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Abstract—This study proposes a novel dynamical mechanism
for pattern recognition discovered by interpreting a recurrent
neural network (RNN) trained on a simple task inspired by the
SET card game. We interpreted the trained RNN as recognizing
patterns via phase shifts in a low-dimensional limit cycle in a
manner analogous to transitions in a finite state automaton (FSA).
We further validated this interpretation by handcrafting a simple
oscillatory model that reproduces the dynamics of the trained
RNN. Our findings not only suggest of a potential dynamical
mechanism capable of pattern recognition, but also suggest of
a potential neural implementation of FSA. Above all, this work
contributes to the growing discourse on deep learning model
interpretability.

Index Terms—Pattern recognition, Recurrent neural networks,
Neural dynamics, Cognitive modeling, Deep learning inter-
pretability

I. INTRODUCTION

Pattern recognition is fundamental to human cognition,
influencing perception, language, and reasoning [1]. Despite
substantial advances in machine learning algorithms and mod-
els [2], [3], understanding the computational and neurological
foundations of pattern recognition in human cognition remains
a challenge. Recent work applying recurrent neural networks
(RNNs) to neural and cognitive modeling have led to the
development of a variety of theories concerning the poten-
tial dynamical mechanisms responsible for various cognitive
abilities [4]-[8]. This study builds on this research direction
and these findings by proposing a simple pattern recognition
task, inspired by the SET card game, that was solved by an
RNN through phase shifts in a low-dimensional limit cycle. We
interpreted this learned dynamical mechanism as recognizing
patterns in a manner analogous to a finite state automaton
(FSA), suggesting a potential neural implementation of FSA.
To support this analogy, we handcrafted a simple oscillatory
model based on our interpretation that emulates the trained
RNN’s low-dimensional dynamics. Our findings not only add
to the current research direction of theorizing about potential
dynamical mechanisms underlying cognition, but also provide
insights into deep learning model interpretability.

II. BACKGROUND
A. Dynamical motifs in RNNs

Previous work by [6] showed that RNNs trained on many
cognitive tasks learned a series of modular, low-dimensional,

dynamical phenomena (e.g. attractors, limit cycles, bifurca-
tions [11]), termed dynamical motifs, that were shared among
all cognitive tasks. In addition, simple tasks would learn simple
dynamical motifs and complex tasks would combine multiple
of these motifs in a manner apt for performing in the complex
task. This work suggests that all cognitive abilities may have
associated dynamical phenomena that are easy to interpret and
implemented at the neural level. It is possible that the brain
only implements a handful of simple dynamical motifs that
can be combined and reused to perform all cognitive tasks.

B. Dynamical mechanisms for transitive inference

Previous work by [7] showed that RNNs trained to per-
form a transitive inference task learned a simple dynamical
mechanism characterized by a single oscillation and a collinear
encoding of stimulus inputs. To perform transitive inference,
the RNN would encode stimuli as a linear input into the
dynamical mechanism and the oscillatory activity of the mech-
anism would subtract the magnitude of subsequent encoded
stimuli. Ref. [7] hypothesized that cognitive abilities requiring
transitive inference might incorporate this particular dynamical
mechanism. Building on these insights and motivations, we
sought to uncover a potential dynamical mechanism underly-
ing pattern recognition through training RNNs and interpreting
their learned dynamics.

C. Why do interpretable dynamical mechanisms emerge?

The simplicity of the dynamical mechanisms learned in [6]
and [7] is initially surprising; however, both studies incorpo-
rated substantial regularizations during the training of RNNs
that biased the learned dynamics to be low-dimensional and
interpretable. These regularizations were an L2 regularization
imposed on the trainable weights and on the recurrent ac-
tivations of the RNN. These constraints are well known to
produce interpretable dynamics in RNNs and have a potential
biophysical interpretations [9], [10]. Regularizations on the
trainable weights reflect a synaptic resource constraint, and
regularizations on the recurrent activations reflect a cellular
metabolic constraint. In this work, we used these regular-
izations in order to bias our model to learn an interpretable
dynamical mechanism.
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III. METHODOLOGY

Our methodology is divided into three parts: defining our
novel pattern recognition task (sec. III-A), defining the model
and its parameters (sec. III-B), and describing our analysis
methods (sec. III-C).

