

ELSEVIER

Contents lists available at ScienceDirect

Computers & Education

journal homepage: www.elsevier.com/locate/compedu

Academically meaningful play: Designing digital games for the classroom to support meaningful gameplay, meaningful learning, and meaningful access

Douglas B. Clark*, Jesus E. Hernandez-Zavaleta, Sandra Becker

Wenclund School of Education, University of Calgary, Canada

ARTICLE INFO

Keyword:

Educational games
Intrinsic design
Endogenous design
Meaningful play

ABSTRACT

What does it mean for a game to engage players in academically meaningful play? Much has been written about the integration of educational learning within the design of games in terms of intrinsic/ endogenous design. While these framings capture the positioning of learning within games, they provide less insight into what might distinguish design choices that are powerful in terms of both learning and gameplay from design choices that might be limiting from one or both of these perspectives. In this article, we therefore propose a framework for thinking about academically meaningful play that builds upon and extends more general ideas about meaningful play (Salen & Zimmerman, 2003). The proposed framework focuses on (a) discernability of choice outcomes, (b) integration of choice outcomes into unfolding game state, (c) meaningful choices grounded in core academic ideas, and (d) thematic and challenge access. We analyze three academic games that focus on geometric transformations as comparative cases to consider the potential affordances of the proposed framework for analyzing the implications of design choices.

1. Introduction

Digital games have generated substantial interest for education during the past two decades, and meta-analyses have clearly demonstrated the importance of design over mere medium for educational games (e.g., Clark, Tanner-Smith, & Killingsworth, 2016; Wouters, Van Nieuwegen, Van Oostendorp, & Van Der Spek, 2013). In terms of design, research has highlighted the importance of positioning the educational learning mechanics of a game within the core game play mechanics in a manner that could be considered intrinsic or endogenous to those game play mechanics (e.g., Clark, Sengupta, Brady, Martinez-Garza, & Killingsworth, 2015; Habgood & Ainsworth, 2011; Holbert & Wilensky, 2019; Kafai, 1996). These perspectives on design provide less insight, however, into what might distinguish a game that is well designed in terms of both learning and gameplay. The purpose of this article is to (a) propose a framework for thinking about the design of academically meaningful games that builds upon and extends the meaningful play framework proposed in the game studies literature by Salen and Zimmerman (2003; 2005) and (b) analyze the affordances of the proposed framework in the context of considering the design of three games that were created to teach geometric transformations.

* Corresponding author. Wenclund School of Education, 2750 University Way NW, Calgary, AB, T2N4E4, Canada.
E-mail address: douglas.clark@ucalgary.ca (D.B. Clark).

2. Background: Conceptualizing the positioning of learning goals within game design

Many games researchers in the field of education have explored the positioning and relationship between game mechanics and educational learning goals. Most often, these explorations have focused on questions of what it means for the educational learning goals to be intrinsic/ endogenous (we include both terms in this article because the two terms are used by different authors to discuss the same concept) to the game mechanics (e.g., [Habgood & Ainsworth, 2011](#); [Kafai, 1996](#)). [Habgood, Ainsworth, & Benford, 2005](#), for example, provide the following definition of intrinsic design:

1. Intrinsically integrated games deliver learning material through the parts of the game that are the most fun to play, riding on the back of the flow experience produced by the game and not interrupting or diminishing its impact.
2. Intrinsically integrated games embody the learning material within the structure of the game world and the player's interactions with it, providing an external representation of the learning content that is explored through the core mechanics of the gameplay. (p. 173)

[Habgood, Ainsworth, & Benford, 2005](#) framing of intrinsic integration thus focuses on the location and relationship of the learning mechanics within the game mechanics that are the most engaging, whereas extrinsic design involves a separation between the game elements that are most engaging to the player and the game elements that are most central to the educational learning goals.¹ [Math Blaster](#) ([Davidson & Associates, 1983](#)), where students answer academic questions in one part of the game in order to be able to blast space trash in a completely separate part of the game, is probably the most famous and iconic example of extrinsic design, but extrinsic approaches to educational game design remain widespread.

Our extended group of colleagues has explored various refinements to these ideas of intrinsic/ endogenous design. Our earlier work focused on *conceptually-integrated* games ([Clark & Mрутинь-Груза, 2012](#)), which is an elaboration on the idea of intrinsic/ endogenous design, wherein focal science concepts are integrated directly into the core mechanics of the game and serve the means through which the player navigates and understandings the game-world (e.g., core mechanics wherein the player manipulates physics concepts to move through the world). We then developed the idea of *disciplinarily-integrated* games that specifically focus game-mechanics on learning, developing, and interpreting disciplinary representations and inscriptions ([Clark, Sengupta, Brady, Mрутинь-Груза, & Killingsworth, 2015](#); [Clark & Sengupta, 2020](#); [Sengupta & Clark, 2016](#)).

Other research groups have also explored elaborations and refinements on intrinsic/ endogenous design, such as [Holbeil and Wilensky \(2019\)](#) with their CART and objects-to-think-with perspectives; [Squire \(2006\)](#) with his formulation of the distinction between endogenous and exogenous games; [Asgari and Kaufman \(2004\)](#) with their analysis of the relationships among computer games, fantasy, and learning; and [Hanes and Stone \(2019\)](#) with their model for integrating heritage content into the design of digital games for history education. Whereas all of these intrinsic/ endogenous perspectives have asked questions about the location and nature of learning mechanics in relationship to core game mechanics, the current manuscript explores two questions that extend and expand on these perspectives:

1. How might academically meaningful play be situated and operationalized beyond intrinsic/ endogenous relationships of game mechanics and learning mechanics?
2. What affordances might a framework for academically meaningful play provide for analyzing and conceptualizing the design of educational games?
3. Academically meaningful play

Outside the field of education, [Salen and Zimmerman \(2003\)](#) proposed a framework in the field of game studies for thinking about what makes play meaningful in their foundational book on game design theory. According to [Salen and Zimmerman \(2003\)](#), meaningful play emerges through the interaction between players and the design of a game and its context. Their framework articulates how the design of games can support or interfere with possibilities for these meaningful interactions. Since that time research has explored the concept of meaningful play in relation to game design and player experience from the perspective of social negotiation ([Cheung, Lee, Cheng, & Lee, 2013](#)), musicology ([Hait, 2014](#)), affect ([Dorn, Whitson, & Neuvians, 2013](#)), regulation ([Ferrara, 2013](#)), "regularly fit" ([Lee, Heeter, Magerko, & Medler, 2013](#)), gamification ([Gilbert, 2015](#)), engagement and motivation ([Ivanescu, 2019](#)), disability and inclusion ([Holt, Moore, & Beckett, 2012](#)), moral decisionmaking ([Holl, Bernhard, & Melzer, 2020](#)), freedom and loss ([Cruter & Allison, 2017](#)), and even death ([Sidhu & Cruter, 2021](#)). Scholars have also investigated the influence of meaningful play on different phases of life, including adolescence and old age ([De Schutter, 2017](#); [Loos, 2014](#)), and as therapy for medical conditions ([Aslian & Burkhardt, 2021](#); [de la Hera Conde-Pumpido & Sanz, 2021](#)). Although there has been some research conducted with a focus on balancing aspects of game design, meaningful play, and learning in a variety of spheres such as fractions in mathematics ([Riconcidente, 2013](#)), touch exhibits for young children in museums ([Sykes, 1992](#)), and the creation and understanding of environmental policy ([Bell-Gawne, Stenerson, Shapiro, & Squire, 2013](#)), there has been little research conducted with a specific focus on what constitutes

¹ Note that this use of the term "intrinsic" takes on a different meaning from the proposals of scholars such as [Lepper & Malone, 1987](#) who talk about intrinsic design in terms of intrinsic motivation (i.e., the motivation to do something without any obvious external rewards because it is enjoyable or interesting).

meaningful play in academic settings. We propose that further articulation, consideration, and analysis of what constitutes academically meaningful play would be productive for the fields of education and game studies.

To define academically meaningful play, we first draw and extend upon ideas about meaningful play more generally from Salen and Zimmerman's (2003, 2005) foundational work and expand it as shown in Fig. 1. According to Salen and Zimmerman (2005), "meaningful play emerges from the interaction between the player and the system of the game, as well as from the context in which the game is played" (p. 60). From this perspective, a game is a system of elements, possible actions, and relationships between those elements and actions. A game can be viewed from this perspective as being similar to a state machine in computer science (Juul, 2001, 2004) in the sense that "it is a system that can be in different states; it contains input and output functions and definitions of what state and what input will lead to what following state" (Juul, 2004). The state of the system in a game is stored in the position of pieces in a board game or variables stored in a computer game. This system of elements, actions, and the relationships between them is defined by the rules of the game and the design of the game. One way of viewing what a player does during a game is in terms of making choices. When a player makes a choice within a game, that choice changes the state of the system within the game. Questions arise, however, in terms of how meaningful are those choices and resulting outcomes? Salen and Zimmerman explain that choices and decisions are meaningful in a game if the results of those choices are: (a) discernible to the player in the sense that the ramifications of the choices are communicated to the player and (b) integrated into the ongoing game in an impactful way.

