, we report the normalized
error, defined as:

||e||L2(_Q)
Jad2

Furthermore, the normalized H'-error is given by:

Lyn(£2) =

||e||1-[1(_(2)
Jad2

We define the improvement factor I,, as the metric for comparison between different surrogates with respect to the case in
which 4 = 1. We recall that 1 = 1 corresponds to the case in which 2, > @, that is 2, circumscribes 2. When comparing
simulations performed with different values of 4, a lower value of I,,, corresponds to better solutions:
Loy (2;0)
=T 0=
(@24 =1)

Hin(€) =

We recall the definition of 4,(0 < 4 < 1) as the elemental volume fraction of the domain Q. More specifically, 4 is a threshold
used to check whether an IntercepTED element needs also to be classified as FALSEINTERCEPTED element.

5.1. Identifying the optimal surrogate boundary

Recall that our goal is to construct the optimal surrogate boundary that minimizes the distance d, the distance between I' and [,
Our approach yields that 4 = 0.5 minimizes d. We illustrate this result using a canonical test example. Consider a rotated rectangle
inclined at a 15° angle with respect to the background octree mesh. We compute the distance (the RMS distance) between the
surrogate boundary and true boundary for a range of surrogate boundary choices by varying 4 € [0, 1]. To be more concise, the RMS
(Root Mean Square) distance is defined as:

(23)

where N is the total number of surface Gauss points, and I —1:,- represents the distance between Gauss points and the true boundary.

Fig. 5 compares the value of RMS distance for different A, for different mesh resolutions (identified by the level of refinement).
Observe that 4 = 0.5 yields the minimal RMS distance, irrespective of the level of the mesh resolution. In addition to conducting
tests at a 15° angle, we also carried out experiments at 10°, 20°, 30°, and 40° angles, paired with varying mesh refinement levels.
The results consistently pointed towards A = 0.5 as the value that assures the least RMS distance. Fig. 6 further demonstrates these
conclusions for various geometries defined by rotating a square at various angles. Thus, choosing 4 = 0.5 provides a simple and
effective strategy for constructing the surrogate boundary. In the subsequent sections, we analyze improvement in solution accuracy
resulting from constructing an optimal surrogate boundary (4 = 0.5) as compared to a non-optimal surrogate (usually 1 = 0,1 = 1).

5.2. Solving Poisson’s equation on disk

We next utilize the optimal surrogate construction approach to solve Poisson’s equation when 2 has a simple shape: a circular
disk. This is an exact geometry, and several ways exist to construct an axis-aligned surrogate boundary for a circle. Consider a disk
with a radius R = 0.5, centered at (x, = 0.5, y, = 0.5). We solve Poisson’s equation on this geometry with a Dirichlet boundary of
uy = 0.01 on the boundary and forcing term f = 1. We choose the penalty parameter « to be 400. This problem has an analytical
solution given by: u(r) = 0.25(R? — r?) + uy, where r is the distance from the center (r = \/(x — x¢)? + (¥ — ¥)2).

Fig. 7 shows the mesh convergence plot for different choices of 2. We observe second-order convergence in normalized error L,y
(Fig. 7(a)), irrespective of the choice of A. However, the optimal choice of 4, and thereby of surrogate boundary, can significantly
reduce the magnitude of the error. We observe that choosing 4 = 0.5 yields minimal error that is almost an order of magnitude
lower when compared to the previously reported surrogate boundary choices of 4 = 0 [22] or 4 = 1 [31]. Fig. 7(b) compares this
improvement factor for the cases of 4 = 0.0 and 4 = 0.5 with respect to case of 1 = 1 (note that I,, = 1 for 4 = 1). The choice 1 =0.5
produces errors at least three times lower than the case A1 =0 or 4 = 1 across all mesh resolutions. This improvement is significant,
considering that the computational effort in identifying the optimal surrogate is minimal.

14



C.-H. Yang et al.

’

0.06 -

RMS Distance

Computer Methods in Applied Mechanics and Engineering 419 (2024) 116686

—level = 4
—level =5
—~level = 6

Fig. 5. Constructing the surrogate boundary for a rotated square on a Cartesian mesh. The figure shows the RMS distance with varying 4 values for different
octree levels. In each inset, the solid red line represents the surrogate surface, while the solid black line represents the true boundary. FarseINTERCEPTED elements

are marked by M, whereas TrUEINTERCEPTED elements are marked by

and InTErIOR elements by M.

