®

Check for
updates

Probabilistic Fingerprinting Scheme
for Correlated Data

Emre Yilmaz'®)® and Erman Ayday?

1 University of Houston-Downtown, Houston, TX 77002, USA
yilmaze@uhd.edu

2 Case Western Reserve University, Cleveland, OH 44106, USA
exa208@case.edu

Abstract. In order to receive personalized services, individuals share
their personal data with a wide range of service providers, hoping that
their data will remain confidential. Thus, in case of an unauthorized dis-
tribution of their personal data by these service providers, data owners
want to identify the source of such data leakage. We show that applying
existing fingerprinting schemes to personal data sharing is vulnerable
to the attacks utilizing the correlations in the data. To provide liabil-
ity for unauthorized sharing of personal data, we propose a probabilistic
fingerprinting scheme that efficiently generates the fingerprint by con-
sidering a fingerprinting probability (to keep the data utility high) and
publicly known inherent correlations between data points. To improve
the robustness of the proposed scheme against colluding malicious ser-
vice providers, we also utilize the Boneh-Shaw fingerprinting codes as
a part of the proposed scheme. We implement and evaluate the perfor-
mance of the proposed scheme on real genomic data. Our experimental
results show the efficiency and robustness of the proposed scheme.

Keywords: Fingerprinting - Liability - Data sharing

1 Introduction

In today’s data-driven world, individuals share vast amount of personal informa-
tion with several service providers (SPs) to receive personalized services. During
such data sharings, data owners usually do not want SPs to share their personal
data with other third parties. Such issues are typically addressed via a consent (or
data usage agreement) between a data owner and an SP to determine how much
the SP gains the ownership of the user’s data. However, user’s data may often end
up in the hands of unauthorized third parties since (i) SPs sometimes share (or
sell) users’ personal information without their authorization or (ii) databases of
SPs are sometimes breached (e.g., due to insufficient or non-existing security mea-
sures). When such a leakage occurs, data owners would like to know the source of
it to keep the corresponding SP(s) liable due to the leakage.

© IFIP International Federation for Information Processing 2023

Published by Springer Nature Switzerland AG 2023

V. Atluri and A. L. Ferrara (Eds.): DBSec 2023, LNCS 13942, pp. 69-90, 2023.
https://doi.org/10.1007/978-3-031-37586-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-37586-6_5&domain=pdf
http://orcid.org/0000-0003-0834-8805
http://orcid.org/0000-0003-3383-1081
https://doi.org/10.1007/978-3-031-37586-6_5

70 E. Yilmaz and E. Ayday

Digital fingerprinting [15] is a technique to identify the recipient of a dig-
ital object by embedding a unique mark (called fingerprint) into the digital
object. Fingerprinting techniques have been developed for different types of dig-
ital content, such as audio, video, and software. However, such techniques are not
directly applicable for our scenario (sharing personal correlated data) because
(i) they (especially for multimedia) utilize the high redundancy in the data, (ii)
the embedded marks need to be large, which reduces the utility of shared data,
and (iii) they do not consider the correlations between data points.

We propose a fingerprinting technique for sequential personal data having
correlations between data points, such as genomic data or location data. We
consider several different malicious behavior that can be launched by the mali-
cious SPs against the proposed fingerprinting scheme including: (i) flipping data
points, (ii) using a subset of the data points, (iii) utilizing the correlations in the
data, and (iv) colluding SPs to identify and/or distort the fingerprint. Boneh-
Shaw codes [4] and Tardos codes [14] are considered as the state-of-the-art fin-
gerprinting codes to prevent collusion attacks. However, as we show in our exper-
imental evaluation, they do not provide robustness against other attacks against
a fingerprinting scheme which use data correlations. The proposed fingerprinting
scheme essentially relies on adding controlled noise into particular data points
in the original data and keeps the data utility high by controlling the fraction of
fingerprinted data points. By building a correlation model, the proposed scheme
guarantees that the fingerprint is consistent with the nature of the data. Fur-
thermore, the proposed fingerprinting scheme utilizes Boneh-Shaw codes [4] to
improve its collusion resistance while also providing robustness against other
types of malicious behavior, such as flipping or utilizing correlations in the data
(that are not considered by Boneh-Shaw codes).

We implement the proposed fingerprinting scheme for genomic data sharing
using real-life datasets. Via simulations, we show the robustness of the proposed
scheme for a wide-variety of attacks against a fingerprinting scheme and also
compare it with the state-of-the-art. We show that the proposed scheme is effi-
cient and scalable in terms of its running time.

The rest of the paper is organized as follows. We summarize the related
work in Sect.2. We describe the problem settings in Sect.3. We propose the
probabilistic fingerprinting scheme in Sect. 4 and explain how to utilize Boneh-
Shaw codes to resist collusion attacks in Sect.5. We present our experimental
results in Sect. 6. Section 7 concludes the paper.

2 Related Work

Digital watermarking is the act of embedding an owner-specific mark into a
digital object to prove the ownership of the object [6]. Watermarking techniques
have been proposed for multimedia [3,8], text documents [5], graphs [16], and
spatiotemporal datasets [9]. Digital fingerprinting can be seen as a personalized
version of watermarking since embedded mark (i.e., fingerprint) is different in
each copy of data with the objective to identify the recipient if data is disclosed

Probabilistic Fingerprinting Scheme for Correlated Data 71

to a third party without authorization of data owner. Fingerprinting schemes
have been proposed for multimedia [15], relational databases [10], and sequential
data [2]. Fingerprinting schemes for multimedia utilize the high redundancy in
digital object, which are not applicable to personal data sharing (which typically
includes less redundancy). Fingerprinting schemes for relational databases [10] do
not consider correlations between attributes. Moreover, since databases consist
of numerous tuples, the redundancy is much higher compared to personal data.
In [2], authors proposed a fingerprinting algorithm for sequential data. Since
this scheme solves an optimization problem at each step of the algorithm, it is
not scalable. In addition, they minimize the probability of identifying the whole
fingerprint in a collusion attack. However, the attackers can achieve their goal
by modifying some of the fingerprinted points.

Since each fingerprinted copy of a data stream is different, malicious recipients
can collude and detect fingerprinted points by comparing their copies. Boneh and
Shaw proposed a general fingerprinting solution for binary data that is robust
against collusion [4] by including overlapping fingerprints in each copy. How-
ever, fingerprint length needs to be significantly long to guarantee robustness
against collusion, which reduces the utility of the shared data. Tardos also pro-
posed probabilistic fingerprinting codes [14], which requires shorter codes than
Boneh-Shaw by assigning a probability to each data point. However, the length
of the fingerprint still needs to be high to provide robustness guarantees. The
robustness of both schemes are guaranteed if the colluding SPs do not change
the value of a data point when they all received the same value (i.e., marking
assumption). In practice, colluding parties can behave randomly or use correla-
tions in the data. Therefore, their theoretical analysis may not work in practice.
Since we deal with correlations and probabilistic adversarial behavior, we choose
to show the robustness statistically, with experimental evaluation in this work.
Although there are some works relaxing marking assumption [7] or improving
utility of Boneh-Shaw and Tardos codes [11,13], none of these schemes consider
other attacks against a fingerprinting scheme, such as using correlations in the
data for detecting fingerprinted points. Due to such limitations, directly using
these codes for personal data sharing will result in low robustness and utility.
In Sect. 6, we show how our proposed scheme provides higher robustness than
Boneh-Shaw and Tardos codes against various attacks. As we explain in Sect. 5.2,
we utilize Boneh-Shaw codes to improve the robustness of the proposed scheme
against collusion attacks. We prefer to integrate Boneh-Shaw codes to improve
the robustness of our scheme rather than Tardos codes, because our goal is
to explicitly assign overlapping fingerprints as proposed by Boneh-Shaw codes.
Therefore, we develop an efficient fingerprinting scheme which is robust against
a wide-variety of attacks.