3.1. Discernability in academically meaningful play

Discernability means that the results of game actions are communicated to the player in a manner that the player can perceive and recognize. Essentially, discernability lets players know what happened when an action is taken. As Salen and Zimmerman explain, "Without discernability, the player might as well be randomly pressing buttons or throwing down cards. With discernability, a game possesses the building blocks of meaningful play" (2005, p. 62). We would further argue that discernability encompasses a number of other ideas raised by Salen and Zimmerman in other sections of their work that explore the nature of choices. In particular, we would argue that discernability includes players' understanding of: (1) the specifics of the current state of the game within which the choice is being made, (2) the specific details or parameters of the choice they are making, and (3) the specific details or parameters of changes to the state of the game that result from the outcomes of the choice. With all emphasis on academically meaningful play, discernability also incorporates awareness of the disciplinary ideas and parameters represented and inherent in these actions and outcomes. Players of a game gain information about the game by interacting with systems of elements, actions, and relationships that constitute the game, and the core elements, actions, and relationships in an academically meaningful game embody the core disciplinary concepts, signs, symbols, practices, and relationships that are central to the academic goals for the game. We would consider this the first pillar of academically meaningful play.

3.2. Integration in academically meaningful play

Integration means that the relationships between actions and outcomes are integral to the larger context of the game such that an action not only has immediate outcomes and significance but also affects the play experience in the unfolding of the system states at a later point in the game. As Salen and Zimmerman argue, "in order to create instances of meaningful play, experience has to incorporate not just explicit interactivity, but meaningful choice" (2005, p. 71). Thus, if an action in a game causes an immediate change of state,

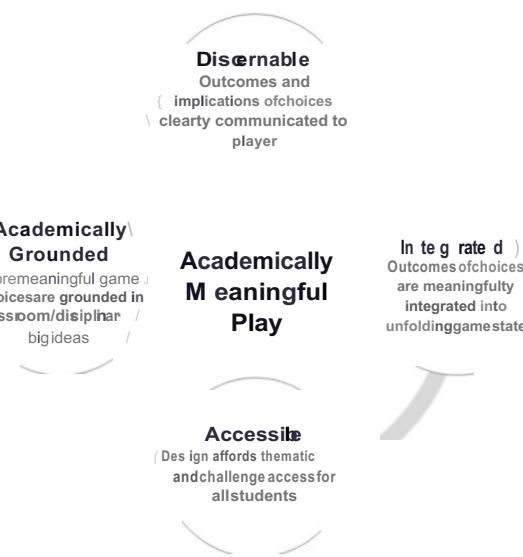


Fig. 1. Academically meaningful play framework.

but that change in state is irrelevant to the unfolding evolution of the states within the larger game, then that action-response combination is not meaningful within the larger context of the game. Similarly, we would further argue that if an action/choice creates a change in state that is relevant to advancing the game system toward goal states but that action/choice feels arbitrary because it could be achieved with many other action/choices, then the choice is more arbitrary than meaningful and is therefore not integrated into the larger context of the game. As an example of integration, Salen and Zimmerman explain that "chess is a deep and meaningful game because the delicate opening moves directly result in the complex trajectories of the middle game - and the middle game grows into the sparse and powerful encounters of the endgame" (p. 62). As Salen and Zimmerman explain, however, there is no single formula that works in every case.

In the example of the asteroid shooting game, immediate and visceral feedback was needed to make the action discernable. But it also might be the case that in a story-based game, the results of an action taken near the beginning of the game are only understood fully at the very end, when the implications play out in a very unexpected and dramatic way. (p. 62)

Furthermore, with our emphasis on academically meaningful play, integration depends on meaningful choices within the game being grounded within the inherent disciplinary ideas and practices that serve as the focal core of the action/outcome choices. Thus, the second pillar of academically meaningful play is that the meaningful choices in academically meaningful play need to be grounded in the discipline in a meaningful way that engages the player in careful exploration and increasing mastery of disciplinary ideas and relationships.

3.3. Focus on Classroom and Disciplinary Big Ideas in academically meaningful play

We have already begun discussing the third pillar of academically meaningful play in terms of the discussion of the first two pillars above. As outlined above, we extend the definitions for academically meaningful play by specifying that the decisions and choices and resulting changes in game state must also be academically meaningful at the disciplinary as well as the classroom levels. As Gadanidis, den Dents, and Yiu (2018) explain in the context of mathematics education, "The traditional - the easy - way of engaging young children with big mathematical ideas is to fragment the ideas to an extent that the mathematical structure is lost" (p. 34). Essentially, traditional curricula often focus on fragmented ideas that facilitate teaching and grading but may influence a reductionist vision of the disciplinary big ideas. The converse is sometimes also the case, where a game or circular activity developed by researchers may address big ideas at the disciplinary level but not meet the goals of the curriculum at the classroom/standards level.

If a game is being developed for the classroom, we would argue that it is an ethical imperative to support students and teachers in the face of the very real challenges and demands being made of them by the grade-level curriculum while also introducing students to the generative overarching disciplinary big ideas that will provide a foundation for robust understandings and participation in circular and disciplinary practices in the future. We thus very definitely are not arguing for "schoolifying" big ideas in the fragmented sense described above by Gadanidis. In the process of engaging students with big disciplinary ideas, however, students should also be supported in understanding the school ideas that are derived from those disciplinary big ideas so that students and teachers can successfully navigate the complex structural demands being placed on them by standards and high stakes testing.

That said, disciplinary big ideas are at the heart of academically meaningful play. To design successfully for disciplinary big ideas and practices, designers need to draw carefully and purposefully upon research and theory that explore learning of those disciplinary big ideas. To be clear, a variety of learning theories may provide leverage to the designer depending on the context, discipline, and learning goals. Designers themselves have a range of choices in terms of theoretical approaches. What is important is to leverage a theoretically rigorous approach building upon what is known about learning the disciplinary big ideas at the heart of the game to be designed.

In order to clarify what we mean by research and theory choices as well as to provide a foundation for readers about the disciplinary context of the games and cases in this manuscript, we now provide an example focusing on learning about geometric transformations. At the classroom/standards level, geometric transformations are often introduced in the elementary grades, then geometric transformations are explored in greater depth in the middle grades, and finally transformations are considered in the context of equations and functions in the high school grades. Learning about geometric transformations is challenging for students from a disciplinary perspective because transformations are tended to be understood as "mapping" of the whole plane onto itself in terms of functions more as a mathematician might understand them (Edwards, 2003; Lakoff & Núñez, 2000). Students, however, tend to think about geometric transformations in terms of a "motion" conception that draws upon their embodied understandings (e.g., Edwards, 2003; Hollebrands, 2003; Yanik & Flores, 2009). From the perspective of disciplinary big ideas, middle grades students should begin exploring transformations from a mapping conception in connection with the more intuitive and embodied motion conception to provide the foundation for students in high school to be thinking more productively through a mapping perspective about transformations of functions and equations (Fife, Janies, & Bauer, 2019; Turgut, 2019; Yanik, 2014).

For our work, we have adopted a theoretical framework inspired by Vygotsky (1962; 1986) and research deriving from constructionism and embodied learning (Edwards, 2009; Papeit, 1980; Sengupta, Dickes, & FarTis, 2018). From this theoretical framing, learning about geometric transformations should not be approached as the simple replacement of students' intuitive embodied motion conceptions with formal disciplinary mapping conceptions. Instead, learners should productively engage with core academic ideas in connection with their intuitive understandings, an approach Vygotsky (1962; 1986) discusses in terms of the integration of *everyday* and *scientific* concepts to support the emergence of *spontaneous* concepts. In this respect, Vygotsky views a child's incapacity for absorption in everyday concepts as linked to the insufficient saturation of verbalism of the concrete objects in scientific concepts. This means that learners and learning environment designers are challenged to create a reciprocal process that promotes mutual feedback between students' everyday knowledge and scientific concepts. Vygotsky holds that each concept follows its own curve of development based

on connections forged between everyday knowledge and scientific concepts, but eventually, they begin to merge. As a result, this merging opens opportunities for the development of spontaneous concepts, i.e., the child's concepts that "are not simply acquired or memoized but arise and are formed through an extraordinary effort of ... [the child's] own thought." (Vygotsky, 1962, p. 173). This process enables the emergence of living knowledge and privileges learning through thought rather than through memorization of empty verbal schemes. This strengthens the idea that "the formation of concepts emerges from the child's own everyday life experience" (Vygotsky, 1962, p. 168). Building on this chosen theoretical framing, we focus on the inclusion of features that allow users to leverage embodied everyday experiences that emphasize the students' learning in their context (Papert, 1980; Edwards, 2003; Sen-gupta, Dickes, & Fanis, 2018) while exploring scientific big ideas and language.

