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A B S T R A C T   

Cyberinformatics tools have supported decision makings in agriculture through cutting-edge big data, artificial 
intelligence/machine learning (AI/ML), and high-performance computing technologies. An open and easy-to-use 
agricultural cyberinformatics tool based on the findable, accessible, interoperable, reusable (FAIR) data principle 
is essential for the efficient distribution of crop-specific land cover information. This paper introduces iCrop, a 
new cyberinformatics tool to enable in-season crop type monitoring for the Conterminous United States 
(CONUS). As a web-based geographic information system (GIS), iCrop not only delivers three sets of new ML- 
based field-level crop-specific land cover geospatial data, including pre-season crop cover maps, in-season 
crop cover maps, and Refined Cropland Data Layer (R-CDL), but also provides a suite of mapping and geo
processing functionalities through the FAIR geospatial data standards, such as Web Map Service (WMS), Web 
Coverage Service (WCS), and Web Processing Service (WPS). Meanwhile, we outline several use cases to high
light iCrop’s applications under various agricultural operation scenarios, its functionality for land use change 
analysis, and its interoperability with generic web-based and desktop GIS software (e.g., GeoPlatform and QGIS). 
Our experimental results show that the new cyberinformatics tool can provide timely and unique crop-specific 
land cover information through the geoprocessing functionalities to facilitate U.S. agricultural information 
management and decision support. Moreover, this paper can be used as a systematic guidance for the design and 
implementation of the cyberinformatics tool to disseminate agro-geoinformation based on the FAIR data 
principle.   

1. Introduction 

Cyberinformatics is a critical component in modern computer soft
ware and geographic information systems (GIS), which leverages the 
capabilities of cyberinfrastructure, big data analytics, artificial intelli
gence (AI), machine learning (ML), Internet of Things (IoT) to facilitate 
the collection, management, analysis, visualization, and dissemination 
of geoinformation data over the high-speed network. Within the agri
cultural sector, cyberinformatics tools have demonstrated great poten
tial to facilitate the process and analysis of agro-geoinformation, thereby 
supporting the management of spatio-temporal variability in crop pro
duction (Di and Üstündağ, 2021; White et al., 2021). In recent years, the 
U.S. Department of Agriculture (USDA) National Institute of Food and 
Agriculture (NIFA) has continuously invested in Agriculture and Food 

Research Initiative (AFRI) to investigate the food and agriculture 
cyberinformatics tools (USDA NIFA, 2020, 2021). The results and find
ings from these research initiatives, spanning various agricultural ap
plications like evapotranspiration estimation (Armstrong et al., 2022), 
droplet detection for agricultural spraying systems (Acharya et al., 
2022), food environment assessment (Mulrooney et al., 2021), soil 
carbon management (Sanderman et al., 2021), real-time decision mak
ing in plant phenotyping (Singh et al., 2021), crop yield forecast 
(Medina et al., 2021), have indicated that cyberinformatics can effi
ciently aid agricultural information management and decision support. 

As the pioneer of applying cyberinformatics tools as the primary GIS 
software to serve agricultural research, USDA National Agricultural 
Statistics Service (NASS) has been at the forefront of this effort, 
consistently using web-based geospatial data service systems to access, 
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manage, process, analyze, and disseminate agro-geoinformation based 
on the Findable, Accessible, Interoperable, and Reusable (FAIR) data 
principle (Wilkinson et al., 2016; Barton et al., 2022; Top et al., 2022; 
Hu et al., 2023; Wolfert et al., 2023). For example, CropScape is a well- 
known agricultural geospatial data service system to serve Cropland 
Land Data (CDL) data products through web geoprocessing services 
(Han et al., 2012). VegScape is a similar web-based data service system 
to disseminate a variety of near-real-time vegetation index (VI) data 
products derived from Moderate Resolution Imaging Spectroradiometer 
(MODIS) data (Zhang et al., 2022b). Crop Condition and Soil Moisture 
Analytics (Crop-CASMA) is a new tool to monitor and analyze U.S. soil 
moisture conditions using remotely sensed soil moisture data derived 
from NASA’s Soil Moisture Active Passive (SMAP) mission (Yang et al., 
2021; Zhang et al., 2022c). In 2021, USDA NASS announced Cro
plandCROS as an alternative web application to host CDL data with a 
new user interface (USDA NASS, 2021). These cyberinformatics tools 
have helped users worldwide to better understand U.S. agriculture and 
significantly facilitated decision makings by providing diverse geo
information through the easy-to-use web interface. 