0.025 ——10°
3 —v—20°
Q) 0.02 +300
g b —e—40°
,% 0.015
o
»n 0.01
2
0.005 |- .
0 L | RSSO S S
0 0.25 0.5 0.75 1
A

Fig. 6. RMS of the distance between the true and surrogate boundaries, for a square rotated by various angles (10°, 20°, 30°, 40°), and grid refinement level

equal to 6.
\\\\‘ \\\\\\‘ T T T 1717
1074 T
<}
z _
g 107 F .
10_87\/\”\ Ll Ll

1072 107!

Element size, h

1073

—@— 1=0 —W—1=025—@— 1=05
—%—1=075—4— A=1 - - - slope=2

(a) Normalized L, error convergence

I

0.8 .

0.6

0.4
0.2

0 | | | | | |
1725 1726 1727 1728 1729 1/21°
h

||I/1=1|]|]a=0|]|]1=0.5|

(b) Improvement factors, /5. (The lower the better)

Fig. 7. Left: Mesh convergence plot solving the Poisson’s equation on a disk. Each line represents a convergence plot with a specific surrogate boundary
constructed using a A. Notice that while all surrogate choices exhibit the expected slope, the A = 0.5 surrogate produces the lowest error for any mesh size.
Right: The improvement plot shows that the optimal surrogate produces more accurate solutions.

15



C.-H. Yang et al. Computer Methods in Applied Mechanics and Engineering 419 (2024) 116686

T T T T T T
1072 E e
C —@— 1=0 —m—1=025—8— 1=05 /// ]
r —*—1=075—4— A=1 - - - slope=1 -7 i
g _
2103 =
= C 1
> - ]
1074 |- L7 E
| | L
1073 1072 107!
Element size, h
Fig. 8. |lell; ) convergence.
Table 1
Results for different values of A and H ().
— 1 _ 1 _ 1 _ 1 _ 1
A h= - h= & h= = h= b h= B
0 6.93172- 1073 3.28485- 1073 1.61935- 1073 8.03201 - 107* 4.00104 - 107*
0.25 6.64218 - 1073 3.24276 - 1073 1.60941 - 1073 8.01324 - 1074 3.99658 - 107
0.5 6.50498 - 1073 3.24180 - 1073 1.60427 - 1073 8.00379 - 10~* 3.99427 - 10~*
0.75 6.51784 - 1073 3.25060 - 1073 1.61003 - 1073 8.01176 - 1074 3.99775 - 107*
1 8.48712- 1073 3.87137- 1073 1.70219 - 1073 8.60006 - 1074 4.08395 - 10~

Besides the L?-error evaluation, we have also computed the H!-error. Referring to Fig. 8 for the H'-error mesh convergence
analysis, we observe an almost perfect order of accuracy, close to 1, across simulations with various A values. To further comprehend
the impact of different A selections, we present the H,,(£2) values in Table 1. Notably, a 4 = 0.5 choice consistently ensures the
smallest H,y(£2) for a given grid size.

5.3. Complex geometries

We next showcase the ability of the SBM to accurately solve the Poisson’s equation over three-dimensional objects. We consider
three standard benchmarks exhibiting complex geometries and sharp corners: the Stanford Bunny, the Moai, and the Armadillo.
For all three-dimensional cases, the penalty parameter « is set to 400. We use the method of manufactured solutions to construct
an analytical solution against which to compare the SBM results. This allows rigorous comparison across different values of 1. The
analytical solution for each of the cases is given as:

cos(zx)y sin(xrz), Stanford bunny;
u(x,y,z) =41 —x)(1 —y) cos(3rz), Moai; 24)
cos(zx) (1 —y) sin(rz), Armadillo.

For each object, we perform a mesh convergence analysis by solving the Poisson’s equation using the optimal surrogate (1 = 0.5)
and compare the accuracy against the choice of surrogates with 4 = 1 and 4 = 0. Fig. 9 compares I,, for various values of 4 and
different mesh sizes. We can see that the value of 4 = 0.5 consistently outperforms 4 = 0 and 4 = | in terms of accuracy. This
demonstrates both the importance of choosing an optimal 4 as well as the robustness of the proposed algorithm for solving PDEs
on complex geometries. Notably, the errors observed with 4 = 0 are larger than those with 4 = 1 and 4 = 0.5. This discrepancy
can be attributed to the intricate shapes of our 3D test geometries, which comprise numerous concave and convex regions. Using
A = 0 equals to eliminate all the INTErcEPTED elements. This omission makes it challenging for simulations to fully capture the
complexity of these shapes. The closest point searching algorithm often selects distant projection points in this scenario. This results
in the application of inaccurate Dirichlet conditions (due to the deterioration of the Taylor series expansion with distance) on the
surrogate boundary, contributing to the increased error. Retaining more INTERcEPTED elements with 4 = | and A = 0.5 is a more
effective approach, as the closest point searching algorithm finds closer projection points.