As stated earlier, however, this example represents the theoretical framing and learning theory that we chose for our work in the context of geometric transformations. We might also have drawn on other related theoretical framings for thinking about learning in mathematics such as Instrumental Genesis (e.g., Trouche, 2005) or Material Agency (e.g., De Freitas & Sinclair, 2014) to analyze and design around the interactions of the game and the player. Other designers might choose different theoretical framings depending on the disciplinary context, learning goals, and big ideas. What is important is that the design is grounded in principled research and the only to support students in exploring the focal disciplinary big ideas while also honoring the ethical imperative of considering the very real challenges and demands being made of students and teachers within the context of the grade-level requirements to which they will be held accountable.

3.4. Access in academically meaningful play

We propose *access* as the fourth core pillar. From the perspective of academically meaningful play and its commitment to the classroom and students, we consider access both in terms of *thematic access* as well as *challenge access*.

Thematic access seeks to include more subtle and diverse representations of players and game environments beyond the historically white, heterosexual, and male hegemony in the design, appeal, and participation in games (Kafai, Heeter, & Deililer, 2008; Richerd, 2016; Richard & Gray, 2018; Westcott, 2016). Kafai (2016) explains, "context plays a critical role in how students position themselves in relation to game design and subject matter" (p. 262). It is therefore important when designing games for academically meaningful play that rigid stereotypes of game participants are dismantled and inclusionary perspectives are considered and given attention (e.g., Heeter & Winn, 2008; Kafai, Richerd, & Tynes, 2017; Richerd, 2016; Wasserman & Rittenom, 2019). It is an absolute ethical imperative that games intended for classrooms invite participation from the diverse breadth of players in our schools with their intersecting social identities.

Challenge access seeks to structure disciplinary ideas into the game in a way that makes them "accessible and inviting to children with all different learning styles and ways of knowing." (Resnick & March, 2008; p. 3). In doing so, the game design should consider a low floor/ high ceiling approach (Papert, 1980). For design to be effective in terms of challenge access, a low floor should make it simple for novices to engage in disciplinary concepts with little or basic understanding of the subject matter or prior experience playing games. Therefore, the game design needs to offer players the opportunity to carry out ample explorations to gain disciplinary mastery and mastery of the game mechanics. The high ceiling/ low floor complement provides affordances for the players to work with increasingly sophisticated disciplinary concepts, representations, and game mechanics that extend a particular subject structure in

Fig. 2. Standard level in Transformation Quest (<https://mathgaroe.ucalgary.ca>).

order to explore bigdisciplinrui ideas th.rough game play (e.g., geometric transformations extended to group the0ly ideas).

4. Comparative cases to explore academically meaningful play as a framework

In order to analyze the potential affordances of the proposed framework for thinking about academically meaningful play, we now employ the framework to analyze three cases of games that were designed to teach middle grade mathematics students about geometric transformations. The games were selected because: (a) they were designed specifically as academically sound environments for learning about geometric transformation and (b) their designs appear similar when compared through intrinsic/ endogenous lenses but show interesting differences when compared through the proposed lens of academically meaningful play. The first case is a game we developed and are continuing to refine as part of our current research called TransformationQuest (<https://mathgame.ucalgary.ca>, see Fig. 2).

As part of our points of comparison, we selected NCTM's Flip-N-Slide (Fig. 3) and Mangalugh's Transformar (Fig. 4) as the second and third cases. We chose Flip-N-Slide, even though it was taken down in 2021 when Adobe stopped supporting Flash, because it was hosted on the US National Council of Teachers of Mathematics website as an exemplary game for teaching geometric transformations. We chose Mangalugh's Transtar because Mangalugh is one of the most popular current sites providing educational games. All three games are therefore considered as being designed and recognized explicitly for their goal of teaching about geometric transformations. In addition to their credentials as learning environments, the games were chosen because all three games have designs that are intrinsic/ endogenous, conceptually-integrated, and discipline-integrated according to the definitions described earlier. Thus, addressing only those framings is not sufficient to distinguish between the three games. We propose, however, that the framework we have articulated for conceptualizing academically meaningful play provides a productive lens for analyzing the implications and affordances of the design decisions in each of the three games.

In the following sections, we therefore analyze each of the three games in terms of academically meaningful play from the perspective of: (1) discernability, (2) integration, (3) focus on classroom/ standards and disciplinary big ideas, and (4) thematic and challenge access. In conducting these analyses, each of the three authors of this manuscript separately analyzed each of the three games through the lens of the proposed framework so that we could cross-check assertions and interpretations and then discuss any differences in interpretation. We analyzed the games using the following questions in Table 1 to operationalize the framework. The cases that follow represent a synthesis of the analyses from the three authors. The framework is intended to be more formative than summative, with the goal of providing a lens for considering the affordances and implications of design decisions. The goals of the cases therefore focus on considering how the framework might support considering the tradeoffs and implications of design choices rather than conducting a summative evaluation of the games themselves.

4.1. Flip-N-Slide

Overview. Flip-N-Slide presents players with a random assortment of ladybugs and fireflies on a Cartesian plane (Fig. 3). The player earns points by repositioning a triangle so that it covers as many insects as possible, which increases the player's score. The player repositions the triangle by specifying a sequence of translations, rotations, and reflections by dragging these transformations commands into the sequence of four boxes in the middle of the screen and adjusting the parameters of each transformation. An interesting

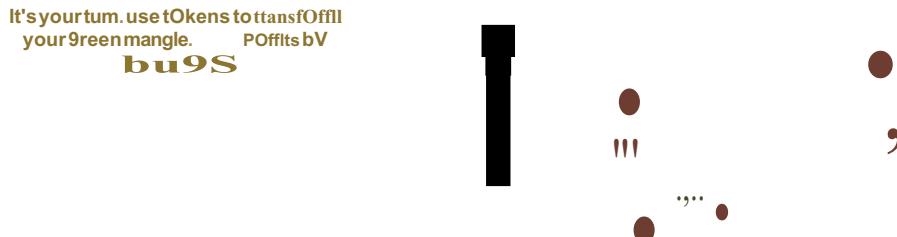


Fig. 3. NCTM's Flip-N-Slide (which unfortunately was taken down from their site in January 2021 with Adobe Flash's decision to no longer support Adobe Flash Player). You can watch a video explaining how to play the game at: <https://www.youtube.com/watch?v=KJrmywqKAEs>.

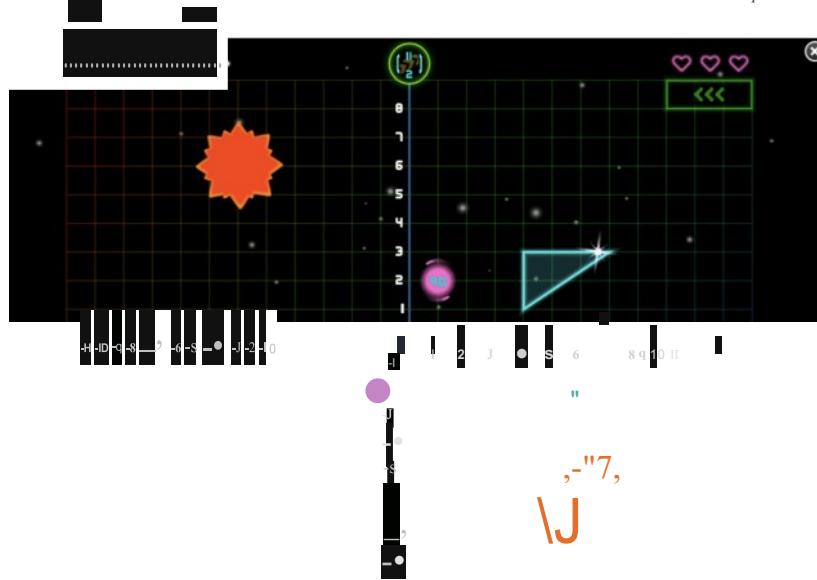


Fig. 4. Mangahigh's transtar (<https://www.mangahigh.com/en/games/Transtar>).

Table 1

Questions guiding the analysis of academically meaningful play.

Pillar	Questions Guiding the Analysis
Discernability	<ul style="list-style-type: none"> Do the interface's controls engage and educate the players in disciplinary ideas and practices through their actions? Do visualizations associated with actions communicate the results of choices in terms of disciplinary ideas (e.g., motion, mapping, or hybrid conceptions)?
Integration	<ul style="list-style-type: none"> Do the choices and decisions early in the game impact the game outcomes from a disciplinary perspective? Does the arc of the game mechanics engage players in a disciplinary learning progression?
Classroom/Disciplinary Ideas	<ul style="list-style-type: none"> Does the game disciplinary content connect with the curriculum? Can the game disciplinary concepts be extended to previous and later grades? Does the game provide scenarios to master the embedded disciplinary concepts? Do the game challenges incentivize the use of the multiple disciplinary ideas in combination to solve new challenges? Does the game support players in integrating everyday and disciplinary ideas?
Accessibility	<p>Thematic Access</p> <ul style="list-style-type: none"> Does the game thematically engage diverse players? Does the game narratively engage diverse players? <p>Challenge Access</p> <ul style="list-style-type: none"> Does the game provide a <i>low floor</i> to introduce players to the game and allow them to master early levels both from gameplay and disciplinary perspectives? Does the game provide a <i>high ceiling</i> for the skilled players both from gameplay and disciplinary perspectives?

and engaging feature of the game is that repositioning the triangle on top of a firefly increases the scale of the triangle, which can result in capturing a larger number of insects and potentially even expanding the scale further if additional fireflies are covered. Flip-N-Slide does randomize the positions of the ladybugs and fireflies each game, but Flip-N-Slide does not provide other configurations or levels that expand upon the basic game first encountered; every game, and every stage of every game, involves the same challenge with a race against a computer-controlled player to earn the most points.