A. Task

While there exists a host of pattern recognition and clas-
sification tasks in the machine learning community [2], [3],
their associated datasets may be too complex and/or noisy to
elicit interpretable dynamical mechanisms. We instead took
inspiration for the design of our own task from the card game
SET [12]. SET is a card game where players race to identify
sets of three cards out of a field of 12 cards. Each card has four
attributes: shape, color, number, and shading. Each of these
attributes has three possible values. A valid set is found when
for each attribute, all the values pertaining to that attribute
across all three cards are the same or different. The game is
regarded as being cognitively demanding despite the simplicity
of the associated patterns [12].

While the complete game of SET involves searching
through 12 cards, each with four attributes, our task was
abbreviated to only concern classifying three cards, each with
only one attribute, as either a valid set or an invalid set. We
refer to this attribute as color and the three possible values
as green, purple, and red. The task involved sequentially
presenting three colors to an agent and tasking the agent with
classifying if the colors presented constituted a valid set (i.e.
the agent decides if all the colors presented were the same or
different).

All trials of the task were 500ms. There was a delay
period of 30ms at the beginning and 100ms at the end of the
trial where no colors were presented. A color was presented
for 20ms, and there was at least a 30ms gap between the
presentation of colors (Fig. 1). Given that our agent was an
RNN, each color was encoded as a 100-dimensional vector!
with values drawn from a Gaussian distribution, A/(0, 1). The
same encoding vectors were used across all training and testing
trials. The RNN was tasked with producing an output of +1
to indicate a valid set or —1 to indicate an invalid set at the
end of a trial.

The model was trained on a training dataset of 540 trials.
The proportion of accepting to rejecting trials in the training
dataset was 50%. 27 trails were generated for the testing
dataset, where each trial consisted of a distinct combination
of presented colors. Trials were mini-batched during training
into batches of 108 trials.

B. Model
We describe our model according to the framework pro-

posed in [13].

'Our use of a 100-dimensional vector was inspired by [7]. This dimension-
ality ensured that stimulus representations were uncorrelated in the activity
space of the model.
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Fig. 1. A sample trial showing the colors purple, green, and red being
presented. This trial constitutes a valid set.

Architecture: The model was a continuous-time RNN
identical to the networks used in [4], [5], [7]-[10]:
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7 is interpreted as the time constant for the RNN and was
set to 10ms. x;(¢) is interpreted as the average voltage of the
ith subpopulation of neurons at time ¢. N is the total number
of subpopulations of neurons and was set at 100. wuy(t) is
interpreted as the kth input stimulus conveying encoded color.
N is the number of input dimensions and was, as stated in
sec. II-A, set at 100. 7;(¢) is a random value drawn from a
Gaussian distribution, A(0,0.10). r;(t) is interpreted as the
average firing rate for the 7th subpopulation of neurons. The
activation function that converted average voltage to average
firing rate is the hyperbolic tangent (tanh) function. z(t) is
interpreted as the average firing rate of the population of output
neurons at time ¢.

Equation (1) was approximated with Euler’s method using
a step size (At) of 10ms for all trials. The entirety of our
model was coded in Julia [14] using the Lux framework [15]
and SciML ecosystem [16], [17].

Learning algorithm: We used the AdamW learning al-
gorithm [18] and reverse mode automatic differentiation to
update trainable parameters. The trainable parameters were
the initial state x(¢ = 0), recurrent matrix J, input matrix
B, recurrent bias b, output matrix W, and output bias b,;.
The initial learning rate was set to 10~*. As referenced in
sec. II-C, an L2 regularization was imposed on the trainable
parameters. We implemented this regularization through the
AdamW learning algorithm with the weight decay parameter
set to 1074,



Objective function: We used a mean squared error (MSE)
objective function to measure the difference between the
observed z(t) and the expected Z(¢). The last 50ms, corre-
sponding to the last 5 time steps, of z(t) of each trial were
measured against 2(¢). As referenced in sec. II-C, an L2
regularization was imposed on the recurrent activations of the
RNN. We implemented this regularization as an added term
in the objective function. The full objective function was the
following:
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T is the total number of time steps across all trials and, via
Euler’s method, was set at 50. A is the L2 regularization
parameter and was set to 1074,

C. Analysis

In order to interpret the learned dynamics of our model,
we used principal component analysis (PCA). As a prevalent
dimensionality reduction technique, PCA has been used in
previous work to visualize and interpret the low-dimensional
dynamics of RNNs [4]-[8]. In our study, we applied PCA
to the firing rates of the RNN, r(t¢), under conditions of no
recurrent noise, 7;(t) = 0. This approach enabled us to identify
potential dynamical mechanisms.