16



C.-H. Yang et al. Computer Methods in Applied Mechanics and Engineering 419 (2024) 116686

Stanford Bunny

b\ ||I/1=1|]I]A=o|]|]a=0.5|
3 | I I I |

2 ]

10 -

1724 1725 1726 127 1/28
h

S
~

-0.39 -0.20 0.00 0.20 041

|I|/l=1|:||:|d=0|:||:|/l=0.5|
| I I I |

—_— N W
!

\I_I I\H I\I_I I\|_|
1/2% 1/2° 1/2° 1727 1728
h

v
S

-0.87 -0.50  0.00 0.50 0.81

Armadillo

|I|/l=1|:||:|/l=0|:||:|/l:0.5|
3 _
2 _
1 _
\I_I I\H I\|_| I\|_|
u 1/2% 1/25 1726 1727 1728

-0.60 -0.30 0.00 0.30 0.66
‘ h

by

Fig. 9. Solving Poisson’s equations on complex 3D domains using the optimized surrogate boundary.

Next, to test the algorithm’s robustness, we explore its performance on a geometry exhibiting an extremely complex topology. We
consider a simulation on a three-dimensional model of the Eiffel Tower, in STL format. Fig. 10(c) shows the surface representation
of the geometry, with a very large number of small holes and sharp corners. We choose a manufactured solution of the form:

w(x,y,z) = (1 —x)(1 —y)cos(3xz). (25)

Fig. 10(b) shows the resulting solution field. Finally, we notice the same trend in L*-error, with surrogates defined by 4 = 0.5
outperforming the other choices (Fig. 10(a)).

17



C.-H. Yang et al.

A

(a) STL file

(b) Solution contour

Computer Methods in Applied Mechanics and Engineering 419 (2024) 116686

’DD/I:IDD/I:ODDA:O.S‘

|
30 |- N 1
_20f |
10 |- .
0, [==—=1 ] ]

T

1/210
h

(¢) Error in the L,-norm

Fig. 10. Solving Poisson’s equation on the Eiffel tower model using SBM: (a) The STL file of the Eiffel tower immersed into the background mesh and the
bounding box. (b) Solution contour of Eiffel Tower with mesh size equal to 1/2'°. (c) Improvement plot of L,, and the results show that the optimal surrogate

boundary can reduce the L,y error.

A

A

Displacement
I I 0.10
0.06

0.04

0.08
I 0.02
0.00

(a) Displacement solution contour

1 Il Il Il Il
0.8 ]
0.6
04
02

2L MO T

by

|

T T T T

2420 24727 24/28  24/2°
h
’DD/I:IDD/I:ODD/I:O.S) ‘

(c) Improvement in L, error in u,

1

2.4/210

Lon()

—0— 1, (1=0) - M- u,(1=0)—@—u,(1=05)
- %- u(1=05)—4—ul=1)- @ ul=1)

- —— slope=2
1074 |
10—6 L
- - . L L L 11 1 1] l L L L 11 |11
1073 1072 107!
Element size, h
(b) Normalized L, error convergence
1 | | | | |
0.8 -
0.6 =
g
0.4 s
0.2 H D =
0 T T T D T D T
24726 24727 24/2%  24/2° 24210
h

’DD/I:IDD/I:ODD/I:O.S‘

(d) Improvement in L, error in u,

Fig. 11. Solving linear elasticity on a star shape using SBM: Fig. 11(a) shows the contour for the displacement magnitude contour for h = 2.4/2'0. Fig. 11(b)
shows the convergence plot of L,y error for u, and u, for different choices of 4. Fig. 11(c) and Fig. 11(d) show the improvement in L,y error when using the
optimal surrogate, A =0.5, for u, and u,.

18



C.-H. Yang et al. Computer Methods in Applied Mechanics and Engineering 419 (2024) 116686

|:| Octree Construction D Surrogate Identification D Matrix Assembly

. Vector Assembly . Solve

10t k. 100
- 80 |- .
I 260 |
| 40 .
I 20 |- |
100 & | | [ 0
48 9 144 192

Time (s)

Percentage of time —

48 96 192
Number of processors Number of processors —
(a) Total solve time with increase in the number of processors. (b) Percentage of time for individual steps.