Discernability. The outcomes of actions in Flip-N-Slide are visually obvious in terms of the number of ladybugs and fireflies captured, and the outcomes resulting from choices are discernible in that mechanical sense, but the distinction in outcomes between the specific parameters chosen and even the transformations chosen is not clear to the player. Nearly all choices/outcomes result in points being scored because the ladybugs and fireflies are distributed all across the grid. As a result, the dragging feature and parameters for each transformation do not provide a discernible outcome about disciplinary understandings or actions. Thus, the implications of choices from an academic perspective are not highly discernible. Players develop a rough sense of the differences between the types of transformations, but the game does not incentivize attending to the nuances of each transformation or paid after choice and resulting

outcomes. Furthermore, *Flip-N-Slide* visually displays the outcome of each transformation as motion (e.g., a translation visually slides across the screen and a reflection visually flips through a 3D arc), which emphasizes a "motion" conception rather than a "mapping" conception of transformations based on that aspect of discernability within the game. Thus, while the outcomes of actions are discernible within the game, discernability within *Flip-N-Slide* could be optimized from the perspective of academically meaningful play to highlight the implications of players' individual transformation choices in terms of a "mapping" conception.

Integration. *Flip-N-Slide* presents near infinite choices for each move because players can choose any combination of up to four transformations with any combination of parameters as an action for each turn. The integration of the outcomes of these choices into the larger game, however, focuses only on the number of points scored. In terms of individual choices, while players can choose any combination of up to four transformations with any combination of parameters, choices do not incentivize players to utilize other transformation types other than the most familiar or easy to use transformation type for the player (which is typically "translation"). The whole game can be played without ever choosing a transformation type other than "translation" and there is not much need to ever create a sequence of more than two translations. As a result, while there is integration in terms of the number of points scored to the overall outcome of the game, choices are not as academically meaningful as they might be because the player is not incentivized to make choices that distinguish between various transformation and parameter approaches and explore the underlying mathematical structure. Furthermore, the game design thus does not engage players in a disciplinarily meaningful learning progression from one level to the next.

Classroom and Disciplinary Big Ideas. At the classroom level, middle grades students are typically required to understand and make predictions about the outcomes of the three basic types of transformations (i.e., translations, reflections, and rotations). In particular, students must predict the resulting positions of a geometric shape, such as a triangle, on a Cartesian plane in terms of the Cartesian coordinates of one or more of the vertices of that shape. As described above, *Flip-N-Slide* does not incentivize players to explore the distinctions between the basic types of transformations, nor does it incentivize close attention to the parameters assigned to a transformation or the resulting repositioning of vertices on the coordinate plane. The use of different transformations may lead to random choices that at the outset are playful but do not lead to meaningful choices that move students forward in the context of the game or disciplinary learning. Furthermore, the game design does not provide features that support extension or connection to earlier or later grades. From the perspective of disciplinary big ideas, middle grades students should begin exploring transformations from a mapping conception in addition to, or in connection with, the more intuitive and embodied motion conception most often explored in terms of transformations at the middle grades (Edwards 2003, 2009; Yanik, 2014). This would provide the foundation for students in high school and beyond to be thinking more productively about transformations of functions and equations.

Thematic and Challenge Access. While the theme might feel a bit young for some, the visual presentation of capturing ladybugs and fireflies and the fun surprise of the potential for multiple expansions of the triangle offer the possibility of engaging a wide range of players. In terms of challenge accessibility, *Flip-N-Slide* provides easy entry and accessibility (i.e., a "low floor") for players with minimal prior understanding or experience with geometric transformations or games to get started and achieve success. *Flip-N-Slide* does not provide challenge that increases as players increase in their understanding and facility with the mathematical ideas and game mechanics. Thus, *Flip-N-Slide* does not provide a "high ceiling" in terms of challenge accessibility that would allow players to productively deepen their exploration of the classroom and disciplinary ideas through academically meaningful play.

4.2. *Transtar*

Overview. Players in *Transtar* need to reposition their triangle (the upperbrighter triangle with the gleaming star in Fig. 4) on the target triangle (the lower dimmer triangle in Fig. 4). The player chooses transformations to enact by clicking on appropriate symbols located on the screen. For example, clicking on the circle located at (1, 2) in Fig. 4 will rotate the triangle 90° counterclockwise around that point (which the game communicates to the player through its symbol, the number "90" within the circle, and the animated pattern that rotates counter-clockwise around the circle). Other examples of choosing transformations in Fig. 4 include clicking on the thickened bright elliptical line along the x-axis to reflect the triangle across that line or clicking on the circle at the top of the screen that displays the numerals "11" over "2" to initiate a translation 11 units to the right parallel to the x-axis and 2 units up parallel to the y-axis. The player is allowed a specific number of actions as displayed by the number of symbols at the top left of the screen (in Fig. 4 the player is allowed six actions). When the player chooses an action, the game displays the resulting translations and rotations as sliding from the original position to the new position and displays reflections as "flipping" in 3D from one position to the next. This motion metaphor is reinforced by the fact that the displayed motion cannot pass through the large "explosion" symbols (centered at (6, 6) and (-6, 6) in Fig. 4) or the player loses the level. Upon successfully completing a level, the player unlocks the ability to attempt the next level. There are approximately 80 levels in the game. Each level introduces new potential types and combinations of transformations, actions, and goals that require new specific combinations and approaches to succeed.

Discernability. In terms of discernability, *Transtar* emphasizes providing focused choices between alternatives with highly consequential outcomes for those choices. Essentially, there are relatively few choices for any action as limited by the number of action symbols provided for the level, but each choice is highly consequential and results in a discernible outcome in terms of progress toward solving the puzzle inherent in that level. Furthermore, because of the necessity of precision in solving a level in *Transtar*, the relationship of academically salient nuances of a specific transformation is also discernible to the player. In addition, the visual elements clearly inform players about the performed transformation (e.g., 90° or 180° for rotations, vector representations for translations). One limitation from the perspective of discernability is that, like *Flip-N-Slide*, *Transtar* visually displays the outcome of each transformation as motion (e.g., a translation visually slides across the screen and a reflection visually flips through a 3D arc), which emphasizes a "motion" conception rather than a "mapping" conception of transformations based on that aspect of discernability within the game. In

fact, Transtar emphasizes a motion conception even to a greater degree than Flip-N-Slide because sliding with a "translation" through an obstacle ends the level, whereas translations from a mapping conception would represent correspondences of positions and not sliding between positions. Thus, Transtar provides effective discernability by providing focused choices between alternatives with highly consequential outcomes for those choices, but the primary emphasis on the motion conception of transformations without linking or integrating it with a mapping conception could be considered a limitation from a disciplinary perspective.

Integration. The outcome of each choice within a Transtru· level is crucial to: (a) decisions regarding the subsequent choice in that level and (b) the opportunity to unlock access to subsequent levels. Overall, Transtru· provides a learning progression that integrates disciplinary understandings when solving new levels. Furthermore, choices within a level of Transtru· depend upon understanding, exploring, and differentiating between the characteristics of the different types of transformations and the salience of the specific parameters designed for each transformation. By engaging players in exploring and comparing the nuances between the transformations, the game therefore creates more meaningful choices for the player from the perspective of integration within the framework. Across the overall span of the game's subsequent levels, cannot be attempted until previous levels are completed, and therefore choices within individual levels that lead to solutions of those individual levels are emphasized, which contributes to the larger rule of integration of choices within the game.

Classroom and Disciplinary Big Ideas. At the classroom level, Transtru· engages players in making predictions about, and distinguishing between, the outcomes of the three basic types of transformations as would be expected of middle grade students. In Transtru·, disciplinary ideas are extensible because subsequent levels ask for combinations of 1:1 transformations to solve complex tasks. There are also other game modules that extend the curricular content. These modules include, for example, additional 1:1 transformations and mathematical concepts such as dilations and rational numbers. One possible limitation, however, is that players can be successful in Transtru· by thinking only about qualitative relationships rather than also requiring precise quantitative analysis to succeed. This is the result of Transtru·'s design emphasis on providing focused choices between alternatives with highly consequential outcomes for those choices—the alternatives that are not productive can be ruled out qualitatively by deduction from the optimal choice. From the perspective of disciplinary big ideas, Transtru· primarily promotes a motion conception by visually displaying transformations as sliding and flipping motions, but Transtar does incentivize attention to the coordinate nature of the Cartesian plane much more than does Flip-N-Slide.

