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ABSTRACT: The development of robust methods for the synthesis of chemically recyclable polymers with tunable properties 
is necessary for the design of next-generation materials. Polyoxazolidinones (POxa) – polymers with five-membered ure-
thanes in their backbones – are an attractive target because they are strongly polar and have high thermal stability, but exist-
ing step-growth syntheses limit molar masses and methods to chemically recycle POxa to monomer are rare. Herein, we re-
port the synthesis of high molar mass POxa via ring-opening metathesis polymerization of oxazolidinone-fused cyclooctenes. 
These novel polymers show <5% mass loss up to 382–411 °C and have tunable glass transition temperatures (14–48 °C) 
controlled by the side chain structure. We demonstrate facile chemical recycling to monomer and re-polymerization despite 
moderately high monomer ring strain energies, which we hypothesize are facilitated by the conformational restriction intro-
duced by the fused oxazolidinone ring. This method represents the first chain growth synthesis of POxa and provides a ver-
satile platform for the study and application of this emerging subclass of polyurethanes.  

Synthetic polymers have revolutionized every aspect of 
modern life, but current mass polymer production is unsus-
tainable as common materials generate tremendous 
amounts of waste1–3 and pollution4–6 after their intended 
use. Therefore, next-generation materials require both 
competitive properties and designed end-of-life strategies 
to mitigate their environmental impact. Polyoxazolidinones 
(POxa) are an emerging subclass of polyurethanes with 
competitive properties for high temperature applications7,8 
due to the five-membered oxazolidinone rings imparting 
high thermal stability7,9–13 and glass transition tempera-
tures (Tg).7,8,11–15 Despite their promise, POxa have been lim-
ited to low molar masses (Mn ≤ 32 kDa8,13,15,16) for decades 
due to the step-growth nature of previous syntheses (Figure 
1A) and very little work has been reported on sustainable 
approaches for their end-of-life.17 We sought to break this 
paradigm by using chain growth polymerization to access 
high molar mass POxa while enabling chemical recycling to 
monomer via depolymerization.18–21  

We chose ring-opening metathesis polymerization (ROMP) 
because (1) it is a powerful chain growth method for 
strained cycloalkenes22–24 and (2) ROMP-based polymers 
obtained from low ring strain monomers (~5.2 kcal/mol) 
are known to depolymerize at elevated temperatures via 
ring-closing metathesis (RCM)25–29 (Figure 1B). This RCM 
strategy has recently resurfaced in the design of new poly-
mers due to its promising contribution to chemical recy-
cling.27,28,30–32 Chemical recycling to monomer is ideal for a 
circular polymer economy because this approach can mini-
mize the net mass loss during recycling21 compared to other 
strategies, such as mechanical recycling,2,33–35 biodegrada-
tion,36,37 and upcycling of commodity plastics to value added 

products.38–47 Recently, Wang and co-workers showed that 
the addition of trans-fused cyclobutane or acetonide rings 
to cyclooctene lowered the monomer ring strain energy 
(RSE), which they hypothesized was the critical factor that 
enabled the depolymerization of the resulting polymers.28,30  

 

Figure 1.48 (A) Traditional POxa from step growth polymer-
ization (SGP) (A, B = reactive functionality). (B) Reversibil-
ity of ring-opening metathesis for monomers with different 
ring-strain energies (RSEs). (C) Design of chemically recy-
clable POxa. 



 

Herein, we utilize ROMP for the first chain growth synthesis 
of POxa from trans-oxazolidinone (Oxa)-fused cyclooctene 
monomers (Figure 1C). We demonstrate access to POxa 
with high molar mass, moderate dispersity, and control 
over molar mass by using a chain transfer agent (CTA). 
These novel polymers show <5% mass loss up to 382–411 
°C and have tunable Tg via side chain alteration and post-
polymerization hydrogenation. Furthermore, we show 
clean depolymerization back to monomer, despite higher 
RSE than cis-cyclooctene (COE) calculated by density func-
tional theory (DFT). This method provides access to POxa 
with higher molar masses than previous methods, which 
will enable future structure-property relationship studies 
and the addition of a broad-spectrum of new Oxa monomers 
for ROMP and chemical recycling to monomer.  

We began our investigation by synthesizing the Oxa-fused 
COE monomers M1–M4 in 4–5 steps from 1,5-cyclooctadi-
ene (Scheme 1, see Supporting Information Section S3A for 
full synthetic details). Gratifyingly, M1 readily polymerized 
using G2 (see Figure S1 for all catalyst structures) in di-
chloromethane (DCM) to yield POxa P1 with a number-av-
erage molar mass (Mn) of 23.9 kDa; however, P1 precipi-
tated out during the polymerization due to poor solubility 
in DCM and was only soluble in N,N-dimethylformamide 
(DMF) and dimethyl sulfoxide (DMSO), which are incompat-
ible with metathesis catalysts.49–51 Therefore, we focused on 
the N-alkylated monomers M2–M4 which yielded polymers 
(P2–P4) that were soluble in common metathesis solvents 
(e.g., DCM, CHCl3, and tetrahydrofuran). 