Fig. 12. Scaling behavior and percentage of time at different stages of the SBM computation in 2D on TACC Stampede2.

5.4. Linear elasticity

Our final example showcases the SBM approach for solving linear elasticity equations. As shown in Fig. 11(a), we consider a
star-shaped domain. The sharp corners and non-convex geometry makes this a challenging case. We set Young’s modulus E to be
1 and Poisson’s ratio v to be 0.3. The elastic tensor C is for plain stress. The penalty parameter y is equal to 400. We consider a
manufactured solution of the form:

sin(zx) cos(zy)

u,(x,y) = 10
. (26)

cos(zx) sin(zy)

% y) = ——

Fig. 11(a) shows the displacement solution contour, while Fig. 11(b) shows the convergence of L,, error. Similar to Poisson’s case,
we observe a second-order convergence in L2-error. We see a significant improvement in L2-error by choosing a value of 4 = 0.5
when compared to 4 = 0 or A = 1 both for the x-displacement, u, (Fig. 11(c)) and y-displacement, uy(Fig. 11(d)). This improved
performance is seen across all mesh refinements.

5.5. Parallel computing scaling

Finally, we present some scaling results of our framework on TACC Stampede2 SKX and ICX nodes. To perform the scaling test,
we consider the problem described in Section 5.2. We choose 4 of 0.5 for the scaling test as it conforms to the optimal surrogate. The
strong scaling test considers octree at a level of 10 (4 = 1/2!°). We employ the BiCGStab (Biconjugate Gradient Stabilized) method,
a Krylov subspace iterative solver using stopping convergence criteria of 1078. Concurrently, we apply a Jacobi preconditioner to
enhance the convergence properties of the solver. Fig. 12(a) shows the variation of total solve time with increasing the number of
processors; with a near-ideal scaling behavior. Fig. 12(b) shows the percentage of time taken by the different stages. We observe
that the extra step for constructing the surrogate amounts to almost 10% of the total time. We note that this step, along with octree
construction, needs to be performed only once for a static mesh and will be amortized to a smaller fraction for transient problems.
As expected, we observe that the overall runtime is dominated by linear algebra solve.

In addition to the 2D case, we conducted a scaling study on a three-dimensional Stanford Bunny, as presented in Section 5.5. For
the strong scaling test, we utilized an octree level of 9 (h = 1/2°). The total solving time with respect to the number of processors is
shown in Fig. 13(a), while Fig. 13(b) illustrates the percentage of time taken by each stage. Unlike the 2D case, the incomplete octree
construction time became the problem’s bottleneck. However, the octree construction procedure is a one-time event if we encounter
time-dependent problems. Notably, the matrix assembly time is similar to the vector assembly time for this three-dimensional case,
given that we calculate and store distance function information during vector assembly and reuse it during matrix assembly to
minimize the distance function calculation time. Furthermore, we implemented k-D tree to improve the time required to calculate
the distance function in three-dimensional complex shapes. Thus, our algorithms and implementation ensure good scalability, making
this approach a practical strategy for solving PDEs in complex domains using conceptually simple octree meshes.

Remark 1. The current implementation of the surrogate boundary identification suggests that the surrogate boundary identification
takes up to 8%-10% of the total time (see Figs. 12(b) and 13(b)). Also, we note that the percentage of time is almost independent

of the number of processors, indicating a good parallel implementation. The percentage of the time reported is for a Poisson solve.

19



C.-H. Yang et al. Computer Methods in Applied Mechanics and Engineering 419 (2024) 116686

|:| Octree Construction D Surrogate Identification D Matrix Assembly

. Vector Assembly . Solve

T
1025 | i 100
T 80 N
Q
_ £
) o 60 -
o 5
E 0 5
= ] L .
£ 40
Q
I~
£ 20| -
1015 ! ! B 0
320 640 1280 320 640 960 1280 1600
Number of processors Number of processors —
(a) Total solve time with increase in the number of processors. (b) Percentage of time for individual steps.

Fig. 13. Scaling behavior and percentage of time at different stages of the SBM computation for 3D Stanford Bunny on TACC Stampede2.

We anticipate that for complex FSI problems, the solve time would dominate even more when considering a Navier-Stokes solver,
and therefore, the additional cost of identifying an optimal surrogate is unlikely to become a bottleneck.