Thematic and Challenge Access. Transtru·'s theme is abstract with no character imagery and nearly no narrative. Instead, Transtru· focuses on providing engaging abstract geometric visuals with a clean, intuitive, and responsive user interface that promotes a satisfying and engaging experience. Thematically, Transtru· would therefore seem appealing across ages and demographic groups. In terms of challenge access, Transtar provides easier and simple tutorial levels when a new translation type or control type is added to the game (which thus "lowers" the access floor), but there is only one path through the game, which means that players who are encountering not enough challenge must simply keep playing levels until they get to a more challenging level within the game while players who reach a point in the game where they are stuck or experiencing too high a level of challenge have no options. Overall, Transtar levels tend to be subjectively quite high in challenge, and therefore the "high ceiling" is not so much an issue as the lack of support, access, and options for players who have not achieved that degree of understanding in the game.

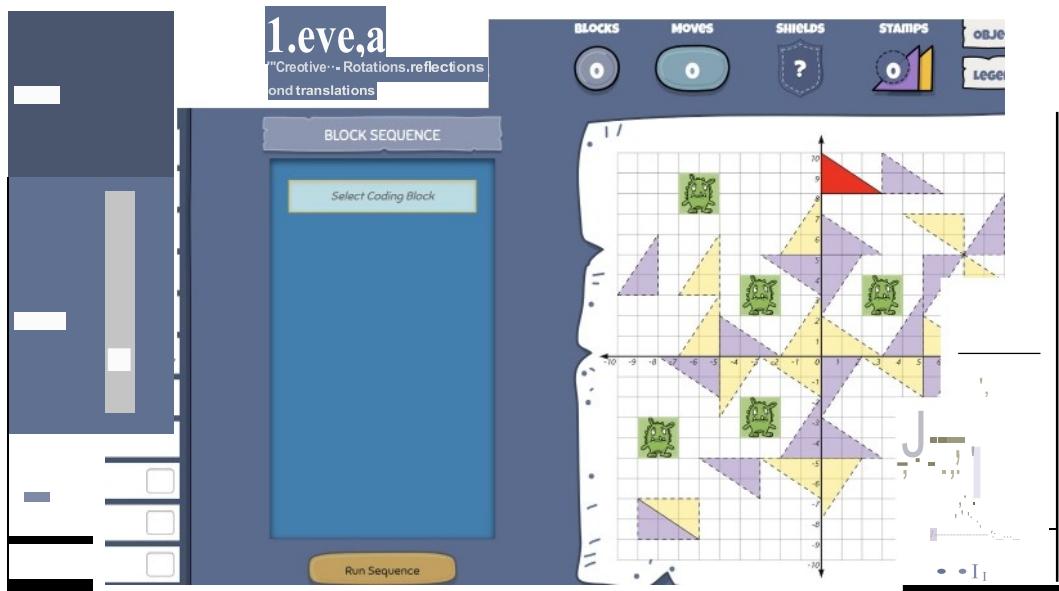


Fig. 5. "Creative" level in Transformation Quest (<https://mathgame.ucalgary.ca>).

4.3. TransformationQuest

Overview. TransformationQuest includes two types of levels: (a) "standard" levels and (b) "creative" levels. Standard levels (Fig. 2) share similarities with both Flip-N-Slide and Transtar. In a standard level, similarly to in Transtar, players need to move the starting triangle (which is represented with solid red lines in Fig. 2) to the target triangle (which is represented with dashed lines). As in Flip-N-Slide, players enact their strategy for the level by selecting blocks that represent different possible transformations and choosing parameters for those transformations. There is also a "loop" block that allows players to enact and repeat a loop of sequential transformations (like a loop block in Scratch or other programming environments). Additional objectives for a level involve positioning the triangle on top of some combination of blue and gold "genies" and not positioning the triangle on top of any of the monsters. Each level includes three distinct possible objectives for earning a bronze, silver, or gold shield (that is displayed on the game's navigation map). In addition to standard levels, Transformation Quest also includes "creative" levels, like the example in Fig. 5, where players need to organize a sequence of blocks to position and reposition their triangle on enough of the triangles with dotted borders to earn at least ten points (with lighter yellow triangles worth two points and darker purple triangles worth one point).

Discernability. The design of Transformation Quest supports discernability differently from the design of Transtar. The design of Transtar enhances discernability by juxtaposing a small number of choices with highly distinct outcomes toward achieving a precise goal, but the small number of choices allows the player to focus only on qualitative relationships rather than also requiring precise quantitative analysis to succeed. The design of Transformation Quest instead focuses on highlighting the relationship of academically salient nuances of specific transformations. Transformation Quest informs the players about what transformations they are using every time players select a code-block. In addition, the use of the parameters allows players to make sense of such concepts as line of reflection, center of rotation, and magnitude and distance. Parameterization (i.e., the precise quantification of transformations) in Transformation Quest, for example, emphasizes attention to the coordinate nature of the plane and the precise mapping of correspondences, resulting in increased discernability from an academically meaningful play perspective. The discrete nature of the motion in Transformation Quest engages players in a hybrid conception of motion and mapping (e.g., the continuous motion is composed of a set of discrete images that maps from position to position).

Integration. As with the design of Transtar, the outcome of each choice within a level of Transformation Quest is crucial to the decisions regarding the subsequent choices in that level and to the potential for solving the level. Also similar to Transtar, from the perspective of academically meaningful play, choices within a level of Transformation Quest depend upon understanding, exploring, and differentiating between the characteristics of the different types of transformations and the salience of the specific parameters designated for each transformation. The increasing complexity of the number and types of blocks and transformations available in each level of Transformation Quest presents a learning progression that can be extended from 6th grade to 9th grade. From the perspective of integration across the overall game of TransformationQuest, success on a level grants a bronze, silver, or gold shield depending on the specific challenge completed for that level. The game navigation screen displays the shields earned on each level, and this combined collection of shields represents the player's accomplishments and mastery of the game.

Classroom and Disciplinary Big Ideas. At the classroom level, as with Transtar, Transformation Quest engages players in exploring curricular academic goals that would be expected of middle grade students. This includes making predictions about, and distinguishing between, the outcomes of the three basic types of transformations in terms of the resulting positions of a geometric shape on a Cartesian plane, the Cartesian coordinates of one or more of the vertices of that shape, and the vector magnitude and direction of the changes.

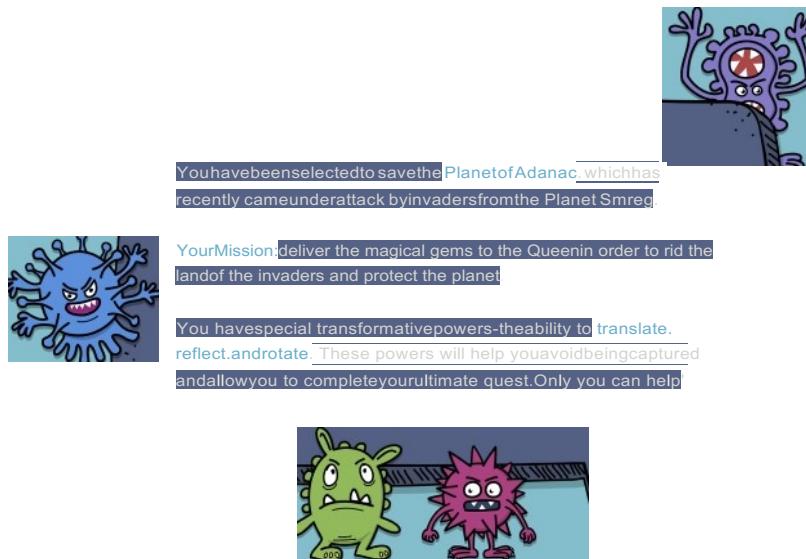


Fig. 6. Introductory narrative text and imagery in Transformation Quest.

Whereas Transtar can be played with a proportional and qualitative approach, Transformation Quest requires players to be more precise in their attention to the parameterization within the coordinate plane, which more directly supports the level of understanding required from a typical classroom perspective. From the perspective of disciplinary big ideas, Transformation Quest purposefully emphasizes a hybrid conception of mapping and motion, which provides a foundation for students in high school to engage with the transformation of functions and equations, which in turn provides a foundation for the study of symmetry groups and group theory (e.g., Fife, Janies, & Bauer, 2019; Turgut, 2019; Yanik, 2014).