However, it is crucial to recognize that PCA primarily
uncovers the strongest correlations among the firing rates of
the RNN rather than elucidating causal, mechanistic properties
of the entire model [19]. To address this inherent limitation of
PCA, we supplemented our analysis by developing a simplified
model. This model, guided by insights from PCA, emulated
the dynamics of the RNN and served to verify the mechanisms
suggested by our PCA-based interpretation. This combination
of methods strengthens the validity of our findings.

IV. HYPOTHESIS

Our initial hypothesis posited that PCA would reveal that
our trained model learned a low-dimensional network com-
prised of attractive fixed points. We hypothesized that the
model’s dynamics would originate from a central attractor
within this network and the presentation of encoded colors
would then transition these dynamics towards surrounding
attractors. At the end of the trial, the final attractor that the
dynamics settled into would have an associated classification
label of either a valid or an invalid set (Fig. 2).

This hypothesis was predicated on two fundamental assump-
tions:

1) The model’s dynamics would exhibit attraction.
2) Presented colors would be linearly encoded into the
model’s dynamics.

The first assumption drew inspiration from the Hopfield net-
work [20], where memories are stored as attractive fixed
points. Unlike the Hopfield network, which only receives
stimuli at the onset of its dynamics, our hypothesis takes
into account a sequential presentation of colors as required
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Fig. 2. Our hypothesized dynamical mechanism. Each circle is an attractive
fixed point. Filled circles denote attractors classified as a valid set. Empty
circles denote attractors classified as an invalid set. The model’s dynamics
begin in the central attractor. Our first and second assumption resulted in a
hexagonal tiling of the networks fixed points.

by our task. Despite this difference, the Hopfield network’s
central insight—that memories in a neural circuit can be
encoded with attractive dynamics—has found validation in
experimental work [21], [22]. Therefore, we integrated this
concept of attractive dynamics into our hypothesized dynam-
ical mechanism.

The second assumption was influenced by a variety of
computational studies that demonstrated the crucial role linear
encoding of stimuli can play in shaping an RNN’s learned
dynamical mechanism [4]-[7]. Furthermore, given that the
input matrix B in equation (1) is not a function of time,
voltage, or firing rate, we assumed that the presentation of
a color at any point in the dynamics should result in a
linear perturbation of the same magnitude and direction as
a presentation of the same color at any other point in the
dynamics. Thus, our hypothesis adopted this linear encoding
of colors as a fundamental assumption.

We further noticed that this hypothesis of transitions be-
tween attractors in a network of fixed points closely resembles
the transitions between states in an FSA. Previous work has
drawn the analogy between RNNs and FSA before [23], and
in this study, we sought to further build on this analogy in the
context of low-dimensional dynamical mechanisms.

V. RESULTS
A. Training and testing accuracy

The fully-trained RNN model demonstrated robust perfor-
mance, achieving an accuracy of 96.30% on training data and
100.00% on testing data. In the absence of recurrent noise,
the model achieved perfect accuracy, reaching an accuracy
of 100.00% on both training and testing data. This perfect
accuracy was expected due to the algorithmic nature of the
task [24], [25].

Throughout a trial, the model’s output, z(t), exhibited a
large oscillation with perturbations corresponding to the pre-



sentation of encoded colors (Fig. 3). To recognize valid sets,
the output’s oscillation ended the trial in the positive phase,
yielding a value of 41. Conversely, to recognize invalid sets,
the output’s oscillation ended the trial in the negative phase,
yielding a value of —1. In the absence of encoded color input,
the model completes two full oscillations. The perturbations
corresponding to color presentation indicated some influence
on the oscillation, yet the computational significance remained
unclear without further analysis.
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Fig. 3. Three examples of trials and the resulting model output. The top
row displays a trial with an invalid set and the resulting model output of —1.
The middle row displays a trial with no presented colors and demonstrates the
model output completing two full oscillations. The bottom row displays a trial
with a valid set and the resulting model output of —1. Note the perturbations
caused by the presentation of colors in the top and bottom rows.