6. Conclusions and future work

By shifting the enforcement of boundary conditions from the actual boundary to a surrogate boundary, the SBM allows for the
use of Cartesian meshes, eliminating the need for laborious and time-consuming body-fitted meshes around complex geometries. In
this work, we answer some key questions regarding the scalable and accurate deployment of the Shifted Boundary Method. The key
findings of this work are as follows: (a) identification of an optimal surrogate boundary parameter that greatly reduces numerical
error in the SBM, (b) rigorous theoretical analysis demonstrating the optimal convergence of SBM on extended surrogate domains, (c)
successful deployment of the SBM on massively parallel octree meshes, including handling of incomplete octrees, and (d) successful
application of the SBM to various simulations involving complex shapes, including those with sharp corners and different topologies,
with a focus on Poisson’s equation and linear elasticity equations. This work sets the stage for a massively parallel, octree-based,
general-purpose solution framework — using the SBM - for solving PDEs on arbitrarily complex geometries.

There are several avenues for future developments. One avenue we are actively exploring involves extending the SBM on
the octree framework to multi-physics and coupled PDEs, including Navier-Stokes, Cahn-Hilliard Navier-Stokes, and the Poisson—
Nernst-Planck equations. Another avenue is to extend the framework to account for moving boundaries, with a natural extension to
efficiently model fluid—structure interaction problems across complex geometries. We plan to extend the Weighted Shifted Boundary
Method (W-SBM) [28] to the octree framework to manage the variations in fluid volume over time and ensure an accurate capture
of the pressure field. Another active avenue of research is to develop robust preconditioners and architecture-aware solvers (for
example, GPU-accelerated multigrid methods) for such SBM on octree approaches. A final straightforward extension is to explore
the utility of higher-order basis functions and their tradeoff on error vs. time-to-solve.

CRediT authorship contribution statement

Cheng-Hau Yang: Investigation, Methodology, Software, Validation, Visualization, Writing — original draft. Kumar Saurabh:
Investigation, Methodology, Software, Validation, Visualization, Writing — original draft. Claudio Canuto: Formal analysis, Writing —
review & editing. Adarsh Krishnamurthy: Conceptualization, Methodology, Project administration, Resources, Supervision, Writing
- review & editing. Baskar Ganapathysubramanian: Conceptualization, Funding acquisition, Methodology, Project administration,
Resources, Supervision, Writing — review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Data availability
Data will be made available on request.

20



C.-H. Yang et al. Computer Methods in Applied Mechanics and Engineering 419 (2024) 116686

Acknowledgments

This work was partly supported by the National Science Foundation under the grants NSF LEAP-HI 2053760, NSF CNS 1954556,
and NSF OAC 1750865. BG, AK, KS, and CHY are supported in part by AI Research Institutes program supported by the NSF and
USDA-NIFA under Al Institute for Resilient Agriculture (2021-67021-35329). Guglielmo Scovazzi has been supported by the National
Science Foundation Division of Mathematical Sciences (DMS) under Grant NSF DMS 2207164.

Appendix. Proof of Proposition 1

Proposition. There exists an extension i of u in Q,, such that:

(@) —4i = fin Q.,; and
(@) if u € H*(Q), then a € H*(2y), with llall y2g,) < C llull 2y

Proof. To fulfill (a) and (b) above, let 2, = Q. \ cl(£2), where cl(€2) is the closure of Q2. The boundary 02, of the set Q, is

decomposed as the union of two disjoint boundaries, namely 02, = I'y U I';, with I}y = 022 and I'} = 09,,,. Then we define

. u in cl(Q), (A1)
o in Q,,

where 4 is the solution of
d=up only, (A.2)

and ¢ is chosen so that

dii _ du

=== I, A3

on  on onto (A-3)
with d(-)/on the normal derivative along n (i.e. along the unit normal to I}y pointing outside of £2). To motivate Eq. (A.3), observe
that I}, and I} are smooth curves and that uj, € H3/?(I,). Since f € L*(2), then, by the regularity theorem of elliptic problems, we

have u € H2() and consequently ? € H'2(Iy). Similarly, if ¢ € H3/2(I), then from f € L*(Q,) and u;, € H3/%(I,) we deduce
n

2 € H*(©,) and consequently Z—Z e HY 2(I"o). In order to deduce i € H?(£2,,,), we need to have
Uy = i, 0°
which is true since u;y, = i =up on I, and
Vur, =V, .
This last condition can be decomposed into the matching of the component of the gradient normal to I, which is precisely Eq. (A.3),

and the matching of the component of the gradient tangent to I;), namely

%zg_: on Iy . (A.4)
. . . . . du D
which is true since they both coincide with —= on I},
Next, we verify the existence of ¢ in Eq. fA.Z) such that Eq. (A.3) is verified. The solution of Eq. (A.2) is equivalent to the
solution of the two sub-problems