Among the existing geospatial data in agro-geoinformation, USDA 
NASS’s CDL is by far the most downloaded crop-specific land cover data 
product. As of Dec 2022, the CDL and its derivative data products (e.g., 
crop frequency layers, crop mask layer) have been distributed to over 
330,000 users worldwide through CropScape. However, the current- 
year CDL data is usually released to the public until early next year (e. 
g., the 2022 CDL was released in February 2023), which means Crop
Scape cannot be applied to provide timely agricultural land cover in
formation within the growing season. To tackle this issue and offset the 
lag of CDL, many AI/ML approaches and algorithms for early- and in- 
season crop type classification are implemented (Hao et al., 2015; Yar
amasu et al., 2020; Johnson and Mueller, 2021; Zhang et al., 2021; 
Abernethy et al., 2023). Therefore, developing a CropScape-like cyber
informatics tool that provides user-experience-centric sharing and 
analysis of these in-season crop-specific land cover classification results 
based on the FAIR data principle is critical for the timely agricultural 
decision support and distribution of agro-geoinformation. 

In this paper, we introduce a new cyberinformatics tool, iCrop, for 
monitoring crop-specific land cover in support of the U.S agriculture. 
The main objective of the proposed software are: (1) being the first 
cyberinformatics tool to provide pre-, and in-season crop-specific land 
cover data for the Conterminous United States (CONUS); (2) offering a 
suite of easy-to-use functionalities, such as zonal statistics and land use 
land cover (LULC) change detection, to deliver timely and abundant 
field-level crop type information before and within the growing season; 
and (3) implementing the latest open geospatial standards and facili
tating the agricultural decision making with the unique geoprocessing 
capabilities and national-scale field-level products based on the FAIR 
data principle. Furthermore, this paper serves not only as an introduc
tion to the design and implementation of the new cyberinformatics tool, 
but also as a user guide for the iCrop application and its associated web 
services. In the rest of the paper, Section 2 presents the general context, 
system design, data production methods, and the implementation of 
map and geoprocessing services of the proposed tool. Section 3 gives a 
group of use cases to demonstrate iCrop’s geoprocessing capability, 
LULC analysis functionality, and interoperability with other generic GIS 
software. Section 4 discusses the contribution of this study, the advan
tages of the system architecture, the limitations of the current imple
mentation, potential improvements, and future research 
recommendations. The conclusions are summarized in Section 5. 

2. Methods 

2.1. General context 

The cyberinformatics tool is a core component in an Earth observa
tion system, which serves as a crucial link between the collection and 

analysis of geoinformation data and the users who need this information 
to make informed decisions (Lin et al., 2019; Bayat et al., 2021; Graf 
et al., 2022; Tan et al., 2022). In the context of crop monitoring system 
as illustrated in Fig. 1, it is essential for users to have the ability to 
process, manage, and deliver geospatial data in a timely manner to 
provide valuable agro-geoinformation. An efficient cyberinformatics 
tool is therefore critical to unlocking the full potential of agro- 
geoinformation data acquired by various sensors and enhancing 
decision-making processes in agriculture. To make the cycle more 
effective and enables timely access to early- and in-season crop-specific 
land cover information, the cyberinformatics tool must be capable of 
serving up-to-date geospatial data to users and providing geoprocessing 
functionalities using GIS over high-speed internet. 

The implementation of a cyberinformatics tool for pre- and in-season 
crop-specific land cover data sharing and analysis requires tackling three 
essential questions: (1) how to leverage AI/ML techniques to facilitate 
national-scale pre- and in-season crop mapping; (2) how to facilitate 
timely decision makings in agriculture through web geoprocessing; and 
(3) how to make the new geospatial data products FAIR? This study will 
investigate the above questions by demonstrating the system design 
(Section 2.2), data production (Section 2.3), and implementation (Sec
tions 2.4 and 2.5) of the new cyberinformatics tool. 

2.2. System design 

The new cyberinformatics tool introduced in this paper is called 
iCrop web-based data service system (hereafter called “iCrop” or “iCrop 
system” for simplicity). It inherits the service-oriented architecture of 
CropScape and comes with three significant improvements. First, we 
develop, validate, and mature the ML algorithms to derive a collection of 
new crop cover data products for the Conterminous United States 
(CONUS) automatically. Second, the new data products are imple
mented and distributed through standardized web-based geoprocessing 
and map services. Third, the entire system is migrated to a cloud envi
ronment to enhance user experience and support. 

As shown in Fig. 2, the iCrop system architecture comprises four 
main components: a data production module, a web service system 
module, front-end clients, and the cloud infrastructure. The data pro
duction module handles the generation of all ML-based crop-specific 
land cover geospatial data in the system. In this system, each data 
product is produced on the geospatial cloud computing platforms and 
GIS software, such as Google Earth Engine (GEE) and ArcGIS. The web 
service system module is the core of the iCrop system, where all geo
spatial data are processed into interoperable maps and disseminated 
through standardized OGC web geoprocessing and map service in
terfaces. These web services are fully interoperable with the iCrop web 
application as well as other OGC-compliant GIS software/libraries and 
third-party applications. Meanwhile, the entire iCrop system, including 
all data, web services, and the web client, is hosted as Platform-as-a- 
Service (PaaS) on the GeoBrain Cloud (https://cloud.csiss.gmu.edu/) 
to guarantee the scalability and timeliness of each geoprocessing 
request. The details of the implementation of the data production 
module, web service system, and the iCrop client will be described in the 
following sections. 