3 Problem Settings

In this section, we present our system model, threat model, and robustness
measures. We describe the system and data models in a general way (i.e., without

72 E. Yilmaz and E. Ayday

relying on a specific data type or size). In Sect. 6, we discuss and evaluate the
use of the proposed fingerprinting scheme for genomic data.

3.1 System and Data Model

We show our system model in Fig. 1. We assume a data owner (Alice) with a
sequence of data points X = [z1,...,2;], where [is the length of the data and
each x; can have a value from the set D = {ds,...,d,;,}. Alice wants to share
her data with multiple service providers (SPs) to receive a service from these
SPs related to her data. Thus, we consider the scenario, in which the data owner
shares her personal data (as a stream) with several service providers (SPs). We
represent these SPs with a set S and each SP with an index such that SP; € S.
We assume Alice wants to detect the source of data leakage in the case of an
unauthorized data sharing by any of these SPs. In other words, upon observing
that her data is included in a leaked/breached dataset, the goal of the data
owner is to statistically prove which specific SP leaked her data. Hence, for each
SP; € S, Alice creates a unique fingerprinted copy (X = [z} ,...,7;,]) of X by
changing the values of some data points. Note that the proposed fingerprinting
scheme detects the source of data leakages; it does not provide guarantees to
SPs about the correctness of data provided by Alice. Thus, similar to other
fingerprinting schemes, we do not consider data credibility issues.

Leaked Data Alice (Data Owner)

‘Detection '
X =[x1,...,%1]

O O (X Qspi (XX} O
Data Leakage {
= [=a=]

= ===

Service Providers (SPs)

Fig. 1. The system model. Alice shares her data with several SPs after fingerprinting.
In case of a data leakage, the goal of Alice is to identify the guilty SP (via the detection
algorithm) that is responsible for this leakage.

Changing the states of more data points for fingerprinting increases the
chance of Alice to detect the malicious SP(s) who leaks her data. However,
fingerprinting naturally degrades the utility of shared data and one of our
goals is to minimize this degradation while providing a robust fingerprinting
scheme. We provide a general definition for the utility of a shared copy X/ as
U; = 23:1 uij-, where u; is the utility of data point ;, D; = 1if z; = 2},
and D;- =—1lifz; # ;.

Probabilistic Fingerprinting Scheme for Correlated Data 73

We assume that data points are correlated and we mainly consider pairwise
correlations between consecutive data points for clarity of presentation. The
proposed mechanism can also be extended to consider more complex correla-
tions, which may result in eliminating more possible values with low correla-
tions. Thus, we let conditional probabilities (e.g., P(zj4+1 = dglzj = dq) values)
representing the correlations between data points be publicly available for any
j€A{l,...,1 —1} and d,,dg € D. For different data types, such as location
patterns and genomic data, data points may have pairwise correlations between
each other. Therefore, a malicious SP may use such correlations to identify and
exclude fingerprinted data points (e.g., the ones that are not compliant with
the expected correlation model) in its unauthorized data sharing. Note that we
do not expect the data owner to know and understand these correlations. We
foresee that the system that will deploy the proposed algorithm to compute the
correlations using public datasets and to use them in fingerprinting algorithm.

3.2 Threat Model

In this section, we present the attacks which may be performed by malicious
SPs (attackers). We consider these attacks when developing the proposed scheme
and we evaluate the robustness of the proposed scheme against these attacks in
Sect. 6. In all of these attacks, the main goals of the attacker(s) are (i) to avoid
being detected by the data owner and (ii) to share as many correct data points
as possible. The attacker(s) needs to modify the values of some data points in
its copy to distort the fingerprint. These modifications in the data mostly cause
utility loss for the attacker(s). Let Y = [y1, ...,] be the leaked copy of Alice’s
data X. Similar to the utility of shared data, we provide the general definition
for the utility of the attacker(s) as Uy = 23:1 u;Dj, where u; is the utility of
zj, Dy = 1if x; = y; and D; = —1 if 2; # y;. Flipping, subset, and majority
attacks have already been introduced [10], whereas we propose correlation attack
in the following and probabilistic majority attack in Sect.5.1.

Flipping Attack. A malicious SP flips the values of some data points randomly
to distort the fingerprint (before it does the unauthorized sharing). The malicious
SP flips each data point with probability ps. If it decides to flip, then it selects
one of the remaining (m —1) values (states) of the corresponding data point with
equal probability and shares that state. While the probability of being detected
by Alice becomes lower for higher p¢, the utility of shared data decreases as well.

Subset Attack. A malicious SP excludes (removes) some randomly chosen data
points before leaking data, instead of flipping them. We denote the probability of
excluding a data point as p,. This attack is not as powerful as the flipping attack
because flipping data points might create a fingerprint pattern that looks similar
to some other SP’s fingerprint pattern, and hence Alice may falsely accuse an
innocent SP. However, to succeed in the subset attack, the malicious SP needs
to exclude almost all of the fingerprinted data points.

74 E. Yilmaz and E. Ayday

Correlation Attack. As discussed, the correlations between consecutive data
points are assumed to be publicly known. A malicious SP can use these cor-
relations to degrade the robustness of the fingerprinting mechanism (we will
define the robustness of the mechanism later). Assume the malicious S P; receives
X/ ={x},...,2;,;} from Alice and let two data points in the received data be

7 i1 = dg and 75 ; = do. If P(zj41 = dglz; = do) is low, then the attacker
infers that either xl j or @, is fingerprinted with a high probability. After
detecting such a pair, the malicious SP may change their values or exclude them
before unauthorized sharing.

Since flipping attack can be more powerful (as discussed in Sect.3.2), we
assume the malicious SP combines correlation attack with flipping attack as
follows: For two consecutive data points x; and x;41, the malicious SP; checks
P(xj41 = @ j1q|m; = 7 ;). If this probability is less than a threshold 7., the
malicious SP changes the value of z} ;,, to a different value from the set D
that provides the highest conditional probability (correlation) between ;v’ and

x; ;1. Otherwise, the malicious SP flips the value of] ;,, with probablhty
ps (as in the flipping attack). By doing so, the mahc10us SP (i) distorts the
fingerprint with a high probability (by distorting the data points that are not
compliant with the inherent correlations in the data) and (ii) adds random noise
to the data to further reduce the chance of being detected by Alice. Following
a similar strategy, the malicious SP checks all pairs up to z/ i1 and xh il If the
malicious SP does not combine correlation attack with ﬂlpplng attack, Ahce can
perform a similar correlation attack on X and obtain a similar result with the
malicious SP. Thus, the randomness in the flipping attack makes it difficult for
Alice to detect the malicious SP.

Collusion Attack. If multiple malicious SPs collude, by comparing their copies,
they may detect and distort the fingerprinted data points. The goal of the col-
luding SPs is to share a single copy of X without being detected. One well-known
collusion attack against fingerprinting schemes, called majority attack in the lit-
erature [10], is when colluding SPs compare all their received data points and
choose to share the data value that is observed by the majority of the colluding
SPs. However, doing such an attack alone cannot be successful for attackers if
there is no randomness in the attack. Otherwise, Alice can simulate the major-
ity attack of the colluding SPs (and identify the malicious SPs easily). Hence,
in Sect.5.1, we explain a more powerful collusion attack which also includes
correlation and flipping attacks.