—Aty=f inQy,,
fy =up on Iy, (A.5a)
=0 onl,

—Aily =0 in 2y,
f4y=0 on Iy, (A.5b)
iy=¢ onl,

when we set & = i; + i, so that condition Eq. (A.3) becomes
a0y ou on
on ~ on on
Let us then introduce the operator

€ H'/2(Iy). (A.6)

T HV2(I) » H™V2(I1y)

21



C.-H. Yang et al. Computer Methods in Applied Mechanics and Engineering 419 (2024) 116686
ai
(g =
on I

and check that .7 is onto (i.e., surjective), namely that Im(7) = {Z¢ : ¢ € H/2(I'))} coincides with H~'/2(I3). We argue by
contradiction: since Im(.7) is a closed subspace of H~!/ 2(I,), assume that its orthogonal space contains elements # # 0. Any such
n € H™'/2(I,) then satisfies

. TP y-1,, =0,  Voe H VA,

Note that the inner product in H~'/2(I}) is the duality pairing
H71/2(r0)<f7¢ s R’1>H1/2(r0) >

where Ry = z), with z the solution of the problem

-Az=0 in Q,,

z=0 onl}, (A7)
0z

— = on [.

on n 0

Hence, for any ¢ € H'/2(I'}), we have

dil,
0= w5, Z>H1/2(F0)
EPR E
= H—I/Z(ro)<E S Z) i) + H—I/Z(['])(E s D))
-

=0 by Eq.(A.7)
o4,

= 112000 5, D H1P0ey
= / Al z + / Vi - Vz (using integration by parts)

QN 2

=0 by Eq.(A.5b)

= / Vi - Vz

24

- Jz L .

= / Az iy + Hfl/z(d_QA)(a—Z 2 o) 1200, (using integration by parts)

24

=0 by Eq.(A.7)

_ Jz . Jz
= wrayly, B0l uray o aeapts, s By

=0 by Eq.(A.5b)

= H-]/z(rl)(ﬂ s (P>H1/2(1-1). (A.8)

We conclude then that 7 is the null linear form on H'!/2(I}y), that is n = 0. As a consequence of .7 being onto, picking

_ w0
K on on’

there exists ¢ € H'/2(I'}) such that the solution of Eq. (A.5b) satisfies
o,
on
In addition, since n € H'/%(Iy), we get iiy € H*(24) and ¢ = (dy),, € H¥*(I')), whence & € H*(£,) as desired. ]

References

[1] R. Mittal, G. Iaccarino, Immersed boundary methods, Annu. Rev. Fluid Mech. 37 (2005) 239-261.

[2] C.S. Peskin, Flow patterns around heart valves: a numerical method, J. Comput. Phys. 10 (2) (1972) 252-271.

[3] F. Xu, D. Schillinger, D. Kamensky, V. Varduhn, C. Wang, M.-C. Hsu, The tetrahedral finite cell method for fluids: Immersogeometric analysis of turbulent
flow around complex geometries, Comput. & Fluids 141 (2016) 135-154.

[4] T. Hoang, C.V. Verhoosel, C.-Z. Qin, F. Auricchio, A. Reali, E.H. van Brummelen, Skeleton-stabilized immersogeometric analysis for incompressible viscous
flow problems, Comput. Methods Appl. Mech. Engrg. 344 (2019) 421-450.

[5] F. de Prenter, C. Verhoosel, E. van Brummelen, Preconditioning immersed isogeometric finite element methods with application to flow problems, Comput.
Methods Appl. Mech. Engrg. 348 (2019) 604-631.

[6] Q. Zhu, F. Xu, S. Xu, M.-C. Hsu, J. Yan, An immersogeometric formulation for free-surface flows with application to marine engineering problems, Comput.
Methods Appl. Mech. Engrg. 361 (2019) 112748.

22



[7

—

[81

[91

[10]

[11]

[12]

[13]

[14]

[15]
[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]

[28]
[29]
[30]
[31]
[32]

[33]

[34]

[35]
[36]
[371
[38]
[39]
[40]

[41]
[42]

[43]

[44]

[45]

[46]

. Yang et al. Computer Methods in Applied Mechanics and Engineering 419 (2024) 116686

K. Saurabh, B. Gao, M. Fernando, S. Xu, M.A. Khanwale, B. Khara, M.-C. Hsu, A. Krishnamurthy, H. Sundar, B. Ganapathysubramanian, Industrial scale
large eddy simulations with adaptive octree meshes using immersogeometric analysis, Comput. Math. Appl. 97 (2021) 28-44.