2.3. Data production 

Table 1 summarizes the spatial and temporal information of the new 
crop-specific land cover data available on the iCrop system. Consistent 
with the official CDL, the three new geospatial data products, including 
pre-season crop cover, in-season crop cover, and Refined Cropland Data 
Layer (R-CDL), cover the entire CONUS at 30 m resolution. Each data 
product is produced using the specific ML model and released at the 
different crop growth stages. 

The pre-season crop cover map is the prediction of U.S. crop cover 
using an ML-based crop sequence prediction model proposed by Zhang 
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Fig. 1. The cycle of collection, processing, management, and dissemination of agro-geoinformation from Earth observation data in the crop monitoring system.  

Fig. 2. Design of the iCrop system architecture.  

Table 1 
Summary of land cover data available on the iCrop system.  

Data Temporal Coverage Spatial 
Coverage 

Spatial 
Resolution 

Release Date ML Model 

Pre-season crop 
cover 

2022 – Current year (single annual 
map) 

CONUS 30 m Before growing season starts * Artificial neural network ( 
Zhang et al., 2019) 

In-season crop 
cover 

2022 – Current year (annual maps by 
May, June, and July) 

CONUS 30 m Within growing season (updated monthly 
between June and August) 

Random forest (Zhang et al., 
2022a) 

R-CDL 2017 – Previous year (single annual 
map) 

CONUS 30 m After growing season ends * Decision tree (Lin et al., 2022) 

* Usually available in February after the new CDL data is released  
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et al. (2019). The model uses the artificial neural network to automat
ically learn crop rotation patterns from the 10-year CDL time series. 
Then the spatial distribution of pre-season crop cover will be predicted 
based on the historical crop sequence in CDL with the trained ML model. 
The pre-season data will be released before the growing season starts. 
For example, the production of the 2023 pre-season crop cover map is 
based on the 2013–2022 CDL, which began after the release of the 2022 
CDL on February 1st and finished in late February 2023. 

The in-season crop cover map is a remote-sensing-based crop-specific 
land cover data product derived from CDL and satellite images. The 
production of in-season crop mapping adopts a novel mapping-without- 
ground-truth workflow developed by Zhang et al. (2022a). The main 
advantage of this method is using the trusted pixels, the high-confidence 
pixels that are predicted from CDL time series using regular crop rota
tion patterns (e.g., monocropping, alternate cropping), to replace 
ground truth and label training samples in satellite images for crop type 
classification, which can significantly reduce the ground-truthing pro
cess and save substantial resource needs and labor costs. Implemented 
on the GEE platform, the mapping-without-ground-truth workflow em
ploys the random forest classifier, which is widely used in remote- 
sensing-based crop mapping (Wang et al., 2019; Hao et al., 2020; 
Pierre Pott et al., 2022; Rufin et al., 2022; Soltanikazemi et al., 2022). As 
an in-season data product, the crop cover map by May/June/July will be 
updated monthly within the growing season. For example, the 2023 in- 
season crop cover map by May will be released in early June of 2023. 
With the progress of the growing season, the classification accuracy will 
be improved because of more abundant spectral features captured in the 
satellite images. 

The R-CDL, on the other hand, is the refinement data product of CDL. 
The official CDL contains a certain number of misclassified pixels, mixed 
pixels, and noisy pixels. These errors may lead to biased results in the 
following studies and analyses. To further refine the CDL data, Lin et al. 
(2022) proposed a decision tree method to find and validate anomalous 
pixels. This method first uses a decision tree to identify the potentially 
misclassified pixels in the single crop cover map, then adjust these pixels 
using spatial–temporal information from the long-term CDL time series. 
Same as the official CDL, the R-CDL is an annual data product. The R- 
CDL is produced using ArcGIS and currently available from 2017 to 
2022. Once the new CDL is released, the corresponding R-CDL will be 
immediately generated. 

2.4. Implementation of geospatial web services 

Similar to many cyberinformatics tools based on the FAIR data 
principle (Zhang et al., 2020; Wu et al., 2021; Erazo Ramirez et al., 2022; 
Redhead et al., 2022; Menegon et al., 2023), iCrop’s geospatial data is 
disseminated through OGC web service standard interfaces. When 
implementing the service layer of iCrop, we used MapServer (McKenna 
and MapServer PSC, 2021) as the back-end server to power the web 

mapping capabilities via standardized OGC specifications, such as WMS 
(OGC, 2006) and WCS (OGC, 2012). We also used ArcGIS as an alter
native back-end WMS/WCS server to host the new geospatial data 
products described in this study through ArcGIS REST APIs. These 
standard interfaces facilitated interoperability with the front-end client 
as well as other WMS/WCS-compliant GIS software and applications. 