3.3 Robustness Measures

The attacks described in Sect. 3.2 may cause Alice to accuse an innocent SP due
to the data leakage, and hence cause false positives in the fingerprint detection
algorithm. A fingerprinting scheme is considered robust if it resists malicious
attacks and allows the detection of the guilty SP that leaks the data after per-
forming an attack. In this work, we assume that the detection algorithm always

Probabilistic Fingerprinting Scheme for Correlated Data 75

returns a guilty SP when Alice observes an unauthorized copy of her data. The
proposed detection methods compute a score for each SP having a copy of Alice’s
data and identify the guilty SP based on these scores. In order to quantify the
robustness of the proposed scheme, we use the accuracy (a) of the detection
algorithm which is defined as the probability of detecting the guilty SP from
the leaked data. In [10], misattribution false hit (fh4) is defined as a robustness
measure (defined as the probability of detecting an incorrect fingerprint from the
leaked data). Therefore, a is equivalent to (1 — fh*). Similar to most collusion
resistant fingerprinting schemes, such as Boneh-Shaw codes [4], we also define
a as the probability of detecting one guilty SP from the leaked data in case of
collusion attack.

4 Probabilistic Fingerprinting Scheme for Correlated
Data

In this section, we propose our probabilistic fingerprinting scheme which consid-
ers correlations in data (considering the attack in Sect.3.2). In Sect. 5, we will
improve this scheme to also consider colluding malicious SPs.

4.1 Proposed Fingerprinting Algorithm

Assume data owner (Alice) has a sequence of data points X = [z1, ..., x;] and she
wants to share her data with an SP; as X} = [27 4,..., 27| after fingerprinting.
Alice determines a fingerprinting probability p, which means on average p-l data
points will be fingerprinted (i.e., their value will be changed) when sharing | data
points with S P;. Lower p values increase the utility of shared data by decreasing
the robustness.

Under these settings, a naive algorithm fingerprints each data point with
the same probability, without considering correlations in the data. Hence, each
data point is shared correctly (zj; = ;) with probability 1 — p and incor-
rectly/fingerprinted (z; ; # x;) with probability p. For each fingerprinted data
point, the shared state is selected among (m —1) states in D with equal probabil-
ity. However, if this naive scheme is used, a malicious SP can detect some of the
fingerprinted data points using the correlations and distort them via flipping, as
discussed in Sect. 3.2.

In order to prevent such an attack, one needs to consider the correlations in
the fingerprinting scheme. In our proposed probabilistic fingerprinting scheme,
for each data point x;, considering the correlations in the data, we assign a dif-
ferent probability for sharing each different state of this data point in D. Let
Py, 4, be the probability of sharing data point z; as di (i.e., o} ; = di). The
proposed scheme assigns a Py, 4, value for all j € {1,...,l} and k € {1,...,m}.
In the following, for simplicity, we describe the proposed fingerprinting algo-
rithm by assuming pairwise correlations between consecutive data points and
sequential order of processing of the data points for fingerprinting. However,
the proposed system also works for different correlation models. We propose an

76 E. Yilmaz and E. Ayday

iterative algorithm that starts from the first data point x; and assigns probabil-
ities Py, dy,- -, Pry,4,,- Since we consider correlations between consecutive data
points, for the first data point x1, similar to the naive approach, Alice shares the
correct value with probability 1 — p and each incorrect value with probability
p/(m — 1). Based on these probabilities, the algorithm selects a value for z}
from the set D. For the subsequent data points, the algorithm computes the
fingerprinting probabilities by checking the correlation with the preceding data
points.

Let the shared value of x;_; (i.e.,], ;) be dy. The algorithm checks the
conditional probabilities P(z; = dy|zj_1 = dq) for all d, € D. If the algorithm
decides to share z; as dj, and if P(x; = di|z;—1 = dq) is low, a malicious SP can
detect that either x; ; or z; ; is fingerprinted. To eliminate such correlation
attack, the proposed algorithm uses a threshold 7 and sets P, 4, = 0 if P(x; =
drlzj—1 = do) < 7. Hence, the algorithm never selects dj as the value of xgj
if dj, is not consistent with the inherent correlations in the data. Let d. be the
actual value of x;. If P(x; = dc|zj_1 = do) > 7, Py, 4, is set to 1 —p. All of the
remaining probabilities (Py; 4.,k # c) are assigned directly proportional to the
value of P(z; = di|zj_1 = do). After assigning all probabilities, the algorithm
chooses one of the values from D based on the assigned probabilities and sets
the value of x; ; accordingly.

Since the proposed algorithm considers correlations, total number of finger-
printed points in the original data may significantly deviate from the expected
number (p - [). Considering correlations may cause fingerprinting significantly
more (or fewer) data points than anticipated. To prevent this, we dynamically
decrease (or increase) the fingerprinting probability p depending on number of
currently fingerprinted data points. To keep the average number of fingerprinted
data points as p - [, the proposed algorithm divides the data points into blocks
consisting of [1/p] data points. We expect (on the average) one fingerprinted
data point in each block. Therefore, the algorithm keeps a count of the number
of fingerprinted data points at the end of each block. If the ratio of fingerprinted
data points is less than p, the algorithm sets the fingerprinting probability for
the next block as p- (1+6). Here, 6 is a design parameter in the range [0,1) and
we evaluate the selection of # in Sect. 6. If the ratio of fingerprinted data points
is greater than p, the algorithm sets the fingerprinting probability for the next
block as p- (1 —6).

For each SP, Alice executes the same algorithm with a different seed value
(i.e., starting point in generating random numbers) and stores the fingerprint
pattern of each SP to use it in the detection in case her data is leaked. If the
data size is large, Alice can just store the seed value for each SP as the key of
the fingerprinting algorithm and seed value can be used to generate the same
fingerprint.

Probabilistic Fingerprinting Scheme for Correlated Data 7

D X, Xy X3 Xy X5 Xg X7 Xg Xg Xy P 0 T Block size([1/p])
01,22 012102 010 0 02 05 0.05 5
Step 1 p Pro Pra Pz X1 :
0.2 08 01 0.1 0 =
B
Stepz " P erthd) p Pt Pot Pt oy Ni2 3
0.58 0.4 0.02 0.2 02 08 0 1 z
E
Step 3 POo=0lx=1) PlG=llx=1) Pl=2lx=1) p > Py0 Pxx'j P2 x{3 %
0.1 0.3 0.6 02 [probability | 005 015 0.8 1 =
Step 4 PlOlx=l) Plelixel) P2kl p | Assignment) p o p o p ., |Decision] 3
0.72 0.04 0.24 0.2 0.75 0 0.25 0 a
o
P(=0%=0) P(=1Ix=0) P(x=2|x=0) p Peo Peg1 Px2 xi5 g
Step 5 > o 57— 3 Z
P 0.5 0.4 0.1 0.2 0.8 016 004 0
Step 6 Plx=0lx=1) Plx=1[x=1) P(x5:2'|x5:1) p-(1-6) 20 W B Xie
0.03 0.44 0.53 0.1 . 0 0.1 09 2

Fig. 2. A toy example showing the execution of the proposed algorithm. Input param-
eters of the algorithm are shown at the top as the original data X, the fingerprinting
probability p, probability adjustment parameter 6, correlation threshold 7, and the
block size [1/p].

Figure2 shows a toy example to illustrate the execution of the proposed
algorithm. Each step shows one iteration for deciding the value of one data
point. In the first step, probabilities are assigned just by using p. In the next
steps, correlations are also used to determine the sharing probabilities. When the
correlation is less than 7 = 0.05, the algorithm assigns 0 for the probability of
selecting the corresponding value. At the end of the first block (a block includes
5 data points in the example), since the number of fingerprinted data points (2)
is greater than the expected (1), the fingerprinting probability is adjusted as
p- (1 —6)=0.1 for the second block.