Scheme 1. Oxa-fused COE monomers from cyclooctadi-
ene.  

 

Using M2 as a model substrate, we optimized the polymeri-
zation conditions (Table 1).  Except for G1 (entry 1), com-
mon metathesis catalysts (i.e., G2, G3, HG2, see Figure S1) 
all resulted in high conversions and molar masses (Mn = 
118–487 kDa, entries 2–4). We selected G2 as the standard 
catalyst because it resulted in the lowest Ɖ and is relatively 
inexpensive. Increasing the initial monomer concentration 
from 1.0 to 2.0 M decreased conversion in 20 min and re-
sulted in a bimodal distribution with high Ɖ (entry 5), 
whereas lowering the concentration to 0.5 and 0.25 M pro-
gressively decreased both conversion and molar mass (en-
tries 6 and 7). Therefore, our standard polymerization con-
ditions consisted of 1.0 M monomer in DCM using G2 as the 
ROMP initiator at 24 °C. M3 and M4 were similarly polymer-
ized to access high molar mass POxa (Mn = 112 and 65.3 kDa 
for P3 and P4, respectively) in 1 h with variable side chains 
(see Section S3B for synthetic details). Because these Oxa-
fused COE monomers are unsymmetrical, we characterized 
the regioregularity of enchainment for M2–M4 using IR and 
NMR spectroscopies. While the side chain identity does af-
fect regioregularity to some extent, all polymers had over 
88% head-to-tail enchainment (see Section S2E for more 
details).  

As expected for ROMP of COE derivatives,52–57 we observed 
evidence of slow initiation: Mn is initially very high and de-
creases (i.e., approaches Mn,theo) by extending the reaction 
time (entry 2 vs. 8–9 and Figure S5) and there was a nonlin-
ear trend between Mn and [M]:[Ru] ratio (Figure 2A). To im-
prove control over Mn, we added cis-1,4-diacetoxy-2-butene 
as a CTA (Figure 2B). CTAs are known to decrease the dif-

ference between Mn,theo and Mn,58,59 enable the use of cata-
lytic Ru,56,60–65 and – for this CTA – result in homotelechelic 
polymers that can be deprotected to the corresponding diol 
for further functionalization.58,59 Despite requiring longer 
reaction times due to the slower rate of polymerization 
(78% conv. in 3 h vs. 90% without CTA), Mn had a linear re-
lationship with [M]:([CTA]+[G2]) and was within 1–37 kDa 
of Mn,theo for a wide range of molar masses, demonstrating 
improved control over POxa molar mass.  Secondary cross-
metathesis helps dispersity remain relatively constant (Ð ≈ 
1.5–1.6) with and without the CTA (when t = 3 h). 
Table 1 Optimization of ROMP conditions. 

 

entry [Ru] conc. (M) conv. (%)a Mn (kDa)b Ɖb 

1 G1 1.0 9 – – 

2 G2 1.0 82 487 1.20 

3 G3 1.0 85 118 1.41 

4 HG2 1.0 81 384 1.27 

5c G2 2.0 62 203 2.35 

6 G2 0.5 69 168 1.40 

7 G2 0.25 48 – d – d 

8e G2 1.0 86 42.7 1.71 

9f G2 1.0 86 34.4 1.55 

aDetermined by 1H NMR analysis of the crude reaction mixture. 
bCrude Mn and Ɖ were determined by size exclusion chroma-
tography with multi-angle light scattering (SEC-MALS) in DMF. 
c[M2]:[Ru] = 50:1. dSEC peak is overlapping with small mole-
cule peaks, but Mn of oligomers is < 1 kDa. ePolymerization was 
run for 1 h. fPolymerization was run for 3 h. See Figure S1 for 
catalyst structures. 

Having established the synthesis of POxa via ROMP, we next 
investigated the thermal properties of P2–P4. Thermograv-
imetric analysis (TGA) showed P2–P4 had high decomposi-
tion temperatures at 5% mass loss (Td,5%) of 382–411 °C 
(Figure 3A), as expected for POxa.7,9–13 Even prolonged heat-
ing (1 h) of bulk P2 at 150 °C did not result in polymer deg-
radation (see Section S2F), as shown by 1H NMR spectros-
copy (Figure S30). Some radical-based chain-chain coupling 
was observed in the SEC, which could be suppressed by the 
addition of butylated hydroxytoluene (BHT) (see Figure 
S31). Differential scanning calorimetry (DSC) indicated that 
the POxa were amorphous with glass transition tempera-
tures (Tg) tuned by the N-substituent (Figure 3B). Increas-
ing the substituent length from methyl (P3) to n-butyl (P4) 



 

lowered the Tg from 29 to 14 °C, whereas the benzyl substit-
uent in P2 increased the Tg to 48 °C. These results indicate 
that our modular monomer platform can tune POxa Tg while 
maintaining high Td,5%. 