Specifically, WMS standardized the operations for requesting the 
dynamic map of a geospatial image via the HTTP protocol. Table 2 
summarizes the operations and request examples of iCrop WMS. The 
GetCapabilities operation enables users to request the metadata of all 
crop cover map layers available on iCrop. The DescribeLayer operation 
allows users to request the description of a specific map layer. The 
GetMap operation request image of a specific map layer based on map
ping parameters such as projection, bounding box, image format, and 
width/height of the map. In addition, the legend graphics of a specific 
map layer can be requested via the GetLegendGraphic operation. 

Compared to the map image provided by WMS, WCS returns 
coverage data files with metadata and supports a wider range of formats 
that are typically required for further modeling and analysis. Table 3 
summarizes the WCS operations and provides examples of requests used 
in iCrop. The functions and usage of WCS operations are similar to those 
of WMS. The GetCapabilities operation requests metadata for all avail
able coverage layers on iCrop. The DescribeCoverage operation requests a 
description of a specific coverage layer. The GetCoverage operation re
quests the raster source of a specific crop cover layer based on coverage 
parameters, such as projection, bounding box, scale, and output data 
format. 

In order to cater to the users’ geospatial data analysis requirements, 
the iCrop system incorporates various widely used geoprocessing func
tionalities. Fig. 3 shows the diagram of the geoprocessing workflow with 
the iCrop system. For instance, users can initiate an on-demand data 
download process by selecting the target data layer by year and the area 
of interest (AOI) by region, state, Agricultural Statistics Districts (ASD), 
county, or user-defined area. Besides, the iCrop system integrates a va
riety of common geoprocessing capabilities, such as zonal statistics, map 
generation, and change analysis. The zonal statistics function calculates 
the pixel value distribution over a specific region. The map production 
processes create the map of specific data products with legend and 
boundary information in PDF format. 

2.5. Graphical user interface of web client 

We implemented a web-based application, In-season Crop Mapping 
Explorer, as the front-end client for the iCrop system. Fig. 4 shows the 
graphical user interface (GUI) of the web client. The layout of this client 
inherits the well-known CropScape and VegScape application, which 
consists of a main interactive map explorer along with a menu bar and a 
sidebar. The main interactive map explorer displays geospatial data 
layers and provides basic map visualization functionalities. The main 

Table 2 
WMS operations and request examples of the iCrop system.  

Operation Description Request Example 

GetCapabilities Get metadata of all available map layers Metadata of iCrop WMS: 
https://cloud.csiss.gmu.edu/icrop-service/wms_icrop.cgi?SERVICE=WMS&VERSION=1.1.1 
&REQUEST=GetCapabilities 

DescribeLayer Describe information about the requested map layer Description of in-season crop cover map for July 2023: 
https://cloud.csiss.gmu.edu/icrop-service/wms_icrop.cgi?SERVICE=WMS&VERSION=1.1. 
1&REQUEST=DescribeLayer&LAYERS=cdl_2023_inseason_july 

GetMap Get image for a map layer of a geospatial data layer with 
specific parameters (e.g., layer name, projection, 
bounding box, and width/height of map) 

Image of in-season crop cover map for July 2023: 
https://cloud.csiss.gmu.edu/icrop-service/wms_icrop.cgi? 
SERVICE=WMS&VERSION=1.1.1&REQUEST=GetMap&LAYERS=cdl_2023_inseason_ju 
ly&TRANSPARENT=true&SRS=EPSG:5070&BBOX=-2354935.721,311822.402,2256 
319.225,3165592.366&FORMAT=image/png&WIDTH=600&HEIGHT=400 

GetLegendGraphic Get legend graphics image of a specific map layer Legend image of in-season crop cover map: 
https://cloud.csiss.gmu.edu/icrop-service/wms_icrop.cgi?VERSION=1.1.1&SERVICE=WMS&R 
EQUEST=getlegendgraphic&LAYER=cdl_2023_inseason_july&FORMAT=image/png  
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menu contains a toolbox bar with all available geoprocessing functions 
and links for user guides and documentation. The sidebar has a layers 
tab, a legend tab, and an overview mini-map. The layers tab lists all 
types of geospatial data, including all crop cover data products, back
ground layer, crop mask layer, crop frequency layer, and auxiliary layers 
(i.e., boundaries, water, road). The legend tab shows the color table for 
crop type categories in the map. The overview mini-map displays the 
current extent of the explorer over the CONUS. 