4.2 Detecting the Source of Data Leakage

Let the leaked copy of Alice’s data be Y = [y1,...,y]. The goal of Alice is to
detect the SP that leaks her data. Here, Alice can apply a probabilistic detec-
tion algorithm which was proposed in [12]. With some independence assump-
tions, their algorithm computes the probability of being guilty for each SP and
returns the SP with the highest probability. We also propose to use the similarity
between leaked data and fingerprinted copies in the following and compare the
performance of probabilistic detection and similarity-based detection in terms
of their accuracy to identify the guilty SP in Sect. 6.

Similarity-Based Detection. For an SP;, Alice compares the leaked data)
with the copy X/ and counts the matching data points in the fingerprint pattern.
In other words, Alice checks the size of the following set: M; = {z; | z; €
X, x; # o} o] yj} Alice also counts the fingerprinted data points F; =
{xj | zj € X, x; # x} ;} of SP;. Eventually, the SP with the maximum sim; =
IM;|/|Fi| is identified as guilty.

78 E. Yilmaz and E. Ayday

5 Considering Colluding Service Providers

Here, we first present a strong attack against the proposed fingerprinting scheme
(also against the existing fingerprinting schemes in general) by integrating col-
luding SPs, correlations in the data, and the flipping attack. Then, we propose
utilizing Boneh-Shaw codes [4] to improve robustness against such a strong col-
lusion attack.

5.1 Probabilistic Majority Attack

As discussed, the goal of the colluding SPs is to share (leak) a copy of the data
without being detected by Alice. In a standard collusion attack, the colluding SPs
compare their received values for each data point and select the most observed
value to share. We propose an advanced collusion attack called “probabilistic
majority attack” (to distinguish it from the standard majority attack), in which
the colluding SPs decide the value of each leaked data point by considering (i)
all observed values for that data point, (ii) correlation of that data point with
the others, and (iii) the probability of adding a fingerprint to a data point (p). If
the colluding SPs do not know the fingerprinting probability p, we assume they
use an estimated probability p. in their attack (p. = p if p is publicly known).

Let the set of colluding SPs be C and |C| = n. The goal of the colluding
SPs is to create a copy YV = [y1,-..,y] to share and avoid being detected by
Alice. In this attack, the colluding SPs decide the value of each data point y; by
computing a probability P, 4, for each possible state dy € D of y;. Let c; 4, be
the number of observations of dj, for data point j by n colluding SPs (in C). In
the standard majority attack, the colluding SPs choose dj with the maximum
¢;.d, value as the value of y; (assuming it is the original value of the data point)
to avoid detection by Alice. However, it is possible (with lower probability) that
other values with lower ¢; 4, may also be the original value of y;.

As discussed in Sect. 3.2, correlations can be used to detect and distort finger-
printed data points by the attackers. Therefore, the attackers tend to select each
leaked value that have high correlation with the previous shared (leaked) values.
In order to integrate the correlations with the collusion attack, the conditional
probabilities (due to correlations) are used as weights to determine the shar-
ing probabilities of colluding SPs (P, 4,). The colluding SPs first compute the
weighted probability values (referred as t; 4,) and then compute P, 4, by nor-
malizing the weighted probability values. The weighted probability for dj value
of a data point j is computed as: t; 4, = (1 — pe)de - (JL7)" " %dr - P(x; =
dilrj—1 = y;—1). Here, (1 — pe)“de - (L=7)" "%k is the probability of dy to be
the original value of data point j by assuming each data point is fingerprinted
with probability p.. The conditional probability is used as a weight. Then, t; 4,
values are normalized as Py, 4, = tja, /(3 j_; tj.d,)- The colluding SPs decide
on the value of each shared point y; proportional to these probabilities. Thus,
they do not necessarily select the value observed by the majority. By doing so,
we allow the malicious SPs to further distort the fingerprint compared to the
standard majority attack.

Probabilistic Fingerprinting Scheme for Correlated Data 79

Furthermore, existing techniques to prevent collusion attacks (e.g., Boneh-
Shaw codes) assign common fingerprints to multiple SPs, which allows data
owner to detect colluding SPs with a high chance. However, to avoid such detec-
tion, the attackers may flip some random data points before they leak the data.
Thus, in the probabilistic majority attack, we also let colluding SPs flip each y;
with probability p; (as discussed in Sect.3.2). A toy example to illustrate this
attack is given in Appendix A.

5.2 Integrating Boneh-Shaw Codes

In order to provide robustness against collusion attacks, Boneh and Shaw pro-
posed fingerprinting codes (B-S codes) for detecting one of the colluding SPs [4].
The effectiveness of their codes depends on the “marking assumption”, which
states that when the colluding SPs have the same value for the same data point
J, they choose this value as y; as the leaked data point. Hence, it is assumed that
colluding SPs cannot detect the fingerprint if all of them have the same finger-
print. However, B-S codes do not consider correlation and flipping attacks, and
hence their detection method is not successful when colluding SPs also utilize
the correlations and the flipping attack.

In Boneh-Shaw (c,r)-codes, ith codeword consists of (i—1)-r zeros and (c¢—i)-r
ones. In order to fingerprint data, some data points are selected from the original
data and XOR’ed with the permuted codeword in order to prevent colluding
SPs from detecting and distorting the fingerprint. The data points that are
XOR’ed with ones in the codeword becomes fingerprinted. Therefore, the ones
in the binary code represent fingerprints. Thus, increasing r decreases the error
in detection, but it also decreases the utility by increasing the fingerprint length.
We show how to utilize these codes in the proposed scheme in the following.

Using Boneh-Shaw Codes in the Proposed Scheme. The marking
assumption of [4] does not consider the flipping attack and correlation attack
which are included in the probabilistic majority attack. If the colluding SPs flip
some of the bits randomly or based on correlations, the data owner may accuse
an SP who is not involved in the collusion. Therefore, using B-S codes and their
detection algorithm in our scenario directly results in low robustness against the
correlation and flipping attacks. Instead, we utilize B-S codes to assign overlap-
ping fingerprints between different SPs.

The fingerprints of two SPs may be the same for some random data points
when Alice creates fingerprinted copy of each SP independently as described in
Sect. 4. Here, we explicitly assign overlapping fingerprints using B-S codes to
improve robustness against collusion attacks. When a data point is fingerprinted
using B-S codes, the same value is also used as a fingerprint in the copies of
other SPs if their codewords also include one for the same data point.

We integrate the B-S codes into our scheme as follows: Alice creates the first
fingerprinted copy of her data X] as described in Sect. 4. Approximately p-I data
points are fingerprinted in X;. Let f be the number of fingerprinted data points

80 E. Yilmaz and E. Ayday

for SP;. We want to use some portion of these f data points as B-S codes. Then,
Alice decides the value of ¢ and r such that (¢ — 1) - < f to apply B-S codes
for the next sharings. As mentioned, ¢ and r are design parameters of B-S codes
determining the length of codes and error in detection. We represent (¢c—1) -7 as
f1, which is the length of B-S codeword. Here, ¢ is the number of B-S codewords
that Alice can create and r is the block size. If Alice wants to share her data
with more than ¢ SPs, she assigns the same B-S codewords in a similar order.
S P, receives the same codeword as SP;, SP.yo receives the same codeword
as SPy, and so on. In this way, although same B-S codewords are assigned to
some SPs, since other parts of their fingerprints will be different, the proposed
detection algorithm can still identify the guilty SP using the entire fingerprint.
For higher fi, the robustness against collusion attacks increases, however, the
robustness against the attacks performed by single SP decreases. Hence, we set
f1 approximately equal to f/2 to detect the guilty SP regardless of whether the
attack is performed by single SP or multiple SPs.