Thematic and Challenge Access. Thematic access is one area of Transformation Quest about which the team has some reservations in comparison with Transtar and Flip-N-Slide. The theme was chosen based on surveys of the relatively small sample sizes of students in the pilot classrooms, and further collection of data has been limited by the pandemic. In those surveys and classroom discussions, students who presented as female as well as students who presented as male said that they thought that a space theme would be the most engaging theme (students in the pilot classrooms interacted with a paper prototype of the game with an abstract theme similar to Transtar). This sentiment was also consistent across other designographic categorizations of the students in the pilot study. We therefore decided to proceed with the current space theme, with the caveat that the color scheme, imagery, and narrative text needed to be fun and inviting (see Fig. 6 for current approach), and we are continuing to focus on thematic access. Once the pandemic allows, we plan to pay crucial attention during our research studies on how students across designographic groups respond to and engage with the game (e.g., Heeter & Winn, 2008; Kafai, Richard, & Tynes, 2017; Richard & Gray, 2018), and we are committed to attending to the emerging research in this area to fundamentally revise the narrative, artistic, and thematic structure and design of the game to move beyond the historically white, heterosexual, male predominance in the design, appeal, and participation in games to include more subtle and diverse representations of players and the game (e.g., Kafai, Heeter, & Denner, 2008; Richard, 2016; Richard & Gray, 2018; Westecott, 2016).

In terms of challenge access, Transformation Quest provides simple tutorial levels when a new translation type or control type is added to the game to "lower" the access floor, and, as with Transtar, new transformation blocks are gradually and incrementally added to the game as the challenge level increases. Transformation Quest diverges from Transtar by providing multiple paths through the game. After completing the bronze shield challenge of a level, players might choose to attempt a silver or gold shield challenge on that level or move on to the next level topic. By providing more paths through the game, including a path that focuses simply on completing a bronze shield challenge on each level, the game provides a path for players with less experience or background to explore all of the topics in the game, while also providing the opportunity to pursue the silver and gold shield challenges on each level for players who are ready for higher levels of depth and challenge to stretch their exploration in that way. In this sense, the design of Transformation Quest is intended to support both a "low floor" and a "high ceiling" (Papert, 1980) in terms of support, access, and options for players.

5. Discussion

We now consider questions and issues highlighted through the comparison of these three cases in terms of the highlighted aspects of the proposed academically meaningful play framework (Fig. 1).

Discernability. The comparison of the three cases demonstrates that discernability from the perspective of academically meaningful play is not simply about whether or not a game presents outcomes of choices in a visually identifiable manner. From the perspective of Salen and Zimmerman's (2003, 2005) account of meaningful play, discernability measures the degree to which the nuances and implications resulting from a chosen action are clearly communicated to the player so that the player can come to understand the central relationships between the elements and rules of the game system. In that sense, discernability represents a continuum rather than a binary state of yes or no. For academically meaningful play, productive discernability should particularly highlight the central academic relationships between *disciplinary* elements and *disciplinary* rules inherent within the disciplinary ideas and practices under consideration. An interesting question arose in the comparisons across the three cases in terms of Flip-N-Slide and Transtar purposefully highlighting a "motion" conception (Flip-N-Slide visually and Transtar both visually and mechanically within the game). In these two cases, the outcomes of chosen actions are clearly discernible, but the question remains whether or not those designs are problematic in terms of academically meaningful play. From the perspective of academically meaningful play, designing games for geometric transformations should consider discernability as a perspective that leverages and builds upon the motion conception to enhance players' understandings of disciplinary knowledge (in this case, the formal mapping conception) in connection with their everyday embodied motion understandings. Flip-N-Slide and Transtar do not bridge the gap between motion and mapping. Instead, they privilege the motion conception with no consideration of the learning obstacles caused by the game presentation of a 3D vision of the transformations (e.g., the 3D "flipping" motion displayed for reflections) for understanding the formal mapping conception and abstractions. Thus, in academically meaningful play there is a question of not only whether outcomes are discernible from a gameplay perspective but also whether the discernible outcomes engage players in exploration of productive representations and connections of core academic ideas with their everyday intuitive understandings. When designing games for academically meaningful play in the context of geometric transformations, for example, designers need to incorporate results from the mathematics education research literature (e.g., Edwards, 2003; Hollebrands, 2003; Yanik & Flores, 2009) that enable game players to productively engage with core academic ideas in connection with their intuitive understandings.

Integration As with discernability, integration represents a continuum rather than a binary characteristic of a game. Flip-N-Slide provides an interesting example because it is engaging to play in terms of game mechanics where outcomes of choices are integrated into the ongoing competition with a computer-controlled player, but the choices do not provide incentive in terms of game mechanics to explore the disciplinary relationships and nuances across and between the types of transformations. Therefore, while the level of integration enables Flip-N-Slide to be fun and engaging as a non-academic game, Flip-N-Slide does not incentivize players to

make choices that distinguish between various transformation and parameter approaches and explore the underlying mathematical structure. Thus Flip-N-Slide highlights the potential disconnect between meaningful play and academically meaningful play.

Classroom and Disciplinary Big Ideas. As outlined earlier, "the traditional - the easy - way of engaging young children with big mathematical ideas is to fragment the ideas to an extent that the mathematical structure is lost" (Gadanidis et al., 2018, p. 34). For academically meaningful play, we have argued that gameplay must engage not only the big disciplinary ideas but also the core ideas at the level of the classroom/ standards, both in terms of the intermediate curriculum at the target grade level as well as connections into the curricula of subsequent grade levels. Essentially, if a game is being developed for the classroom, we would argue that it is an ethical imperative to support students and teachers in the face of the very real challenges and demands being made of them while also introducing students to the generative overarching disciplinary big ideas that will provide a foundation for robust and growing understanding and participation in disciplinary practices in the future. This creates interesting tensions for game design in terms of engagement and gameplay considerations on the one hand and academic considerations on the other.

From the perspective of disciplinary big ideas, for example the three games considered in this article should likely emphasize helping players make connections between their intuitive "motion" conceptions and disciplinary ideas focusing on a "mapping" conception. The "motion" conception lends itself to more engaging visualizations of the transformations and potentially more engaging game mechanics, and one might argue based on these advantages, as well as the relatively greater accessibility and intuitive nature of motion metaphors for transformations, that it would be more productive to simply focus on these motion metaphors and reduce emphasis on disciplinary big ideas. Similarly, focusing meaningful choices within the games on precise manipulation of Cartesian coordinates in a quantitative sense, rather than only qualitative proportional engagement with the Cartesian plane, provides a more solid foundation for players in terms of classroom / standards expectations for learning, but focusing meaningful choices on precise manipulation of Cartesian coordinates may potentially come at a cost in terms of gameplay. Thus, there are certainly possible tensions in terms of game design for meaningful play versus academically meaningful play.

Thematic and Challenge Access. Many people have written about the importance of thematic access or lack of access in digital games over the years, particularly in terms of gendered biases of girls catering primarily to stereotypically "male" interests (e.g., Fox & Tang, 2014; Paalen, Morgeiroth, & Stratleyer, 2017). The importance of thematic access has become even more explicit, vocalized, and culturally imperative in recent years. The importance of challenge access, however, has not been a substantial focus for digital games for education. More specifically, while the ideas of "low floor" and "high ceiling" popularized by Seymour Papert (1980) have been central to thinking and discussions about programming environments for students for decades, this idea has not been central in discussions about digital games for the classroom. Instead, the rhetoric for digital games champions the idea that girls inherently allow players to progress at their own pace as they increase in mastery, and this has somewhat blinded the field to the importance of challenge access in games developed for education.

In the out-of-school and recreational spaces, the ethical imperative of challenge access is less stringent. Players can gravitate toward games that not only meet their aesthetic interests but also provide a challenge profile that fits their current level of mastery. That is not the case in classrooms, where all students in the classroom will generally be expected to play the same educational game. Students in classroom 1s have less opportunity to opt out and choose other games that might fit their challenge profiles. In the recreational space, for example, some girls are celebrated for having a very low and "high floor/high ceiling" challenge profile and unforgiving nature (e.g., Druks Souls), but a large proportion of girls in the classroom and out-of-school space also do not provide as broad a level of challenge access as should be required of a digital game design for the classroom. This proposition can be tested with a simple thought experiment that considers the broad range of levels of prior experience and interest (in digital games as a medium as well as the focal subject matter) represented across the population of thirty students in a randomly selected classroom compared to the almost certainly narrow range of levels of prior experience and interest represented across a randomly selected sample of 30 players of almost any given commercial game. Thus, academically meaningful play raises key questions about thematic access as well as challenge access for the broad range of students we hope to serve in our schools. The current manuscript provides an initial framing of access, but future research should work to refine and elaborate on the operationalization and articulation of both thematic and challenge access within the framework.

6. Conclusions

From a game design perspective, Flip-N-Slide, TrailStruck, and TrailFormation Quest all have designs that are intrinsic/ endogenous, conceptually integrated, and disciplinary integrated. These and other intrinsic/ endogenous definitions are certainly powerful and important for thinking about the design of games for learning, but the comparison of Flip-N-Slide, TrailStruck, and Transformation Quest demonstrates that intrinsic/ endogenous framings that focus exclusively on the location, integration, and relationship of the mechanics within the mechanics of a game are not sufficient to distinguish among the three games. Hence, we have proposed an extension to Salen and Zimmerman's (2003, 2005) articulation of meaningful play to outline a framework for academically meaningful play that situates meaningful academic learning within meaningful play.