3. Use cases and results 

3.1. Geoprocessing capabilities 

The iCrop system presented in this study was initially developed to 
offer early-season decision support and applications through a suite of 
user-experience-centric geoprocessing functionalities. CropScape is 
being widely applied to produce maps and statistics data in white 

papers, business plans, technical reports, and other documents for 
multiple operational uses, which has successfully demonstrated the ef
ficiency of cyberinformatics tools in agriculture. With the addition of 
three new field-level crop cover data products covering the CONUS, 
iCrop has extended the geoprocessing capabilities of CropScape, 
enabling more time-sensitive agricultural applications, and enhancing 
decision-making processes. 

Fig. 5 showcases a group of examples of how common iCrop geo
processing capabilities can be applied for operational uses. As demon
strated in this example, an AOI needs to be defined by region, state, ASD, 
and county before any processes. This example illustrates the file 
download, zonal statistics, and PDF map generation capabilities based 
on the 2022 in-season crop cover data for Pemiscot County, Missouri, of 
which corn, cotton, rice, soybeans, and winter wheat are the dominant 
crop types. The file download function will create a direct download link 
for the data layer of the selected years in GeoTIFF or KML format. The 
zonal statistics function counts the pixel and calculates the acreage for 

Table 3 
WCS operations and request examples of the iCrop system.  

Operation Description Request Example 

GetCapabilities Get metadata about available coverage layers Metadata of iCrop WCS: 
https://cloud.csiss.gmu.edu/icrop-service/wms_icrop.cgi?SERVICE=wcs&VERSION=2.0.1&R 
EQUEST=GetCapabilities 

DescribeCoverage Describe the information about the requested 
coverage 

Coverage description of in-season crop cover map for July 2023: 
https://cloud.csiss.gmu.edu/icrop-service/wms_icrop.cgi?SERVICE=wcs&VERSION=2.0.1&REQUEST 
=DescribeCoverage&COVERAGEID=cdl_2023_inseason_july 

GetCoverage Get raster source of a geospatial data layer with 
specific parameters (e.g., coverage layer name, 
projection, bounding box, scale, output data format) 

Raster data of in-season crop cover map for July 2023: 
https://cloud.csiss.gmu.edu/icrop-service/wms_icrop.cgi?SERVICE=wcs&VERSION=2.0.1&REQUES 
T=GetCoverage&COVERAGEID=cdl_2023_inseason_july&FORMAT=image/tiff&SUBSET=x 
(310785,330045)&SUBSET=y(2145855,2165115)&SUBSETTINGCRS=http://www.opengis.net/def/ 
crs/EPSG/0/5070  

Fig. 3. Diagram of geoprocessing workflow with the iCrop system. The “alt” fragments represent the alternative scenarios of the geoprocessing workflow.  
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each crop type or land cover category within the AOI. Then the statistics 
results can be displayed as pie/column charts in the web application, or 
downloaded the raw data in CSV format. The PDF map function gen
erates a print-ready map in PDF format with customizable titles, paper 
sizes, boundary layers, and land cover categories. 

3.2. LULC change analysis 

This use case demonstrates the change analysis capability of iCrop 
for crop rotation detection. The change analysis function of iCrop 
compares the LULC change between two years and generates the map for 
the changing area of the specific crop rotation pattern. Fig. 6 shows an 
example of detecting corn-soybeans rotation for Kossuth County of Iowa 
between 2022 and 2021 using the change analysis function of iCrop. 

Located in the central U.S. Corn Belt, corn and soybeans are two 
dominant crop types in Kossuth County as shown in Fig. 6 (a). In 2021, 
Kossuth County led all Iowa counties in total soybean production with 
13.4 million bushels and corn for grain production with 57.7 million 
bushels produced (USDA NASS, 2022a, 2022b). It is well-known that 
crop rotation is a common practice in U.S. agriculture. The spatial dis
tribution of corn-soybeans and soybeans-corn rotation over the study 
area is illustrated in Fig. 6 (b). From the change detection results be
tween 2021 and 2022, we can observe that 195,396.6 of total 280,996.5 
acres of corn cropland followed soybeans-corn rotation, as well as 
197,184.7 of total 219,710.8 acres of soybeans cropland followed corn- 
soybeans rotation. 

3.3. Interoperability with GIS software 

The map and coverage services of iCrop are fully interoperable with 
third-party WMS/WCS-compliant clients and applications. Thus, iCrop 
can be coupled to generic GIS software with OGC standards support, 
such as QGIS and ArcGIS. Fig. 7 demonstrates how a WMS layer of the 
2023 in-season crop cover was stacked with the 2022 crop mask layer, 
county boundaries, and ASD boundaries in QGIS. In this example, the 
crop cover map is requested through the map layer “cdl_2023_insea
son_july” of iCrop WMS. 