Alice randomly selects f; of f fingerprinted points in X7j. These f; finger-
printed data points are considered as the first codeword in B-S codes. For her
next sharing with SP,, Alice randomly selects fo = fi — 7 of fi points to assign
the same fingerprints to SP; (i.e., x’Q’j = :L'/Lj for these fo data points). More-
over, Alice assigns the original value for the remaining r points (i.e., x/&j =z, for
these r data points). In other words, the B-S codeword of S P, consists of r zeros
and fi; —r ones. In order to assign approximately p-l fingerprinted points to S Ps,
the fingerprinting probability of SP; is selected as % since fy fingerprints
are already assigned before running the probabilistic algorithm. Alice runs the
proposed algorithm to sequentially add the remaining fingerprints. Also, since
f2 fingerprints and r original values are already assigned (as the B-S codeword
of SP;) before the algorithm, the algorithm will skip these points while adding
fingerprints. Furthermore, when the algorithm is determining the probabilities
for each possible value of a data point (i.e., inner loop of the algorithm), it also
considers the correlations of the data points with the already assigned B-S code-
word. The updated algorithm is shown in Algorithm C.1 in Appendix C , which
includes these new conditions. For each SP;, Alice repeats the same process by
first adding f; fingerprints and f; — f; original values (i.e., B-S codeword). Then,
Alice runs Algorithm C.1 to determine the values of remaining points in X7. We
illustrate this process with a toy example in Appendix B.

5.3 Detection Algorithm

Here, we propose a detection algorithm for the proposed collusion-resilient fin-
gerprinting scheme. In practice, when Alice realizes that a copy) of her data is
leaked without her consent, she cannot know whether) is leaked by single SP
(by performing flipping or correlation attack) or multiple SPs (by performing
collusion attack). Thus, Alice cannot use the detection techniques in Sect. 4.2
or the detection technique of B-S codes directly. We propose a detection algo-
rithm that utilizes both techniques. We describe the detection algorithm using

Probabilistic Fingerprinting Scheme for Correlated Data 81

similarity-based detection since it performs slightly better than probabilistic
detection as we show in Sect. 6.

To detect a guilty SP, Alice initially computes a similarity score (sim;) in
the range [0, 1] for each SP; € S as explained in Sect. 4.2. If there is a collusion
of two SPs and the colluding SPs observe different values for a data point, they
select either of these values with equal probabilities. Thus, we expect that they
damage approximately half of the fingerprinted data points (this will be more
if the collusion includes more than 2 SPs). Hence, we assume that there is an
attack by single SP if the similarity score of an SP is greater than 0.5. In such a
case, Alice identifies the SP with the highest similarity score as guilty. Otherwise,
there is a collusion attack with high probability, and hence Alice identifies the
suspects according to their similarity scores and returns one of them utilizing
the detection technique of B-S codes.

Let the index of SP with maximum similarity score be max. Alice generates
a suspect list by including |1/simna.| SPs having highest similarity scores.
Hence, if sim,q, is greater than 0.5, there will be just one SP in the suspect list
and the algorithm will return SP,,,; as guilty. If sim,,q, is less than or equal to
0.5, there will be more than one suspects, which means that a collusion attack
is performed with high probability. In this case, the algorithm returns one of the
suspects using the detection method of B-S codes [4] as follows: In B-S codes,
it is expected that the colluding SPs create a copy consisting of several random
values followed by all ones and the starting point of ones (a block with all ones)
gives us one of the colluding SPs. Let Bg represents a block (consists of r data
points) having at least one zero value and B; represents a block having all ones.
Assuming the leaked copy created by colluding SPs is [Bg, ..., Bg, B1, ..., B1], SP;
is identified as guilty if the first observed B; block is the ith block. However, as
a result of probabilistic majority attack described in Sect. 5.1, some ones may
turn into zeros and some zeros may turn into ones. Therefore, the detection
algorithm may fail against such an attack. To avoid this, we define By as a block
having majority of points as one and Bp as a block having majority of points
as zero. Then, the algorithm checks all suspects in the suspect list starting from
SPpaz- If (max)th block is B; and (maz — 1)th block is Bpg, the algorithm
returns SP,,,,; as guilty. Otherwise, the algorithm continues with the other SPs
in the suspect list in the order of decreasing similarity scores. For each SP; in
the suspect list, the algorithm returns it as guilty if the (z)th block is B, and
the (i — 1)th block is Bgr. When such an SP is found, the algorithm stops and
returns the SP as guilty. If there is no such an SP, the algorithm returns S P4z
as guilty. The steps of the proposed detection algorithm are also shown with an
example in Appendix D.

6 Evaluation

To evaluate its robustness and utility, we implemented the proposed fingerprint-
ing algorithm (in Sect.5.2) and the detection algorithm (in Sect. 5.3). We imple-
mented Tardos codes [14] as a state-of-the-art fingerprinting scheme for com-
parison. We also implemented B-S codes as a standalone fingerprinting scheme

82 E. Yilmaz and E. Ayday

and observed that its robustness against the attacks is similar to Tardos codes.
Hence, we here present the results of Tardos codes to show the superiority of
our scheme to deal with correlation and flipping attacks.

6.1 Data Model and Settings

Nowadays, individuals can obtain their genome sequences easily and share their
genomic data with medical institutions and direct-to-consumer service providers
for various genetic tests or research purposes. Since genomic data contains sen-
sitive personal information, such as the risk of developing particular diseases,
sharing genomic data without the authorization of the data owner causes privacy
violations. Hence, fingerprinting genomic data can be a solution or disincentive to
prevent its unauthorized sharing. Furthermore, genomic data contains inherent
pairwise correlations between point mutations (single nucleotide polymorphisms
- SNPs), which makes genomic data an ideal usecase to evaluate the proposed
scheme. SNP is the variation of a single nucleotide (from the set {A,T,C,G})
in the population. For each SNP position, only two different nucleotides can be
observed: (i) major allele, which is observed in the majority of the population and
(ii) minor allele, which is observed rarely. Each SNP consists of two nucleotides,
one is inherited from the mother and the other from the father. Since each SNP
is represented by the number of its minor alleles, D = {0, 1,2} for genomic data.

The 1000 Genomes Phase 3 dataset [1] includes partial genomic records of
2504 individuals from 26 populations. Among these, we extracted the 5000 SNPs
belonging to 99 people from the Utah residents with northern and western Euro-
pean ancestry (CEU) population of the HapMap project. Using this dataset,
we computed the correlations between SNPs to build our correlation model.
Unless stated otherwise, we set the data size [= 1,000, fingerprinting proba-
bility p = 0.1, and the correlation threshold of the algorithm 7 = 0.05. The
threshold 7 is used in the algorithm to prevent adding fingerprints causing low
correlation. Note that the attacker has its own correlation threshold 7. in its
correlation attack. We choose the data size as 1,000 to show the robustness of
the proposed scheme for a relatively small data. As we show via experiments
later (in Sect.6.4), robustness increases with the increasing data size because as
data size increases, we obtain more fingerprinted data points for the same finger-
printing probability p. Hence, for larger data sizes, p can be selected much lower
than 0.1 to provide the same level of fingerprint robustness. As expected, utility
of the data owner (as introduced in Sect. 3.1) decreases linearly with increasing
p. We observed that the average utility is 0.8 when p is 0.1 and u; (utility of
each data point) is 1/1. To compare the robustness of the proposed scheme with
Tardos codes, we allocated 2p of the data points for Tardos codes. Hence, when
p = 0.1 is used in the proposed scheme, 20% of the data points are allocated for
Tardos codes. Since approximately half of them are fingerprinted in probabilis-
tic Tardos codes, 10% of the data points are fingerprinted in each copy, which
provides approximately the same utility with the proposed scheme.