Educational game designers have explored various aspects of this challenge for more than twenty years, giving rise to the approaches about educational games as "chocolate-covered broccoli" (e.g., Bruckman, 1999). Academically meaningful play does not necessarily fully solve this challenge. In Transformation Quest, for example, some design decisions still involved trade-offs between academically meaningful play and meaningful play (e.g., the focus on precision regarding the coordinate nature of the plane or the focus on a mapping conception rather than a motion conception for designing visual representations and game mechanics), but applying the proposed framework identifies strengths and lost opportunities within the design of games that can be achieved in a way that enhances or at least maintains meaningful play while substantially enhancing the quality of academic learning.

The proposed framework for academically meaningful play certainly leaves room for critique and further iteration and improvement. There are aspects of the aesthetic experience, for example, that are not currently captured in the proposed framing of academically meaningful play. Gadanidis et al's (2016) perspectives on the importance of surprise, vicarious emotional engagement, and visceral sensation, for example, could be situated within the construct of discernability or thematic access in the current framework, but those interpretations would involve a somewhat narrow operationalization of the importance of narrative and aesthetic elements in the aesthetic experience and engagement of players. Similarly, thematic access is highly related to cosmetic factors (just as narrative), but the framework does not directly explore the value of motivational structures whereby game play might be rewarded, for example, with the ability to change cosmetic aspects of the game. The framework as articulated would suggest (a) that the game mechanics by which cosmetic and other rewards are earned should be situated within the academic/intrinsic mechanics rather than within extrinsic mechanics and (b) that the game mechanics and resulting cosmetic reward options should be analyzed and situated in alignment with the four pillars of the framework. That said, deeper exploration of the role of cosmetic factors and narrative beyond the ideas of thematic access is needed. The framework also does not address the roles of cooperation versus competition. Nor does the framework acknowledge that extrinsic design can have affordances. Thus, the proposed framework represents a starting point as a lens for thinking about designing for academically meaningful play rather than an endpoint. Future research can hopefully expand productively upon the proposed conceptualizations to better support the design of playful and meaningful learning opportunities for the broad range of students in our classrooms.

Credit author statement

Douglas Clark: Conceptualization, Methodology, Formal analysis, Writing - original draft, Visualization, Validation, Supervision, Project administration, Funding acquisition. Jesus E. Hernandez-Zavaleta: Conceptualization, Formal analysis, Methodology, Writing - review & editing, Visualization, Validation. Sandra Becke: Formal analysis, Writing - review & editing, Validation.

Author note

We have no conflicts to disclose.

Data availability

No data was used for the research described in the article.

Acknowledgements

The authors would like to acknowledge that Douglas Clark and Pratim Sengupta co-developed the idea of disciplinarily integrated games. The authors would also like to acknowledge the rest of the team involved in designing Transformation Quest including Stefan Rothschuh, Peter Mattingly, Chiis Ostrowdun, Man-Wai Chu, Kiran Sandhu, Jocelyn Vlyenhoek, Lydia Cao, Jennifer Plosz, the MindFuel Foundation, and the programmers at Duck Labs.

This material is based upon work supported by the US National Science Foundation under Grant No. 1742257. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the US National Science Foundation.

References

Asgari, M., & Kaufman, D. (2004). *Relationships among computer games, fantasy, and learning*. Vancouver, BC: International Conferences on Imagination and Education, 2004.

Aslihan, T. B., & Burkhardt, C. (2021). February. Player motivation in therapy games for Parkinson's disease: A scoping review: Understanding meaningful play, self-determination and flow. *2021 Australasian Computer Science Week Multiconference*, 1-10. <https://doi.org/10.1145/3437378.344269.2>

Bell-Gawne, K., Stenerson, M., Shapiro, B., & Squire, K. (2013). Meaningful play: The intersection of videogames and environmental policy. *World Future Review*, 5(3), 244-250. <https://doi.org/10.1177/1946756713497472>.

Bruckman, A. (1999). *Can educational Be chocolate covered broccoli*. San Jose, CA: Presentation given at the Game Developer's Conference.

Carter, M., & Allison, F. (2017). Fear, loss and meaningful play: Permadeath in DayZ. *Journal of Gaming & Virtual Worlds*, 9(2), 143-158, 10.1386/jgvw.9.2.143_110.1386/jgvw.9.2.143_1.

Cheung, G., Lee, A., Cheng, K., & Lee, H. J. (2013). Dispensable, tweakable, and tangible components: Supporting socially negotiated gameplay. *Games and Culture*, 8 (4), 259-288. <https://doi.org/10.1177/1555412013496893>

Clark, D. B., & Martinez-Gana, M. (2012). Prediction and explanation as design mechanics in conceptually-integrated digital games to help players articulate the tacit understandings they build through gameplay. In C. Steinkuhler, K. Squire, & S. Barab (Eds.), *Games, learning, and society: Learning and meaning in tiredrigiro1 age* (pp. 279-305). Cambridge University Press. <https://doi.org/10.1017/CBO9781107027902>

Clark, D. B., & Sengupta, P. (2020). Reconceptualizing games for integrating computational thinking and science as practice: Collaborative agent-based disciplinarily-integrated games. *Interactive Learning Environments*, 28(3), 328-346. <https://doi.org/10.1080/10494820.2019.1636071>

Clark, D. B., Sengupta, P., Brady, C., Martinez-Garza, M., & Killingsworth, S. (2015). Disciplinary integration in digital games for science learning. *International STEM Education Journal*, 2(2), 1-21. <https://doi.org/10.1186/s40594-014-001-44>.

Clark, D. B., Tanner-Smith, E., & Killingsworth, S. (2016). Digital games, design, and learning: A systematic review and meta-analysis. *Review of Educational Research*, 86(1), 79-122. <https://doi.org/10.3102/0034654315582065>

Davidson & Associates. (1983). *Math blaster*. <http://www.mathblaster.com>.

De Freitas, E., & Sinclair, N. (2014). *Mathematics and the body: Material entanglement in the classroom*. Cambridge University Press.

dela Hera Conde-Pumpido, T., & Sanz, C. S. (2021). The role of spontaneous digital play during young patients' cancer treatment. *Media and Communication*, 9(1), 39-48.

De Schutter, B. (2017). Gecontoludic design; extending the MDA framework to facilitate meaningful play for older adults. *International Journal of Gaming and Computer-Mediated Simulation*, 9(1), 45-60. <https://doi.org/10.4018/UGCMS.2017010103>

Dormann, C., Whitson, J. R., & Neuvius, M. (2013). Once more with feeling: Game design patterns for learning in the affective domain. *Games and Culture*, 8 (4), 215-237. <https://doi.org/10.1177/1555412013496892>

Edwards, L. (2003). The nature of mathematics as viewed from cognitive science. *European Research in Mathematics Education*, 014 III, 1-10.

Edwards, L. (2009). Transformation geometry from an embodied perspective. In W. M. Roth (Ed.), *Mathematical Representation at The Interface of Body and Culture* (pp. 27-44). Information Age Publishing.

Ferrara, J. (2013). Games for persuasion: Argumentation, procedurality, and the lie of gamification. *Games and Culture*, 8 (4), 289-304. <https://doi.org/10.1177/1555412013496891>

Fife, J. H., James, K., & Bauer, M. (2019). A looming progression for geometric transformation, (Research Report No. RR-19-01). Princeton, NJ: Educational Testing Service. <https://doi.org/10.1002/ets.21223>

Fox, J., & Tang, W. Y. (2014). *Sexism in online video games: The role of conformity to masculine norms and social dominance orientation*. *Computers in Human Behavior*, 33, 314-320. <https://doi.org/10.1016/j.chb.2013.07.014>

Gadanidis, G., Borba, M., Hughes, J., & Lacerda, H. (2016). Designing aesthetic experiences for young mathematicians: A model for mathematics education reform. *International Journal for Research in Mathematics Education*, 6(2), 225-244.

Gadanidis, G., Clements, E., & Yiu, C. (2018). Group theory, computational thinking, and young mathematicians. *Mathematical Thinking and Learning*, 20(1), 32-53. <https://doi.org/10.1080/10986065.2018.140324>

Gilbert, S. (2015). *Designing gamified systems: Meaningful play in interactive entertainment, marketing and education*. CRC Press.

Habgood, M. J., & Ainsworth, S. E. (2011). Motivating children to learn effectively: Exploring the value of intrinsic integration in educational games. *The Journal of the Learning Sciences*, 20(2), 169-206. <https://doi.org/10.1080/10508406.2010.508029>

Habgood, M. J., Ainsworth, S., & Benford, S. (2005). Endogenous fantasy and learning in digital games. *Simulation & Gaming*, 36, 483-498. <https://doi.org/10.1177/10468781052276>

Hanes, L., & Stone, R. (2019). A model of heritage content to support the design and analysis of videogames for history education. *Journal of Computers in Education*, 6 (4), 587-612.