M.-C. Hsu, C. Wang, F. Xu, A.J. Herrema, A. Krishnamurthy, Direct immersogeometric fluid flow analysis using B-rep CAD models, Comput. Aided Geom.
Design 43 (2016) 143-158.

C. Wang, F. Xu, M.-C. Hsu, A. Krishnamurthy, Rapid B-rep model preprocessing for immersogeometric analysis using analytic surfaces, Comput. Aided
Geom. Design 52 (2017) 190-204.

A. Balu, M.R. Rajanna, J. Khristy, F. Xu, A. Krishnamurthy, M.-C. Hsu, Direct immersogeometric fluid flow and heat transfer analysis of objects represented
by point clouds, Comput. Methods Appl. Mech. Engrg. 404 (2023) 115742.

F. Xu, E.L. Johnson, C. Wang, A. Jafari, C.-H. Yang, M.S. Sacks, A. Krishnamurthy, M.-C. Hsu, Computational investigation of left ventricular hemodynamics
following bioprosthetic aortic and mitral valve replacement, Mech. Res. Commun. (ISSN: 0093-6413) 112 (2021) 103604.

J. Parvizian, A. Diister, E. Rank, Finite cell method: h- and p- extension for embedded domain methods in solid mechanics, Comput. Mech. 41 (2007)
122-133.

A. Massing, M. Larson, A. Logg, M. Rognes, A Nitsche-based cut finite element method for a fluid-structure interaction problem, Commun. Appl. Math.
Comput. Sci. 10 (2) (2015) 97-120.

E. Burman, S. Claus, P. Hansbo, M.G. Larson, A. Massing, CutFEM: Discretizing geometry and partial differential equations, Internat. J. Numer. Methods
Engrg. 104 (7) (2015) 472-501.

E. Burman, Ghost penalty, C. R. Math. 348 (21-22) (2010) 1217-1220.

E. Burman, P. Hansbo, Fictitious domain methods using cut elements: III. A stabilized nitsche method for Stokes’ problem, ESAIM Math. Model. Numer.
Anal. 48 (3) (2014) 859-874.

B. Schott, U. Rasthofer, V. Gravemeier, W. Wall, A face-oriented stabilized nitsche-type extended variational multiscale method for incompressible two-phase
flow, Internat. J. Numer. Methods Engrg. 104 (7) (2015) 721-748.

B. Schott, W. Wall, A new face-oriented stabilized XFEM approach for 2D and 3D incompressible Navier-Stokes equations, Comput. Methods Appl. Mech.
Engrg. 276 (2014) 233-265.

E. Burman, P. Hansbo, Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method, Appl. Numer. Math. 62 (4) (2012)
328-341.

E. Burman, M.A. Ferndndez, An unfitted nitsche method for incompressible fluid—structure interaction using overlapping meshes, Comput. Methods Appl.
Mech. Engrg. 279 (2014) 497-514.

K. Saurabh, M. Ishii, M.A. Khanwale, H. Sundar, B. Ganapathysubramanian, Scalable adaptive algorithms for next-generation multiphase simulations, 2022,
arXiv preprint arXiv:2209.12130.

A. Main, G. Scovazzi, The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems, J. Comput. Phys. 372 (2018)
972-995.

A. Main, G. Scovazzi, The shifted boundary method for embedded domain computations. Part II: Linear advection-diffusion and incompressible Navier-Stokes
equations, J. Comput. Phys. 372 (2018) 996-1026.

E.N. Karatzas, G. Stabile, L. Nouveau, G. Scovazzi, G. Rozza, A reduced-order shifted boundary method for parametrized incompressible Navier-Stokes
equations, Comput. Methods Appl. Mech. Engrg. (ISSN: 0045-7825) 370 (2020) 113273.

N.M. Atallah, C. Canuto, G. Scovazzi, The second-generation shifted boundary method and its numerical analysis, Comput. Methods Appl. Mech. Engrg.
372 (2020) 113341.

N. Atallah, C. Canuto, G. Scovazzi, The shifted boundary method for solid mechanics, Internat. J. Numer. Methods Engrg. 122 (20) (2021) 5935-5970.