To explore the range of properties accessible via this 
method, we hydrogenated the backbone olefins of P2 to 
form polyethylene-like polymer [H]P2 that still contains 
embedded polar Oxa rings (Figure 3C). Such polar-function-
alized polyethylene66 often exhibit excellent ionic conduc-
tivity,67–69 surface hydrophilicity,70,71 and antimicrobial 
properties72,73 while maintaining the mechanical strength of 
polyethylene. We speculated common olefin hydrogenation 
catalysts (e.g. Pd/C) would deprotect the benzyl group from 
the Oxa nitrogen74 and thus used in situ-generated diimide 
from N-tosyl hydrazide for hydrogenation,57,75 resulting in 
92% conversion of the olefins via 1H NMR spectroscopy af-
ter 16 h (see Section S3C). The Td,5% increased slightly after 
hydrogenation (436 °C for [H]P2 vs. 408 °C for P2) whereas 
the Tg decreased from 48 to 42 °C due to increased back-
bone flexibility,76–79 indicating that post-polymerization 
modification provides an additional handle to tune thermal 
properties. Furthermore, heating [H]P2 at 150 °C for 1 hour 
does not result in any chain-chain coupling (Figure S32). 

Because we are interested in the end-of-life for these mate-
rials, we explored the depolymerization of the non-hydro-
genated P2 via RCM. After a brief optimization of the condi-
tions (Table S5) we observed quantitative depolymeriza-
tion of the polymer to M2 using G2 in chloroform-d (20 mM) 
at 70 °C for 4 h (Figure 4). No oligomers or side reactions 
were observed. The recovered monomer (90% by mass) be-
haved comparably to fresh monomer when re-polymerized 
using our standard conditions (see Table S6 and Figures 
S35–S38), demonstrating the facile circular recyclability of 
these materials. Detrembleur and co-workers recently re-
ported mechanical and chemical recycling of POxa-contain-
ing covalent adaptable networks,17 but this RCM approach 
is the first example of chemical recycling for linear POxa.  

 

 
Figure 4. 1H NMR spectra (CDCl3) of (A) M2, (B) P2, and (C) the 
crude reaction mixture of P2 depolymerization. Depolymeriza-
tion conditions: G2 (1 mol %), CDCl3 (20 mM), 70 °C, 4 h. 

Because low monomer RSE (≤5.3 kcal/mol) has been re-
ported as the key factor in the depolymerization of ROMP-
based polymers,28,30 we expected M1–M4 to have lower RSE 
than COE, which does not readily depolymerize to mono-
mer24,80 (see Section S4D). However, the calculated RSE val-
ues were actually higher for M1–M4 (7.2–8.2 kcal/mol) 
than COE (6.6 kcal/mol) (Table S7), indicating that RSE is 
not the most critical factor governing the depolymerization 
of these polymers. (Note that due to inconsistencies in the 
reported RSE of COE in the literature,28,52,81,82 we calculated 
this value using the same method as M1–M4 at the 
B3LYP/6-31G (d,p) level of theory.) On the basis of the rich 
small-molecule literature using RCM to construct medium-
sized (5–9 membered) fused rings (RSE >7 kcal/mol),83–89 
we hypothesize the favorable depolymerization to mono-
mer of P2 is facilitated by the conformational restriction in-
troduced by the fused Oxa ring making the ΔS of polymeri-
zation more negative30,90 and helping bring the adjacent al-
kenes together (conceptually similar to the Thorpe-Ingold 
effect91 that has previously been invoked for polymer depol-
ymerization30,92). 

In summary, we successfully developed the first chain 
growth synthesis of POxa. We designed and synthesized 
novel Oxa-fused COE monomers with easily diversified side 
chains. P1 – which contains free N-H groups – was insoluble 
in common ROMP solvents, but P2–P4 were accessed with 
high molar masses and moderate dispersities (Mn up to 487 
kDa, Ɖ ≈ 1.5) via ROMP. We demonstrated that the molar 
mass could be efficiently controlled using a commercially 

 
Figure 2. Plots of Mn (black circles), Mn,theo (open circles), and Ɖ 
(red triangles) as a function of (A) [M2]:[G2] and (B) 
[M2]:[CTA]+[G2]. Polymerization time = 3 h.  

 

 
Figure 3. Thermal data – (A) TGA and (B) DSC thermograms – 
of P2–P4 and (C) hydrogenated [H]P2. 
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available CTA. This method delivers new POxa with Td,5% > 
380 °C and tunable Tg by changing the nitrogen substituent. 
We showed hydrogenation of the olefin backbone of the pol-
ymer to give access to polyethylene-like POxa. We further-
more established the quantitative chemical recyclability to 
the monomer of P2 by employing RCM to deliver pure mon-
omer that could be readily repolymerized. Further studies 
on controlled copolymerization, mechanistic insight, and 
mechanical properties are underway. 
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