We also tested the interoperability of iCrop on the GeoPlatform (htt 
ps://www.geoplatform.gov/). Developed by Federal Geographic Data 
Committee (FGDC), the GeoPlatform program provides a portfolio of 

FAIR geospatial data, services, and applications under open licenses. It is 
mainly oriented to federal agencies, governments, private sectors, 
academia, and the general public. For example, the FAIR capabilities of 
the GeoPlatform have supported many application scenarios in the OGC 
Disaster Pilot programs, such as typhoon monitoring (Hu et al., 2022), 
flood detection (Lin et al., 2021), and climate services (Lieberman et al., 
2022). Therefore, we choose GeoPlatform as another WMS/WCS- 
compliant platform to test the interoperability of the iCrop web ser
vices. Fig. 8 shows an example of integrating the iCrop WMS into Geo
Platform. The online prototype can be accessed via the GeoPlatform 
ArcGIS Online at https://geoplatform.maps.arcgis.com/apps/mapviewe 
r/index.html?webmap=84a5aedb51e944ee924348f529a49cb5. 

4. Discussion 

4.1. Cyberinformatics tool based on FAIR data principle 

The iCrop system significantly contributes to the advancement of 
cyberinformatics in U.S. agriculture through its provision of a special
ized tool that combines FAIR data capabilities, flexible GIS interopera
bility, and user-friendly functionalities. As the first geospatial data 
service system offering pre- and in-season crop-specific land cover data 
for the CONUS, iCrop provides a comprehensive suite of easy-to-use 
functionalities, including zonal statistics and LULC change detection. 
These features enable the timely and abundant availability of field-level 
crop type information before and during the growing season. 

In the realm of geospatial analysis, the rapid development of geo
spatial cloud computing platforms like GEE and Microsoft’s Planetary 
Computer has substantially enhanced the capabilities and flexibility of 
geospatial analysis. However, the iCrop system distinguishes itself by 
emphasizing FAIR data principles. It focuses on the distribution of crop- 
specific land cover data through open geospatial data interfaces (e.g., 
WMS, WCS, WPS), which have been widely adopted by web-based GIS 
software and applications in agriculture (Nash et al., 2009). In contrast, 
commercial cloud platforms like GEE, while offering extensive func
tionalities and rich datasets, often lacks inherent adherence to FAIR data 
principles and restricts data usage to their own platform. By enabling 
easy interoperability with widely used GIS software like ArcGIS and 
QGIS, iCrop’s data and geoprocessing services offer a more inclusive 
approach. Our data and geoprocessing services, on the other hand, can 

Fig. 4. GUI of the web-based client for iCrop (https://cloud.csiss.gmu.edu/icrop).  
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be easily interoperable with common GIS software, such as ArcGIS and 
QGIS. 

It is important to note that the iCrop system is not designed to 
compete with geospatial cloud computing platforms. Instead, it serves as 
a complementing tool that addresses a distinct set of needs. While geo
spatial cloud computing platforms excel in their functionalities, iCrop 
focuses on providing specialized FAIR data capabilities and interoper
ability with common GIS software. This ensures that the iCrop system 
can be seamlessly integrated into existing geospatial workflows and 
extends its usability to a broader user base. 

Another pivotal advantage of iCrop lies in its user-friendliness. While 
geospatial cloud computing platforms such as GEE may require coding 
skills and entail a steep learning curve, iCrop strives to offer a 

comprehensive suite of on-demand geoprocessing functions, such as 
zonal statistics and LULC change analysis, through a user-friendly 
interface. This approach empowers not only software engineers but 
also end-users and stakeholders like farmers and government agencies, 
who may possess limited technical or programming skills, to derive 
maximum benefits from the system. With its ability to deliver timely 
crop-specific land cover data and functionalities to diverse user groups, 
iCrop demonstrates great potential to enhance U.S. agricultural infor
mation management and decision support. 

4.2. Advantages of new crop-specific land cover data 

This study has demonstrated how ML-based crop cover data can be 

Fig. 5. Examples of the iCrop geoprocessing capabilities. The statistics and mapping results are from the 2022 crop cover for Pemiscot, Missouri.  
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easily shared and analyzed through a cyberinformatics tool that adheres 
to the FAIR data principles. When compared to CDL data, the ML-based 
crop cover data products on iCrop offer several advantages. First, the 
artificial neural network can automatically and reliably recognize crop 
sequence patterns from the historical CDL time series. With the pre- 
season crop mapping, the field-level spatial distribution and acreage 
of crop cover can be estimated before the growing season. 

Second, the remote-sensing-based crop cover map for CONUS is 
significantly accelerated using the new mapping-without-ground-truth 
approach. By combining spectral information in satellite images with 
spatiotemporal information from historical CDL, the CDL-like in-season 
crop cover data for CONUS is available on iCrop as early as May. This is 
as much as eight months ahead of the official release of CDL data. 