N. Atallah, C. Canuto, G. Scovazzi, Analysis of the Shifted Boundary Method for the Poisson problem in domains with corners, Math. Comp. 90 (2021)
2041-2069.

O. Colomés, A. Main, L. Nouveau, G. Scovazzi, A weighted shifted boundary method for free surface flow problems, J. Comput. Phys. 424 (2021) 109837.
N.M. Atallah, C. Canuto, G. Scovazzi, The high-order shifted boundary method and its analysis, Comput. Methods Appl. Mech. Engrg. 394 (2022) 114885.
X. Zeng, G. Stabile, E.N. Karatzas, G. Scovazzi, G. Rozza, Embedded domain reduced basis models for the shallow water hyperbolic equations with the
shifted boundary method, Comput. Methods Appl. Mech. Engrg. (ISSN: 0045-7825) 398 (2022) 115143.

K. Saurabh, M. Ishii, M. Fernando, B. Gao, K. Tan, M.-C. Hsu, A. Krishnamurthy, H. Sundar, B. Ganapathysubramanian, Scalable adaptive PDE solvers in
arbitrary domains, in: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, 2021, pp. 1-15.
C. Burstedde, L.C. Wilcox, O. Ghattas, p4est: Scalable algorithms for parallel adaptive mesh refinement on forests of octrees, SIAM J. Sci. Comput. 33 (3)
(2011) 1103-1133.

H. Sundar, R.S. Sampath, G. Biros, Bottom-up construction and 2: 1 balance refinement of linear octrees in parallel, SIAM J. Sci. Comput. 30 (5) (2008)
2675-2708.

M. Ishii, M. Fernando, K. Saurabh, B. Khara, B. Ganapathysubramanian, H. Sundar, Solving PDEs in space-time: 4D tree-based adaptivity, mesh-free and
matrix-free approaches, in: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, 2019, pp.
1-61.

G. Alzetta, D. Arndt, W. Bangerth, V. Boddu, B. Brands, D. Davydov, R. Gassmoeller, T. Heister, L. Heltai, K. Kormann, M. Kronbichler, M. Maier, J.-P.
Pelteret, B. Turcksin, D. Wells, The deal.II library, version 9.0, J. Numer. Math. 26 (4) (2018) 173-183.

S. Popinet, Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries, J. Comput. Phys. 190 (2) (2003) 572-600.
S. Popinet, An accurate adaptive solver for surface-tension-driven interfacial flows, J. Comput. Phys. 228 (16) (2009) 5838-5866.

S. Popinet, G. Rickard, A tree-based solver for adaptive ocean modelling, Ocean Model. 16 (3-4) (2007) 224-249.

C. Min, F. Gibou, A second order accurate level set method on non-graded adaptive cartesian grids, J. Comput. Phys. 225 (1) (2007) 300-321.

A. Guittet, M. Theillard, F. Gibou, A stable projection method for the incompressible Navier-Stokes equations on arbitrary geometries and adaptive
quad/octrees, J. Comput. Phys. 292 (2015) 215-238.

M. Mirzadeh, A. Guittet, C. Burstedde, F. Gibou, Parallel level-set methods on adaptive tree-based grids, J. Comput. Phys. 322 (2016) 345-364.

H. Sundar, R. Sampath, G. Biros, Bottom-up construction and 2:1 balance refinement of linear octrees in parallel, SIAM J. Sci. Comput. 30 (5) (2008)
2675-2708, http://dx.doi.org/10.1137/070681727.

1. Bogle, K. Devine, M. Perego, S. Rajamanickam, G.M. Slota, A parallel graph algorithm for detecting mesh singularities in distributed memory ice sheet
simulations, in: Proceedings of the 48th International Conference on Parallel Processing, 2019, pp. 1-10.

M. Fernando, D. Duplyakin, H. Sundar, Machine and application aware partitioning for adaptive mesh refinement applications, in: Proceedings of the 26th
International Symposium on High-Performance Parallel and Distributed Computing, 2017, pp. 231-242.

M. Fernando, D. Neilsen, H. Lim, E. Hirschmann, H. Sundar, Massively parallel simulations of binary black hole intermediate-mass-ratio inspirals, SIAM
J. Sci. Comput. 41 (2) (2019) C97-C138, http://dx.doi.org/10.1137/18M1196972.

J.L. Blanco, P.K. Rai, nanoflann: a C++ header-only fork of FLANN, a library for nearest neighbor (NN) with KD-trees, 2014, https://github.com/jlblancoc/
nanoflann.

23