Hart, I. (2014). Meaningful play: Performativity, interactivity and semiotics in video game music. *Musicology Australia*, 36(2), 273-290. <https://doi.org/10.1080/08145857.2014.958272>

Heeter, C., & Winn, B. (2008). Gender identity, play style, and the design of games for classroom learning. In Y. B. Kafai, C. Heeter, & J. Denner (Eds.), *Beyond barbie and mortal kombat: New perspectives on gender and gaming* (pp. 281-300). MIT Press.

Holbert, N., & Wilensky, U. (2019). Designing educational videogames to be objects-to-think-with. *The Journal of the Learning Sciences*, 28(1), 32-72. <https://doi.org/10.1080/10508406.2018487302>

Holl, E., Bernard, S., & Melzer, A. (2020). Moral decision-making in video games: A focus group study on player perceptions. *Human Behavior and Emerging Technologies*, 2(3), 278-287. <https://doi.org/10.1002/hbe2.189>

Hollebrand, S. K. (2003). High school students' understandings of geometric transformations in the context of a technological environment. *The Journal of Mathematical Behavior*, 22, 55-72. [https://doi.org/10.1016/S0732-3123\(03\)00004-X](https://doi.org/10.1016/S0732-3123(03)00004-X)

Holt, R., Moore, A. M., & Beckett, A. (2012). Together through play: Facilitating meaningful play for disabled & non-disabled children through participatory design. In S. Wilske (Ed.), *Proceedings of the IDC 2012: The 11th international conference on interaction design and children*. ACM Digital Library. <https://dl.acm.org/action/showFmPdf?doi=10.1145/22307096>

Ivanescu, A. (2019). *Westworld and the pursuit of meaningful play*. In A. Goody, & A. Mackay (Eds.), *Reading westworld* (pp. 79-96). Palgrave Macmillan.

Juul, J. (2004). Introduction to game time/time to play: An examination of game temporality. In N. Wardrip-Fruin, & P. Harrigan (Eds.), *In first person: New Media as story, performance, and game* (pp. 131-142). MIT Press.

Kafai, Y. B. (1996). Learning design by making games: Children's development of strategies in the creation of a complex computational artifact. In Y. B. Kafai, & M. Resnick (Eds.), *Constructionism in practice: Designing, thinking and learning in a digital world* (pp. 71-96). Erlbaum.

Kafai, Y. B. (2016). Gender, games, and computing: Expanding participation and interest in constructionist gaming. In Y. B. Kafai, G. T. Richard, & B. M. Tynes (Eds.), *Diversifying barbie and mortal combat: Intusctional perspectives and inclusive designs in gaming* (pp. 261-271). ETC Press.

Kafai, Y. B., Heeter, C., & Denner, J. (Eds.). (2008). *Beyond barbie and mortal kombat: New perspectives on gender and gaming*. MIT Press.

Kafai, Y. B., Richard, G. T., & Tyoes, B. M. (2017). *Diversifying barbie and mortal combat: Intusctional perspectives and inclusive designs in gaming*. ETC Press.

Lakoff, G., & Nunez, R. (2000). *Where mathematics comes from: How the embodied mind brings mathematics into being*. Perseus Books Group.

Lee, Y. H., Heeter, C., Magerko, B., & Medler, B. (2013). Feeling right about how you play: The effects of regulatory fit in games for learning. *Games and Culture*, 8 (4), 238-258. <https://doi.org/10.1177/1555412013498818>

Lepper, M. R., & Malone, T. W. (1987). Intrinsic motivation and instructional effectiveness in computer-based education. In R. E. Snow, & M. J. Farr (Eds.), *Vol. 3. Aptitude, learning and instruction: Cognitive and affective process analyses* (pp. 255-286). Erlbaum.

Loos, E. (2014). *Designing meaningful intergenerational digital games. International Conference on Communication, Media, Technology and Design* (pp. 46-51). <https://dspace.library.uu.nl/handle/1874/302902>

Paaßen, B., Morgenroth, T., & Straetemeyer, M. (2017). What is a true gamer? The male gamer stereotype and the marginalization of women in video game culture. *Sex Roles*, 76(7), 421-435. <https://doi.org/10.1007/s11199-016-0577-y>

Papert, S. (1980). *Mindstorms: Children, computers, and powerful ideas*. New York, NY: Basic Books.

Resnick, M., & March, (2008). Falling in love with Seymour's ideas [mindstorms overtime: Reflections on Seymour Papert's contribution to education research]. Special session of the American educational research association annual meeting. <https://web.media.mit.edu/~mres/papers/AERA-seymour-final.pdf>.

Richard, G. T. (2016). At the intersection of play. In Y. B. Kafai, G. T. Richard, & B. M. Tyoes (Eds.), *Diversifying barbie and mortal combat: Intusctional perspectives and inclusive designs in gaming* (pp. 71-91). ETC Press.

Richard, G. T., & Gray, K. L. (2018). Gendered play, racialized reality: Black cyberfeminism, inclusive communities of practice, and the intersections of learning, socialization, and resilience in online gaming. *Frontiers: A Journal of Women Studies*, 39(1), 112-148.

Riconcencete, M. (2013). Results from a controlled study of the iPad fractions game Motion. *Math, Games and Culture*, 8 (4), 186-214. <https://doi.org/10.1177/1555412013496894>

Salen, K., & Zimmerman, E. (2003). *Rules of play: Game design fundamentals*. MIT press.

Salen, K., & Zimmerman, E. (2005). Game design and meaningful play. In J. Raessens, & J. Goldstein (Eds.), *Handbook of computer game studies* (pp. 59-79). MIT Press.

Sengupta, P., & Clark, D. B. (2016). Playing modeling games in the science classroom: The case for disciplinary integration. *Educational Technology*, 56(3), 16-22. <https://arxiv.org/abs/1607.05094>.

Sengupta, P., Dickey, A., & Farris, A. (2018). Toward a phenomenology of computational thinking in STEM education. In M. Khine (Ed.), *Computational Thinking in the STEM Disciplines* (pp. 49-72). Springer. https://doi.org/10.1007/978-3-31993566-9_4

Sidhu, P., & Carter, M. (2021). Pivotal play: Rethinking meaningful play in games through death in Dungeons & Dragons. *Games and Culture*, 16(8), 1044-1064. <https://doi.org/10.1177/15554120211005231>

Squire, K. (2006). From content to context: Videogames as designed experience. *Educational Researcher*, 35(8), 19-29.

Sykes, M. (1992). Evaluating exhibits for children: What is a meaningful play experience. *Visitors Studies: Theory, Research and Practice*, 5, 227-233.

Trouche, L. (2005). Instrumental genesis, individual and social aspects. In *The didactical challenge of symbolic calculators* (pp. 197-230). Boston, MA: Springer.

Turgut, M. (2019). Sense-making regarding matrix representation of geometric transformations in R2: A semiotic mediation perspective in a dynamic geometry environment. *ZDM*, 51, 1199-1214. <https://doi.org/10.1007/s11858-019-01032-0>

Vygotsky, L. S. (1986). *Thought and language, revised*. In A. Kozulin (Ed.). The MIT Press.

Vygotsky, L. S. (1962). *Thought and Language* (E. Hanfmann & G. Vakar, Trans.). The MIT press (Original work published 1934). Retrieved December 8, 2022, from <https://www.marxists.org/archive/vygotsky/works/wonls/Thinking-and-Speech.pdf>

Waserman, J. A., & Rittenour, C. E. (2019). Who wants to play? Cueing perceived sex-based stereotypes of games. *Computers in Human Behavior*, 91, 252-262. <https://doi.org/10.1016/j.chb.2018.09.003>

Westecott, E. (2016). Playing with gender: Promoting representational diversity with dress-up, cross-dressing, and drag in games. In Y. B. Kafai, G. T. Richard, & B. M. Tynes (Eds.), *Diversifying baroic and mortal combat: Intersectional perspectives and inclusive designs in gaming* (pp. 234-246). ETC Press.

Wout P, Van Nimwegen, C., Van Oostendorp, H., & Van Der Spek (2011). A meta-analysis of the cognitive and motivationaleffects of serious games. *Journal of Educational Psychology*, 105(2), 249-265. <https://doi.org/10.1037/a0031311>

Yanik, H. 8., & Flores, A. (2009). Understanding rigid geometric transformations: Jeff's learning path for translation. *The Journal of Mathematical Behavior*, 28, 41-57. <https://doi.org/10.1016/j.jmathb.2009.04.003>

Yanik, H.B. (2014). Middle--school students 'concept images of geometric translations. The *Journal of Mathematical Behavior*, 36, 33-50. <https://doi.org/10.1016/j.jmathb.2014.08.001>