We expect to change the value of approximately p - = 100 data points as
fingerprint for each SP, and (as discussed in Sect. 5.2) we used approximately half

Probabilistic Fingerprinting Scheme for Correlated Data 83

of the fingerprinted data points for B-S codes. We set the number of B-S codes (¢)
as 10 and the block size (r) as 5. Hence, (¢ —1)-r = 45 fingerprinted data points
of first SP were used for B-S codes. Another design parameter in the algorithm
is @ can have any value in the range [0,1). It is used to dynamically adjust
fingerprinting probability p to keep the number of fingerprinted data points close
to p-1. We set 8 = 0.5 in our experiments. We repeated all experiments 10 times
for each individual in the dataset (totally 99 individuals), and hence all results
are given as the average of 990 executions. We also provide a discussion about
the complexity and practicality of the proposed scheme in Appendix E.2, which
shows that the running times of both fingerprinting algorithm and detection
algorithm grow linearly with the design parameters.

6.2 Flipping and Subset Attacks

We implemented flipping and subset attacks to compare these attacks as well as
to compare similarity-based and probabilistic detection techniques. We present
our results in Appendix E.I1. From these results, we can conclude that (i)
similarity-based detection provides slightly better accuracy than the probabilis-
tic detection, (ii) flipping attack is more powerful than subset attack, (iii) the
attacker needs to flip at least half of the data points in the proposed scheme to
avoid being detected, and (iv) the proposed scheme is more robust than Tardos
codes against flipping and subset attacks. For the rest of the experiments, we
use the similarity-based detection algorithm described in Sect. 5.3.

6.3 Correlation Attack

We implemented the correlation attack described in Sect.3.2 to evaluate the
robustness of the proposed scheme. We set the total number of SPs to 1,000. As
before, we set the correlation threshold of the algorithm (decided by data owner)
as 7 = 0.05. Therefore, the fingerprinted copies did not include consecutive
pairs of data points whose correlation is less than 0.05. Note however that the
correlation threshold of the attack 7. is determined by the attacker. We also
implemented the naive fingerprinting scheme described in Sect. 4, in which each
data point is fingerprinted with probability p. In correlation attack, data points
whose correlation with the previous data point is less than 7. is flipped and
the remaining data points are flipped with probability p;. Figure 3a shows the
comparison of the proposed scheme with the naive approach and Tardos codes
for different values of 7. when p;y = 0.2. The proposed scheme provides 100%
detection accuracy up to 7. = 0.2 and accuracy decreases to 98% when 7. = 0.25.
However, as also shown in Fig. 3a, the utility of the attacker ({4y) reduces to 0.263
when 7. = 0.25. We also observed that both the naive approach and Tardos
codes are not robust against correlation attacks and the attacker can easily
prevent detection by utilizing the correlations in the data. This clearly shows
the importance of considering correlations in the data within the fingerprinting
algorithm.

84 E. Yilmaz and E. Ayday

4

o
o
3

o
>
o
=Y

—s— a: Proposed Scheme (Standard Majority Attack)
== a: Proposed Scheme (Probabilistic Majority Attack)
:8-4 Tardos Codes (Standard Majority Attack)

Utility (Uy)

o
~
[
~

Utility (Uy)

es (Probabilistic Majority Attack)
Attack)

- a: Tardos
P~ Uy: Proposed
—@—Uy: Proposed Scheme (Probabilistic Majority Attack) 02
««}+ Uy: Tardos Codes (Standard Majority Attack)

++@ Uy: Tardos Codes (Probabilistic Majority Attack)

2 3 5 6
ié

Detection Accuracy (a)

Scheme (Standard Majority /

o
N

(a) Fingerprint robustness of the pro-
posed algorithm, Tardos codes, and the
naive algorithm against correlation at-
tack for different values of correlation at-
tack threshold.

(b) Fingerprint robustness of the pro-
posed scheme and Tardos codes against
standard majority attack and probabilis-
tic majority attack for different values of
n.

Fig. 3. Fingerprint robustness against different attacks.

6.4 Collusion Attack

We first compare the utility and robustness under standard and probabilistic
majority attacks. We set ¢ = 10 and r = 5. Hence, we can create 10 different
B-S codewords with block size of 5. Note that ¢ is the number of codewords and
Alice can share her data more than ¢ SPs in the proposed scheme by repeating
codewords as we discussed before. We set the total number of SPs (|S]) to 20,
7. = 0.1, and p; = 0.1. We quantified both utility and fingerprint robustness
for different values of number of colluding SPs (n). As shown in Fig. 3b, using
probabilistic majority attack decreases the colluding SPs’ probability of being
detected by reducing the data utility. Since the probabilistic majority attack
is more powerful than the standard one for the colluding SPs, we perform the
probabilistic majority attack for the rest of the experiments.

As mentioned, both Tardos codes and B-S codes assume the colluding SPs
decide the value of a data point randomly if they observe more than one value
in their copies (i.e., marking assumption). Therefore, these codes do not pro-
vide guarantees against the probabilistic majority attack (including the flipping
attack). In Fig. 3b, we showed the robustness of the Tardos codes against collu-
sion attacks (we observed similar results for B-S codes). Although Tardos codes
provide high robustness against standard majority attack, robustness of these
codes against probabilistic majority attack is lower than our proposed scheme
since Tardos codes do not consider correlations and random flipping in prob-
abilistic majority attack. Moreover, to provide the robustness guarantees for
Tardos codes and B-S codes, the number of fingerprinted points needs to be
high. For instance, to provide 90% robustness guarantee against 3 colluding SPs
performing standard majority attack, 2,700 fingerprinted data points are needed
in Tardos codes regardless of the data size. Similarly, to create 10 B-S codes
with the same guarantee, we need more than 10,000 fingerprinted data points.
Fingerprinting such a high number of data points also decreases the utility of

Probabilistic Fingerprinting Scheme for Correlated Data 85

the data owner significantly. Thus, Tardos codes and B-S codes provide guaran-
tees for only standard majority attack with high number of fingerprinted data
points (we only use approximately p-I = 100 data points for fingerprinting in our
experiments and, as we show later, our scheme provides high robustness with
smaller p when data size increases). Therefore, we conclude that Tardos codes
and B-S codes do not provide robustness against the attacks utilizing correla-
tions and random flipping. While our proposed scheme utilizes the B-S codes to
increase its robustness against collusion attacks, Algorithm C.1 generates unique
fingerprints to also provide robustness against correlation and flipping attacks.

One important parameter for the fingerprinting scheme is data size. In our
experiments we used a data with 1,000 SNPs (I = 1,000). Therefore, we just
changed the state of approximately 100 data points as a fingerprint when fin-
gerprinting probability p was selected as 0.1. By keeping the same fingerprinting
probability, increasing data size allows to change more data points as fingerprint.
With more fingerprinted data points, the data owner can detect the colluding
SPs with higher accuracy. To show the effect of data size (i.e.,) on robust-
ness, we conducted experiments by increasing | (we kept ¢ = 10 and increased
r proportional to). As shown in Table1, Alice detects one of 3 colluding SPs
among 100 SPs with 99.7% accuracy when { = 5,000 and py = 0.1. Our results
show that the robustness of the proposed scheme significantly improves with
increasing data size. Thus, when data size is larger, Alice can select a much
lower fingerprint probability (p) to obtain the same robustness guarantees. For
instance, when data size (1) is 5,000, decreasing p from 0.1 to 0.05 increases the
utility of fingerprinted data from 0.8 to 0.9 while still providing 96.3% accuracy
for 3 colluding SPs performing a probabilistic majority attack.