B. PCA insights

PCA revealed that the model learned a low-dimensional
limit cycle? which completed two full rotations during a trial
(Fig. 4). At the end of the trial, PCA revealed that the dynamics
of the model would lie in one of three distinct distributions
along the limit cycle. Two distributions corresponded to invalid
sets and one distribution corresponded to valid sets. These
findings indicated that the presentation of colors would shift
the phase of the limit cycle. We inferred this phase shift to be
the computational affect of the perturbations seen in Fig. 3.

In order to confirm that the presentation of colors led to
phase shifts in the model’s limit cycle, we rotated PCA trajec-
tories and examined the resulting oscillations. This rotation
was conducted due to the observation that projecting the
model’s dynamics entirely onto principal component (PC) 1
would lead to a mixing of distributions corresponding to valid
and invalid sets. Through a 60-degree rotation, the distributions
corresponding to valid and invalid sets became maximally
separable when projected onto rotated principal component
(rPC) 1.

Fig. 5 illustrates the model’s dynamics projected onto rPC
1 over time for various trials. By examining the influence

2Refer to [11] for an overview of limit cycles in nonlinear dynamics.
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Fig. 4. The model’s dynamics projected onto PC 1 and PC 2. The purple
trajectory is the projected dynamics of the model during a trial with no
stimulus. The green points are the endpoints of the model’s dynamics during
trials with valid sets. The red points are the endpoints of the model’s dynamics
during trials with invalid sets.

of presented colors on the dynamics across different trials,
we developed hypotheses about the mechanistic effects of
presented colors on the underlying limit cycle. Green appeared
to slightly perturb the model’s dynamics, purple appeared to
rush the model’s dynamics, and red appeared to reset the
model’s dynamics.
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Fig. 5. The model’s dynamics projected onto rPC 1 for various trials. In the
trial with no stimuli, the dynamics performed two complete oscillations. In
the all-green trial, the dynamics were minimally perturbed. In the all-purple
trial, the presentation of the color seemed to shift the phase of the limit cycle
forward. In the all-red trial, the color presentation appeared to shift the phase
backward.

Contrary to our initial hypothesis—which suggested that the
model would learn a dynamical mechanism characterized by
attractive fixed points and a linear encoding of colors—the
oscillatory dynamics of both the output (Fig. 3) and the
PCA trajectories (Fig. 4 and Fig. 5) led us to reconsider
our fundamental assumptions. Instead, we discovered that the



model learned a dynamical mechanism characterized by phase
shifts in a limit cycle. Remarkably, the analogy to an FSA
persisted with this new dynamical mechanism. Rather than
the FSA residing in the state space of the dynamics, it now
exists in the phase angle state space of the limit cycle with
phase shifts analogous to state transitions (Fig. 6).

240°

Fig. 6. The learned FSA exists in the phase angle state space of the limit
cycle. The automaton starts at a phase angle of O degrees and the presentation
of colors causes transitions to other states, each representing a distinct phase
angle in the limit cycle.

While we previously observed that the presentation of
the color green did impact the model’s dynamics (Fig. 5),
we interpreted the learned dynamical mechanism under the
assumption that green did not impact the dynamics in order
to simplify the FSA analogy (Fig. 6). We interpreted purple
as adding 120° to the phase angle and red as subtracting
120°. Hence, it becomes clear how presenting all the same
or different colors would cause the limit cycle’s phase shifts
to sum to 0°, 360°, or —360° and cause the model’s output
to end the trial in the valid set phase.

To test the accuracy of our interpreted dynamical mech-
anism, we made predictions about the ending phase of the
model’s dynamics when projected onto rPC 1 in trials with
invalid sets. For example, if the sequence of presented colors
is purple, green, purple, the model should end 120° behind
the valid set phase. Conversely, if the sequence of presented
colors is red, green, red, the model should end 120° ahead of
the valid set phase. Fig. 7 supports these predictions and our
interpretation of the learned dynamical mechanism.