In contrast, the R-CDL method utilizes a decision tree approach to 
refine CDL data using spatial and temporal crop information. Validation 
results reveal enhanced classification accuracy, and a strong correlation 
between R-CDL and NASS crop acreage estimations at both county and 
state levels. This indirect validation highlights the effectiveness and 
efficiency of AI/ML techniques in further improving the accuracy of CDL 
data. 

4.3. Potential improvements on the current tool 

While the ML model effectively generates pre-season crop cover 
maps by learning crop sequence features in the historical CDL time se
ries, predicting crop types for croplands that deviate from established 
patterns remains a challenge due to dynamic and uncertain factors. To 
address this, we plan to incorporate additional features, such as agri
cultural commodity prices and weather information, into the prediction 
model’s training. Recent studies have demonstrated the potential of 
combining multisource geoinformation data and model to enhance crop 
and LULC modeling (Abunnasr and Mhawej, 2022; Baum et al., 2023; 
Leo et al., 2023; Massigoge et al., 2023; Meki et al., 2023). 

To further enhance the accuracy of the current crop mapping results, 
the impact of other agro-geoinformation data and geospatial land cover 
data products, such as National Land Cover Database (NLCD) (Dewitz, 
2021) and Land Change Monitoring, Assessment, and Projection 
(LCMAP) (Pengra et al., 2021), will be investigated and integrated into 
the ML models of the data production module. Additionally, more 
geoprocessing services, such as advanced raster calculation, time series 
analysis, and confidence layer comparison, will be integrated with the 
iCrop system in the next phase of development. 

Fig. 6. Example of corn-soybeans rotation for Kossuth County of Iowa in 2022 using the change analysis function of iCrop. The yellow and green pixels represent 
corn and soybeans. The red pixels in the crop rotation maps represent the changing area. 
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4.4. Future research recommendation 

The subsequent developments could be conducted based on the new 
cyberinformatics tool proposed in this study. For example, Yue et al. 
(2022) recently proposed a FAIR training data model specifically serving 
Earth observation AI/ML tasks. It is a promising GIS application to 
incorporate the training data model into iCrop’s geoprocessing services 
via the FAIR interface, which can potentially automate the crop-specific 
training sample selection and labeling process for the follow-up AI/ML 

model development in Earth observation research. Tekinerdogan and 
Verdouw (2020) and Verdouw et al. (2021) depict the conceptual 
frameworks for designing and implementing digital twins in agriculture. 
The iCrop’s data and web services have great potential to be integrated 
into such digital twin frameworks to advance smart agriculture. The 
another potential future research recommendation is to explore the 
possibility of integrating the in-season land cover data of iCrop with the 
geoscience model workflow through OGC standard interfaces to enable 
the capabilities of crop damage assessment. 

Fig. 7. Exploring crop cover via the iCrop WMS using QGIS. This example shows the 2023 in-season crop cover map with the 2022 crop mask layer and county/ 
ASD boundaries. 

Fig. 8. Interoperability of the iCrop WMS with FGDC’s GeoPlatform based on ArcGIS Online.  
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Many research topics in geoinformation science can be significantly 
facilitated using the new geospatial data of iCrop. Due to the insuffi
ciency of ground truth data during the early growing season, iCrop’s 
national-scale crop cover data products can be used as reference data 
sets in various agro-geoinformation studies. For example, the national- 
scale crop yield can be progressively estimated using the pre- and in- 
season data within the growing season. The detailed crop loss due to 
natural disasters, such as floods, drought, and hurricanes, can be 
dynamically assessed using the monthly in-season crop cover maps. 

Moreover, we will optimize the crop type classification algorithm 
and test more AI/ML strategies to improve the mapping results. The 
zonal statistics function estimates the crop acreage by counting pixels in 
crop cover maps. This result could be biased because of the known data 
issues discussed above. Therefore, we will explore the feasibility of 
integrating the advanced crop yield estimation models and frameworks 
(Jeffries et al., 2020; Lin et al., 2020; Li et al., 2021; Andrade et al., 2022; 
Eamen et al., 2022; Nóia Júnior et al., 2022) into the system to optimize 
the statistics results. 