Table 1. Fingerprint robustness (a) of the proposed scheme for different | (data size)
values. The number of SPs (that received data owner’s data) is 100 and the number of
colluding SPs (n) is 3. Flipping probability in the attack is 0.1.

{11,000 2,000 | 3,000 | 4,000 | 5,000
a|0.75910.914 | 0.973 | 0.993 | 0.997

7 Conclusion

We have proposed a probabilistic fingerprinting scheme that also considers the
correlations in the data during fingerprint insertion. First, we have shown how to
assign probabilities for the sharing decision of each data point that are consistent
with the inherent correlations in the data. Then, we have described the integration
of Boneh-Shaw codes into the proposed algorithm to improve fingerprint robust-
ness against collusion attacks. Our experimental results on genomic data show
that the proposed fingerprinting scheme is robust against a wide range of attacks.
We plan to evaluate the proposed scheme on trajectory data in the future.

86 E. Yilmaz and E. Ayday

Acknowledgements. The work was partly supported by the National Library of
Medicine of the National Institutes of Health under Award Number RO1LMO013429
and by the National Science Foundation (NSF) under grant numbers 2141622, 2050410,
2200255, and OAC-2112606.

A Toy Example for the Probabilistic Majority Attack

To illustrate the probabilistic majority attack with a toy example, let n = 4 and
D = {0,1,2}. Assume 3 of the colluding malicious SPs have received value 0
for the first data point (z1) and the other malicious SP has received value 1.
Let the estimated fingerprinting probability p. = 0.1. Colluding SPs compute
tl,O = (09)‘3 . (01)1 .]., t171 = (09)1 . (01)3 .]., and tl,g = (09)0 . (01)4 - 1.
Since z; is the first data point and we consider pairwise correlations between
consecutive data points, here, conditional probabilities are all considered as 1.
Then, colluding SPs choose a value (to share) from D with the following prob-
abilities: P,, o = 0.0729/0.0739 = 0.987, P,, ;1 = 0.0009/0.0739 = 0.012, and
P, 2 =0.0001/0.0739 = 0.001. Finally, the chosen value is flipped with proba-
bility py.

B Toy Example for Using Boneh-Shaw Codes
in the Proposed Algorithm

1 Fingerprinted (Boneh-Shaw)
D X) Xy X3 X4 X5 Xg X7 Xg X9 Xy9 Xy Xypp p c r 1 Not Fingerprinted (Boneh-Shaw)
fo122 1202 102211 1 0 05 4 1 1 Fingerprinted (Algorithm 2)
1 Not Fingerprinted (Algorithm 2)
X1 Xi2 X13 X14 X5 Xi6 Xi7 Xig X19 X110 ¥1,11 X112
SP
' H= 1 Bl 2 RI=0E ==l
Sp, | Boneh X34 Xpp X33 X34 X35 Xo6 X7 X5 X39 Xp10 X511 X312 Alg. X34 X33 X33 Xp4 Xo5 X36 X357 Xo8 Xho X310 X311 X312
2
shaw -E- - - - B = - o=zl 2B T==0
Sp, | Boneh X35 Xip X33 X34 X35 X6 X37 Xig X390 X310 X311 X312 Alg. X31 X332 X33 X34 X35 X6 X37 X3g X309 X310 X311 X512
3
= -l---- -0 -=-["IHli2000l1 =1
gp, | Boneh Xi1 Xip X43 Xaa Xis Xie X7 Xag Xao X 10 X411 X412 Alg. X4 Xa2 Xa3 Xga X5 Xie X7 Xag Xa9 Xa10 X411 Y12
4
S S - AR T S 1 B2\ 0\ 1 2\ B o\ 2

Fig.4. An example execution of the proposed algorithm by integrating Boneh-Shaw
codes.

Here, we describe the algorithm explained in Sect.5.2 on a toy example,
which is also illustrated in Fig.4. Let the original data of Alice be X =
[1,2,0,2,1,0,2,2,1,1,1,0], where l = 12 and D = {0, 1, 2}. Let p be 0.5 and Alice
shares X] = [1,0,1,2,2,2,2,1,1, 1,0,0] with SP; after running Algorithm C.1,
where underlined points represent fingerprinted data points.

Probabilistic Fingerprinting Scheme for Correlated Data 87

C The Fingerprinting Algorithm

In Algorithm C.1, we provide the algorithm discussed in Sect. 5.2.

D Toy Example for the Proposed Detection Algorithm

The steps of the proposed detection algorithm (in Sect. 5.3) are also shown with
an example in Fig.5. After checking the similarity of leaked data with the fin-
gerprinted data points of each SP, the algorithm adds |1/simq.] = 2 SPs into
the suspect list. When the algorithm checks the 1st and the 2nd blocks of leaked
data for SP,, it does not return SP, as guilty since both blocks are ER. Then,
it checks the 3rd and the 4th blocks of leaked data for SP, and returns SP; as
guilty since the 4th block is By and the 3rd block is Bp.

Algorithm C.1: Probabilistic fingerprinting scheme after assigning the
Boneh-Shaw codeword to provide robustness against the collusion attack.
Blue parts represent the difference with algorithm described in Section 4.

input : Original data X = [z1,%2,..., 3], f1 already assigned points in X (f; of them are
fingerprinted), fingerprinting probability pl'i}fi , probability adjustment parameter
0, block size [1/p], correlation threshold 7, pairwise correlations between data
points.
output: Fingerprinted copy X; = [2] 1,2} o, ..., %]]
1 prob «— pli}{l ;
2 forall j € {1,2,...,1} do
3 if m; is not assigned then
a forall k € {1,2,...,m} do
5 if j =1 & z; = d then
6 szvdk «—— 1 — prob;
7 else if j =1 & z; # di then
8 ‘ P’”jvdk «—— prob/(m — 1);
9 else if P(z; = dy|cj—1 =2} ;_;) < 7 then
10 | Pojiap — 05
11 else if z;7j+1 is assigned & P(xji1 = z§,j+1\m_7 =dj) < 7 then
12 ‘ Py j,dp < 05
13 else if z; = d, then
14 ‘ Py a) —— 1 —prob;
15 end
16 distribute the remaining probability (1 - (sum of assigned probabilities)) by
assigning ij .d;, directly proportional to the value of P(z; = dg|z;—1 = ac;,jfl) if
PTj=‘ik is not assigned in the previous step;
17 z;] «—— random value from D using probability distribution ij«dl Sy Pw,wdm?
18 end
19 if j is multiple of [1/p] then
20 ¢ «+— total number of fingerprinted data points;
21 if ¢ > p-j then
22 | prob—p-(1-0);
23 else if ¢ < p-j then
24 | prob+— p-(1+6);
25 else
26 | prob«— p;
27 end
28 end
29 end

88 E. Yilmaz and E. Ayday

E Experimental Results

E.1 Flipping and Subset Attacks

In this experiment, we compared the flipping and subset attacks in terms of
their effect on the fingerprint robustness. Also, to compare the similarity-based
and probabilistic detection techniques (which are the basic building blocks of
the proposed detection algorithm in Sect.5.3), we implemented them for this
experiment. We set the total number of SPs to 1,000. Figure 6 shows the accuracy
(a) of the both detection techniques for different values of p; (probability of
flipping a data point in flipping attack) and ps (probability of removing a data
point in subset attack).