C. Handcrafting an oscillatory model

To further validate our interpretation of the learned dy-
namical mechanism and its analogy with FSA, we designed
a simple oscillatory model to emulate the dynamics of our
trained model. Specifically, we handcrafted the following
equation to reproduce the projection of our model’s dynamics
onto rPC 1:

= Tsin(—=t )dr)—1.5 5
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¢(7) corresponds to the presentation of an encoded color:
. . . _ 2m. 1
if purple is presented at time 7, thep o(1) = =5 if red is
presented, then ¢(7) = —2F; and if green or no color is
presented, then ¢(7) = 0.
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Fig. 7. The ending phase of rPC 1 for trials of invalid sets supports our
interpretation of the learned dynamical mechanism. A purple, green, purple
trial results in rPC 1 ending 120° behind the valid set phase. A red, green,
red trial results in 1PC 1 ending 120° ahead of the valid set phase.

It is worth noting that equation (5) simplifies many of
the dynamical properties observed in rPC 1. For instance,
the frequency of the dynamics was nonuniform (Fig. 4)
and color presentation caused complex perturbations in the
model’s dynamics (Fig. 5). However, equation (5) models the
frequency as constant at 02;9 and models color presentation
as causing simple perturbations by integration. Despite these
simplifications, equation (5) qualitatively captures the model’s
dynamics projected onto rPC 1 (Fig. 8). The similarity between
the dynamics of our trained model and our handcrafted model
further supports our interpretation of the learned dynamical
mechanism.
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Fig. 8. Our handcrafted oscillatory model qualitatively captures our trained
model’s dynamics projected onto rPC 1. The top row shows model dynamics
in a purple, green, purple trial. The middle row shows model dynamics in
a purple, green, red trial. The bottom row shows model dynamics in a red,
green, red trial.



VI. DISCUSSION

In this study, we demonstrated how an RNN, trained on
a simple pattern recognition task inspired by the SET card
game, could recognize patterns via phase shifts in a limit cycle.
We employed PCA to identify three distinct distributions of
endpoints in our model’s dynamics, each corresponding to a
distinct phase angle in the limit cycle (Fig. 4), and showed
how the presentation of colors caused transitions between
these phase angles (Fig. 5). Additionally, we drew an analogy
between phase shifts in the limit cycle and state transitions
in an FSA (Fig. 6). The validity of our interpretation of the
learned dynamical mechanism, as well as the FSA analogy,
was strengthened by the prediction of the ending phase of
our model’s dynamics (Fig. 7) and the construction of a
handcrafted oscillatory model that mimicked these dynamics
(Fig. 8). In essence, we have developed a robust narrative
detailing the learned dynamical mechanism of an RNN trained
on a simple pattern recognition task.

Interestingly, the dynamical mechanism learned in our study
challenged two fundamental assumptions pertaining to our
original hypothesis, specifically that the model would learn
attractive dynamics and linearly encode colors. Although there
are theoretical [26] and computational [7], [8] precedents for
oscillatory dynamics in RNNs, it remains unclear why our
model opted for a mechanism characterized by oscillatory
dynamics rather than attractive dynamics. Given the universal
function approximation capabilities of RNNs [27], it is theoret-
ically possible to for an RNN to learn a dynamical mechanism
similar to our initial hypothesis. Perhaps by fine-tuning various
model and task-related hyperparameters, we could bias our
model towards learning attractive dynamics [28].

Furthermore, the cognitive plausibility of FSA deserves fur-
ther exploration. While FSA are simple computational models
with deep roots in cognitive science [29], the simplicity of our
task and stimuli likely contributed to the emergence of an FSA-
like dynamical mechanism. Introducing more complex stimuli
and tasks might disrupt this FSA analogy, but it’s also possible
that the underlying algorithm our model might implement is
represented by an FSA employing the dynamical mechanism
elucidated in this study.

Looking ahead, it would be valuable to investigate how the
mechanism uncovered here could integrate with other dynam-
ical mechanisms to enable more complex computations. In
particular, we are interested in how our dynamical mechanism
might be integrated into the dynamics of an RNN trained on
a full game of SET complete with visual search across all 12
cards [12]. Ultimately, this line of research could lead toward
constructing a dynamical computer capable of programming
in a manner similar to conventional digital computers [30].

Lastly, our findings and methodologies may have meaning-
ful implications for mechanistic interpretability in the field
of deep learning. This domain is focused on constructing
mechanistic models of the learned computations of deep
learning models with the aim to elucidate phenomena related
to generalization and adversarial attacks [24], [25]. Our work

aligns with this research direction and the approaches used
may prove valuable for future interpretability studies.
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