5. Conclusion 

This paper introduced the design, implementation, and application 
of iCrop for the exploration of crop-specific land cover data in support of 
U.S. agriculture. Three types of new ML-based crop cover data products, 
pre-season crop cover, in-season crop cover, and R-CDL, were dissemi
nated through this new cyberinformatics tool based on FAIR data prin
ciples. Improved from the service-oriented architecture of well-known 
CropScape, iCrop enabled interoperable mapping and geoprocessing 
capability of timely observation of crop-specific land cover through the 
easy-to-use web application and OGC standards-compliant GIS software. 
We demonstrated several common geoprocessing functionalities, 
including on-demand file download, zonal statistics, and PDF map 
production, using the iCrop web client. Specifically, the change analysis 
function was applied to analyze the LULC change for the Kossuth County 
of Iowa between 2021 and 2022. Also, we tested the interoperability of 
the iCrop web service using generic GIS software, such as QGIS, and 
web-based GIS platforms, such as FGDC’s GeoPlatform based on ArcGIS 
Online. The result suggested that the proposed cyberinformatics tool can 
efficiently and effectively provide timely agricultural LULC information 
to facilitate U.S. agricultural information management and decision 
support. 
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Nóia Júnior, R. de S., Fraisse, C.W., Bashyal, M., Mulvaney, M.J., Seepaul, R., Zientarski 
Karrei, M.A., Iboyi, J.E., Perondi, D., Cerbaro, V.A., Boote, K.J., 2022. Brassica 
carinata as an off-season crop in the southeastern USA: Determining optimum 
sowing dates based on climate risks and potential effects on summer crop yield. 
Agricultural Systems 196. https://doi.org/10.1016/j.agsy.2021.103344. 

OGC, 2006. OpenGIS® Web Map Server Implementation Specification [WWW 
Document]. URL https://portal.ogc.org/files/?artifact_id=14416. 

OGC, 2012. OGC® WCS 2.0 Interface Standard [WWW Document]. URL https://portal. 
ogc.org/files/09-110r4. 

Pengra, B., Stehman, S.V., Horton, J.A., Wellington, D.F., 2021. Land Change 
Monitoring, Assessment, and Projection (LCMAP) Collection 1.1 Annual Land Cover 
and Land Cover Change Validation Tables (1985-2018) for the Conterminous United 
States. 10.5066/P9MLPFOH. 

Pierre Pott, L., Jorge Carneiro Amado, T., Augusto Schwalbert, R., Mateus Corassa, G., 
Antonio Ciampitti, I., 2022. Crop type classification in Southern Brazil: Integrating 
remote sensing, crop modeling and machine learning. Computers and Electronics in 
Agriculture 201. https://doi.org/10.1016/j.compag.2022.107320. 

Redhead, J.W., Burkmar, R., Brown, M., Pywell, R.F., 2022. E-Planner: A web-based tool 
for planning environmental enhancement on British agricultural land. Environ. 
Model. Softw. 155, 105437 https://doi.org/10.1016/j.envsoft.2022.105437. 

Rufin, P., Bey, A., Picoli, M., Meyfroidt, P., 2022. Large-area mapping of active cropland 
and short-term fallows in smallholder landscapes using PlanetScope data. 
International Journal of Applied Earth Observation and Geoinformation 112, 
102937. https://doi.org/10.1016/j.jag.2022.102937. 

Sanderman, J., Savage, K., Dangal, S.R.S., Duran, G., Rivard, C., Cavigelli, M.A., 
Gollany, H.T., Jin, V.L., Liebig, M.A., Omondi, E.C., Rui, Y., Stewart, C., 2021. Can 
Agricultural Management Induced Changes in Soil Organic Carbon Be Detected 
Using Mid-Infrared Spectroscopy? Remote Sens. (Basel) 13, 2265. https://doi.org/ 
10.3390/rs13122265. 

Singh, A., Jones, S., Ganapathysubramanian, B., Sarkar, S., Mueller, D., Sandhu, K., 
Nagasubramanian, K., 2021. Challenges and Opportunities in Machine-Augmented 
Plant Stress Phenotyping. Trends in Plant Science 26, 53–69. https://doi.org/ 
10.1016/j.tplants.2020.07.010. 

Soltanikazemi, M., Minaei, S., Shafizadeh-Moghadam, H., Mahdavian, A., 2022. Field- 
scale estimation of sugarcane leaf nitrogen content using vegetation indices and 
spectral bands of Sentinel-2: Application of random forest and support vector 
regression. Comput. Electron. Agric. 200, 107130 https://doi.org/10.1016/j. 
compag.2022.107130. 

Tan, X., Jiao, J., Zhong, Y., Ma, A., Xu, Y., Sha, Z., Huang, F., Wan, Y., Hu, W., 2022. The 
CNRIEEEMC: A communication-navigation-remote sensing-integrated ecological 
environment emergency monitoring chain for tailings areas. Int. J. Appl. Earth Obs. 
Geoinf. 108, 102710 https://doi.org/10.1016/j.jag.2022.102710. 

Tekinerdogan, B., Verdouw, C., 2020. Systems Architecture Design Pattern Catalog for 
Developing Digital Twins. Sensors 20, 5103. https://doi.org/10.3390/s20185103. 

Top, J., Janssen, S., Boogaard, H., Knapen, R., Şimşek-Şenel, G., 2022. Cultivating FAIR 
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