E.2 Complexity and Practicality

In the proposed fingerprinting algorithm (Algorithm C.1), each data point
sequentially decides on a probability for each possible value in set D and inserts

B-S Codes Ve - ™
SP, Fingerprinted (B-S)
SP, Not Fingerprinted (B-S)
SP, |||||||| Fingerprinted (Alg. 5.1)
SP, L Not Fingerprinted (Alg. 51/)
SP;
SPg Leaked Data
Boneh-Shaw codes
Leaked Data sim; |0.12 ‘ B ‘ Bg ‘ B ‘ By ‘ B ‘
1
Y =[yq,...71] : ——| = 2 suspects
sim, | 0.45 ln.4sJ SP, SP,
Similarity-based sim; | 0.33 sim, | 0.45 = =
m) B, Bp m) By B
detection sim, | 0.42 sim, | 0.42 ‘ L ‘ R ‘ ‘ 3" ‘ 4’ ‘
1 2
simg | 0.29 List of Suspects x
simg | 0.16

Fig. 5. An example execution of the detection algorithm.

& %
k A -
oA *,
A %,

1

g
H
2
i
g

°
>
7
y
»
B

o
=

—e—a: Flipping Attack (Similarity-based Detection)
——a: Flipping Attack (Probabilistic Detection) .,
.= a: Flipping Attack - Tardos Codes

—©—a: Subset Attack (Sim-based & Prob Detection)
= ok a: Subset Attack - Tardos Codes

—p=Ly: Flipping Attack >
=t =14y: Subset Attack

0.15 0.25

Detection Accuracy (a)
o Utility (Uy)

o

N
4
S

0
0.05

0.35 0.45 0.55

Pfs Ps

Fig. 6. Fingerprint robustness of the proposed scheme and Tardos codes against flip-
ping and subset attacks for different values of py and p,. Right y-axis is used to show
the utility of the attacker.

Probabilistic Fingerprinting Scheme for Correlated Data 89

the fingerprints accordingly. Hence, the complexity of fingerprinting algorithm
is O(1-m). To detect the guilty SP in case of data leakage, the data owner needs
to compare all fingerprint patterns (given to all SPs) with the leaked data. Since
the expected value of fingerprinted data points is p-[in each fingerprinted copy,
the complexity of the detection algorithm is ©(|S|-p-1), where |S]| is the number
of SPs that received a fingerprinted copy. Note that this is also the storage com-
plexity for Alice if she stores all the fingerprint patterns. As mentioned before, if
Alice does not want to store all fingerprint patterns, she can just store the seed
value for each SP, which slightly increases the complexity of detection algorithm
since it requires Alice to run the fingerprinting algorithm along with the detec-
tion algorithm. Thus, we conclude that the running times of both fingerprinting
algorithm and detection algorithm grow linearly with the design parameters.

Based on our implementation with Java using a computer with 1.8 GHz Dual-
Core Intel Core i5 processor and 8 GB memory, we measured the average running
time of fingerprinting algorithm to create one fingerprinted copy as 0.15 ms. and
the average running time of detection algorithm as 3.11 ms. when |S| = 1000,
Il = 1000, p = 0.1, and m = 3. These results also show the efficiency and
practicality of the proposed scheme.

References

1. (2023). https://mathgen.stats.ox.ac.uk/impute/1000GP_Phase3.html. Accessed
10-January-2023

2. Ayday, E., Yilmaz, E., Yilmaz, A.: Robust optimization-based watermarking
scheme for sequential data. In: 22nd International Symposium on Research in
Attacks, Intrusions and Defenses ({RAID} 2019), pp. 323-336 (2019)

3. Bassia, P., Pitas, 1., Nikolaidis, N.: Robust audio watermarking in the time domain.
IEEE Trans. Multimed. 3(2), 232-241 (2001)

4. Boneh, D.; Shaw, J.: Collusion-secure fingerprinting for digital data. IEEE Trans.
Inf. Theory 44(5), 1897-1905 (1998)

5. Brassil, J., Low, S., Maxemchuk, N.: Copyright protection for the electronic dis-
tribution of text documents. Proc. IEEE 87(7), 1181-1196 (1999)

6. Cox, I.J., Miller, M.L., Bloom, J.A., Honsinger, C.: Digital watermarking. Springer
(2002)

7. Fodor, G., Schelkens, P., Dooms, A.: Fingerprinting codes under the weak marking
assumption. IEEE Trans. Inf. Forensics Secur. 13(6), 1495-1508 (2017)

8. Hartung, F., Girod, B.: Watermarking of uncompressed and compressed video.
Signal Process. 66(3), 283-301 (1998)

9. Jin, X., Zhang, Z., Wang, J., Li, D.: Watermarking spatial trajectory database. In:
Zhou, L., Ooi, B.C., Meng, X. (eds.) DASFAA 2005. LNCS, vol. 3453, pp. 56-67.
Springer, Heidelberg (2005). https://doi.org/10.1007/11408079-8

10. Li, Y., Swarup, V., Jajodia, S.: Fingerprinting relational databases: Schemes and
specialties. IEEE Trans. Dependable Secure Comput. 2(1), 34-45 (2005)

11. Nuida, K., et al.: An improvement of discrete tardos fingerprinting codes. Des.
Codes Crypt. 52(3), 339-362 (2009)

12. Papadimitriou, P., Garcia-Molina, H.: Data leakage detection. IEEE Trans. Knowl.
Data Eng. 23(1), 51-63 (2010)

https://mathgen.stats.ox.ac.uk/impute/1000GP_Phase3.html
https://doi.org/10.1007/11408079_8

90

13.

14.

15.

16.

E. Yilmaz and E. Ayday

Skorié¢, B., Katzenbeisser, S., Celik, M.U.: Symmetric tardos fingerprinting codes
for arbitrary alphabet sizes. Des. Codes Crypt. 46(2), 137-166 (2008)

Tardos, G.: Optimal probabilistic fingerprint codes. J. ACM (JACM) 55(2), 1-24
(2008)

Wu, M., Trappe, W., Wang, Z.J., Liu, K.R.: Collusion-resistant fingerprinting for
multimedia. IEEE Signal Process. Mag. 21(2), 15-27 (2004)

Zhao, X., Liu, Q., Zheng, H., Zhao, B.Y.: Towards graph watermarks. In: Pro-
ceedings of the 2015 ACM on Conference on Online Social Networks, pp. 101-112.
ACM (2015)

	Probabilistic Fingerprinting Scheme for Correlated Data
	1 Introduction
	2 Related Work
	3 Problem Settings
	3.1 System and Data Model
	3.2 Threat Model
	3.3 Robustness Measures

	4 Probabilistic Fingerprinting Scheme for Correlated Data
	4.1 Proposed Fingerprinting Algorithm
	4.2 Detecting the Source of Data Leakage

	5 Considering Colluding Service Providers
	5.1 Probabilistic Majority Attack
	5.2 Integrating Boneh-Shaw Codes
	5.3 Detection Algorithm

	6 Evaluation
	6.1 Data Model and Settings
	6.2 Flipping and Subset Attacks
	6.3 Correlation Attack
	6.4 Collusion Attack

	7 Conclusion
	A Toy Example for the Probabilistic Majority Attack
	B Toy Example for Using Boneh-Shaw Codes in the Proposed Algorithm
	C The Fingerprinting Algorithm
	D Toy Example for the Proposed Detection Algorithm
	E Experimental Results
	E.1 Flipping and Subset Attacks
	E.2 Complexity and Practicality

	References

